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HESSIAN OF HAUSDORFF DIMENSION ON PURELY
IMAGINARY DIRECTIONS

MARTIN BRIDGEMAN, BEATRICE POZZETTI, ANDRES SAMBARINO,
AND ANNA WIENHARD

ABSTRACT. We extend classical results of Bridgeman-Taylor and McMullen on
the Hessian of the Hausdorff dimension on quasi-Fuchsian space to the class of
(1,1, 2)-hyperconvex representations, a class introduced in [41] which includes
small complex deformations of Hitchin representations and of ©-positive rep-
resentations. We also prove that the Hessian of the Hausdorff dimension of the
limit set at the inclusion I — PO(n,1) — PU(n, 1) is positive definite when
I is co-compact in PO(n, 1) (unless n = 2 and the deformation is tangent to

x(r,PO(2,1))).
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1. INTRODUCTION

One of the most interesting and well studied metrics on the Teichmiiller space,
the parameter space of hyperbolic structures on a closed surface S of genus g > 2, is
the Weil-Petersson metric, a non-complete Riemannian metric. A celebrated result
by B.-Taylor [14] and McMullen [36] gives a geometric interpretation of this metric
in terms of dynamical invariants of quasi-Fuchsian representations.

Recall that the holonomy representation realizes the Teichmiiller space T(S) as
a connected component of the character variety

X(m15,PSLy(R)) := Hom (1.5, PSL(R)) // PSL2(R),

which, in turn, sits as a totally real submanifold of the complex character variety
X (71'15', PSLQ(C)), endowed with the complex structure J induced by the complex
structure of the Lie group PSL2(C). A neighborhood of T(S) in the complex char-
acter variety is given by quasi-Fuchsian space QF(S), the set of conjugacy classes
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der ERC-Consolidator grant 614733, and by the Klaus-Tschira-Foundation. M. B. acknowledges
funding by NSF Grants DMS-2005498.
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of representations p : m;S — PSLy(C) = Isomg(H?) preserving a convex subset of
H3 on which they act cocompactly. Any such p is thus a quasi-isometric embed-
ding and admits an injective equivariant boundary map &, : dm S — CP! whose
image is a Jordan curve. Given p € QF(S), we denote by Hff(p) the Hausdorff
dimension of this Jordan curve. It is bounded below by 1 and Bowen showed that
Hff(p) equals 1 precisely when p belongs to the Teichmiiller space [8]. The result
of B.-Taylor and McMullen realizes the Weil-Petersson metric by looking at the
infinitesimal change of the Hausdorff dimension in purely imaginary directions at
a representation p € T(S) < QF(S).

Theorem 1.1 (B.-Taylor [14] -McMullen [36]). For each p € T(S) and every dif-
ferentiable curve (pi)ie(—c,e) < T(S) with po = p it holds

Hess Hff(Jp) = |pllwp-

In recent years, convex-cocompactness has been generalized from rank 1 to real-
algebraic semisimple Lie groups' G of arbitrary rank, via the concept of Anosov
representations p : I — G, where, for K = R or C, Gk denotes the group of
the K-points of G. Specifying a set © of simple roots, let Gx/Pg be the space of
parabolic subgroups of type ©. Then ©-Anosov representations are characterized
by admitting a continuous, equivariant, transverse boundary map fpe : 0 - Gk /Po
with good dynamical properties [32, 23, 27, 26, 4, 29]. They form open subsets

Xo(l,Gk) = {p € X(I',Gk) : p is ©-Anosov}

of the character variety.

For each a € © B.-Canary-Labourie-S. [11] constructed, using the thermody-
namic formalism, an analogue of the Weil-Petersson metric on Xg (I, Gk ), the spec-
tral radius pressure form P“? where w, is the fundamental weight associated to a.
We will recall this construction on Section 4.

Probably the best studied space of Anosov representations is the PSL;(R)-Hitchin
component. Hitchin introduced a special connected component

H (S, Gr) © X(m1 5, Gr),

when Gg is moreover center-free and simple split, which in the case of PSLy(R) can
be described as the connected component 5 4(S) < X(m1S, PSL4(R)) containing
a Fuchsian representation, i.e. the composition of the holonomy of a hyperbolic
structure with the irreducible representation 715 — PSL2(R) — PSL4(R). On the
PSL4(R)-Hitchin component B.-Canary-Labourie-S. [12] defined a different pressure
form, denoted by P21, to which we will refer here as the spectral gap pressure form.
They prove that P?! is non-degenerate on 57;(S) and extends the Weil-Petersson
inner product on Teichmiiller space, embedded into 7 4(S) as the space of Fuchsian
representations.

A corollary of the main result of the paper is a generalization of Theorem 1.1.
To state the result, we denote by II the set of simple (restricted) roots of Gg and
consider the Hitchin component (S, Gg) as a subset of X (7r1 S, GC), the latter
equipped the complex structure J induced by the complex structure of G¢. For
a € IT denote by

Hff,(p) = dimpss (52(57715))

L(of non-compact type)
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the Hausdorff dimension of the (image of the) limit curve £ : o' — F5(Gc) for a(ny)
Riemannian metric on F,(G¢). It follows from Theorem 2.7 that Hff, is critical at
H(S, Gr) and thus its Hessian is well defined.

Corollary A. For every ve T.#(S,Gr) and every a € II one has
Hess Hff, (Jv) = P?(v).

Moreover, when Gg = PSLy4(R) the Hessian of Hff,, : Xp (71'15, PSLd(C)) — R, at a
Hitchin point p, is strictly positive on every direction except T, 7 q4(S), where it is
degenerate. In particular the Hitchin locus is an isolated minimum for Hff,, .

