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Abstract 
Funds of funds are funds that invest primarily in units of other funds. They have developed in 

Europe since the end of the 1990s. They exist because no fund manager can be excellent in all 

fields (all sectors, all geographical areas ...) and because it can therefore be interesting to compose 

funds from shares of funds managed by different management companies. As there is a higher 

diversification in funds of funds, they can be attractive at first glance. But studies have pointed out 

that they have some disadvantages, the main one being over-diversification. In this paper, we will 

review the literature on the issue of over-diversification by showing the consequences this over-

diversification may have on the management and performance of funds of funds. Using 

Markowitz’s mean-variance optimization method, we will on the one hand show that by building 

funds of funds from a panel of 551 equity funds, the efficient frontier is made up of funds of funds 

comprising from 1 to 11 funds with an average of 7.44 funds. This empirical study thus shows that 

the efficient frontier is composed of portfolios comprising a number of funds significantly below 

the professional standard (20 to 30 funds). Over-diversification and the accumulation of the 

resulting costs are therefore not a necessity.  

On the other hand, we will show that the mean-variance optimization method can be improved by 

DCA clustering techniques. A prior clustering of the initial database makes it indeed possible to 

reduce (by almost 10 in our example) the size of the database on which the Markowitz’s mean-

variance optimization is applied. The efficient frontier deriving from this reduced database is 

almost equivalent in terms of risk-adjusted performance as the one deriving from the initial 

database, while avoiding computational problems generated during the optimization process on 

wide databases (especially when including regulatory constraints).  
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1 Introduction 

 

Funds of mutual funds are often considered, in the financial literature, as being part of the family 

of the mutual funds:  Klapper, Sulla et Vittas (Klapper et al., 2004) state that “there are five main 

types of mutual funds: equity and bond funds that predominantly invest in equities or bonds; 

balanced funds that have more balanced portfolios of both equities and bonds; money market 

mutual funds that specialize in short-term instruments; and finally funds of funds that mainly invest 

in other mutual funds.” 

The reasons for multi-management are the search for the best managers, a lack of experts or 

diversification. Multi-management consists in composing an investment fund starting from 

existing funds. By buying shares of mutual funds, asset managers become in turn customers of 

other asset managers and diversify their sources of performance in order to reduce risk. This 

management practice, resulting from alternative management, led to many classical managers 

being followed. The funds of funds thus strongly developed in Europe at the end of the 1990s, 

with the emergence of profiled funds, and then a specific regulation framework (in particular with 

directive UCITS III) was installed. 

Fund-of-funds managers sort, analyze and select the best investment funds in the market. 

Management is based on selectivity and diversification and aims at above-average performance in 

the reference category for a lower risk-taking. 

 

The existence of funds of funds is based on the principle that, since no fund manager can be 

excellent in all areas, funds of funds only find their excellence through multi-management, which 

consists in integrating funds from several management companies (Carretta and Mattarocci, 2005). 

Since each underlying fund is composed of several securities, the funds of funds are generally 

highly diversified. This has the effect of significantly reducing the risk of the portfolio. 

Funds of funds seem to have everything to seduce investors. However, this management mode has 

many disadvantages, the common point between them being over-diversification, seen in many 

funds. Some managers of funds of funds dramatically decrease the profitability of their portfolio 

by wanting to reduce the risk too much. The sharp decrease in risk through the accumulation of 

funds in the portfolio can in fact lead to a duplication of funds, the smoothing of the performance 

and the dilution of profits. In addition, an excessive number of lines is not necessarily optimal 

when one considers the amount of time spent to manage.  

To this is added the additional layer of fees that multi-management requires as a result of the 

intervention in the process of an additional actor that must be remunerated. The structure of the 

fund of funds being two floors, it is indeed necessary to pay the companies which manage funds 

composing  the fund of funds, but also to pay the work by the manager of the fund of funds himself. 

Based on Markowitz’s modern portfolio theory, which is to determine the ideal composition of a 

portfolio of considered securities, a simplification could be to bring cardinality constraints in the 

building of a portfolio of funds, in order to avoid over-diversification. However, if the size of the 

variance-covariance matrix is too large, and, particularly if the number of securities is greater than 

the number of longitudinal observations of returns, computational problems while optimizing the 

portfolio composition can occur. 



Two alternatives are then possible: increasing the number of temporal observations or reducing 

the number of assets considered. Increasing the number of observations is often difficult in the 

building of funds of funds for several reasons. On the one hand, funds have variable lifetimes, and 

for some “young” funds, it can be impossible to obtain data over a long period. In addition, some 

studies showed that the variability of the returns of assets being not stationary, integrating a too 

long period of observations in the study cannot be stated [(MacKinlay, 1987) (Schwert, 1989) 

(Schwert and Seguin, 1990) (Nawrocki, 1996)] 

It is therefore on the second alternative - the reduction of the number of assets in the sample- that 

we will focus our attention in this paper. In order to decrease the size of the sample, an approach 

may be to classify the funds and choose the ones of the appropriate classes before any optimization 

process. In a previous research (Thi et al., 2014), we developped a methodology for classifying 

funds in three key dimensions in financial portfolios management, namely, risk aversion by 

investors, investment horizon and anticipation of market trends. We will show that, when selecting 

only the classes that may be interesting for the fund manager at one point, it is possible to achieve 

an efficient frontier (according to Markowitz’s mean-variance approach) close to the one obtained 

with a much larger sample. 

In our next part, we will draw up a state of the literature on the existence and the consequences of 

over-diversification of funds of funds, as well as computational problems occurring during the 

optimization process. In the third part, we will present our research, by indicating our database and 

the methodology used. The fourth part will be devoted to the presentation and analysis of the 

results of our study and in the fifth part we will conclude. 

 

2 Literature review 

2.1 Literature review on over-diversification 

Our literature review will initially focus on the theme of over-diversification of funds, regularly 

displayed in the financial literature. It is often proved that over-diversification has negative impacts 

on the returns of funds. This phenomenon, identified for funds, is also found for funds of funds, 

even if the specific subject of funds of funds - including funds of mutual funds - is less frequently 

covered in the literature. The consequences of over-diversification on the returns of funds are 

reflected in three dimensions: the smoothing of returns, the stacking of fees and longer time to 

manage assets, which limits the quality of managers’ analyses. We will conclude this literature 

review with a summary of scientific works proving the existence and causes of computational 

problems in mean-variance optimization, especially in a large sample of assets. 

Funds of funds have been regularly criticized for several years. Their poor performance is regularly 

highlighted, both in the public press and in scientific journals. A 2016 study (Peltz International, 

2016) based on a survey conducted at the end of 2015 with 32 institutions of hedge funds 

management, indicates that three-quarters of respondents felt that the situation of these funds had 

worsened in recent years. However, this finding is not new and Capocci and Nevolo showed in 

2005 (Capocci and Nevolo, 2005) that funds of funds tend to underperform their individual 

components. 



