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HESSIAN OF HAUSDORFF DIMENSION ON PURELY IMAGINARY DIRECTIONS

We extend classical results of Bridgeman-Taylor and McMullen on the Hessian of the Hausdorff dimension on quasi-Fuchsian space to the class of p1, 1, 2q-hyperconvex representations, a class introduced in [41] which includes small complex deformations of Hitchin representations and of Θ-positive representations. We also prove that the Hessian of the Hausdorff dimension of the limit set at the inclusion Γ Ñ POpn, 1q Ñ PUpn, 1q is positive definite when Γ is co-compact in POpn, 1q (unless n " 2 and the deformation is tangent to X `Γ, POp2, 1q ˘).

Introduction

One of the most interesting and well studied metrics on the Teichmüller space, the parameter space of hyperbolic structures on a closed surface S of genus g ě 2, is the Weil-Petersson metric, a non-complete Riemannian metric. A celebrated result by B.-Taylor [START_REF] Bridgeman | An extension of the Weil-Petersson metric to quasi-Fuchsian space[END_REF] and McMullen [START_REF] Mcmullen | Thermodynamics, dimension and the Weil-Petersson metric[END_REF] gives a geometric interpretation of this metric in terms of dynamical invariants of quasi-Fuchsian representations.

Recall that the holonomy representation realizes the Teichmüller space TpSq as a connected component of the character variety X `π1 S, PSL 2 pRq ˘:" Hom `π1 S, PSL 2 pRq ˘{{ PSL 2 pRq, which, in turn, sits as a totally real submanifold of the complex character variety X `π1 S, PSL 2 pCq ˘, endowed with the complex structure J induced by the complex structure of the Lie group PSL 2 pCq. A neighborhood of TpSq in the complex character variety is given by quasi-Fuchsian space QFpSq, the set of conjugacy classes of representations ρ : π 1 S Ñ PSL 2 pCq " Isom 0 pH 3 q preserving a convex subset of H 3 on which they act cocompactly. Any such ρ is thus a quasi-isometric embedding and admits an injective equivariant boundary map ξ ρ : Bπ 1 S Ñ CP 1 whose image is a Jordan curve. Given ρ P QFpSq, we denote by Hffpρq the Hausdorff dimension of this Jordan curve. It is bounded below by 1 and Bowen showed that Hffpρq equals 1 precisely when ρ belongs to the Teichmüller space [START_REF] Bowen | Hausdorff dimension of quasi-circles[END_REF] -Taylor [START_REF] Bridgeman | An extension of the Weil-Petersson metric to quasi-Fuchsian space[END_REF] -McMullen [START_REF] Mcmullen | Thermodynamics, dimension and the Weil-Petersson metric[END_REF]). For each ρ P TpSq and every differentiable curve pρ t q tPp´ε,εq Ă TpSq with ρ 0 " ρ it holds Hess HffpJ 9

ρq " } 9 ρ} W P .

In recent years, convex-cocompactness has been generalized from rank 1 to realalgebraic semisimple Lie groups 1 G of arbitrary rank, via the concept of Anosov representations ρ : Γ Ñ G K , where, for K " R or C, G K denotes the group of the K-points of G. Specifying a set Θ of simple roots, let G K {P Θ be the space of parabolic subgroups of type Θ. Then Θ-Anosov representations are characterized by admitting a continuous, equivariant, transverse boundary map ξ Θ ρ : BΓ Ñ G K {P Θ with good dynamical properties [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF][START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF][START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF][START_REF] Kapovich | Morse actions of discrete groups on symmetric space[END_REF][START_REF] Bochi | Anosov representations and dominated splittings[END_REF][START_REF] Kassel | Eigenvalue gaps for hyperbolic groups and semigroups[END_REF]. They form open subsets X Θ pΓ, G K q " ρ P XpΓ, G K q : ρ is Θ-Anosov ( of the character variety.

For each a P Θ B.-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF] constructed, using the thermodynamic formalism, an analogue of the Weil-Petersson metric on X Θ pΓ, G K q, the spectral radius pressure form P ωa , where ω a is the fundamental weight associated to a. We will recall this construction on Section 4.

Probably the best studied space of Anosov representations is the PSL d pRq-Hitchin component. Hitchin introduced a special connected component

H pS, G R q Ă Xpπ 1 S, G R q,
when G R is moreover center-free and simple split, which in the case of PSL d pRq can be described as the connected component H d pSq Ă X `π1 S, PSL d pRq ˘containing a Fuchsian representation, i.e. the composition of the holonomy of a hyperbolic structure with the irreducible representation π 1 S Ñ PSL 2 pRq Ñ PSL d pRq. On the PSL d pRq-Hitchin component B.-Canary-Labourie-S. [START_REF] Bridgeman | Simple roots flows for Hitchin representations[END_REF] defined a different pressure form, denoted by P a1 , to which we will refer here as the spectral gap pressure form. They prove that P a1 is non-degenerate on H d pSq and extends the Weil-Petersson inner product on Teichmüller space, embedded into H d pSq as the space of Fuchsian representations.

A corollary of the main result of the paper is a generalization of Theorem 1.1. To state the result, we denote by Π the set of simple (restricted) roots of G R and consider the Hitchin component H pS, G R q as a subset of X Π `π1 S, G C ˘, the latter equipped the complex structure J induced by the complex structure of G C . For a P Π denote by Hff a pρq " dim Hff `ξa ρ pBπ 1 Sq

1(of non-compact type)

the Hausdorff dimension of the (image of the) limit curve ξ a ρ : BΓ Ñ F a pG C q for a(ny) Riemannian metric on F a pG C q. It follows from Theorem 2.7 that Hff a is critical at H pS, G R q and thus its Hessian is well defined.

Corollary A. For every v P T H pS, G R q and every a P Π one has Hess Hff a pJvq " P a pvq.

Moreover, when G R " PSL d pRq the Hessian of Hff a1 : X Π `π1 S, PSL d pCq ˘Ñ R, at a Hitchin point ρ, is strictly positive on every direction except T ρ H d pSq, where it is degenerate. In particular the Hitchin locus is an isolated minimum for Hff a1 .

The second statement follows directly from the first, together with the aforementioned non-degeneracy result by B.-Canary-Labourie-S. [START_REF] Bridgeman | Simple roots flows for Hitchin representations[END_REF] for the spectral gap pressure form P a1 .

Corollary A brings further evidence that the spectral gap pressure form is more geometric than the spectral radius pressure form, and shares more similarities to the classical Weil-Petersson metric. A key ingredient in its proof is the notion of p1, 1, 2q-hyperconvex representations, studied in P.-S.-W. [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF] (see Theorem 2.7). These are representations ρ : Γ Ñ PSL d pCq that are Anosov with respect to the first two simple roots and whose boundary maps satisfy an additional transversality condition (see Section 2.2). The main result of [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF] then yields that, on the open set

X & ta1,a2u `Γ, PGL d pCq ˘" ρ P X `Γ, PGL d pCq ˘: p1, 1, 2q-hyperconvexu
the Hausdorff dimension of the limit set ξ 1 ρ pBΓq equals the critical exponent h a1 ρ for the first root (see Section 2.2 for the definition of the critical exponent) and is thus analytic.