The second statement follows directly from the first, together with the afore-
mentioned non-degeneracy result by B.-Canary-Labourie-S. [12] for the spectral
gap pressure form P2,

Corollary A brings further evidence that the spectral gap pressure form is more
geometric than the spectral radius pressure form, and shares more similarities to
the classical Weil-Petersson metric. A key ingredient in its proof is the notion of
(1,1,2)-hyperconvex representations, studied in P.-S.-W. [11] (see Theorem 2.7).
These are representations p : I — PSL4(C) that are Anosov with respect to the
first two simple roots and whose boundary maps satisfy an additional transversality
condition (see Section 2.2). The main result of [11] then yields that, on the open
set

X0, 2 (TPGL4(C)) = {p e X(I,PGL4(C)) : (1,1,2)-hyperconvex}

{a1,a2}
the Hausdorff dimension of the limit set {; (0T) equals the critical exponent h3t for
the first root (see Section 2.2 for the definition of the critical exponent) and is thus
analytic.

Theorem A. Let [ be a word hyperbolic group with oI homeomorphic to a cir-
cle and let p € %ghaz}(r,PSLd(R)) be a regular point of the character variety
%(F,PGLd(C)). Then for every differentiable curve (pt)ie(—ec) < %(F, PSLd(R))
with pg = p one has

Hess Hff,, (Jp) = P (p).

Thanks to the work of [41, 40], Theorem A applies not only to Hitchin compo-
nents but to ©-positive Anosov representations into indefinite orthogonal groups
[24]. However, in all these cases, we do not know for which roots a the associated
pressure form is non-degenerate.

Corollary B. Let (P(I',SOO(p, q)) denote the set of ©-positive Anosov representa-
tions. Then for every v € TiP(F, SOy (p, q)) and every a € {ay,...,ap_2} one has

Hess Hff, (Jv) = P?(v).

The second main result of the paper is a generalization of B. [10] to Anosov
representations of word hyperbolic groups that are not necessarily virtual surface
groups.

Theorem B. Let [ be a word hyperbolic group and let p € .’{?31 as} (F, PSLd(C)) be
a smooth point. Assume moreover that

Hff,, : xggw}(r? PSL4(C)) — Ry
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is critical at p. Then Hess, Hff, is positive semidefinite on a subspace of dimension
at least half the real dimension of%gl_”} (F, PSLd(C)). If, furthermore, the pressure
form P2 is non-degenerate, then there are no local mazima.

This theorem applies in particular to all convex cocompact Kleinian groups in
PSL2(C), a result not covered by [10]. In general, admitting (1, 1,2)-hyperconvex
representations is a relatively restrictive assumption on the group I, as, for ex-
ample, it implies that its boundary has dimension smaller than 2. However there
are many classes of subgroups of PSL,(C) admitting (1, 1, 2)-hyperconvex represen-
tations with Zariski dense image in PSL4(C). It is not yet known if the spectral
gap pressure form is non-degenerate for such representations, and we hope that
Theorem B will encourage research in this direction.

The proof of both Theorems A and B relies on pluriharmonicity of length func-
tions. The mechanism behind both proofs is relatively versatile, and can be applied
in many situations. As an example we use it in Corollary 5.4 to prove that, at a
Fuchsian representation, the critical exponent h**(p) relative to the first fundamen-
tal weight necessarily increases along purely imaginary deformations (see Section
5.5 for details).

Our last result is another application of the previous techniques in a rank one
situation. Recall that a representation p : [ — PU(n, 1) is convex-cocompact if
and only if it is projective Anosov when PU(n, 1) is considered as a subgroup of
PGL,,+1(C) through the standard inclusion. Moreover, for v € I' the real length of

the associated closed geodesic is the spectral radius wy ()\ (p(v)))

If p: T — PU(n,1) is convex co-compact then we denote by Hffacyn(p) the
Hausdorff dimension the limit set of I' in the visual boundary of the complex-
hyperbolic space, with respect to a visual metric. A celebrated result by Sullivan
[15] in real-hyperbolic space, and further extended to arbitrary negatively curved
manifolds by Yue [18], asserts that if p: [ — PU(n, 1) is convex-co-compact then

Hffaq:n.ﬂn (F) = h“! (p)

Assume now that ' is a co-compact lattice of PSO(n,1) and denote by ¢ the
inclusion
t: T — PSU(n,1),
where the inclusion of PSO(n, 1) — PSU(n, 1) is given by extending the coefficients.
Bourdon [6] proved that ¢ is a global rigid minima for Hffscp» among convex co-
compact representations of I in PU(n,1). In section 5.4 we prove the following
strengthening.

Theorem C. Assume i is a reqular point of the character variety %(F, PSU(n, 1))7
then Hess, Hff scyn is positive definite in any direction not tangent to f{(l’7 PSO(n, 1))

If n > 2 then Mostow’s classical rigidity result states that ¢ is an isolated point of
X(I,PSO(n, 1)) so Theorem C implies that the Hessian of the Hausdorff dimension
at ¢ is positive definite.

Remark 1.2. If p is a small deformation of ¢ in PSU(n,1) then it is a convex co-
compact subgroup of PSU(n, 1) and moreover, by P.-S.-W. [11, Corollary 8.5], the
Hausdorff dimension of the limit set for a Riemannian metric on 0CH" also coin-
cides with h*1(p), so in Theorem C we can consider Hffscpyn either as the Hausdorff
dimension for a visual metric or for a Riemannian metric.
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Outline of the paper. In Section 2 we discuss the background on Anosov repre-
sentations needed in the paper: after reviewing the basic definitions we discuss, in
Section 2.2, the results of [41] which singled out (1,1, 2)-hyperconvex representa-
tions. In Section 2.3 we recall the basic facts about higher rank Teichmiiller theories
needed to deduce Corollaries A and B from Theorem A; finally in Section 2.4 we
discuss an important dynamical viewpoint on Anosov representations: these can be
thought of as reparametrizations of the geodesic flow of ', and are thus amenable
to the thermodynamic formalism. In Section 3 we discuss the thermodynamic for-
malism needed to define, in Section 4, the pressure forms. We conclude the paper
in Section 5 introducing the main technical tool of the paper, pluriharmonicity of
dynamical intersection, which is directly used to prove Theorems A, B and C.