Previously, Brown, Goetzmenn and Liang in 2003 (Brown et al., 2003) already reported that 

individual hedge funds dominate funds of funds on an after-fee return or Sharpe ratio basis. 

According to Hutson, Lynch and Stevenson (Hutson et al., 2006) funds of funds tend to 

underperform hedge fund indexes. 

Other authors are more moderated and point out that, although funds of funds do not significantly 

underperform or outperform their benchmark, a trend (certainly statistically insignificant) can be 

observed for underperformance (Maxam et al., 2007). It is true that this paper relates to funds of 

hedge funds. But this observation is also true for funds of mutual funds, generally little discussed 

in the literature. According to a survey of 80 private equity fund-of-funds managers (Prequin 

Special Report, 2014), when they were asked what the greatest challenges in the funds of funds 

industry were, the most commonly named issue was returns, selected by 47% of respondents. And 

the reality is that capital raised for private equity fund-of-funds vehicles is at its lowest levels. 

Furthermore, a recent study (Gowri and Deo, 2016) has shown that funds of mutual funds tend to 

be less efficient than mutual funds. This study attempted to evaluate the performance of funds of 

funds on the basis of risk-adjusted methods and concluded that that the majority of the equity funds 

of funds included in the sample had underperformed the benchmark. 

Funds of funds therefore appear to have a lower performance than the funds in their category, 

although a few studies show the opposite ((Gresch and von Wyss, 2011) ; (N et al., 2012) ; (Miller, 

2005)). It is quite easy to link this lower performance to the phenomenon of over-diversification 

regularly highlighted in the literature. 

The diversification of a financial portfolio is a basis in market finance, since it allows to undermine 

financial risks according to the well-known adage "do not put all your eggs in one basket". But too 

much diversification is not good either, because over-diversification bears its own costs. Holding 

too many different investments means too much time must be spent tracking them, too much 

money spent on commissions, and too much mediocrity accepted, diluting the benefit of good 

investments. According to Sebastian et Attaluri ((Sebastian and Attaluri, 2014), it “has been argued 

that the relationship between active risk and outperformance (or conversely, over-diversification 

and underperformance) has developed only since the mid-1990s, and accounts for a large part of 

the decline in observed skills since that time”. 

The phenomenon of over-diversification of funds has already been studied for many years, but 

studies have focused mainly on mutual funds, hedge funds, funds of hedge funds and funds of 

private equity funds. For example, Brown et al. in 2011 (Brown et al., 2011) drew attention to a 

decreasing trend in the returns of funds of hedge funds with the rise in the number of underlying 

hedge funds in the portfolio. They showed that funds of hedge funds tend to over-diversify their 

portfolio and be more exposed to left-tail risk. A report of North Sky Capital (North Sky Capital 

Report, 2011) showed in 2011 that portfolio volatility (standard deviation) decreases as the number 

of funds and the vintage year diversification are both increased; however, the incremental benefits 

of diversification decrease with each addition. For example, a portfolio of three underlying funds 

spread across three vintage years (i.e., one fund in each year) has a standard deviation of 30%, 

while a 10-fund portfolio and a 20-fund portfolio spread across three vintage years has a standard 

deviation of 21% and 19%, respectively. This data shows that there is a substantial benefit in 

investing in a 10-fund portfolio relatively to a 3-fund portfolio, but there is only a modest 

incremental benefit by investing in a 20-fund portfolio relatively to a 10-fund portfolio. A survey 

from the research cell of the investment company Cliffwater also shows that a lot of investors tend 



to over diversify their hedge fund portfolios, particularly those investing in funds of funds and 

authors found a negative link between the number of funds in the portfolio and the ability of the 

fund manager. (Nesbitt and Sokolov, 2015) 

We can also include Thomsett (Thomsett, 2014), who, in the preface of his book “Options Trading 

for the Institutional Investor” indicates that “The three disadvantages mutual funds have over other 

institutions (insurance companies, banks, pension plans, and specialized advisory service 

providers, for example) include over-diversification, fees, and cash on hand”. 

The over-diversification of funds and funds of funds is thus found in mass in the literature. It leads 

to the smoothing of returns, multiplication of fees and a form of portfolio management made more 

complex by the increase of assets. 

2.1.1 The smoothing of returns 

Over-diversification of funds of funds appear like an element leading to the smoothing of their 

returns. Thus, as noted by Wankhade (Wankhade, 2016): “Although there are many benefits of 

diversification, there are pitfalls of being over-diversified. Think of it like a sliding scale: the more 

securities you hold, the less likely you are to feel their individual returns on your overall portfolio. 

What this means is that though risk will be reduced, so too will the potential for gains.” As further 

noted by Meyer and Mathonet (Meyer and Mathonet, 2011): “An over-diversification will drive 

returns to a mean, which is in conflict with the main objective of investing in this asset class, 

namely providing access to top tier funds and generating above average returns”. According to 

Morley (Morley, 2016), if “risk is controlled by diversification –  (…) so are returns. (…) 

Diversification makes theoretical sense, but over-diversification becomes counter-productive.” 

Thus, Greenblat (Greenblat, 2011) reports in his book the words of two fund managers, Angus 

Gluskie and Atul Lele (managers of Hite Funds Management), who view over-diversification as a 

common flaw of many fund managers. They also consider that “good investment positions have 

little impact on overall portfolio returns”. Kim et Nelson (Kim and Nelson, 2016) similarly write 

in 2016 that “when mutual funds add many stocks to their portfolios only to drive down 

idiosyncratic risk to raise their Sharpe ratios, this can mean that the positive impact of the few 

great stocks that the fund owns will get watered down.” 

According to Pomorski (Pomorski, 2009) and Cohen and al. (Cohen et al., 2010) the cause of the 

poor overall performance of fund managers was not a lack of stock-picking skills, but over-

diversification. For Cohen and al., “the poor overall 

performance of mutual fund managers in the past is not due to a lack of stock-picking 

ability, but rather to institutional factors that encourage them to over-diversify, i.e. 

pick more stocks than their best alpha-generating ideas” (Cohen et al., 2010).  For  Robbé (Robbé, 

2008), over-diversification is linked to duplication. And this duplication will lead to the 

performance of the interests held by the funds of funds in the underlying funds being more strongly 

correlated to each other and, thus, will undermine the diversification benefits from investing in 

multiple funds. Abbink (Abbink, 2010) thus considers that “less sophisticated funds of funds 

managers may simply follow the generally accepted wisdom that exposures should be diversified 

without considering the ways in which they can hedge each other. This can lead to unintentional 

hedging away of return potential.”  Indeed, as Richard Fitzaln Howard noted in 2006 (Jaffer, 2006) 

when aggregating multiple managers’ portfolios, there is the chance that, if mandates overlap, 

investment positions are doubled or cancelled out. Other authors are more precise in the effects of 



over-diversification on the distribution of returns, showing that this one leads to  a diminution in 

excess kurtosis but a slight increase in negative skewness (Mathonet and Meyer, 2008). 