Theorem A. Let Γ be a word hyperbolic group with BΓ homeomorphic to a circle and let ρ P X & ta1,a2u `Γ, PSL d pRq ˘be a regular point of the character variety X `Γ, PGL d pCq ˘. Then for every differentiable curve pρ t q tPp´ε,εq Ă X `Γ, PSL d pRq with ρ 0 " ρ one has Hess Hff a1 pJ 9 ρq " P a1 p 9 ρq.

Thanks to the work of [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF][START_REF] Pozzetti | Anosov representations with Lipschitz limit set[END_REF], Theorem A applies not only to Hitchin components but to Θ-positive Anosov representations into indefinite orthogonal groups [START_REF] Guichard | Positivity and higher Teichm\"uller theory[END_REF]. However, in all these cases, we do not know for which roots a the associated pressure form is non-degenerate.

Corollary B. Let P `Γ, SO 0 pp, qq ˘denote the set of Θ-positive Anosov representations. Then for every v P TP `Γ, SO 0 pp, qq ˘and every a P ta 1 , . . . , a p´2 u one has Hess Hff a pJvq " P a pvq.

The second main result of the paper is a generalization of B. [START_REF] Bridgeman | Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space[END_REF] to Anosov representations of word hyperbolic groups that are not necessarily virtual surface groups.

Theorem B. Let Γ be a word hyperbolic group and let ρ P X & ta1,a2u `Γ, PSL d pCq ˘be a smooth point. Assume moreover that

Hff a1 : X & ta1,a2u `Γ, PSL d pCq ˘Ñ R `
is critical at ρ. Then Hess ρ Hff a1 is positive semidefinite on a subspace of dimension at least half the real dimension of X & ta1,a2u `Γ, PSL d pCq ˘. If, furthermore, the pressure form P a1 is non-degenerate, then there are no local maxima. This theorem applies in particular to all convex cocompact Kleinian groups in PSL 2 pCq, a result not covered by [START_REF] Bridgeman | Hausdorff dimension and the Weil-Petersson extension to quasifuchsian space[END_REF]. In general, admitting p1, 1, 2q-hyperconvex representations is a relatively restrictive assumption on the group Γ, as, for example, it implies that its boundary has dimension smaller than 2. However there are many classes of subgroups of PSL 2 pCq admitting p1, 1, 2q-hyperconvex representations with Zariski dense image in PSL d pCq. It is not yet known if the spectral gap pressure form is non-degenerate for such representations, and we hope that Theorem B will encourage research in this direction.

The proof of both Theorems A and B relies on pluriharmonicity of length functions. The mechanism behind both proofs is relatively versatile, and can be applied in many situations. As an example we use it in Corollary 5.4 to prove that, at a Fuchsian representation, the critical exponent h ω1 pρq relative to the first fundamental weight necessarily increases along purely imaginary deformations (see Section 5.5 for details).

Our last result is another application of the previous techniques in a rank one situation. Recall that a representation ρ : Γ Ñ PUpn, 1q is convex-cocompact if and only if it is projective Anosov when PUpn, 1q is considered as a subgroup of PGL n`1 pCq through the standard inclusion. Moreover, for γ P Γ the real length of the associated closed geodesic is the spectral radius ω 1 ´λ`ρ pγq ˘¯. If ρ : Γ Ñ PUpn, 1q is convex co-compact then we denote by Hff BCH n pρq the Hausdorff dimension the limit set of Γ in the visual boundary of the complexhyperbolic space, with respect to a visual metric. A celebrated result by Sullivan [START_REF] Sullivan | The density at infinity of a discrete group of hyperbolic motions[END_REF] in real-hyperbolic space, and further extended to arbitrary negatively curved manifolds by Yue [START_REF] Yue | The ergodic theory of discrete isometry groups on manifolds of variable negative curvature[END_REF], asserts that if ρ : Γ Ñ PUpn, 1q is convex-co-compact then Hff BCH n pΓq " h ω1 pρq.

Assume now that Γ is a co-compact lattice of PSOpn, 1q and denote by ι the inclusion ι : Γ Ñ PSUpn, 1q, where the inclusion of PSOpn, 1q Ñ PSUpn, 1q is given by extending the coefficients. Bourdon [START_REF] Bourdon | Sur le biraport au bord des CATp´1q-espaces[END_REF] proved that ι is a global rigid minima for Hff BCH n among convex cocompact representations of Γ in PUpn, 1q. In section 5.4 we prove the following strengthening.

Theorem C. Assume ι is a regular point of the character variety X `Γ, PSUpn, 1q ˘, then Hess ι Hff BCH n is positive definite in any direction not tangent to X `Γ, PSOpn, 1q ˘.

If n ą 2 then Mostow's classical rigidity result states that ι is an isolated point of X `Γ, PSOpn, 1q ˘so Theorem C implies that the Hessian of the Hausdorff dimension at ι is positive definite. Remark 1.2. If ρ is a small deformation of ι in PSUpn, 1q then it is a convex cocompact subgroup of PSUpn, 1q and moreover, by P.-S.-W. [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF]Corollary 8.5], the Hausdorff dimension of the limit set for a Riemannian metric on BCH n also coincides with h ω1 pρq, so in Theorem C we can consider Hff BCH n either as the Hausdorff dimension for a visual metric or for a Riemannian metric.

Outline of the paper. In Section 2 we discuss the background on Anosov representations needed in the paper: after reviewing the basic definitions we discuss, in Section 2.2, the results of [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF] which singled out p1, 1, 2q-hyperconvex representations. In Section 2.3 we recall the basic facts about higher rank Teichmüller theories needed to deduce Corollaries A and B from Theorem A; finally in Section 2.4 we discuss an important dynamical viewpoint on Anosov representations: these can be thought of as reparametrizations of the geodesic flow of Γ, and are thus amenable to the thermodynamic formalism. In Section 3 we discuss the thermodynamic formalism needed to define, in Section 4, the pressure forms. We conclude the paper in Section 5 introducing the main technical tool of the paper, pluriharmonicity of dynamical intersection, which is directly used to prove Theorems A, B and C.

Anosov representations

In this section we introduce the necessary background on Anosov representations, and recall how they give rise to reparametrizations of the geodesic flow.

2.1. Basic notions. We recall the Cartan and the Jordan-Lyapunov projections and the characterization of Anosov representations we are going to use.

Let G be a semisimple real-algebraic Lie group of non-compact type with finite center, for K " R or C denote by G K the group of the K-points of G. Fix a maximal compact subgroup K ă G K with Lie algebra t. We denote by E ă t K a Cartan subalgebra, and by ∆ Ă E ˚a choice of simple roots. This corresponds to the choice of a Weyl chamber in E, which we will denote by E `. In the case G " PSL d we identify E `with px 1 , . . . , x d q P R d |x 1 ě . . . ě x d , ÿ

x i " 0 ( .