2. ANOSOV REPRESENTATIONS

In this section we introduce the necessary background on Anosov representations,
and recall how they give rise to reparametrizations of the geodesic flow.

2.1. Basic notions. We recall the Cartan and the Jordan-Lyapunov projections
and the characterization of Anosov representations we are going to use.

Let G be a semisimple real-algebraic Lie group of non-compact type with finite
center, for K = R or C denote by Gk the group of the K-points of G. Fix a maximal
compact subgroup K < Gk with Lie algebra t. We denote by E < t- a Cartan
subalgebra, and by A < E* a choice of simple roots. This corresponds to the choice
of a Weyl chamber in E, which we will denote by E*. In the case G = PSLy we
identify ET with

{(xl,...,a:d) € [Rd|x1 = ... = $d72xi = O}
Every element g € Gk can be written as a product

g = kiexp (o(g))ks

for ki,ks € K and a unique element o(g) € ET, the Cartan projection of g. If
Gr = PSL4(R), the numbers o;(g) are the logarithms of the square roots of the
eigenvalues of the symmetric matrix g'g. If a € A then we denote by w, its associ-
ated fundamental weight.

Let © ¢ A be a subset of simple roots. We denote by Pg < G the associated
parabolic subgroup, by Pg the opposite associated parabolic group and by

Eo := m ker(a)

aeA\®

the Lie algebra of the center of the Levi group Pe n Pe. It comes equipped with
the natural projection

pe : E— Ee (1)
parallel to [),.o kera. Finally let Ef < E* be the subspace generated by the fun-
damental weights associated to elements in ©

ES :=(wala€©) = {peE*| pope = p}.

One has that EA = E and Pa is a minimal parabolic subgroup.
Let I be a finitely generated discrete group and denote by || the word length for
a fixed finite symmetric generating set.
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Definition 2.1. Let ©® < A. A representation p : I — Gk is ©-Anosov if there
exist positive constants c, p such that for all v € [ and a € © one has

a((p(m)) = uhl e (2)
A {a1}-Anosov representation p : [ — PGL4(K) will be called projective Anosov.

Note that this is not the original definition given in Labourie and Guichard-W.
[32, 23], but a characterization due to Kapovich-Leeb-Porti and Bochi-Potrie-S.
[27, 4]. Note also that there is a recent characterization by Kassel-Potrie [29] only
in terms of the Jordan-Lyapunov projection (see below for the definition) rather
than the Cartan projection.

Anosov representations are quasi-isometric embeddings, thus in particular they
are injective and have discrete image. It was proven in [27] (see also [4]) that only
word hyperbolic groups admit Anosov representations; we will denote by oI the
Gromov boundary of the group I.

A key property of Anosov representations is the existence of equivariant bound-
ary maps with good dynamical properties [32, 23, 22, 27, 4]. With our definition,
the existence of boundary maps for such representations is a Theorem of [27] and [4].
From now on we will restrict ourselves, without loss of generality, to self-opposite
subsets © < A

Theorem 2.2 (Kapovich-Leeb-Porti [27]). Let p : I — Gk be ©-Anosov. Then
there exist a unique dynamics preserving, continuous, transverse equivariant bound-
ary map

€9 or — Gk/Peo.

If G = PGLy and © = {a,}, then Gy /Pe = G, (K%) and we write ¢ = 5.

It was proven in [23] that it is possible to reduce the study of general {a}-
Anosov representations to projective Anosov representations. Indeed one can use
the following result by Tits, since for the representations A, below one has

a1 (c(M(p())) ) = 2o (p(1) ).

Proposition 2.3 (Tits [40]). For every a € A there exists an irreducible proximal
representation N, : Gg — PGL4(R) whose highest restricted weight is lw, for some
leN.

Recall that the Jordan decomposition states that every g € Gk can be written
uniquely as a commuting product ¢ = gegngn, where g, is elliptic, g, is R-split and
gn is unipotent. The Jordan-Lyapunov projection A : Gx — ET is defined by the
logarithm of the eigenvalues of g, with multiplicities and in decreasing order. If
G = PGLg, this corresponds to the logarithm of the modulus of the roots of the
characteristic polynomial of g with multiplicities and in decreasing order, and we
denote by

Ag) = (M(9),-- -, Mal9) € {(a1, .. ma) Ry > ... > 34, ) w5 = 0}

its coordinates.
We will denote by A, < E* the limit cone of the subgroup p(I') < Gk. This is
the cone given by

Ap =Ry - Ap(7)|veT}
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It was proven by Benoist [3] that, provided p(I') is Zariski dense, A, is convex and
has non-empty interior.

For every functional ¢ € E* that is positive on the limit cone A, we denote by
h¥(p) the critical exponent of the Dirichlet series

5'_’2 *sw< p(v))

~yel

)

it can be computed as

h?(p 1nf{ Z e=se(7(rm)) < oo} = sup {s : Ze;e_w("(p(w)) = oo}.

~el

2.2. Hyperconvex representations. We begin with the following definition from
[41]:

Definition. A {a;, az}-Anosov representation p : [ — PGLg(K) is called (1,1, 2)-
hyperconvez if for every triple of pairwise distinct points z,y, z € I one has

(& () @& () N (2) = {0}
The following is a direct consequence of the uniqueness of boundary maps:

Lemma 2.4. The complezification of a real hyperconvex representation is hyper-
convezx (over C).

An important property of (1,1,2)-hyperconvex representations, established in [41]
is that, for these representations, the Hausdorfl dimension of the limit curve for a
Riemannian metric on P(K%) computes the critical exponent for the first simple
root. If p is {a1}-Anosov, the root a; is positive on the limit cone (recall Equation
(2)) and thus its critical exponent is well defined. We then have the following.