 

2.1.2 The accumulation of fees 

There are surprisingly only very few academic studies on the fee structure of funds of funds and 

the impacts on performance. It should be noted that, as we have previously indicated, the major 

part of the literature on funds of funds relates to funds of hedge funds. However, as well for hedge 

funds as for funds of hedge funds, their opacity does not make it possible to collect information 

on the level of fees and distribution of their costs, in order to generate well-founded scientific 

analyses. There is however a general agreement that the major disadvantage of the fund-of-funds 

arrangement is the cost to the investor. In addition to the fees that funds of funds charge, they pass 

on to the investor all fees charged by the constituent funds. In return for high expenses, funds of 

hedge funds provide non-performance-based benefits. Some studies however created the 

controversy of this widespread idea of the low performance of funds of funds: Ang and al. conclude 

their study published in 2008 with stating that “funds-of-funds, on average, deserve their fees-on-

fees”(Ang et al., 2008). But this assessment remains quite scarce and the majority of scientists and 

experts of the financial industry, agree that “over-diversification—buying more and more mutual 

funds, index funds, or exchange traded funds—can amplify risk, stunt returns, and increase 

transaction costs and taxes.” (Rekenthaler, 2013). Indeed, “although the total price impact from a 

single large transaction would be greater than the price impact of multiple smaller transactions, 

the fixed component of commission fees is higher when multiple trades are made.” (Shawky and 

Smith, 2005). Wu and al (Wu et al., 2017) showed that in real-world applications of portfolio 

selection models, however, most investors would invest in only a limited number of assets due to 

market frictions such as management and transaction fees. Brown and al. (Brown et al., 2011)  

showed that FoFs tend to be over-diversified and that the costly due-diligence from holding so 

many positions leads to FoFs underperformance. Ang et al. (Ang et al., 2008) already argued that 

it is the cost of providing due diligence function that justifies the fees that funds of funds charge 

over the fees charged by constituent funds. Finally, for Debbie Harrison (Harrison, 2005), “over-

diversification can lead to unnecessary costs and to style neutrality, at which point it would be 

simpler and cheaper to use a managed fund or an index tracker”. 

2.1.3 The difficulty of managing a large portfolio 

An over-diversified portfolio is often composed of a large number of assets. As the number of 

lines increases, difficulties to manage the portfolio increase in the same time. Indeed, over-

diversification generates  real or fictitious costs that may be similar to opportunity costs. Thus, for 

Shawky et Smith (Shawky and Smith, 2005) “monitoring costs can take the form of additional 

personnel costs, as well as poor performance due to a portfolio manager’s (or management team’s) 

inability to track a large number of stocks”. Ryan (Ryan, 2016) even mentions a “cost of over-

diversification”. For Ang et al. (Ang et al., 2008) and Brown, Gregoriou, and Pascalau (Brown et 

al., 2011) the cost of providing a due diligence function particularly  justifies the fees that funds 

of funds charge over the fees charged by constituent funds. Thus, as summarized in Baker and al. 

(Baker et al., 2015) p 579, “investors should not overemphasize diversification because having too 

many mutual funds in a portfolio can be costly and time-consuming to monitor”. 



Thus, if diversification is an important principle in portfolio management, this one should not be 

thorough to the extreme, at the risk of generating harmful effects on the performance of portfolios. 

Some well-known authors and managers even claim the benefits of concentration. Note that the 

funds targeted in this case are primarily hedge funds. As stated by Ridley  (Ridley, 2004), 

“statistical studies suggest that holding many hedge funds provides little benefit by way of 

reducing portfolio volatility. Investing in too many funds is likely to result in thinner research into 

each investment. Mediocre research can contribute to increasing risk as opposed to reducing it. A 

smaller portfolio could be concentrated in higher caliber, better researched funds”. According to 

this author, diversification would be synonymous with mediocrity. This approach has been 

straightforwardly taken up by the well-known hedge fund manager Warren Buffet, for whom 

“diversification is what you do when you don’t know what to do. (…) Diversification works by 

spreading risk, but often fails to deliver return. Return only happens when you know what you are 

doing with a concentrated portfolio” (Morley, 2016). Others, however, are more moderate, and a 

relatively widespread idea is that a portfolio should be more or less diversified depending on 

expected market performance. 

Indeed, as mentioned by Yeung and al. (Yeung et al., 2012) “concentrated portfolios are geared to 

performing well when markets are bullish but to performing equally when markets are bearish”.  

On the assumption that diversification is important, and the observation that over-diversification, 

on the other hand, has adverse effects on the performance of a portfolio, some authors have begun 

to investigate whether it is possible to determine the existence of an optimal number of securities 

in a portfolio. 

One of the first studies on the subject was carried out by Evans and Archer in 1968 (Evans John 

L. and Archer Stephen H., 1968). Those authors showed that a relatively stable and predictable 

relationship does indeed exist between the number of securities included in a portfolio and the 

level of portfolio dispersion. Further, this relationship appears to take the form of a rapidly 

decreasing asymptotic function, with the asymptote approximating the level of systematic 

variation in the market." The authors also raise doubts concerning the economic justification of 

increasing portfolio sizes beyond 10 or so securities. In 2013, mutual fund research firm 

Morningstar (Morningstar.co.uk Editors, 2013) carried out simulations to precisely determine the 

optimum number of funds in a portfolio. To do this, the researchers computed the standard 

deviations of portfolios containing 1 to 30 funds over five years. They concluded that holding a 

single fund is quite risky. Adding a second one substantially reduces volatility, adding another has 

the same effect. And finally, volatility stabilizes with seven funds. For Brands and Gallagher 

(Brands and Gallagher, 2005), the majority of diversification benefits are realized when a portfolio 

of approximately six active equity funds are included in a fund of funds portfolio. John Bogle, the 

founder of Vanguard (a prominent U.S. fund company), notes in his book Common Sense on 

Mutual Funds, “I truly believe that it is generally unnecessary to go much beyond four or five 

equity funds. Too large a number can easily result in over-diversification.” (Bogle, 2010). Louis 

Lowenstein, in his book “The Investor’s Dilemma” published in 2008 (Lowenstein, 2008), 

recommends that mutual fund investors find three, or at most four stock funds that meet their 

needs. 

Finally, Meyer and Mathonet (Mathonet and Meyer, 2008) consider that the most appropriate 

process for a given manager depends on his/her objectives and tolerance for risks. This means that 

http://www.morningstar.co.uk/uk/author/2256/morningstarcouk-editors.aspx


trade-offs are inevitable and that a balance must be found between over-diversification and a 

narrow selection of managers. 

The good management of a fund of funds would thus go through the choice of a limited number 

of funds, which introduces cardinality constraints during the risk-return optimization process, and 

can generate computational problems, that we will develop in the second paragraph of this 

literature review. 

