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ABSTRACT

Our  understanding  of  environmental  factors  controlling  prokaryotic  community  is

largely hampered by the large environmental variability across spatial  scales (e.g.

trace metal contamination, nutrient enrichment, physico-chemical variations) and the

broad diversity of bacterial pre-exposure to environmental factors. In this article, we

investigated  the  specific  influence  of  copper  (Cu)  and  lead  (Pb)  on  prokaryotic

communities  from  the  uncontaminated  site,  using  mesocosm  experiments.  In

addition,  we studied how pre-exposure (i.e.  life  history)  affects communities,  with

reference  to  previous  metal  exposure  on  the  response  of  three  prokaryotic

communities to similar Cu exposition. This study showed a stronger influence of Cu

contamination  than  Pb  contamination  on  prokaryotic  diversity  and  structure.  We

identified 12, and 34 bacterial families and genera, respectively, contributing to the

significant differences observed in community structure between control and spiked

conditions.  Taken  altogether,  our  results  point  towards  a  combination  of  direct

negative  responses  to  Cu  contamination  and  indirect  responses  mediated  by

interaction with phytoplankton. These identified responses were largely conditioned

by the previous exposure of community to contaminants.

Keywords:  prokaryotic  communities; copper contamination; metal exposure history;

coastal seawater; mesocosm experiment; high throughput sequencing
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INTRODUCTION

Marine coastal environments are especially vulnerable to anthropogenic pressures

such as  chemical  contamination  (Halpern  et  al. 2008;  The Mermex Group  et  al.

2011).  For example, copper (Cu) contamination in coastal environments is mainly

caused by urban and industrial  wastes  (Levin  et al. 2001; Oursel  et al. 2013),  or

antifouling  coatings  close  to  harbors  (Turner  2010).  Lead  (Pb)  contamination  is

mainly associated with historical short-term events (Xu et al. 2014; Dang et al. 2015a,

2015b) or  historical  fuel  consumption  for  nautical  traffic  (Callender  2003).  Cu

contamination  is  mainly  encountered  in  seawaters  of  harbor  areas  while  Pb

contamination  are  found in  sediments,  probably  due to  past  events  (Dang  et  al.

2015b). In Toulon Bay, Cu and Pb concentrations can be enriched up to more than

100-fold above geochemical background levels depending on the compartment (e.g.

sediment or water column) (Casas et al. 2008; Tessier et al. 2011; Jean et al. 2012;

Cossa et al. 2014; Dang et al. 2015b; Twining et al. 2015; Coclet et al. 2018, 2019).

Thus, the unique feature of Toulon Bay relates to a gradient of multiple trace metal

elements (TME) with  very low concentrations in  open parts  comparable to  levels

measured in open Mediterranean Sea (Morley  et al. 1997).  By comparison,  most

enclosed and anthropized areas exhibit very high TME concentrations  (Dang  et al.

2015a; Coclet et al. 2018, 2019). Therefore, Toulon bay is a model ecosystem for the

study  of  ecological  consequences  of  TME  contamination  in  the  marine  coastal

environment.

In Toulon Bay where TME gradients are wider than classical physico-chemical

gradients,  TME  contamination  have  been  proposed  to  influence  directly  the
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bacterioplankton diversity  and structure  (Coclet  et al. 2019).  Several  field  studies

clearly  suggested  TMEs  as  structuring  factors  of  abundance,  diversity  and

composition  of  bacterioplanktonic  communities  by  selecting  metal  resistant  taxa

(Sheeba et al. 2017; Coclet et al. 2018, 2019; Goni-Urriza et al. 2018). A microcosm-

based study revealed that artificial mixture of contaminants (nutrients, metals, and

herbicides)  induced  a  strong  inhibition  of  growth,  production,  respiration  and

significant  modifications  of  the  functional  patterns  of  bacterioplankton  community

(Pringault  et  al. 2016).  Furthermore,  both  industrial  effluent  discharge  and  the

resuspension of metal-contaminated marine sediments have been shown to affect

microbial  diversity  in  a  resuspension  experiment  (Zouch  et  al. 2018).  TME

contamination typically found in coastal environments have also been observed to

affect phytoplanktonic communities (Mackey et al. 2012; Lafabrie et al. 2013; Coclet

et al. 2018), which can have indirect consequences for bacterioplankton community

(Goni-Urriza et al. 2018; Coclet et al. 2019).