Theorem 2.5 (P.-S.-W. [11]). Let p: T — PGL4(K) be (1,1, 2)-hyperconvez, then
dimpgr (£1(0T)) = 3.

A second important property of (1, 1, 2)-hyperconvex representations into PSL4(R)
was established in P.-S.-W. [11] (and independently in Zimmer-Zhang [19]) is the
following: if I' is such that JI' is homeomorphic to a circle, then the image of the
boundary map §; is a Cl-curve. As a result we get

Theorem 2.6 (P.-S.-W. [11]). Let p: T — PSL4(R) be (1,1, 2)-hyperconvez. If oT
18 homeomorphic to a circle then dimgygs (gl(ar)) =

Thus, for fundamental groups of surfaces, the Hausdorff dimension is constant
and minimal on the real (1,1,2)-hyperconvex locus.

2.3. Higher rank Teichmiiller Theory. A higher Teichmiiller space is a union of
connected components of a character variety X(m1.5, Gg) only consisting of Anosov
representations.

Historically, the first family of higher Teichmiiller spaces are Hitchin compo-
nents. They arise whenever Gg is a center free real-split simple Lie group. In
this case there is a unique principal subalgebra sly(R) < gr characterized by the
property that the centralizer of ({}) has minimal dimension (Kostant [31]). The
Hitchin component 7€ (S, Gg) < X(m1.5, Gg) is the connected component containing
Fuchsian representations: the composition of the holonomy of a hyperbolization
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m1.S — PSL3(R) and the morphism PSLy(R) — Gg induced by the inclusion of the
principal subalgebra. Representations in the Hitchin component are Anosov with
respect to the minimal parabolic subgroup [32].> Furthermore, representations in
the Hitchin component are hyperconvex:

Theorem 2.7 ([32, 41, 44]). Let Gg be a simple split center-free real group. For
every p € (S, Gr) and a € II the representation N;p : mS — PSL(V,R) is (1,1,2)-
hyperconvez.

Proof. This was established, for the groups Gg = PSL4(R), PSp(2n,R), PSO(n,n +

1) or the split form of the exceptional complex Lie group G, by Labourie [32], for
G = SO(n,n) by P.-S.-W. [11, Theorem 9.9]. The general case follows from S. [44,
Remark 5.14]. O

The second family of higher Teichmiiller spaces are spaces of maximal repre-
sentations in Hermitian Lie groups Gg [16]. Our results here do not apply in this
setting. Maximal representations are, in general, only Anosov with respect to one
root a, which therefore doesn’t belong to the Levi-Anosov subspace. Even though
we know that for maximal representations the critical exponent h? is constant and
equal to one ([10, Theorem 1.2]), it is not clear if a spectral gap pressure metric
P? can be constructed in this case. Moreover, since maximal representations are,
in general, not (1,1,2)-hyperconvex, it is not known if, for complex deformations in
p: T — G, the critical exponent h? equals the Hausdorfl dimension of the limit
set.

Conjecturally there are two further families of higher Teichmiiller spaces, given
by ©-positive representations as introduced in [24, 17]. ©-positive representations
exist when Gg is locally isomorphic to SO(p, ¢), p < ¢, or when Gg belongs to a spe-
cial family of exceptional Lie groups. In a forthcoming article, Guichard, Labourie
and W. [25] prove that ©-positive representations are ©-Anosov; in particular, in
the case of SO(p, q), p < q, ©-positive representations are Anosov with respect to
the first p — 1 roots. Since this article is not yet available, we will here consider
O-positive Anosov representations, and use the following result from [40].

Theorem 2.8 ([10, Theorem 10.1]). Let p : I — SO(p,q) be a ©-positive O-
Anosov representation. For everya € {a1,...,a,_2} the representation Nyp : m1 S —
PSL(V,R) s (1,1, 2)-hyperconver.

Note that when Gg admits a ©-positive structure, Guichard and W. conjectured
several years ago, see also [24, 47], that then there exist additional connected com-
ponents (namely the conjectured components of ©-positive representations) in the
representation variety, which are not distinguished by characteristic numbers. This
conjecture has been proven by Collier [17] in the case of Gg = SO(n,n + 1) and by
Aparicio-Arroyo, Bradlow, Collier, Garcia-Prada, Gothen, and Oliveira [1] in the
case of Gg = SO(p, ¢) using methods from the theory of Higgs bundles.

2In fact, Labourie proved this for Gg = PSL4(R), which implies the result also for symplectic
groups and odd-dimensional orthogonal groups. Fock and Goncharov gave a characterization
of representations in the Hitchin component as positive representations, from which the Anosov
property can be deduced with a little work.
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2.4. Reparametrizations of geodesic flows. In this section we describe a very
useful dynamical viewpoint on Anosov representations from S. [43] and B.-Canary-
Labourie-S. [11], which makes them amenable to the thermodynamic formalism:
Any Anosov representation gives rise to a reparametrization of the geodesic flow.

Given a hyperbolic group I we denote by Ul the Gromov geodesic flow; this is
a metric space endowed with a topologically transitive flow ¢ whose periodic orbits
correspond to conjugacy classes in . If I admits an Anosov representation then
¢ is moreover metric Anosov [11]. Note that, if ' is the fundamental group of a
compact negatively curved manifold M, we can choose UI' = UM ; more generally,
whenever [ admits an Anosov representation, its geodesic flow can be explicitly
constructed with the aid of the associated boundary maps [11, Theorem 1.10].

If « > 0, we denote by Hol, (Ul', R) the space of a-Ho6lder continuous functions
on Ul and by Hol(UI,R) is the space of all Holder continuous functions. If f €
Hol(UT',R) and a € [['] is a conjugacy class, then we define the f-period of a by

£(a)
Gla) = | Henone
0
where x € a. If f € Hol,(Ul,Ry), we obtain a new flow ¢/ on Ul called the
reparametrization of ¢ by f. The flow ¢/ is given by the formula
ou(2) = 6L 0. (@) 3)

where ky(z,t) = Sé f(¢sz)ds for all z € X and t € R. The flow ¢/ is Holder orbit
equivalent to ¢ and if a € [[], then ¢4 (a) is the period of a in the flow ¢/.