2.2 Literature review on computational problems occurring during 

mean-variance optimization process  

To create a size-reduced funds of funds when the initial database of funds is large, it is necessary 

to introduce cardinality constraints to limit the number of assets that compose the portfolio (Lwin 

et al., 2017). But applying portfolio-theoretic models to a large number of assets is problematic, 

and the optimization problem is further increased when cardinality constraints are added. Mean-

variance portfolio selection consists of finding a self-financing strategy whose final value has 

maximal mean and minimal variance (Schweizer, 2010). The computational complexity of 

Markowitz’s covariance matrix approach grows exponentially as the number of assets increases, 

thus increasing computational time and resources (Nawrocki, 1996) 

Elton and Gruber (Elton and Gruber, 1973), and DeMiguel et al. (DeMiguel et al., 2009) showed 

that the estimation of the covariance matrix of the returns of assets is an important step for a 

successful implementation of the mean-variance portfolio optimization approach; Estimation risks 

is one of the primary reasons to make standard MV optimization unfeasible in practice (Raimond 

and Herold, 2006). For Carrasco, and Noumon (Carrasco and Noumon, 2011), two difficulties may 

occur: the assets could be highly correlated (i.e. the population covariance matrix is nearly 

singular) or the number of assets could be too large relative to the sample size (i.e. the sample 

covariance is (nearly) singular even though the population covariance is not). The second difficulty 

is the one which is the most documented in the literature (see for example (Guo et al., 2017) ; (Kyj 

et al., 2009); (DeMiguel et al., 2011) ; (Ng, 2014) ; (Jobson and Korkie, 1980); (Ledoit and Wolf, 

2003); (Rubio et al., 2012); (Menchero et al., 2011); (Michaud, 2014). Guigues (Guigues, 2011) 

summarized it as follows: if the number of assets is close to the number of available observations 

per asset T, then the total number of parameters to estimate is close to the total number of 

observations, which is problematic. This is due to the phenomenon of non-invertability of the 

matrix which arises when the number of assets is larger than the number of historical data periods 

(Senneret et al., 2016). But in addition to non-invertability, the size of the covariance matrix itself 

could cause error maximization. Having a large number of variance and covariance estimations 

could potentially lead to estimation outliers resulting in an unbalanced portfolio (Clarke et al., 

2006). Some studies even showed that naïve (equally weighted) portfolios can beat mean–variance 

optimized portfolios (DeMiguel et al., 2009); (Senneret et al., 2016).  

To reduce this computational problems, some authors suggested that it was possible to obtain better 

risk-adjusted performance with fewer securities in the portfolio by using an improved allocation 

scheme ((Santos, 2015); (Cesarone et al., 2011)).  

Yang and Rea (Yang et al., 2015) recommended to reduce the size of an original sample of stocks 

by applying a PCA (Principal Component Analysis). PCA can be applied to either a covariance 

matrix or a correlation matrix. The procedure seeked to step-wide remove the most highly 



correlated stocks in the sample leaving the most independent stocks. They pointed out that, “from 

a diversification point of view, eliminating one of a highly correlated pair of stocks results in only 

a small loss of diversification potential, most of the potential will still be in the sample in the form 

of the retained stock”. 

Other authors relied on the clustering statistical technique to facilitate the process of selecting 

securities and optimizing a fund. In this case, the aim is not to reduce the original database by 

keeping only the least correlated between the securities, but to classify a large group of securities 

into a small number of sub-groups made up of relatively homogeneous securities, thereby 

simplifying the decision making related to these securities. (The Rock Creek Group, Hierarchical 

Clustering Analysis on the Hedge Funds, December 2010 ; Marvin and Bhatt, 2015). Creating 

diversified portfolios using cluster analysis, Independent Work Report, Fall 2015, (Souza and 

Gokcan, 2004)).  

This is specifically this method that we also used in the framework of our research, in order to 

divide our initial (large) sample into sub-samples with identified common financial characteristics 

(see the first part of this study in: (Thi et al., 2014)).  

The literature review of the first paragraph leads us to our first question: is it possible to build an 

efficient fund of funds according to the mean-variance optimization theory, whose number of 

assets is however limited? And in the continuity of this first question a second question emerges: 

is the performance of a fund of funds correlated to the number of funds included in the portfolio? 

Finally, the literature review of the third paragraph leads us to our third question: may the 

efficient curve of funds of funds built through a powerful preliminary ranking of funds and good 

forecasts of market expectations be equivalent to the efficient curve of funds of funds built on the 

initial database of funds. 

3 Data and methodology 

The aim of our study is to show that it is possible to build an optimum efficient frontier with a 

limited number of funds, in any case smaller than the average number included in the fund of funds 

in practice, without a significant loss of performance. This helps to limit the accumulation of fees, 

facilitate the optimization process and integrate the regulatory constraints of any UCITS funds. 

3.1. The data base and the clustering technique  

Our study was realized on the database constituted of the monthly returns of 551 funds made of 

European stocks values, in the period from October 2002 to December 2007. For each fund, we 

calculated, in a first time, 17 performance, risk, and risk-adjusted performance indicators, on a 

rolling basis of 3 months, 1 year, and 3 years. Our intermediate database was then constituted of 

51 variables. 

Return measurement 
 Absolute performance 

 Relative performance (to benchmark) 

Risk measurement 

 Absolute risk (standard deviation) 

 Tracking Error (relative risk) 

 Max drawdown 

 Negative periods (%) 



 Positive periods (%) 

 VaR Cornish Fisher 

Performance measurement 

adjusted to the risk 

 Alphas of Jensen 

 Betas against the benchmark 

 Beta bull 

 Beta bear 

 Information ratio 

 Sharpe ratio 

 Sortino ratio 

 Treynor ratio 

 Black Treynor ratio 

Table 1. The 17 performance, risk, and risk-adjusted performance indicators used to 

cluster the funds of our database  

In a second time, we computed the four moments (mean, standard deviation, skewness and 

kurtosis) of each indicator, which witness the 204 variables of our final database. 

We have thus applied an ascendant hierarchical classification, with the DCA method to determine 

the number of classes (Le Thi and al., 2014). We retained 7 classes composed as follows: 

 

 

Table 2. The distribution of funds in the 7 generated classes  

 

The financial interpretation of the seven clusters is summarized in the table below: 

 

Cluste r

Number of 

funds  in the  

cluste r

% of funds 

in the  

cluste r

1 6 1

2 19 3

3 4 1

4 422 77

5 71 13

6 28 5

7 1 0

Sum 551 100



 

Table 3. The financial description the 7 generated classes  

 

We then applied Markowitz’s mean-variance optimization method on 3 datasets: the set of all 551 

funds of our initial database, the set of the funds of the DCA2 and DCA4 clusters, behaving well 

in bullish market (which represents 47 funds), and the set of the funds of the DCA3 and DCA5 

clusters, behaving well in bearish market (which represents 75 funds).  