Every element g P G K can be written as a product g " k 1 exp `σpgq ˘k2

for k 1 , k 2 P K and a unique element σpgq P E `, the Cartan projection of g. If G R " PSL d pRq, the numbers σ i pgq are the logarithms of the square roots of the eigenvalues of the symmetric matrix g t g. If a P ∆ then we denote by ω a its associated fundamental weight. Let Θ Ă ∆ be a subset of simple roots. We denote by P Θ ă G the associated parabolic subgroup, by PΘ the opposite associated parabolic group and by

E Θ :" č aP∆zΘ kerpaq
the Lie algebra of the center of the Levi group P Θ X PΘ . It comes equipped with the natural projection

p Θ : E Ñ E Θ (1) 
parallel to Ş aPΘ ker a. Finally let E Θ ă E ˚be the subspace generated by the fundamental weights associated to elements in Θ E Θ :" xω a | a P Θy " tϕ P E ˚| ϕ ˝pΘ " ϕu.

One has that E ∆ " E and P ∆ is a minimal parabolic subgroup.

Let Γ be a finitely generated discrete group and denote by | | the word length for a fixed finite symmetric generating set. 

A ta 1 u-Anosov representation ρ : Γ Ñ PGL d pKq will be called projective Anosov.

Note that this is not the original definition given in Labourie and Guichard-W. [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF][START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF], but a characterization due to Kapovich-Leeb-Porti and Bochi-Potrie-S. [START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF][START_REF] Bochi | Anosov representations and dominated splittings[END_REF]. Note also that there is a recent characterization by Kassel-Potrie [START_REF] Kassel | Eigenvalue gaps for hyperbolic groups and semigroups[END_REF] only in terms of the Jordan-Lyapunov projection (see below for the definition) rather than the Cartan projection.

Anosov representations are quasi-isometric embeddings, thus in particular they are injective and have discrete image. It was proven in [START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF] (see also [START_REF] Bochi | Anosov representations and dominated splittings[END_REF]) that only word hyperbolic groups admit Anosov representations; we will denote by BΓ the Gromov boundary of the group Γ.

A key property of Anosov representations is the existence of equivariant boundary maps with good dynamical properties [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF][START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF][START_REF] Guéritaud | Anosov representations and proper actions[END_REF][START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF][START_REF] Bochi | Anosov representations and dominated splittings[END_REF]. With our definition, the existence of boundary maps for such representations is a Theorem of [START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF] and [START_REF] Bochi | Anosov representations and dominated splittings[END_REF]. From now on we will restrict ourselves, without loss of generality, to self-opposite subsets Θ Ă ∆ Theorem 2.2 (Kapovich-Leeb-Porti [START_REF] Kapovich | A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF]). Let ρ : Γ Ñ G K be Θ-Anosov. Then there exist a unique dynamics preserving, continuous, transverse equivariant boundary map

ξ Θ ρ : BΓ Ñ G K {P Θ .
If G " PGL d and Θ " ta r u, then G K {P Θ " G r pK d q and we write ξ r ρ " ξ taru ρ

. It was proven in [START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF] that it is possible to reduce the study of general tau-Anosov representations to projective Anosov representations. Indeed one can use the following result by Tits, since for the representations Λ a below one has

a 1 ´σ`Λ a pρpγqq ˘¯" a ´σ`ρ pγq ˘¯.
Proposition 2.3 (Tits [START_REF] Tits | Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconqe[END_REF]). For every a P ∆ there exists an irreducible proximal representation Λ a : G R Ñ PGL d pRq whose highest restricted weight is lω a for some l P N.

Recall that the Jordan decomposition states that every g P G K can be written uniquely as a commuting product g " g e g h g n , where g e is elliptic, g h is R-split and g n is unipotent. The Jordan-Lyapunov projection λ : G K Ñ E `is defined by the logarithm of the eigenvalues of g h with multiplicities and in decreasing order. If G " PGL d , this corresponds to the logarithm of the modulus of the roots of the characteristic polynomial of g with multiplicities and in decreasing order, and we denote by

λpgq " `λ1 pgq, . . . , λ d pgq ˘P px 1 , . . . , x d q P R d | x 1 ě . . . ě x d , ÿ x i " 0 ( its coordinates.
We will denote by Λ ρ Ă E `the limit cone of the subgroup ρpΓq ă G K . This is the cone given by Λ ρ :" tR `¨λpρpγqq| γ P Γu.

It was proven by Benoist [3] that, provided ρpΓq is Zariski dense, Λ ρ is convex and has non-empty interior.

For every functional ϕ P E ˚that is positive on the limit cone Λ ρ we denote by h ϕ pρq the critical exponent of the Dirichlet series

s Þ Ñ ÿ γPΓ e ´sϕ ´σ`ρ pγq ˘¯,
it can be computed as

h ϕ pρq " inf ! s : ÿ γPΓ e ´sϕ `σ`ρ pγq ˘˘ă 8 ) " sup ! s : ÿ γPΓ e ´sϕ `σ`ρ pγq ˘˘" 8 ) .
2.2. Hyperconvex representations. We begin with the following definition from [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF]:

Definition. A ta 1 , a 2 u-Anosov representation ρ : Γ Ñ PGL d pKq is called p1, 1, 2q- hyperconvex if for every triple of pairwise distinct points x, y, z P BΓ one has `ξ1 ρ pxq ' ξ 1 ρ pyq ˘X ξ d´2 ρ pzq " t0u.
The following is a direct consequence of the uniqueness of boundary maps:

Lemma 2.4. The complexification of a real hyperconvex representation is hyperconvex (over C).

An important property of (1,1,2)-hyperconvex representations, established in [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF] is that, for these representations, the Hausdorff dimension of the limit curve for a Riemannian metric on PpK d q computes the critical exponent for the first simple root. If ρ is ta 1 u-Anosov, the root a 1 is positive on the limit cone (recall Equation (2)) and thus its critical exponent is well defined. We then have the following. Theorem 2.5 (P.-S.-W. [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF]). Let ρ : Γ Ñ PGL d pKq be p1, 1, 2q-hyperconvex, then dim Hff `ξ1 pBΓq ˘" h a1 ρ . A second important property of p1, 1, 2q-hyperconvex representations into PSL d pRq was established in P.-S.-W. [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF] (and independently in Zimmer-Zhang [START_REF] Zhang | Regularity of limit sets of Anosov representations[END_REF]) is the following: if Γ is such that BΓ is homeomorphic to a circle, then the image of the boundary map ξ 1 ρ is a C 1 -curve. As a result we get Theorem 2.6 (P.-S.-W. [START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF]). Let ρ : Γ Ñ PSL d pRq be p1, 1, 2q-hyperconvex. If BΓ is homeomorphic to a circle then dim Hff `ξ1 pBΓq ˘" 1.