In [11, Section 4] B.-Canary-Labourie-S. associate to any projective Anosov rep-
resentation a reparametrization of the geodesic flow Ul'. They prove the following
statement, the second part is proved in [11, Section 6].

Proposition 2.9 ([11]). Let p: T — PGL4(R) be a projective Anosov representa-
tion. Then there exists a positive Hélder-continuous function f;)\l Ul — Rog such
that for every conjugacy class [y] € [['] one has

G (F3) = X (p(7))-

Moreover, if {pu}uep s an analytic family of such representations, then one can
choose f;t so that the function u — f/;\J 1s analytic.

Proposition 2.9 together with Tits Proposition 2.3 directly give the following
from Potrie-S. [39], where K = R case is treated. When K = C the result follows
at once by considering G¢ as a real group. Recall equation (1) for the definition of
Po : E— E@.

Corollary 2.10 ([39, Cor. 4.5]). Let p: I — Gk be ©-Anosov, then there exists
a positive Holder-continuous function f? : Ul — Eg such that for every conjugacy
class [v] € [[] one has

6,(19) = po (M) )-

Moreover, if {pu}tuep s an analytic family of such representations, then one can
choose f[(,?l’ so that the function u — f[(?u s analytic.

Thus, Corollary 2.10 readily implies that if p is ©-Anosov then for every ¢ €
(Ee)* that is strictly positive on A, — {0} there exists a reparametrization of the
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geodesic flow of [ whose periods are given by?®

e(Ap(7))).

namely, if we denote by f¢¥ = ¢( ff)) then one considers the flow ¢/¢. We will
need in the following that, in this situation, the critical exponent h?(p) is also the
entropy of the flow ¢/¢ . This can be found for example in Ledrappier [33], S. [43]
and on Glorieux-Monclair-Tholozan [21] for the general version.

Proposition 2.11. Let p: [ — Gk be ©-Anosov. For each ¢ € EY strictly positive
on A, — {0} it holds that

1 () = Tim log#{ve [r| @(A(p(y))) <T}

T—0 T

This applies, in particular, to the root a; if a representation p is (1,1,2)-hyper-
convex.

3. THERMODYNAMIC FORMALISM

We now briefly describe the thermodynamic formalism introduced by Bowen,
Ruelle, Parry, Pollicott (among others), and in particular the pressure function on
the space of Holder observables on a metric space with a Holder flow (see [12]).
This will then be used, in Section 4, to define various pressure forms P¥ on subsets
of the representation variety X(I', PSL4(R)) by assigning to each representation p
the Holder function f# on the geodesic flow space Ul of the group.

For a moment we forget about representations and let X be a compact metric
space with a Holder continuous flow ¢ = {¢; : X — X },cg without fixed points. We
denote by O the collection of periodic orbits of the flow ¢. For a € O, we let £(a)
be the length of the periodic orbit a.

As in Section 2.4 we denote by Hol, (X, R) the space of a-Hélder continuous
functions on X for some « > 0, and we set the f-period of a € O to be

L(a)
ly(a) = f(e(x))dt.

0
Two maps f,g € Hol,(X,R) are called Livsic cohomologuous if there exists U :
X — R such that, for all x € X, then

0

fla) ~ o) =

It follows that if f and g are Livsic cohomologous then £;(a) = ¢4(a) for all a € O.

If f e Holy(X,R,), we denote by ¢/ the reparametrization of ¢ by f, which is the
flow on X defined by (3).

We let My be the set of ¢-invariant probability measures on X. In particular if

U(pix).

t=0

8, is the Lebesgue measure on the periodic orbit a, then 8§, = d,/¢(a) € M. For
€ My we denote by h(¢, ) its metric entropy. Then, for f € Holo(X,R), the
topological pressure is

PUf) = swp {ntom)+ [ gam}.

m€M¢

3Recall that for every ¢ € (Eg)* one has ¢ o pg = ¢.
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Note that the topological pressure P depends on the flow ¢, but we will omit this

in the notation. The topological entropy of a flow is given by hiop(¢) = Py(0). A

measure my that attains this supremum is called an equilibrium state for f and an

equilibrium state for the zero function is called a measure of mazximal entropy.
We note that P(f) only depends on the Livsic cohomology class of f.

Lemma 3.1 (S. [13, Lemma 2.4]). Let ¢ be a Hélder continuous flow on a compact
metric space X and f € Holy,(X,Ry). Then
P(—=hf)=0

if and only if h = hiop(¢'). Moreover, if m is an equilibrium state of —hiop(9)f,
then fm is a positive multiple of a measure of mazimal entropy for the flow ¢7.

We now restrict to transitive metric Anosov flows. In the manifold setting a
metric Anosov flow ¢ corresponds to a standard Anosov flow where the unit tangent
bundle of X has a ¢-invariant decomposition 71(X) = E_ @ Ey ® E where E_ is
contracting under the flow, Ej is the direction of the flow and F, is contracting

under the flow reverse flow of ¢ (see [38] for details). We have the following theorem
of Livsic.
Theorem 3.2 (Livsic’s Theorem, [35]). Let ¢ be a transitive metric Anosov flow. If

f e Holy(X,R) then £(a) = 0 for all a € O if and only if f is Livsic cohomologous
to 0.