 

Let 

nF   be the number of assets available (551 in our application); 

r𝑖  be the expected return of asset i; 

σ𝑖𝑗   be the covariance between assets i and j; 

r*   be the desired expected return. 

 

Our decision variables are: 

w𝑖   the proportion held of asset i in the portfolio. 

 

The standard Mean-Variance Markowitz model (Markowitz, 1952) finds the proportion vector w 

that solves the following minimization problem  

minimize 

Classes Interpretation of the classes

DCA1

The performance of this class is lower than the sample average yield. All funds of this class have fewer

negative periods than the average of the sample, but the absolute risk is much higher than the average. With

market betas and bull betas above the sample mean, those funds do not behave well on the downside.

DCA 2

The average performance of funds of this class is much higher than that of the sample. This class include funds

with positive Jensen alphas, and so an outperformance relative to the market. There were no significant risk

indicators for the construction of this class. These funds have a larger variance of the absolute performance

and a lower variance for the market beta.

DCA3

The fund's performance of this class is equivalent to that of the sample. This class mainly includes defensive

funds, with weaker relative risk and VaR. Nevertheless, we can note that these funds have more negative

periods than the sample.

DCA4

With this class, we are in the benchmark sample with a yield which is very close to the average yield of the

sample. The risk of all of these funds is slightly lower than that of the sample (Absolute Risk VaR and

somewhat lower). We can also note that we did not find any beta or indicators of relative risk among the

significant variables.

DCA5

This class includes funds with a lower yield than the average of the sample. But indicators of absolute and

relative risks are also lower.

As against the VaR is much stronger, which explains the negative return.

The risk is poorly estimated by indicators based on the average and standard deviation because returns are

clearly nonnormal.

DCA6

The funds in this class have a better than average performance of the sample. This class is just the opposite of

the class DCA5, in which the funds have higher aboslute and relative risks, but a lower VaR. Here the non-

normality plays for the fund's performance.

DCA7

This class is composed of a single fund. We note that the performance is generally very negative and risk

indicators very high 



∑  

𝑛𝐹

𝑖=1

∑ w𝑖w𝑗σ𝑖𝑗

𝑛𝐹

𝑗=1

 

 

subjet to  

∑ w𝑖r𝑖 = 𝑟∗𝑛𝐹
𝑖=1 , 

∑  𝑤𝑖 = 1

𝑛𝐹

𝑖=1

 

0 ≤ w𝑖  , i = 1,…, nF 

 

Note that for a sequence of proportion wi, i=1,...,nF, the risk associated with the portfolio is the 

corresponding total variance  

 

∑  

𝑛𝐹

𝑖=1

∑ w𝑖w𝑗σ𝑖𝑗

𝑛𝐹

𝑗=1

 

and the return of the portfolio is given by  

∑ w𝑖r𝑖

𝑛𝐹

𝑖=1

 

For a fixed value of r*, this problem is a convex quadratic programming problem (QP) for which 

efficient algorithms exist to compute solutions. By resolving the above QP for varying values of 

r*, we can trace out the efficient frontiers, a smooth non-decreasing curve that gives the best 

possible tradeoff of risk against return. 

 

Let us recall some computations: 

𝑃0
𝑖, 𝑃1

𝑖,… , 𝑃𝑁
𝑖 , N+1 the price of asset I, i=1,…, nF 

 

   r𝑘
𝑖 =  

P𝑘
𝑖 −P𝑘−1

𝑖

P𝑘−1
𝑖 × 100, 𝑘 = 1, … 𝑁 

𝑟𝑖i= ∑ 𝑟𝑘
𝑖𝑁

𝑘=1   i=1,… nF 

σ𝑖𝑗 = (
1

𝑁−1
) ∑ (r𝑘

𝑖𝑁

𝑘=1
− 𝑟𝑖 ) (r𝑘

𝑗
− 𝑟𝑗 ), i=1,…, nF, j=1,…,nF 

 

By varying the desired expected return r* in the interval [𝑟𝑚𝑖𝑛 
∗ ;  𝑟𝑚𝑎𝑥

∗ ] and solving the 

corresponding optimization problem, we plot the efficient frontier. In our simulations, we have 



discretized this interval with the step 
𝑟𝑚𝑎𝑥

∗ − 𝑟𝑚𝑖𝑛
∗

1000
 (because we computed 1000 portfolios in each 

case) 

In the standard Markowitz model, we have  𝑟𝑚𝑎𝑥
∗ = ∑ 𝑤𝑖

𝑚𝑎𝑥r𝑖
𝑛𝐹

𝑖=1
 with  

 

𝑤𝑚𝑎𝑥 = 𝐴𝑟𝑔𝑚𝑎𝑥 ∑ 𝑤𝑖r𝑖

𝑛𝐹

𝑖=1
 

subject to 

    ∑  𝑤𝑖 = 1

𝑛𝐹

𝑖=1

 

0 ≤ w𝑖  , i = 1,…, nF 

 

and  𝑟𝑚𝑖𝑛
∗ = ∑ 𝑤𝑖

𝑚𝑖𝑛r𝑖
𝑛𝐹

𝑖=1
 wi with  

𝑤𝑚𝑖𝑛 = 𝐴𝑟𝑔𝑚𝑖𝑛 ∑ ∑ 𝑤𝑖

𝑛𝐹

𝑗=1
𝑤𝑗σ𝑖𝑗

𝑛𝐹

𝑖=1
 

subject to   

  ∑  𝑤𝑖 = 1

𝑛𝐹

𝑖=1

 

0 ≤ w𝑖  , i = 1,…, nF 

 

3.2. The three efficient frontiers 

We obtained three efficient frontiers, as follows: 

Markowitz-Total: corresponds to the standard Markowitz model applied directly on the initial 

database (551 funds), 

Markowitz-Upcase : corresponds to the standard Markowitz model applied on the upcase data 

produced with the clustering process (the funds of the DCA2 and DCA4 classes which represents 

47 funds) 

Markowitz-Downcase: corresponds to the standard Markowitz model applied on the downcase 

data produced with the clustering process (the funds of the DCA3 and DCA5classes, which 

represents 75 funds).  



 

Graph 1. Efficient frontiers on the series Markowitz-Total, Markowitz-Upcase and Markowitz-

Downcase 

We can observe that, whatever the set of funds, the number of observations (1368 daily returns 

between October 2002 and December 2007) is far greater than the number of funds in the 

optimization process (551 funds for the overall database, 47 funds in the assumption of bull market 

and 75 funds in the assumption of bear market). Problems of matrix inversion traditionally met in 

this kind of optimization, when the number of data is higher than the number of observations, do 

not appear in this study.  

4 Results: analyses 

4.1  A limited number of funds is enough when creating a fund of 

funds 

The efficient frontier constituted from the initial database (Markowitz-Total curve) is in reality 

made up of funds of funds comprising between 1 and 11 funds, with an average of 7.44 funds for 

Markowitz-Total, 7.42 funds for Markowitz Upcase and 6.37 funds for Markowitz Downcase. 