Life history of a microbial community can be defined as its past exposure to a

multitude of environmental changes, like top-down (e.g. grazing pressure, exposition

to toxic substances) as well as bottom-up (e.g. phytoplanktonic production) control.

The pre-exposure of communities to harmful contaminants like TME can affect the

microbial ecology of the marine system and therefore is of major concern (Hughes-

Martiny et al. 2006; Bissett et al. 2010; Bell et al. 2013; Sjöstedt et al. 2018; Ward et

al. 2019). However, most studies exploring patterns in microbial community diversity

and structure in response to environmental change have focused on direct effects,

without consideration of life history. Previous TME exposure can lead to an increase
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of metal tolerance in microbial communities by the elimination of the most sensitive

individuals and the replacement of sensitive species by tolerant ones (Gustavson et

al. 1999).  Serra  et  al. (2009) found that  copper  pulse exposure may be toxic  to

periphyton communities while continuous copper exposure may lead to community

adaptation, which is often related to changes in species composition.  All  of these

studies  are  in  agreement  with  the  pollution-induced  community  tolerance  (PICT)

model  (Blanck,  Wangberg  and  Molander  1988;  Blanck  2002).  However,  while

numerous studies developed the PICT approach based on photosynthetic efficiency,

extracellular enzyme activities or respiration activity (Carman, Fleeger and Pomarico

2000; Soldo et al. 2005; Serra, Corcoll and Guasch 2009; Tlili 2013), little is known

about how metal exposure impacts diversity and composition of marine prokaryotic

communities previously exposed to similar contamination.

Assuming that  the  life  history  of  its  planktonic  communities  in  Toulon Bay

would mainly reflect TME exposure history due to the strong and chronic Cu and Pb

contamination gradients of the area (Layglon et al., under revision), in this study we

aimed to answer two main questions: (1) to what extent do Cu and Pb contamination

affect prokaryotic communities from uncontaminated site at relevant concentrations;

and (2) does  prokaryotic TME exposure history play a role in shaping prokaryotic

diversity after a Cu exposure?

MATERIALS AND METHODS

Study area, seawater collection, processing, and storage
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The study was conducted in Toulon Bay,  located in the northwestern part  of  the

Mediterranean Sea (Figure 1 and Supplementary Material). Seawater used for the

first  mesocosm  experiment  was  collected  at  1-m  depth  from  site  41p  (low

contaminated site) (Figure 1) on May 10th 2016 and seawater used for the second

mesocosm experiment was collected at 1-m depth from both sites LAZ (intermediate

contaminated site) and 6ext (highly contaminated site) on May 2nd 2017 (Figure 1).

The  3  sampling  seawaters  used  for  mesocosm experiments  were  geochemically

contrasted. They were representative of the North-West to South-East decreasing

gradient of trace metal  contamination (mainly Cu and Pb) previously observed in

Toulon  Bay  (Figure  1).  Minimal  concentrations  were  recorded  in  the  open-sea

sampling site (41p), while maximal concentrations were recorded in the northern and

enclosed part of the little bay (6ext) where the TME contamination is chronic (Coclet

et al., 2019, 2017; Layglon et al., under revision). Details on sample’s information are

given  in  the  supplementary  Table  1.  Seawater  was  collected  using  an  air-

compressed Teflon pump (AstiPureTM II, Saint-Gobin) connected with Teflon tubing. It

was filtered on site through a 5-10 µm cellulose Polycap filter (Whatman) connected

to the Teflon tubing after the pump in order to remove the largest grazers. Filtered

seawater was collected in 50-L low-density polyethylene (LDPE) tanks (Nalgene).