Thus, for fundamental groups of surfaces, the Hausdorff dimension is constant and minimal on the real (1,1,2)-hyperconvex locus.

2.3. Higher rank Teichmüller Theory. A higher Teichmüller space is a union of connected components of a character variety Xpπ 1 S, G R q only consisting of Anosov representations.

Historically, the first family of higher Teichmüller spaces are Hitchin components. They arise whenever G R is a center free real-split simple Lie group. In this case there is a unique principal subalgebra sl 2 pRq ă g R characterized by the property that the centralizer of p 0 1 0 0 q has minimal dimension (Kostant [START_REF] Kostant | The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group[END_REF]). The Hitchin component H pS, G R q Ă Xpπ 1 S, G R q is the connected component containing Fuchsian representations: the composition of the holonomy of a hyperbolization π 1 S Ñ PSL 2 pRq and the morphism PSL 2 pRq Ñ G R induced by the inclusion of the principal subalgebra. Representations in the Hitchin component are Anosov with respect to the minimal parabolic subgroup [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF]. 2 Furthermore, representations in the Hitchin component are hyperconvex: [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF][START_REF] Pozzetti | Conformality for a robust class of non conformal attractors[END_REF][START_REF] Sambarino | Infinitesimal Zariski closures of positive representations[END_REF]). Let G R be a simple split center-free real group. For every ρ P H pS, G R q and a P Π the representation Λ a ρ : π 1 S Ñ PSLpV, Rq is p1, 1, 2qhyperconvex.

Theorem 2.7 ([
Proof. This was established, for the groups G R " PSL d pRq, PSpp2n, Rq, PSOpn, n 1q or the split form of the exceptional complex Lie group G 2 , by Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF], for G " SOpn, nq by P.-S.-W. [41, Theorem 9.9]. The general case follows from S. [START_REF] Sambarino | Infinitesimal Zariski closures of positive representations[END_REF]Remark 5.14].

The second family of higher Teichmüller spaces are spaces of maximal representations in Hermitian Lie groups G R [START_REF] Burger | Surface group representations with maximal Toledo invariant[END_REF]. Our results here do not apply in this setting. Maximal representations are, in general, only Anosov with respect to one root a, which therefore doesn't belong to the Levi-Anosov subspace. Even though we know that for maximal representations the critical exponent h a ρ is constant and equal to one ([40, Theorem 1.2]), it is not clear if a spectral gap pressure metric P a can be constructed in this case. Moreover, since maximal representations are, in general, not (1,1,2)-hyperconvex, it is not known if, for complex deformations in ρ : Γ Ñ G C , the critical exponent h a ρ equals the Hausdorff dimension of the limit set.

Conjecturally there are two further families of higher Teichmüller spaces, given by Θ-positive representations as introduced in [START_REF] Guichard | Positivity and higher Teichm\"uller theory[END_REF][START_REF] Wienhard | An invitation to higher Teichmüller theory[END_REF]. Θ-positive representations exist when G R is locally isomorphic to SOpp, qq, p ă q, or when G R belongs to a special family of exceptional Lie groups. In a forthcoming article, Guichard, Labourie and W. [START_REF] Guichard | Positive representations[END_REF] prove that Θ-positive representations are Θ-Anosov; in particular, in the case of SOpp, qq, p ă q, Θ-positive representations are Anosov with respect to the first p ´1 roots. Since this article is not yet available, we will here consider Θ-positive Anosov representations, and use the following result from [START_REF] Pozzetti | Anosov representations with Lipschitz limit set[END_REF].

Theorem 2.8 ([40, Theorem 10.1]). Let ρ : Γ Ñ SOpp, qq be a Θ-positive Θ-Anosov representation. For every a P ta 1 , . . . , a p´2 u the representation Λ a ρ :

π 1 S Ñ PSLpV, Rq is p1, 1, 2q-hyperconvex.
Note that when G R admits a Θ-positive structure, Guichard and W. conjectured several years ago, see also [START_REF] Guichard | Positivity and higher Teichm\"uller theory[END_REF][START_REF] Wienhard | An invitation to higher Teichmüller theory[END_REF], that then there exist additional connected components (namely the conjectured components of Θ-positive representations) in the representation variety, which are not distinguished by characteristic numbers. This conjecture has been proven by Collier [START_REF] Collier | SOpn, n `1q-surface group representations and their Higgs bundles[END_REF] in the case of G R " SOpn, n `1q and by Aparicio-Arroyo, Bradlow, Collier, García-Prada, Gothen, and Oliveira [START_REF] Aparicio-Arroyo | SOpp, qq-Higgs bundles and higher Teichmüller components[END_REF] in the case of G R " SOpp, qq using methods from the theory of Higgs bundles. 2 In fact, Labourie proved this for G R " PSL d pRq, which implies the result also for symplectic groups and odd-dimensional orthogonal groups. Fock and Goncharov gave a characterization of representations in the Hitchin component as positive representations, from which the Anosov property can be deduced with a little work.

2.4.

Reparametrizations of geodesic flows. In this section we describe a very useful dynamical viewpoint on Anosov representations from S. [START_REF] Sambarino | Quantitative properties of convex representations[END_REF] and B.-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF], which makes them amenable to the thermodynamic formalism: Any Anosov representation gives rise to a reparametrization of the geodesic flow.

Given a hyperbolic group Γ we denote by UΓ the Gromov geodesic flow; this is a metric space endowed with a topologically transitive flow φ whose periodic orbits correspond to conjugacy classes in Γ. If Γ admits an Anosov representation then φ is moreover metric Anosov [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]. Note that, if Γ is the fundamental group of a compact negatively curved manifold M , we can choose UΓ " UM ; more generally, whenever Γ admits an Anosov representation, its geodesic flow can be explicitly constructed with the aid of the associated boundary maps [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Theorem 1.10].

If α ą 0, we denote by Hol α pUΓ, Rq the space of α-Hölder continuous functions on UΓ and by HolpUΓ, Rq is the space of all Hölder continuous functions. If f P HolpUΓ, Rq and a P rΓs is a conjugacy class, then we define the f -period of a by f paq "

ż paq 0 f pφ t pxqqdt
where x P a. If f P Hol α pUΓ, R `q, we obtain a new flow φ f on UΓ called the reparametrization of φ by f . The flow φ f is given by the formula

φ t pxq " φ f k f px,tq pxq (3) 
where k f px, tq " ş t 0 f pφ s xqds for all x P X and t P R. The flow φ f is Hölder orbit equivalent to φ and if a P rΓs, then f paq is the period of a in the flow φ f . In [11, Section 4] B.-Canary-Labourie-S. associate to any projective Anosov representation a reparametrization of the geodesic flow UΓ. They prove the following statement, the second part is proved in [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Section 6]. Proposition 2.9 ( [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]). Let ρ : Γ Ñ PGL d pRq be a projective Anosov representation. Then there exists a positive Hölder-continuous function f λ1 ρ : UΓ Ñ R ą0 such that for every conjugacy class rγs P rΓs one has γ pf λ1 ρ q " λ 1 `ρpγq ˘.