There are in fact the statistical characteristics of the sample of 1000 portfolios constituting the 

efficient frontier: 

 

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max 

Number.of.funds.Total 1,000 7.437 2.493 1 5 8 9 11 

Number.of.funds.Upcase 1,000 7.415 2.495 1 5 8 9 11 

Number.of.funds.Downcase 1,000 6.373 2.981 1 3 8 9 11 

Table 4. Univariate statistics of the variable Number of funds 

We can also visualize how many funds the 1000 portfolios of the efficient frontier are composed 

of: 



 

Graph 2. Efficient frontier Markowitz-Total returns and number of funds according to risk level 

 

The number of funds in a portfolio does not decrease linearly with the increasing risk: in fact, it 

increases very quickly in the first (most convex) part of the efficient frontier and then decreases in 

stages (the same shape of graph can be visualized in Appendix 1 for Markowitz-Upcase and 

Markowitz-Downcase). 

The maximum number of 11 funds in a portfolio on Markowitz-Total is reached for a total of 133 

portfolios with an average return of 8,66% and an average volatility of 5.01%. (cf. Table 5). 

We have highlighted that the number of funds included in the portfolios of the efficient frontier 

(7.44 on average, and 11 at most), is well below the number of funds included in the fund of funds, 

in managers’ practice. 

Markowitz’s mean-variance optimization method can then contribute to help reduce management 

costs by limiting the number of funds in the funds of funds.  

On the other hand, we found that a prior clustering of an initial database of funds, based on good 

market anticipations, can help reduce the size of the database (that is the space of possible), thus 

facilitating the mean-variance optimization process. 

4.2 An initial sorting of the funds makes it possible to reach a high 

efficient frontier. 

2002 to 2007 is a period of growth for economy and finance and the majority of the financial 

markets was bullish. It is therefore not surprising that Markowitz-Total and Markowitz-Upcase 

series are in close proximity to each other. Markowitz Downcase series is graphically clearly below 

Markowitz-Total and Markowitz-Upcase series. 

Since Markowitz-Total and Markowitz-Upcase curves are very close to each other, it is visually 

difficult to determine if one is above the other. Since abscissas of the two curves are different, we 

used interpolation methods to determine the extent to which the two curves differ from each other. 



We used two interpolation methods: the linear interpolation method (see Appendix 6) and the 

spline cubic method (see appendix 7). We interpolated Markowitz-Total series with these two 

methods, and compared the interpolated series with the raw data of Markowitz-Upcase series by 

calculating the point-by-point differences and the average difference between points of the two 

series. 

The point-by-point differences are positive 46.1 % of the time and negative 53.9 % of the time for 

both methods. The average of the differences are positive using the two methods: the average 

difference is 6,147.10-5 for the first method, and 6.153.10-5 % for the second.  

These results show that Markowitz-Downcase curve is below and far from Markowitz-Toral curve, 

and that Markowitz-Upcase curve appears very close to Markowitz-Total curve (sometimes below 

this latter, sometimes above, even if the average difference between the two series is positive, but 

very weak). 

4.3 Sharpe ratios of the optimal fund of funds can be modeled 

according to the number of funds included in the portfolio 

We showed that the number of funds included in the efficient frontier was much lower than the 

number of funds in the initial database, and than the number of funds generally included in the 

practice (from 20 to 30 funds). We wanted to take the analysis further, asking whether there was 

a correlation between the risk-adjusted level of performance of efficient frontier portfolios and the 

number of funds included in them. We then computed the Sharpe ratio for each of the 1000 

portfolios for the 3 series Markowitz-Total, Markowitz-Upcase and Markowitz-Downcase. 

For the risk-free rate, we used the average daily performance of 12 months-EURIBOR, computed 

from the average annual rate over the period under review (October 2002-December2007). 

 

Graph 3. Sharpe ratio of the 1000 portfolios of Markowitz-Total according to their number of 

funds 

 

We can notice that Sharpe ratio tends to increase (non-linearly however) with the number of funds 

for Markowitz-Total (the same trend can be visualized in Appendix 2 for Markowitz-Upcase and 



Markowiz-Downcase). The maximum Sharpe ratio (1.053) for Markowitz-Total is achieved for a 

portfolio of 11 funds (with a mean return of 8.66 % and a risk of 5.01 %). 

 

The following table summarizes statistical on the 1000 portfolios according to the number of funds 

in the portfolio, for Markowitz-Total (the same table can be visualized in Appendix 3 for 

Markowitz-Upcase and Markowiz-Downcase). : 

Number of funds in the 

portfolio 

Number of 

portfolios Risk (%) Return (%) 

Sharpe 

ratio  

1 1 46,35% 13,25% 0,213 

2 57 31,37% 13,09% 0,326 

3 12 21,23% 12,89% 0,447 

4 18 20,46% 12,81% 0,460 

5 168 16,22% 12,26% 0,553 

6 132 11,05% 11,14% 0,706 

7 94 7,65% 9,54% 0,792 

8 67 5,98% 8,71% 0,898 

9 255 5,01% 8,17% 0,953 

10 63 4,15% 7,64% 1,019 

11 133 5,01% 8,66% 1,053 

Overall 1000 9,97% 9,87% 0,800 

Table 5. Statistical of the 1000 portfolios according to the number of funds in the portfolio for 

Markowitz-Total 

 

We can notice that if the risk and return of the portfolios decrease with the number of funds in the 

portfolio, the Sharpe ratio tends to grow in the same time. 

Let us now turn to the correlation between the four variables mentioned above: return, risk, Sharpe 

ratio and number of funds, for Markoowitz-Total (the correlations for Markowitz-Upcase and 

Markowitz-Downcase can be visualized in Appendix 4): 

 

  Markowitz.Total.Risk Markowitz.Total.Return Sharpe.ratio Number.of.funds 

Markowitz.Total.Risk         

Markowitz.Total.Return 0.821***       

Sharpe.ratio -0.876*** -0.732***     

Number.of.funds -0.863*** -0.769*** 0.935***   

Computed correlation used pearson-method with listwise-deletion. 

Note: * = p < .05, ** = p < .01, *** = p < .001 

Table 6. Matrix correlation on the variables relative to Markowitz-Total 

 

Correlation is strong and positive between return and risk, and relatively strong but negative 

between return and Sharpe ratio, which may seem surprising at first. However, the Sharpe ratio of 



any security is composed of both its return (which appears in the numerator) and its risk (in the 

denominator). And on the right-hand side of the efficient frontier, risk increases much more rapidly 

than return. It explains the global negative correlation between Sharpe ratio and return, with the 

Sharpe ratio declining, even as return increases, because risk increases much more rapidly than 

return does. 