Back  to  the  lab,  each  mesocosm  was  filled  with  20-L  of  filtered  seawater.  The

remaining seawater was filtered through 0.2 µm Teflon Polycap filters (Whatman) to

eliminate  all  organisms,  then  stored  at  4°C  and  subsequently  used  to  re-fill

mesocosms during  the  experiment. All  the  sampling  material,  bottles,  tanks,  and

filters  were  pre-cleaned  following  rigorous  protocols,  detailed  in  supplementary
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information and in Coclet et al. (2018), in order to keep metal concentrations as close

as possible to their initial levels.

Mesocosm setup, and experimental design

For both mesocosm studies, twelve 20-L LDPE tanks (Nalgene) were enclosed in a

large box covered of plastics in order to avoid contamination in TMEs from ambient

particles. Fresh air was continuously provided inside the box by a filtered-equipped

fan in order to avoid humidity accumulation and to equilibrate temperature with the

surrounding  room.  The  tanks  were  filled  with  5-10  µm  filtered  water,  and  thus

included  a  natural  marine  microbial  community  mainly  composed  of  free-living

organisms. Seawater in each tank was continuously mixed with a Teflon magnetic stir

bar used at low speed and oxygenized with 0.2 µm-filtered and humidified ambient

air. The 12 tanks were submitted to a daily light/dark cycle of 14/10h, using full solar

spectrum aquariophilly neon tubes and a surface light irradiance of 50 µmol.m2.s1 of

white light. In the first year, the temperature of the room and of the mesocosms’ box

were kept constant at 19 ± 1.6°C, and 23 ± 1.5°C, respectively. In the second year,

the room temperature and the mesocosm interior were kept constant at 19 ± 2.2°C

and,  22  ±  2.0°C,  respectively.  To  maintain  resource  availability  during  the

experiments, each tank had a continuous opened water circulation system, using a

peristaltic pump (Minipuls Evolution, Gilson), to renew 50% of the total water volume

in a week by 0.2 µm filtered seawater sampled at the same site.

The first mesocosm experiment was performed from May 10th to June 17th

2016 over a 6-week period. Twelve pre-cleaned 20-L LDPE (Nalgene) tanks were

filled with 5-10 µm filtered water from site 41p (Figure 1). A 2-week acclimation period
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was  carried  out  to  establish  relatively  stable  conditions  in  each  tank.  After  the

acclimation period, seawater from the 12 tanks was pooled, homogenized and then

tanks were re-filled. Following the acclimation period, seawater in tanks from the first

mesocosm study were assigned to four treatments: (1) site control (41p CTRL, i.e. no

TME added to 41p seawater), (2) Cu addition (150 nM) (41p Cu), Pb addition (7 nM)

(41p Pb), and (4) Cu and Pb addition (150 nM + 7 nM, respectively) (41p Cu+Pb)

(Supplementary Figure 1). The Cu treatments were spiked with a stock solution of Cu

nitrate (10-3 M) and the Pb treatments were spiked with a stock solution of Pb nitrate

(10-3 M).  According to  the initial  Cu and Pb concentrations measured in  the 41p

seawater used to fill the tanks, final concentrations of 150 nM and 7 nM for Cu and

Pb respectively, were targeted. The water supplies were simultaneously spiked with

similar concentrations of Cu, Pb, or both depending of treatment to maintain metal

concentrations in tanks.