It follows that for metric Anosov flows, the Liv§ic cohomology class of f is
determined by its periods.
Given f € Hol, (X, R) we let
Ry(f) ={a€O [ ls(a) <T}.
Then we have the following;

Theorem 3.3 (Bowen [7], Bowen-Ruelle [9], Pollicott [38]). Let ¢ be a transitive
metric Anosov flow and f € Hol, (X, R, ) nowhere vanishing. Then

) = gim, 1BHET)

T—o0

= htop(¢f)

is finite and positive. Moreover for all g € Hol,(X,R) there exists a unique equilib-
rium state mg for g. The measure of mazimal entropy pg for the flow ¢ is

: 1 da
pe = lim ———— —.
? 7 T #Rr(1) aeém ¢(a)
Furthermore for Anosov flows the derivatives of the Pressure function satisfy the
following.
Proposition 3.4 (Parry-Pollicott [37]). Let ¢ be a transitive metric Anosov flow
and f,g € Hol,(X,R). Then
(i) The function t — P(f + tg) is analytic
(ii) The first derivative satisfies
P t
oP(f+tg)| J gdm,,
ot t=0

where my is the equilibrium state for f.
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(iii) If gdmys = 0 (mean-zero) then

O2P(f +tg)
ot?

T 2
~ lim < | g<¢s<x>>ds> dmy(x) = Var(g,my).

T— 0

t=0

(iv) If Var(g,my) = 0 then g is Livsic cohomologous to zero.

Using the above, in [36] McMullen defined the Pressure semi-norm as follows.
We let P(X) be the space of pressure zero functions, i.e.
P(X) = {F € Hol(X,R) | P(F) = 0}.
Then by Proposition 3.4(ii), the tangent space to P(X) at F' can be identified with

TR(P(X)) = {g e HOl(X.R) | [ gamr = o} ,

where mp is the equilibrium state for F. Then the pressure semi-norm of g €
Tp(P(X)) is

Var(g, mp)
-~ (Fdmp -

By Proposition 3.4 it follows that P(g) only depends on the LivSic-cohomology
class [g] and is positive definite in the sense that it is zero if and only if [g] = 0.
Therefore it can be considered as a (positive-definite) metric on the space of Livsic
cohomology classes.

P(g) =

The dynamical intersection is defined in [11] as follows; if f, g € Hol,(X,R) are
positive, then their dynamical intersection is
. 1 f (a) Sgdm_h f
I(f,g9) = lim ————0- T = = (4)
7w #Rr(f) QGRZT:@ lp(a)  §fdm_p,y
The last equality follows from [11, Sec. 3.4]. Similar definitions have been studied
in different situations, for example by Bonahon [5], Burger [15] and Knieper [30].
The renormalized dynamical intersection is
h(g)
J fag =1 f)g .
(1.9) = 3 PL9)

Proposition 3.5 (B.-Canary-Labourie-S. [11, Proposition 3.8]). For every pair of
positive Holder-continuous functions f and g one has J(f,g) = 1. In particular
J(f,-) is critical at f which gives

0 0
ot o log h(fi) = B o I(f, ft), (5)

where (ft)te(—e,e) 15 a C! curve of positive Holder-continuous functions with fo = f.
Then we have:

Theorem 3.6 (B.-Canary-Labourie-S. [L1]). Let ¢ be a transitive metric Anosov
flow on a compact metric space X. If f; € Hol(X,R,),t € (—1,1) is a 1-parameter
family and Fy = —hy, f then

52

—|  I(fo, fr) = P(E
P (fo, ft) (Fo)
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The following proposition characterizes degenerate vectors for the second deriv-
ative of J.

Proposition 3.7 (B.-Canary-Labourie-S. [11, Lemma 9.3]). Let (f)ie(—cc) be a

C! curve of positive Holder-continuous functions. Then (0%/0t%)|i—oJ (fo, f¢) = 0 if
and only if for every periodic orbit T one has

0

a —o h(ft)fr(ft) =0

4. PRESSURE FORMS

Now we will apply the thermodynamic formalism to representations. For this we
make use of the interpretation of a ©-Anosov representation as a reparametrization
of the geodesic flow as explained in Section 2.4.

Given any functional ¢ € E¥ that is positive on the limit cone, one can associate
a reparametrization ff of the geodesic flow on . Here we describe in detail two
special cases of this construction which play an important role in the paper

4.1. Spectral radius pressure form. Let p,n be two projective Anosov represen-
tations (with possibly different target groups). They both give rise to reparametriza-
tions of the geodesic flow f;* and f*, where w; is the first fundamental weight.
We define the spectral radius dynamical intersection of the two projective- Anosov
representations p,7 to be the dynamical intersection between f;* and fi:

I“t(p,m) = I( Zdlvf;;)l)'

Analogously we define J“* (p, ). Moreover, given a C! curve (Pt)1e(—e,e) of projective
Anosov representations the spectral radius pressure norm of pg is defined by
2
Py (po) = o
The spectral radius pressure norm induces a positive semidefinite symmetric
bilinear two form at the smooth points of {aj}-Anosov representations. However
positive semi-definiteness is as far as thermodynamics goes, and one needs geometric
arguments to establish non-degeneracy. In [11] B.-Canary-Labourie-S. prove non-
degeneracy under some mild assumptions, giving

J“ (po, pt) = 0.
t=0

Theorem 4.1 (B.-Canary-Labourie-S. [I1, Theorem 1.4]). Let [ be word hyper-
bolic, and Gg < PGL4(R) be reductive. The spectral radius pressure form is an ana-
lytic Riemannian metric on the space Cy(T', Gr) of conjugacy classes of Gr-generic,
reqular, irreducible, projective Anosov representations.

Recall that a representation p : I — Gg is Gg-generic if its Zariski closure
contains elements whose centralizer is a maximal torus in Gg, and it is regular if it
is a smooth point of the algebraic variety Hom(I", Gg).

4.2. Spectral gap pressure form. We now consider two {aj, as}-Anosov repre-
sentations p,n (with possibly different target groups). As explained in Section 2.4
they define reparametrizations fj* and f7* of the geodesic flow.

We define the spectral gap dynamical intersection of p and 1 to be the dynamical
intersection between f7! and fp!:

' (p,n) = I(f3" 130)
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and analogously for J2* (p, 7). Given a C' curve (Pt)te(—e,c) of such {a1, ap}-representations
the spectral gap pressure norm of pg is defined by

. 0?
Py (po) = |, J% (po, p) = 0.