Moreover, if tρ u u uPD is an analytic family of such representations, then one can choose f ω1 ρu so that the function u Þ Ñ f λ1 ρu is analytic. Proposition 2.9 together with Tits Proposition 2.3 directly give the following from Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF], where K " R case is treated. When K " C the result follows at once by considering G C as a real group. Recall equation (1) for the definition of p Θ : E Ñ E Θ .

Corollary 2.10 ([39, Cor. 4.5]). Let ρ : Γ Ñ G K be Θ-Anosov, then there exists a positive Hölder-continuous function f Θ ρ : UΓ Ñ E Θ such that for every conjugacy class rγs P rΓs one has

γ pf Θ ρ q " p Θ ´λ`ρ pγq ˘¯.
Moreover, if tρ u u uPD is an analytic family of such representations, then one can choose f Θ ρu so that the function u Þ Ñ f Θ ρu is analytic. Thus, Corollary 2.10 readily implies that if ρ is Θ-Anosov then for every ϕ P pE Θ q ˚that is strictly positive on Λ ρ ´t0u there exists a reparametrization of the geodesic flow of Γ whose periods are given by 3 ϕ `λpρpγqq ˘.

namely, if we denote by f ϕ ρ " ϕpf Θ ρ q then one considers the flow φ f ϕ ρ . We will need in the following that, in this situation, the critical exponent h ϕ pρq is also the entropy of the flow φ f ϕ ρ . This can be found for example in Ledrappier [START_REF] Ledrappier | Structure au bord des variétés à courbure négative[END_REF], S. [START_REF] Sambarino | Quantitative properties of convex representations[END_REF] and on Glorieux-Monclair-Tholozan [START_REF] Glorieux | Hausdorff dimension of limit set for projective Anosov groups[END_REF] for the general version.

Proposition 2.11. Let ρ : Γ Ñ G K be Θ-Anosov. For each ϕ P E Θ strictly positive on Λ ρ ´t0u it holds that

h ϕ pρq " lim T Ñ8 log # ! γ P rΓs| ϕ ´λ`ρ pγq ˘¯ă T ) T
This applies, in particular, to the root a 1 if a representation ρ is (1,1,2)-hyperconvex.

Thermodynamic formalism

We now briefly describe the thermodynamic formalism introduced by Bowen, Ruelle, Parry, Pollicott (among others), and in particular the pressure function on the space of Hölder observables on a metric space with a Hölder flow (see [START_REF] Ruelle | Thermodynamic Formalism[END_REF]). This will then be used, in Section 4, to define various pressure forms P ϕ on subsets of the representation variety XpΓ, PSL d pRqq by assigning to each representation ρ the Hölder function f ϕ ρ on the geodesic flow space UΓ of the group. For a moment we forget about representations and let X be a compact metric space with a Hölder continuous flow φ " tφ t : X Ñ Xu tPR without fixed points. We denote by O the collection of periodic orbits of the flow φ. For a P O, we let paq be the length of the periodic orbit a.

As in Section 2.4 we denote by Hol α pX, Rq the space of α-Hölder continuous functions on X for some α ą 0, and we set the f -period of a P O to be f paq "

ż paq 0 f pφ t pxqqdt.
Two maps f, g P Hol α pX, Rq are called Livšic cohomologuous if there exists U : X Ñ R such that, for all x P X, then

f pxq ´gpxq " B Bt ˇˇˇt "0 U pφ t xq.
It follows that if f and g are Livšic cohomologous then f paq " g paq for all a P O.

If f P Hol α pX, R `q, we denote by φ f the reparametrization of φ by f , which is the flow on X defined by [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires[END_REF]. We let M φ be the set of φ-invariant probability measures on X. In particular if δ a is the Lebesgue measure on the periodic orbit a, then δa " δ a { paq P M φ . For µ P M φ we denote by hpφ, µq its metric entropy. Then, for f P Hol α pX, Rq, the topological pressure is

P pf q " sup mPM φ " hpφ, mq `żX f dm * .
Note that the topological pressure P depends on the flow φ, but we will omit this in the notation. The topological entropy of a flow is given by h top pφq " P φ p0q. A measure m f that attains this supremum is called an equilibrium state for f and an equilibrium state for the zero function is called a measure of maximal entropy. We note that P pf q only depends on the Livšic cohomology class of f . Lemma 3.1 (S. [START_REF] Sambarino | Quantitative properties of convex representations[END_REF]Lemma 2.4]). Let φ be a Hölder continuous flow on a compact metric space X and f P Hol α pX, R `q. Then P p´hf q " 0 if and only if h " h top pφ f q. Moreover, if m is an equilibrium state of ´htop pφqf , then f m is a positive multiple of a measure of maximal entropy for the flow φ f .

We now restrict to transitive metric Anosov flows. In the manifold setting a metric Anosov flow φ corresponds to a standard Anosov flow where the unit tangent bundle of X has a φ-invariant decomposition T 1 pXq " E ´' E 0 ' E `where E ´is contracting under the flow, E 0 is the direction of the flow and E `is contracting under the flow reverse flow of φ (see [START_REF] Pollicott | Symbolic dynamics for Smale flows[END_REF] for details). We have the following theorem of Livšic.

Theorem 3.2 (Livšic's Theorem, [START_REF] Livšic | Cohomology of dynamical systems[END_REF]). Let φ be a transitive metric Anosov flow. If f P Hol α pX, Rq then f paq " 0 for all a P O if and only if f is Livšic cohomologous to 0.

It follows that for metric Anosov flows, the Livšic cohomology class of f is determined by its periods.

Given f P Hol α pX, Rq we let

R T pf q " ta P O | f paq ď T u.
Then we have the following;

Theorem 3.3 (Bowen [START_REF] Bowen | Periodic orbits of hyperbolic flows[END_REF], Bowen-Ruelle [START_REF] Bowen | The ergodic theory of Axiom A flows[END_REF], Pollicott [START_REF] Pollicott | Symbolic dynamics for Smale flows[END_REF]). Let φ be a transitive metric Anosov flow and f P Hol α pX, R `q nowhere vanishing. Then

hpf q " lim T Ñ8 log #R T pf q T " h top pφ f q
is finite and positive. Moreover for all g P Hol α pX, Rq there exists a unique equilibrium state m g for g. The measure of maximal entropy µ φ for the flow φ is

µ φ " lim T Ñ8 1 #R T p1q ÿ aPR T p1q δ a paq .
Furthermore for Anosov flows the derivatives of the Pressure function satisfy the following.