Considering the number of funds, it is strongly, but negatively correlated with return, which means 

that return increases when the number of funds decreases. On the other hand, the number of funds 

is high, but positively correlated with the Sharpe ratio, which means that the Sharpe ratio tends to 

become larger as the number of funds increases. 

It emerges from these observations that the risk-adjusted performance of a portfolio of funds 

depends on the number of funds included in the portfolio. We therefore modeled the Sharpe ratio 

as a function of the number of funds in the portfolio, using a simple linear regression. 

 

We tested the effects of the number of funds on Sharpe ratio level using the following linear 

regression model, for the three efficient frontiers (Markowitz-Total, Markowitz-Upcase and 

Markowitz-Downcase). 

We used two specification models, one with only one explicative variable, the number of funds 

for the portfolios of the efficient frontier, and the other including two control variables, risk and 

return for the portfolios of the efficient frontier (the univariate statistic of the variables included in 

the regressions is on Appendix 5). 

 

First model is specified as follow for each portfolio i of an efficient frontier: 

𝑆ℎ𝑎𝑟𝑝𝑒. 𝑟𝑎𝑡𝑖𝑜𝑖 =  𝑐 + 𝛼. 𝑁𝑢𝑚𝑏𝑒𝑟. 𝑜𝑓. 𝑓𝑢𝑛𝑑𝑠𝑖 + 𝜖𝑖 

Second model is specified as follow for each portfolio i of an efficient frontier: 

𝑆ℎ𝑎𝑟𝑝𝑒. 𝑟𝑎𝑡𝑖𝑜𝑖 =  𝑐 + 𝛼. 𝑁𝑢𝑚𝑏𝑒𝑟. 𝑜𝑓. 𝑓𝑢𝑛𝑑𝑠𝑖 + 𝑅𝑖𝑠𝑘𝑖+ 𝑅𝑒𝑡𝑢𝑟𝑛𝑖 + 𝜖𝑖 

 

Results are the following: 

 

 Dependent variable: 
  

 Sharpe.ratio.Total Sharpe.ratio.Upcase Sharpe.ratio.Downcase 
 (1) (2) (3) (4) (5) (6) 

Number.of.funds.Total 0.085*** 0.066***     

 (0.001) (0.002)     

Markowitz.Total.Return  0.993***     

  (0.189)     

Markowitz.Total.Risk  -0.996***     

  (0.070)     

Number.of.funds.Upcase   0.085*** 0.064***   

   (0.001) (0.002)   



Markowitz.Upcase.Return    0.648***   

    (0.177)   

Markowitz.Upcase.Risk    -1.071***   

    (0.069)   

Number.of.funds.Downcase     0.030*** 0.053*** 
     (0.001) (0.001) 

Markowitz.Downcase.Return      9.746*** 
      (0.152) 

Markowitz.Downcase.Risk      -0.855*** 
      (0.025) 

Constant 0.166*** 0.310*** 0.185*** 0.383*** 0.170*** -0.591*** 
 (0.008) (0.027) (0.007) (0.023) (0.008) (0.017) 

 

Observations 1,000 1,000 1,000 1,000 1,000 1,000 

R2 0.875 0.896 0.894 0.917 0.409 0.889 

Adjusted R2 0.874 0.896 0.894 0.916 0.408 0.889 

Residual Std. Error 
0.081 (df = 

998) 

0.073 (df = 

996) 

0.073 (df = 

998) 

0.065 (df = 

996) 

0.107 (df = 

998) 

0.046 (df = 

996) 

F Statistic 
6,954.521*** 

(df = 1; 998) 

2,865.204*** 

(df = 3; 996) 

8,402.321*** 

(df = 1; 998) 

3,653.198*** 

(df = 3; 996) 

689.744*** 

(df = 1; 

998) 

2,654.576*** 

(df = 3; 996) 

 

Note: *p<0.1; **p<0.05; ***p<0.01 

 

We can note that the R2coefficient of determination in the first model is high for Markowitz-Total 

and Markowitz-Upcase, but much lower for Markowitz-Downcase. Introducing control variables 

risk and return leads to a small increase of R2  for Markowitz-Total and Markowitz-Upcase, but a 

sharp increase of Markowitz-Downcase. 

These results seem to mean that for Markowitz-Total and Markowitz Upcase, the Sharpe ratio 

depends on the number of funds included in the portfolio, but this seems not to be really the case 

for Markowitz-Downcase. Sharpe ratio increases in average of 0.066 when a fund is added in the 

portfolio for Markowitz-Total, and of 0.064 for Markowitz-Upcase, which is a very close value. 

 

5 Conclusion 

The results show that the two Markowitz-Total and Markowitz-Upcase curves are very close to 

each other, the Markowitz-Total series is only very slightly higher than the Markowitz-Upcase 

series, which means that, for the same level of risk, only a very slightly higher level of return is 

obtained with a portfolio composed from the 551 equity funds in the original database, than with 

a portfolio made up of 47 funds that behave well in bull market. On the other hand, the Markowitz-

Downcase curve is clearly well below the Markowitz-Total curve, which shows that the funds used 

to build this efficient frontier are not adequate in a bear market context.  

We can thus conclude that it is possible to reach almost the same efficient frontier from a sample 

of 47 funds than from a sample of 551 funds, if the funds have been correctly selected to be in line 



with market expectations. It is therefore possible to build funds in an optimal way by reducing 

management costs. 

In addition, our results are in line with studies related to the ideal number of securities in a fund. 

We indeed showed that the portfolios of the efficient frontiers Markowitz-Total and Markowitz-

Upcase are composed of between 2 and 11 funds, with an average of 7.44 funds for Markowitz-

Total and 7.42 funds for Markowitz-Upcase. We also showed that for these two efficient frontiers, 

the Sharpe ratio tends to increase with the number of funds included in the portfolio. We might 

want to conclude from our results that the ideal number of funds of funds is therefore 11 funds, 

much fewer than the professional average (20 to 30 funds).  

However, it is really time to recall now that the results of this research have operational limits. The 

first is linked to the possibility to anticipate the possibilities of market expectations. Our method 

is indeed based on market expectations, which determine the selection of funds, and it is on this 

selection that Markowitz's method of average-variance optimization is applied. However, since 

the 2007-2008 crisis, as markets have been particularly disrupted, it has become even more 

difficult than before to create market expectations, even for financial specialists. The risk is that, 

if expectations prove to be wrong, one could make inaccurate choices and include in the selection, 

funds that could not in any case generate a high efficient frontier. The second is linked to the size 

of the sampling: we realized this study on a limited number of funds (551 funds in our database). 