The spectral gap pressure norm induces a semidefinite symmetric bilinear two
form on smooth points of {a1, as}-Anosov representations. This looks very similar
to the spectral radius pressure norm. It is, however, in general harder to check
when the spectral gap pressure form is non-degenerate. As far as the authors know
this has, so far, only been established for the Hitchin component in PSL4(R):

Theorem 4.2 (B.-Canary-Labourie-S. [12, Theorem 1.6]). Let Gg denote either
PSL4(R), PSp(2n,R), PSO(n,n+1) or the split form of the exceptional complex Lie
group Go. Then the spectral gap pressure form is positive definite on the Hitchin
component (S, Gg).

4.3. Vanishing directions. Complex conjugation of matrices is an external au-
tomorphism of PSL4(C) and thus induces an involution

7: (I, PSL4(C)) — X(I, PSL4(C))

whose fixed point set contains X(I', PSL4(R)). If p € X(I',PSLq(R)) is a regular
point, then the differential d, 7 splits the tangent space as a sum of purely imaginary
vectors and the tangent space to the real characters:

T,%(I,PSL4(C)) = ker(d, 7 +1id) @ T, X (I, PSL4(R));

the almost complex structure J of X (F, PSLd(C)) interchanges this splitting.
With a standard symmetry argument (see for example B.-Canary-S. [13, Section
5.8]), we get:

Lemma 4.3. Let p: T — PSL4(R) be {a1}-Anosov and let v be a purely imaginary
direction at p. Then P1(v) = 0. If p is moreover {as}-Anosov, then P21 (v) = 0.

Proof. Let us prove on the second statement, the first one being analogous. Con-
sider a differentiable curve (pt)ie(—c,c) © X{a; a0} (I, PSL4(C)) such that po = p,
po = v and 7p; = p_;. For every conjugacy class [y] € [[], the functions

t6(f5) = (= X2)(p(7))  and  t > h(f))
are invariant under ¢ — —t and are thus critical at 0. Consequently, for every

conjugacy class, the function ¢ — h(f31)¢,(f5}) is critical at 0 and hence Proposition

3.7 implies that P2 (v) = 0. O
5. PLURIHARMONICITY OF LENGTH FUNCTIONS AND ITS CONSEQUENCES
In this section we prove the main results stated in the Introduction.

5.1. Pluriharmonic length functions. If p,n € Xo(I',G¢c) and ¢ € (Eg)* is
strictly positive on (Ap v An) — {0}, then one can define their ¢-dynamical inter-
section by

1 e ()
(p,n) = X(f§, ) = Jim ————e MANSASALCY
T #Rr(f7) [w]eRETl(f:’) e(Me))

where f¥ = o( f? ) is given by Corollary 2.10.

; (6)
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Recall that a function is pluriharmonic if it is locally the real part of a holomor-
phic function. The argument from B.-Taylor [14, Section 5] applies directly and
one has the following result.

Proposition 5.1. Consider p € Xo(I',Gc) and ¢ € (Eg)* that is strictly positive
in A, — {0}. Then the function

I7 =1%(p,) : Xo(l,Gc) — R
is pluriharmonic (when defined).

Recall from Potrie-S. [39, Corollary 4.9] that the map 1 — P(pe(Ay)) is contin-
uous on Xe(l, Gk), when considering the Hausdorff topology on compact subsets
of P((Ee)*). Thus the domain of definition of I# is an open subset of Xe(I', Gc)
that contains, in particular, p. The proposition implies then that I is (defined and)
pluriharmonic on a neighborhood of p.

Proof. Consider n € Xo(I', G¢) such that p|A, — {0} is striclty positive. It follows
then from Bochi-Potrie-S. [1, Proposition 5.11] that there exists a neighborhood U
of 1 such that the constants in Definition 2.1 hold for every ¥ € U. This implies
that the convergence in the definition of I#(p, -) is uniform on compact subsets of its
domain of definition. For each T' > 0, the truncated sum in equation (6) is the real
part of a holomorphic function and thus Theorem 1.23 from Axler-Bourdon-Ramey
[2] yields the result. O

5.2. Proof of Theorem A. Let p € X(m1S, PSLq(R)) be (1, 1,2)-hyperconvex and
assume that it is a regular point of the character variety X (7T1 S, PSLd(IR)). Consider
a tangent vector v € T,X(m1.5, PSL4(R)). Note that then Jv is a purely imaginary
tangent direction in TP%(mS, PSLd(C)). Thus, Lemma 4.3 implies that for any C*
curve (pi)e(—e,e) With po = p, po = Jv and 7p; = p_; we have

2

0= P (Ju) =

o2 J (p07pt)' (7)

t=0

Recall that I(f, f) = 1 and that if p is (1,1, 2)-hyperconvex then Theorem 2.6
states that h%' = 1. Moreover, as observed in the proof of Lemma 4.3, h?* (pg) = 0,
so developing the last term of equation (7) one obtains

0 = Hess,(h™)(Jv) + Hess, I (Jv).

Proposition 5.1 states that I3 is pluriharmonic, so Hess, I3 (Jv) = — Hess, I3} (v)
and thus

Hess, h®' (Jv) = Hess, I3! (v).

Lemma 2.4 implies that, at least for small ¢, p; is (1, 1, 2)-hyperconvex (over C) and
thus Theorem 2.5 yields h?!(p;) = Hff,, (p¢). Finally, since h?* = 1 in a neighbor-
hood of p in X(m S, PSL4(R)) one has

Hess, I3 (v) = P** (v).

The result follows.



16 HESSIAN OF HAUSDORFF DIMENSION ON PURELY IMAGINARY DIRECTIONS

5.3. Proof of Theorem B. By Theorem 2.5 Hff; = A?' in a neighborhood of p,
and thus by assumption, the latter is critical at p. Since J?1(p, -) is also critical at p
(Proposition 3.5) one concludes that I3! is critical at p and thus its Hessian is well
defined.