Proposition 3.4 (Parry-Pollicott [START_REF] Parry | Zeta Functions and the periodic orbit structure of hyperbolic dynamics[END_REF]). Let φ be a transitive metric Anosov flow and f, g P Hol α pX, Rq. Then (i) The function t Ñ P pf `tgq is analytic (ii) The first derivative satisfies

BP pf `tgq Bt ˇˇˇt "0 " ż gdm f ,
where m f is the equilibrium state for f .

(iii) If ş gdm f " 0 (mean-zero) then

B 2 P pf `tgq Bt 2 ˇˇˇt "0 " lim T Ñ8
ż ˜ż T 0 gpφ s pxqqds ¸2 dm f pxq " Varpg, m f q.

(iv) If Varpg, m f q " 0 then g is Livšic cohomologous to zero.

Using the above, in [START_REF] Mcmullen | Thermodynamics, dimension and the Weil-Petersson metric[END_REF] McMullen defined the Pressure semi-norm as follows. We let PpXq be the space of pressure zero functions, i.e.

PpXq " tF P HolpX, Rq | P pF q " 0u.

Then by Proposition 3.4(ii), the tangent space to PpXq at F can be identified with

T F pPpXqq " " g P HolpX, Rq | ż gdm F " 0 * ,
where m F is the equilibrium state for F . Then the pressure semi-norm of g P

T F pPpXqq is Ppgq " ´Varpg, m F q ş F dm F .
By Proposition 3.4 it follows that Ppgq only depends on the Livšic-cohomology class rgs and is positive definite in the sense that it is zero if and only if rgs " 0. Therefore it can be considered as a (positive-definite) metric on the space of Livšic cohomology classes. The dynamical intersection is defined in [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF] as follows; if f, g P Hol α pX, Rq are positive, then their dynamical intersection is

Ipf, gq " lim T Ñ8 1 #R T pf q ÿ aPR T pf q g paq f paq " ş gdm ´hf f ş f dm ´hf f . (4) 
The last equality follows from [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Sec. 3.4]. Similar definitions have been studied in different situations, for example by Bonahon [START_REF] Bonahon | The geometry of Teichmüller space via geodesic currents[END_REF], Burger [START_REF] Burger | Intersection, the Manhattan curve, and Patterson-Sullivan Theory in rank 2[END_REF] and Knieper [START_REF] Knieper | Volume gowth, entropy and the geodesic stretch[END_REF].

The renormalized dynamical intersection is Jpf, gq :" hpgq hpf q Ipf, gq.

Proposition 3.5 (B.-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Proposition 3.8]). For every pair of positive Hölder-continuous functions f and g one has Jpf, gq ě 1. In particular Jpf, ¨q is critical at f which gives

B Bt ˇˇˇt "0 log hpf t q " B Bt ˇˇˇt "0 Ipf, f t q, (5) 
where pf t q tPp´ε,εq is a C 1 curve of positive Hölder-continuous functions with f 0 " f .

Then we have:

Theorem 3.6 (B.
-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]). Let φ be a transitive metric Anosov flow on a compact metric space X. If f t P HolpX, R `q, t P p´1, 1q is a 1-parameter family and F t " ´hft f t then

B 2 Bt 2 ˇˇˇt "0
Jpf 0 , f t q " P `9 F 0 ˘

The following proposition characterizes degenerate vectors for the second derivative of J. Proposition 3.7 (B.-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Lemma 9.3]). Let pf t q tPp´ε,εq be a C 1 curve of positive Hölder-continuous functions. Then pB 2 {Bt 2 q| t"0 Jpf 0 , f t q " 0 if and only if for every periodic orbit τ one has B Bt ˇˇˇt "0 hpf t q τ pf t q " 0.

Pressure forms

Now we will apply the thermodynamic formalism to representations. For this we make use of the interpretation of a Θ-Anosov representation as a reparametrization of the geodesic flow as explained in Section 2.4.

Given any functional ϕ P E Θ that is positive on the limit cone, one can associate a reparametrization f ϕ ρ of the geodesic flow on Γ. Here we describe in detail two special cases of this construction which play an important role in the paper 4.1. Spectral radius pressure form. Let ρ, η be two projective Anosov representations (with possibly different target groups). They both give rise to reparametrizations of the geodesic flow f ω1 ρ and f ω1 η , where ω 1 is the first fundamental weight. We define the spectral radius dynamical intersection of the two projective-Anosov representations ρ, η to be the dynamical intersection between f ω1 ρ and f ω1 η : I ω1 pρ, ηq " Ipf ω1 ρ , f ω1 η q. Analogously we define J ω1 pρ, ηq. Moreover, given a C 1 curve pρ t q tPp´ε,εq of projective Anosov representations the spectral radius pressure norm of 9 ρ 0 is defined by

P ω1 ρ p 9 ρ 0 q " B 2 Bt 2 ˇˇˇt "0
J ω1 pρ 0 , ρ t q ě 0.

The spectral radius pressure norm induces a positive semidefinite symmetric bilinear two form at the smooth points of ta 1 u-Anosov representations. However positive semi-definiteness is as far as thermodynamics goes, and one needs geometric arguments to establish non-degeneracy. In [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF] B.-Canary-Labourie-S. prove nondegeneracy under some mild assumptions, giving Theorem 4.1 (B.-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Theorem 1.4]). Let Γ be word hyperbolic, and G R ă PGL d pRq be reductive. The spectral radius pressure form is an analytic Riemannian metric on the space C g pΓ, G R q of conjugacy classes of G R -generic, regular, irreducible, projective Anosov representations.

Recall that a representation ρ : Γ Ñ G R is G R -generic if its Zariski closure contains elements whose centralizer is a maximal torus in G R , and it is regular if it is a smooth point of the algebraic variety HompΓ, G R q.

4.2. Spectral gap pressure form. We now consider two ta 1 , a 2 u-Anosov representations ρ, η (with possibly different target groups). As explained in Section 2.4 they define reparametrizations f a1 ρ and f a1 η of the geodesic flow. We define the spectral gap dynamical intersection of ρ and η to be the dynamical intersection between f a1 ρ and f a1 η : I a1 pρ, ηq " Ipf a1 ρ , f a1 η q, and analogously for J a1 pρ, ηq. Given a C 1 curve pρ t q tPp´ε,εq of such ta 1 , a 2 u-representations the spectral gap pressure norm of 9 ρ 0 is defined by

P a1 ρ p 9 ρ 0 q " B 2 Bt 2 ˇˇˇt "0
J a1 pρ 0 , ρ t q ě 0.

The spectral gap pressure norm induces a semidefinite symmetric bilinear two form on smooth points of ta 1 , a 2 u-Anosov representations. This looks very similar to the spectral radius pressure norm. It is, however, in general harder to check when the spectral gap pressure form is non-degenerate. As far as the authors know this has, so far, only been established for the Hitchin component in PSL d pRq: 

T ρ X `Γ, PSL d pCq ˘" kerpd ρ τ `idq ' T ρ X `Γ, PSL d pRqq;
the almost complex structure J of X `Γ, PSL d pCq ˘interchanges this splitting.