The second mesocosm was performed from May 2nd to June 12th 2017 over a

6-week period.  Six 20-L LDPE (Nalgene)  tanks were filled with  5-10 µm filtered

water from each sampling site (LAZ and 6ext sites) (Figure 1). The treatments in the

second mesocosm experiment were (1) site control (LAZ CTRL, i.e. no TME added to

LAZ seawater), (2) Cu addition to LAZ seawater (150 nM) (LAZ Cu), (3) site control

(6ext  CTRL,  i.e.  no  TME added  to  6ext  seawater),  and  (4)  Cu  addition  to  6ext

seawater (150 nM) (6ext Cu) (Supplementary Figure 2). The Cu treatments were

spiked  with  a  stock  solution  of  Cu  nitrate  (10-3 M).  According  to  the  initial  Cu

concentrations measured in  LAZ and 6ext  seawaters  used to  fill  the  tanks,  final

concentration of 150 nM for Cu were targeted. The water supplies were simultaneous

spiked with Cu depending of treatment to maintain metal concentrations in tanks.
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Experimental time plan and sampling

After  the  acclimation  period,  seawater  was  sampled  from  the  12  tanks  using  a

peristaltic pump connected with Teflon tubing at different times over the course of the

first mesocosm experiment (0, 3, 7, 10, 14, 17, 21, and 25 days) after the Cu/Pb

spikes, and the second mesocosm experiment (0, 3, 7, 10, 14, 17, 21, 25 and 28

days) after the Cu spikes. At each sampling time, 333 mL of seawater was sampled

in each replicate of a given experimental condition and pooled in 1L FEP bottles

(Nalgene) to obtain composite samples for each condition. It was then immediately

resampled for future trace metals (TM), dissolved organic carbon (DOC), and total

nitrogen (TN) quantifications as previously described (Omanović et al. 2006; Cindrić

et al. 2015), and fully explained in Supplementary Material.  Additionally, seawater

(10-mL) for flow cytometry analysis were directly collected in 15-mL centrifuge tubes

(Falcon) from each of 12 tanks, fixed with 0.25% (final concentration) glutaraldehyde,

and stored  at  -80°C until  analysis.  Finally,  at  0,  7,  14,  21,  and 25 days,  1-L  of

seawater  from each  of  12  tanks  was  collected  in  1-L  HDPE bottles  and  filtered

through 0.2 µm polycarbonate membranes (Millipore). Filters were stored at -80°C

until DNA extraction.

Seawater physico-chemical measurements and analyses

Temperature (°C), pH, dissolved oxygen concentration (mg.L -1) and saturation (%)

were  directly  monitored  daily  into  tanks,  over  the  course  of  both  mesocosm

experiments,  using  LDO10105  (Hach)  multiparameter  probe. Differential  pulse

anodic stripping voltammetry (DPASV) was used to measure Cd, Cu, Pb, and Zn
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dissolved concentrations. Details about  instruments,  analysis conditions,  and data

treatment are provided in Supplementary material and elsewhere (Oursel et al. 2013;

Cindrić et al. 2015). DOC and TN concentrations were determined using a TOC-VCSH

analyzer (Shimadzu) (further details in Dang et al., 2014; Coclet et al., 2018, 2019).

Flow cytometry analysis

Autotrophic prokaryotes (Synechococcus-like, SYN), photosynthetic picoeukaryotes

(PPE)  and  photosynthetic  nanoeukaryotes  (PNE)  populations  were  characterized

and  enumerated  using  a  BD  AccuryTM C6  (BD  Biosciences)  flow  cytometer,  as

previously  described  (Coclet  et  al. 2018,  2019).  Heterotrophic  prokaryotes  were

enumerated  after  staining  with  SYBR  Green  as  previously  described  (Cabrol,

Quéméneur and Misson 2017).

DNA  extraction,  PCR  amplification,  and  sequencing  of  16S  rRNA  gene

amplicons

DNA was extracted from the polycarbonate filters by a combination of enzymatic cell

lysis  (Ghiglione,  Conan  and  Pujo-Pay  2009) and  AllPrep  DNA/RNA  Mini  Kit

(QIAGEN)  according  to  the  manufacturer’s  instructions.  Prokaryotic  community

structure  was  assessed  by  targeting  the  V4-V5  region  of  the  16S  rRNA  gene

(Parada, Needham and Fuhrman 2016) and using Illumina Miseq 2 x 250pb paired-

end sequencing (Genoscreen, France). The protocol for the DNA extraction and the

library preparation is fully described in Coclet et al. (2019). 