This certainly allowed us to avoid the computational problems related to large samples (see 

paragraph 2.2) but it would be interesting to carry out this study on several samples of this size, in 

order to verify the reproducibility of our results. 
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Appendix 1 
Evolution of the returns and the number of funds for Markowitz-Upcase and Markowitz-

Downcase efficient frontiers, according to the risk level 

 

 

Appendix 2 
Graphs of the Sharpe ratios of portfolios of Markowitz-Upcase and Markowitz-Downcase, 

according to the number of funds included in the portfolio 

 



 

Appendix 3 
Statistical on the 1000 portfolios according to the number of funds in the portfolio, for 

Markowitz-Upcase and Markowitz -Downcase 

For Markowitz-Upcase : 

Number of 

funds in the 

portfolio 

Number of 

portfolios 
Risk (%) Return (%) Sharpe ratio  

1 1 42,43% 13,03% 0,227 

2 58 28,96% 12,87% 0,344 

3 11 19,95% 12,69% 0,466 

4 18 19,27% 12,61% 0,478 

5 170 15,38% 12,09% 0,571 

6 132 10,61% 11,02% 0,724 

7 95 7,39% 9,44% 0,807 

8 83 5,42% 8,19% 0,881 

9 234 5,08% 8,38% 0,988 

10 62 4,09% 7,61% 1,028 

11 136 4,94% 8,64% 1,063 

Overall 1000 9,57% 9,82% 0,816 

 

For Markowitz-Downcase : 

Number of 

funds in the 

portfolio 

Number of 

portfolios 
Risk (%) Return (%) Sharpe ratio  

1 1 50,63% 10,56% 0,141 

2 168 39,39% 10,15% 0,175 

3 148 20,98% 9,34% 0,292 

4 47 13,77% 8,80% 0,393 

5 24 12,50% 8,60% 0,416 

6 26 11,23% 8,07% 0,396 

7 14 9,28% 6,96% 0,316 

8 197 8,39% 7,02% 0,394 

9 311 5,50% 5,95% 0,446 

10 49 4,38% 5,31% 0,435 

11 15 4,34% 5,29% 0,437 

Total général 1000 14,79% 7,60% 0,360 



Appendix 4 
Correlation matrices for the variables relative to the series Markowitz-Upcase and 

Markowitz-Downcase 

 

Note: * = p < .05, ** = p < .01, *** = p < .001 

 

 

Note: * = p < .05, ** = p < .01, *** = p < .001 

 

Appendix 5 
Univariate Statistical of the variables included the linear regression models 

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max 

Markowitz.Total.Risk 1,000 0.100 0.075 0.033 0.043 0.075 0.132 0.463 

Markowitz.Total.Return 1,000 0.099 0.022 0.054 0.081 0.101 0.118 0.132 

Markowitz.Upcase.Risk 1,000 0.096 0.069 0.033 0.043 0.073 0.127 0.424 

Markowitz.Upcase.Return 1,000 0.098 0.021 0.055 0.081 0.101 0.116 0.130 

Markowitz.Downcase.Risk 1,000 0.148 0.128 0.040 0.051 0.095 0.199 0.506 

Markowitz.Downcase.Return 1,000 0.076 0.020 0.034 0.061 0.078 0.093 0.106 

Sharpe.ratio.Total 1,000 0.800 0.227 0.213 0.629 0.834 1.007 1.094 

Number.of.funds.Total 1,000 7.437 2.493 1 5 8 9 11 

Sharpe.ratio.Upcase 1,000 0.816 0.225 0.227 0.651 0.851 1.019 1.102 

Number.of.funds.Upcase 1,000 7.415 2.495 1 5 8 9 11 

Sharpe.ratio.Downcase 1,000 0.360 0.139 0.007 0.229 0.404 0.488 0.524 

Number.of.funds.Downcase 1,000 6.373 2.981 1 3 8 9 11 

 

Markowitz.
Upcase.Return

Markowitz.
Upcase.Risk

Number.of.funds.
Upcase

Sharpe.ratio.
Upcase

Markowitz.
Upcase.Return

Markowitz.
Upcase.Risk

0.828***

Number.of.funds.
Upcase

-0.759*** -0.861***

Sharpe.ratio.
Upcase

-0.750*** -0.889*** 0.945***

Computed correlation used pearson-method with listwise-deletion.

Markowitz.
Downcase.Return

Markowitz.
Downcase.Risk

Number.of.funds.
Downcase

Sharpe.ratio.
Downcase

Markowitz.
Downcase.Return

Markowitz.
Downcase.Risk

0.830***

Number.of.funds.
Downcase

-0.858*** -0.879***

Sharpe.ratio.
Downcase

-0.243*** -0.636*** 0.639***

Computed correlation used pearson-method with listwise-deletion.



Appendix 6 

Linear Interpolation Model 

Linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range 

of a discrete set of known data points. 

If two known points are given by the coordinates (x0 ,y0)  and (x1, y1)   , the linear interpolant is the straight line 

between these points. For a value x in the interval (x0, x1) the value y along the straight line is given from the equation 

of slopes: 

y − y0

x − x0

=
y1 − y0

x1 − x0

 

Solving this equation for y, which is the unknown value at x, gives: 

y = y0 + (𝑥 − x0) (
y1 − y0

x1 − x0

) =
y0 (x1 − x) + y1 (x − x0)

x1 − x0

 

which is the formula for linear interpolation in the interval (x0, x1). 

 

Appendix 7 

Cubic Spline Interpolation 

We have piecewise interpolated the unknown function r() over an interval [0,n] partitioned into subintervals [i-

1, i], i = 1,2, ..., n. 

 

Cubic spline interpolation involves here replacing the points of unknown function r() with a third degree polynomial 

on each subinterval, so that the interpolating function is continuous, as well as its first and second derivatives over the 

entire interval [0,n]. 

 

Cubic functions of interpolation if  as thus written as follows: 
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The continuity of the second derivative is written: 
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or, as the second derivative is linear: 
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Therefore, by setting:    hi = i – i-1: 
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By integrating twice it comes: 
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Integration constants ri and si are determined using the known values of fi() for i and i-1: 

fi(i-1) = yi-1 ,    fi(i) = yi  

 

After some algebraic manipulations, we get: 
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The functions )(if will be fully known when we have calculated the values of 
i

f  . 

To obtain these values, we use the conditions of continuity of the first derivatives at the interior points. 

 

After derivation of fi() we impose: 
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that is a system of n-1 equations with n+1 unknown variables. 

 

We thus have the possibility of imposing two additional conditions, obtained, for example, by the conditions at the 

limits of the interval [0, n]. 

If we impose the following two conditions: 

0)(0)( 01 
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we get natural cubic splines. 

The n-1 unknowns variables
121
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fff    are then solution of the linear system Af = b, written above. 

The diagonal elements of matrix A are : 

ai,i = 2(hi + hi+1)   ,    i = 1, 2, … , n-1. 

  

While the elements of the secondary diagonals of A are: 

ai+1,i = ai,i+1 =  hi+1  ,    i = 1, 2, … , n-1. 

 

The elements of the second member b are: 
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 , i = 1,2,…,n-1. 

This system has a unique solution because its tridiagonal matrix is diagonally dominant and is therefore invertible. 

 

 