With a standard symmetry argument (see for example B.-Canary-S. [13, Section 5.8]), we get: Lemma 4.3. Let ρ : Γ Ñ PSL d pRq be ta 1 u-Anosov and let v be a purely imaginary direction at ρ. Then P ω1 pvq " 0. If ρ is moreover ta 2 u-Anosov, then P a1 pvq " 0.

Proof. Let us prove on the second statement, the first one being analogous. Consider a differentiable curve pρ t q tPp´ε,εq Ă X ta1,a2u pΓ, PSL d pCqq such that ρ 0 " ρ, 9 ρ 0 " v and τ ρ t " ρ ´t. For every conjugacy class rγs P rΓs, the functions t Þ Ñ γ pf a1 ρt q " pλ 1 ´λ2 q `ρt pγq ˘and t Þ Ñ hpf a1 ρt q are invariant under t Þ Ñ ´t and are thus critical at 0. Consequently, for every conjugacy class, the function t Þ Ñ hpf a1 ρt q γ pf a1 ρt q is critical at 0 and hence Proposition 3.7 implies that P a1 pvq " 0.

Pluriharmonicity of length functions and its consequences

In this section we prove the main results stated in the Introduction.

5.1. Pluriharmonic length functions. If ρ, η P X Θ pΓ, G C q and ϕ P pE Θ q ˚is strictly positive on `Λρ Y Λ η ˘´t0u, then one can define their ϕ-dynamical intersection by

I ϕ pρ, ηq " Ipf ϕ ρ , f ϕ η q " lim T Ñ8 1 #R T pf ϕ ρ q ÿ rγsPR T pf ϕ ρ q ϕ ´λ`η pγq ˘φ ´λ`ρ pγq ˘¯, (6) 
where f ϕ ρ " ϕpf Θ ρ q is given by Corollary 2.10.

Recall that a function is pluriharmonic if it is locally the real part of a holomorphic function. The argument from B.-Taylor [14, Section 5] applies directly and one has the following result. Proposition 5.1. Consider ρ P X Θ pΓ, G C q and ϕ P pE Θ q ˚that is strictly positive in Λ ρ ´t0u. Then the function

I ϕ ρ " I ϕ pρ, ¨q : X Θ pΓ, G C q Ñ R
is pluriharmonic (when defined).

Recall from Potrie-S. [39, Corollary 4.9] that the map η Þ Ñ P `pΘ pΛ η q ˘is continuous on X Θ pΓ, G K q, when considering the Hausdorff topology on compact subsets of P `pE Θ q ˚˘. Thus the domain of definition of I ϕ

ρ is an open subset of X Θ pΓ, G C q that contains, in particular, ρ. The proposition implies then that I ϕ ρ is (defined and) pluriharmonic on a neighborhood of ρ.

Proof. Consider η P X Θ pΓ, G C q such that ϕ|Λ η ´t0u is striclty positive. It follows then from Bochi-Potrie-S. [START_REF] Bochi | Anosov representations and dominated splittings[END_REF]Proposition 5.11] that there exists a neighborhood U of η such that the constants in Definition 2.1 hold for every ψ P U. This implies that the convergence in the definition of I ϕ pρ, ¨q is uniform on compact subsets of its domain of definition. For each T ą 0, the truncated sum in equation ( 6) is the real part of a holomorphic function and thus Theorem 1.23 from Axler-Bourdon-Ramey [START_REF] Axler | Harmonic function theory[END_REF] yields the result. 5.2. Proof of Theorem A. Let ρ P X `π1 S, PSL d pRq ˘be p1, 1, 2q-hyperconvex and assume that it is a regular point of the character variety X `π1 S, PSL d pRq ˘. Consider a tangent vector v P T ρ X `π1 S, PSL d pRq ˘. Note that then Jv is a purely imaginary tangent direction in T ρ X `π1 S, PSL d pCq ˘. Thus, Lemma 4.3 implies that for any C 1 curve pρ t q tPp´ε,εq with ρ 0 " ρ, 9 ρ 0 " Jv and τ ρ t " ρ ´t we have 0 " P a1 pJvq " B 2 Bt 2 ˇˇˇt "0 J a1 pρ 0 , ρ t q.

Recall that Ipf, f q " 1 and that if ρ is p1, 1, 2q-hyperconvex then Theorem 2.6 states that h a1 ρ " 1. Moreover, as observed in the proof of Lemma 4.3, 9 h a1 p 9 ρ 0 q " 0, so developing the last term of equation ( 7) one obtains 0 " Hess ρ ph a1 qpJvq `Hess ρ I a1 ρ pJvq.

Proposition 5.1 states that I a1 ρ is pluriharmonic, so Hess ρ I a1 ρ pJvq " ´Hess ρ I a1 ρ pvq and thus Hess ρ h a1 pJvq " Hess ρ I a1 ρ pvq. Lemma 2.4 implies that, at least for small t, ρ t is p1, 1, 2q-hyperconvex (over C) and thus Theorem 2.5 yields h a1 pρ t q " Hff a1 pρ t q. Finally, since h a1 " 1 in a neighborhood of ρ in X `π1 S, PSL d pRq ˘one has Hess ρ I a1 ρ pvq " P a1 pvq.

The result follows.

5.3. Proof of Theorem B. By Theorem 2.5 Hff 1 " h a1 in a neighborhood of ρ, and thus by assumption, the latter is critical at ρ. Since J a1 pρ, ¨q is also critical at ρ (Proposition 3.5) one concludes that I a1 ρ is critical at ρ and thus its Hessian is well defined.

By Proposition 5.1 I a1 ρ is pluriharmonic and thus one has (as before) that for every v P T ρ X `Γ, PSL d pCq Hess ρ I a1 ρ pJvq " ´Hess ρ I a1 ρ pvq. One concludes that the p`, 0, ´q signature of Hess ρ I a1 ρ is of the form pp, 2k, pq for some p ď half dim R X `Γ, PSL d pCq ˘. Moreover, by Theorem 3.6 one has 0 ď P a1 pJvq " Hess ρ h a1 pJvq ´ha1

ρ Hess ρ I a1 ρ pvq, so that Hess ρ I a1 ρ pvq ě 0 implies Hess ρ h a1 pJvq ě 0. In particular Hess ρ h a1 is positive semidefinite on a subspace of dimension at least

dim R X `Γ, PSL d pCq ˘´p ě 1 2 dim R X `Γ, PSL d pCq ȃnd
the theorem is proven.