Bioinformatic analysis
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Sequences  were  demultiplexed  and  assigned  to  corresponding  samples  using

CASAVA (Illumina). Bioinformatic analysis were performed on sequences from two

sequencing MiSeq runs in the same sequencing company were used for our two

mesocosm experiments. The analysis of the raw sequences was done by following

the standard pipeline of DADA2  (Callahan  et al. 2016) in RStudio  (R Core Team

2017) with the following parameters: maxN= 0, maxEE= c(2,2), truncQ= 2. Briefly,

the package includes the following steps: filtering, dereplication, sample inference,

chimera  identification,  and  merging  of  paired-end  reads.  DADA2  infers  exact

amplicon  sequence  variants  (ASVs)  from  sequencing  data,  instead  of  building

operational  taxonomic units  from sequence similarity.  The taxonomy assignments

were done with the SILVA v.128 database (Pruesse et al. 2007; Quast et al. 2013)

and the “assignTaxonomy” function in DADA2. For some ASVs, in order to obtain a

finer taxonomical resolution, DADA2 package implements a method to make species

level  assignments  based  on  exact  matching  between  ASVs  and  sequenced

reference  strains  in  the  SILVA  v.128  database,  using  “addSpecies”  function.

Sequences classified as mitochondria or chloroplast were removed from the ASV

table. The datasets from the samples were normalized by random subsampling to

include an equal number of reads (n = 2078 reads). Samples with lower number of

sequences than the number  of  reads chose to  the  normalization were  discarded

(Supplementary Table 1).

Statistical analysis

All plots and statistical analyses were performed with RStudio (R Core Team 2017).

Alpha  diversity  and  error  estimates  were  performed  using  QIIME  script
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core_diversity_analyses.py  (Caporaso  et  al. 2010),  including  Chao1,  equitability,

observed richness, Shannon and Simpson’s diversity. Two-way analysis of variance

(ANOVA)  was  applied  to  investigate  the  influences  of  Cu  and  Pb  addition,

experimental  time, and their  interaction on  -diversity metrics and the abundance

heterotrophic prokaryotes’ community. Nonmetric multidimensional scaling (NMDS)

based on Bray-Curtis  distance was applied to  evaluate  the overall  differences in

prokaryotic  community  structure,  using  the  vegan package  in  R  (Oksanen  et  al.

2016). Global and pairwise PERMANOVA tests, using  vegan and  RVAideMemoire

packages,  respectively  were  applied  to  test  significant  differences  between

treatments and sampling time. To find representative phylotypes associated with the

treatments,  similarity  percentage (SIMPER) analyses were  first  applied  to  screen

OTUs primarily responsible for the overall dissimilarity (i.e. contributing to more than

1% of total dissimilarity) in the prokaryotic communities between treatments at each

time point using vegan package.

Results

Trace metal elements and additional physicochemical parameters

Initial seawater samples (Ti) used for the first (i.e. 41p) and the second (i.e. LAZ and

6ext) experiments were geochemically contrasted and presented variations in trace

metal concentrations as expected (Supplementary Table 2 and Supplementary Table

3). Total Cu, Pb, and Zn concentrations for 41p were 2.44 nM, 0.13 nM, and 5.34 nM,

respectively while the concentrations were 2.5-, 3-, and 3.6-fold higher than in LAZ

respectively, representing 15 nM, 0.79 nM, and 40 nM. For initial 6ext seawater, total
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Cu,  Pb,  and  Zn  concentrations  were  15-,  18-,  and  26-fold  higher  than  in  41p

respectively, representing 36 nM, 2.32 nM, and 139 nM.