By Proposition 5.1 I3 is pluriharmonic and thus one has (as before) that for

every v € T,X (I, PSL4(C))
Hess, ' (Jv) = — Hess, I’! (v).

One concludes that the (+,0, —) signature of Hess, I’! is of the form (p, 2k, p) for
some p < half dimg X (I, PSL4(C)). Moreover, by Theorem 3.6 one has

0 < P?'(Juv) = Hess, h®' (Jv) — h3! Hess, I7' (v),
so that Hess, I’} (v) > 0 implies Hess, h*!(Jv) > 0. In particular Hess, h® is posi-
tive semidefinite on a subspace of dimension at least

1
dimg (I, PSL4(C)) — p > ; dimg X(I', PSL4(C))

and the theorem is proven.

5.4. Proof of Theorem C. Let I' be a co-compact lattice in PSO(n, 1) such that
the inclusion ¢ : I — PSO(n, 1) defines, after extending coefficients, a regular point
of the character variety X(I',PSU(n,1)). Theorem 2.2 (and the Remark following
it) in Cooper-Long-Thistlethwaite [18] assert that ¢ is then a regular point of the
PSL,,+1(R) character variety %(F, PSL,LH(R)).

Moreover, since s0(n, 1) is the fixed point set of an involution in sl,41(R), one
has the decomposition sl,,41(R) = so(n,1) @ s with [s,s] < so(n,1). One readily
sees that

su(n,1) =so(n,1) ®is < sl,41(C). (8)

The twisted cohomology H} (T, sl,+1(R)) splits as
H!(T,sl,41(R)) = H! ([, s0(n,1)) @ H'(T,s).

Consequently, by equation (8) the subspace H!(I,s) < H(I,sl,.1(C)) is sent
bijectively to H!(T',is) when multiplied by the complex structure .J, i.e.

J-H}!T,s)=HT,is). (9)
We will need the following generalization of Crampon [19].

Theorem 5.2 (Potrie-S. [39, Theorem 7.2]). Assume p € X(I',PSL,11(R)) has
finite kernel and divides a proper open convex set of P(R"*1). Then the entropy

h (p) <n—1
and equality holds only if p has values in PSO(n,1).
This has the following useful consequence.

Corollary 5.3. The spectral radius pressure form P“1 on %(r, PGLn+1(R)) 18 non-
degenerate at t.

Proof. When n = 2 this follows directly from Theorem 4.1, but if n > 2, the
embedding so(n,1) < sl,41(R) is not PGL,+1(R)-generic so, even though ¢(I') is
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irreducible, we need additional arguments. Nevertheless, by Theorem 5.2, the en-
tropy function p — h“1(p) is critical at ¢, so by Proposition 3.7 one only needs to
verify that the set

{dw] : [7] e[}
spans the cotangent space T}X (I, PSL,1(R)), where w] : X(I', PGL,,11(R)) — R

is the function
p— wi (A(p(v)))-

As ¢ is irreducible and projective Anosov, this is the content of B.-Canary-Labourie-
S. [11, Proposition 10.1]. O

Consider then v € H}(,s) < T,X(I,PSL,41(R)), by equation (9) the purely
imaginary vector J-v € T,X(I", PSL,,41(C)) belongs to H (I, PSU(n, 1)) and repre-
sents thus a non-trivial infinitesimal deformation of ¢ inside PSU(n, 1). As in Lemma
4.3 we choose a differentiable curve (p;)ie(—c.c) < X(I', PSU(n,1)) with po = ¢ and
po =Jv and Tp = p_y.

By Lemma 4.3 we have that

2

0
0=P (Jv) = o J (e, pr). (10)
t=0

Expanding the second term, and using that both h“1(p;) and I (p;) are critical at
t =0 (as in the proof of Lemma 4.3) and that I** is pluriharmonic, we get
0 = Hess, (h**)(Jv) — (n — 1) Hess, (I¥*)(v).
On the other hand
P¥t(v) = Hess, (h“*)(v) + (n — 1) Hess, (I**) (v).
Which in turn gives
Hess, (h**)(Jv) = P*'(v) — Hess, (h**)(v) > 0,

since P¥1(v) > 0 by Corollary 5.3, and — Hess, (h“1)(v) = 0 since by Theorem 5.2
¢ is a global maxima of A“* among deformations in PSL,,;1(R). The result then
follows.

5.5. The Hessian of the entropy at the Fuchsian locus of the Hitchin
component. Applying the same techniques as in the last section we can also show
the following result on the Hitchin component.

Corollary 5.4. Let v € 54(S) be a representation m.S — PSL2(R) — PSL4(R)
in the embedded Teichhmiller space. Then Hess(h') is positive definite on purely
imaginary directions of TLX(mS, PSLd(C)).

Proof. We mimic the last paragraph. In this case the pressure form P! is positive
definite on T, 57 (S, PSLd(IR)) directly by Theorem 4.1. One gets, through the
same arguments, that

Hess, (h“*)(Jv) = P“*(v) — Hess(h**)(v).
As we already observed, the first term on the right hand side is positive by The-
orem 4.1, while Hess(h“')(v) < 0 since, by Potrie-S. [39, Theorem A], Fuchsian

representations are maxima for the entropy within the Hitchin locus. The corollary
follows. (]
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We refer the reader to Dey-Kapovich [28] (see also Ledrappier [33] and Link [34])
for an interpretation of the critical exponent h**(p) as the Hausdorff dimension of
the limit set with respect to a visual metric, i.e. a metric with respect to which the
group action is conformal.

Finally, it would be interesting to relate Corollary 5.4, or an analog of it, to the
recent work by Dai-Li [20] studying the translation lengths on the symmetric space
of PSL4(C), when one deforms a Fuchsian representation along its Hitchin fiber.
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