5.4. Proof of Theorem C. Let Γ be a co-compact lattice in PSOpn, 1q such that the inclusion ι : Γ Ñ PSOpn, 1q defines, after extending coefficients, a regular point of the character variety X `Γ, PSUpn, 1q ˘. Theorem 2.2 (and the Remark following it) in Cooper-Long-Thistlethwaite [START_REF] Cooper | Flexing closed hyperbolic manifolds[END_REF] assert that ι is then a regular point of the PSL n`1 pRq character variety X `Γ, PSL n`1 pRq ˘. Moreover, since sopn, 1q is the fixed point set of an involution in sl n`1 pRq, one has the decomposition sl n`1 pRq " sopn, 1q ' s with rs, ss Ă sopn, 1q. One readily sees that supn, 1q " sopn, 1q ' is Ă sl n`1 pCq.

The twisted cohomology H 1 ι `Γ, sl n`1 pRq ˘splits as H 1 ι `Γ, sl n`1 pRq ˘" H 1 ι `Γ, sopn, 1q ˘' H 1 ι pΓ, sq. Consequently, by equation ( 8) the subspace H 1 ι pΓ, sq Ă H 1 ι pΓ, sl n`1 pCqq is sent bijectively to H 1 ι pΓ, isq when multiplied by the complex structure J, i.e. J ¨H1 ι pΓ, sq " H 1 ι pΓ, isq.

We will need the following generalization of Crampon [START_REF] Crampon | Entropies of compact strictly convex projective manifolds[END_REF]. This has the following useful consequence.

Corollary 5.3. The spectral radius pressure form P ω1 on X `Γ, PGL n`1 pRq ˘is nondegenerate at ι.

Proof. When n " 2 this follows directly from Theorem 4.1, but if n ą 2, the embedding sopn, 1q Ă sl n`1 pRq is not PGL n`1 pRq-generic so, even though ιpΓq is irreducible, we need additional arguments. Nevertheless, by Theorem 5.2, the entropy function ρ Þ Ñ h ω1 pρq is critical at ι, so by Proposition 3.7 one only needs to verify that the set d ι ω γ 1 : rγs P rΓs ( spans the cotangent space T ι X `Γ, PSL n`1 pRq ˘, where ω γ 1 : X `Γ, PGL n`1 pRq ˘Ñ R is the function ρ Þ Ñ ω 1 ´λ`ρ pγq ˘¯.

As ι is irreducible and projective Anosov, this is the content of B.-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Proposition 10.1].

Consider then v P H 1 ι pΓ, sq Ă T ι X `Γ, PSL n`1 pRq ˘, by equation ( 9) the purely imaginary vector J ¨v P T ι X `Γ, PSL n`1 pCq ˘belongs to H 1 ι `Γ, PSUpn, 1q ˘and represents thus a non-trivial infinitesimal deformation of ι inside PSUpn, 1q. As in Lemma 4.3 we choose a differentiable curve pρ t q tPp´ε,εq Ă X `Γ, PSUpn, 1q ˘with ρ 0 " ι and 9 ρ 0 " Jv and τ ρ t " ρ ´t.

By Lemma 4.3 we have that 0 " P ω1 ι pJvq "

B 2 Bt 2 ˇˇˇt "0 J ω1 pι, ρ t q. (10) 
Expanding the second term, and using that both h ω1 pρ t q and I ω1 ι pρ t q are critical at t " 0 (as in the proof of Lemma 4.3) and that I ω1 ι is pluriharmonic, we get 0 " Hess ι ph ω1 qpJvq ´pn ´1q Hess ι pI ω1 ι qpvq. On the other hand P ω1 ι pvq " Hess ι ph ω1 qpvq `pn ´1q Hess ι pI ω1 ι qpvq. Which in turn gives Hess ι ph ω1 qpJvq " P ω1 ι pvq ´Hess ι ph ω1 qpvq ą 0, since P ω1 ι pvq ą 0 by Corollary 5.3, and ´Hess ι ph ω1 qpvq ě 0 since by Theorem 5.2 ι is a global maxima of h ω1 among deformations in PSL n`1 pRq. The result then follows.

5.5. The Hessian of the entropy at the Fuchsian locus of the Hitchin component. Applying the same techniques as in the last section we can also show the following result on the Hitchin component. ι q is positive definite on purely imaginary directions of T ι X `π1 S, PSL d pCq ˘.

Proof. We mimic the last paragraph. In this case the pressure form P ω1 is positive definite on T ι H `S, PSL d pRq ˘directly by Theorem 4.1. One gets, through the same arguments, that Hess ρ ph ω1 qpJvq " P ω1 pvq ´Hessph ω1 qpvq.

As we already observed, the first term on the right hand side is positive by Theorem 4.1, while Hessph ω1 qpvq ď 0 since, by Potrie-S. [39, Theorem A], Fuchsian representations are maxima for the entropy within the Hitchin locus. The corollary follows.

  . The result of B.-Taylor and McMullen realizes the Weil-Petersson metric by looking at the infinitesimal change of the Hausdorff dimension in purely imaginary directions at a representation ρ P TpSq Ă QFpSq. Theorem 1.1 (B.

Definition 2 . 1 .

 21 Let Θ Ă ∆. A representation ρ : Γ Ñ G K is Θ-Anosov if there exist positive constants c, µ such that for all γ P Γ and a P Θ one has a ´σ`ρ pγq ˘¯ě µ|γ| ´c.

Theorem 4 . 2

 42 (B.-Canary-Labourie-S.[START_REF] Bridgeman | Simple roots flows for Hitchin representations[END_REF] Theorem 1.6]). Let G R denote either PSL d pRq, PSpp2n, Rq, PSOpn, n `1q or the split form of the exceptional complex Lie group G 2 . Then the spectral gap pressure form is positive definite on the Hitchin component H pS, G R q.

4. 3 .

 3 Vanishing directions. Complex conjugation of matrices is an external automorphism of PSL d pCq and thus induces an involution τ : X `Γ, PSL d pCq ˘Ñ X `Γ, PSL d pCq whose fixed point set contains X `Γ, PSL d pRq ˘. If ρ P X `Γ, PSL d pRq ˘is a regular point, then the differential d ρ τ splits the tangent space as a sum of purely imaginary vectors and the tangent space to the real characters:

Theorem 5 . 2 (

 52 Potrie-S.[START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF] Theorem 7.2]). Assume ρ P X `Γ, PSL n`1 pRq ˘has finite kernel and divides a proper open convex set of PpR n`1 q. Then the entropyh ω1 pρq ď n ´1and equality holds only if ρ has values in PSOpn, 1q.

Corollary 5 . 4 .

 54 Let ι P H d pSq be a representation π 1 S Ñ PSL 2 pRq Ñ PSL d pRq in the embedded Teichhmüller space. Then Hessph ω1

We refer the reader to Dey-Kapovich [28] (see also Ledrappier [33] and Link [34]) for an interpretation of the critical exponent h ω1 pρq as the Hausdorff dimension of the limit set with respect to a visual metric, i.e. a metric with respect to which the group action is conformal.

Finally, it would be interesting to relate Corollary 5.4, or an analog of it, to the recent work by Dai-Li [20] studying the translation lengths on the symmetric space of PSL d pCq, when one deforms a Fuchsian representation along its Hitchin fiber.
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