At  the  beginning  of  both  mesocosm  experiments  (T0),  trace  metal

concentrations measured in control conditions were close to the ones encountered in

initial  seawater  samples  (Ti)  from  41p,  LAZ,  6ext.  Thus,  this  confirms  that  no

adsorption  or  contamination  in  metals  occurred  in  our  experiments.  In  both

mesocosms, metal concentrations added were close to the targeted concentrations

(150 nM of Cu and 7 nM of Pb) (Supplementary Table 2 and Supplementary Table

3). Finally, both Cu and Pb concentrations at the beginning (T0) were not different to

those measured at the end (TF) of each experiment,  confirming no metal loss in

treatments where metals were added (Supplementary Table 2 and 3).

The DOC and TN concentrations were not significantly different between the 3

initial  seawaters  (Supplementary  Table  2  and  Supplementary  Table  3).  For  both

mesocosm  experiments,  water  temperature,  pH,  DO,  and  DOC  did  not  exhibit

significant  differences among conditions  but  all  of  these parameters  experienced

temporal significant changes during the entire course of experiments (Kruskal-Wallis,

p <  0.05).  Globally,  for  both  mesocosm experiments,  pH and water  temperature

increased with time while DO saturation and DOC concentration decreased with time

(Supplementary Table 2 and Supplementary Table 3).

Ultraphytoplanktonic and heterotrophic prokaryotes’ abundances

During the first mesocosm experiment, total ultraphytoplanktonic abundances were

determined  by  flow  cytometry.  Abundances  were  comparable  between  sampled

13

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

25

26



seawater (Ti) from 41p and both conditions 41p CTRL and 41p Pb (1.1 ± 0.1 x 104

cell.mL-1 on  average),  with  low  temporal  variability  during  the  entire  course  of

experiment  (Supplementary  Figure  3A).  Total  ultraphytoplanktonic  abundances  in

conditions 41p Cu and 41p Cu+Pb, started to decrease 3 days after metal addition,

leading to significantly lower abundances than in conditions 41p CTRL and 41p Pb

until  the  end  of  the  experiment  (ANOVA,  P <  0.001).  At  the  beginning  of  the

experiment (T0),  heterotrophic prokaryotes’ abundance measured in all  conditions

(11  ±  0.3  x  104 cell.mL-1 on  average)  was  significantly  lower  than  in  sampled

seawater (Ti) from the 41p (2.5 x 105 cell.mL-1) (ANOVA, P < 0.001) (Supplementary

Figure  3B).  From three  days  after  metal  addition  to  the  end  of  the  experiment,

heterotrophic prokaryotic abundance was significantly higher in conditions 41p Cu

and 41p Cu+Pb than in conditions 41p CTRL and 41p Pb (ANOVA, P < 0.001).

During  the  second  mesocosm  experiment,  total  ultraphytoplanktonic

abundance in LAZ (1.9 x 104 cell.mL-1) was significantly higher than in 6ext seawater

(7.9 x 103 cell.mL-1)  (ANOVA,  P < 0.001).  After  the acclimation period (T0),  total

ultraphytoplanktonic  abundance  followed  a  similar  pattern  in  all  conditions,

decreasing 3 days after metal addition (Supplementary Figure 4A). From 3 days after

metal addition to the end of the experiment,  total  ultraphytoplanktonic abundance

was  significantly  lower  in  Cu-treated  conditions  than  in  LAZ  and  6ext  control

conditions  (ANOVA,  P <  0.001).  Heterotrophic  prokaryotic  abundance  was  not

significantly different between LAZ (5.8 x 105 cell.mL-1) and 6ext (5.0 x 105 cell.mL-1)

initial seawaters (Supplementary Figure 4B). At the beginning of the experiment (T0),

this abundance was similar in all conditions (41 ± 1.0 x 104 cell.mL-1), while from 7

days after metal addition to the day 17, it was higher in Cu-treated conditions than in
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control conditions (ANOVA, P < 0.001). From 21 days after metal addition to the end

of the experiment,  heterotrophic prokaryotic abundance was similar in 6ext CTRL

and 6ext Cu. Heterotrophic prokaryotic abundance from LAZ Cu was higher than in

LAZ CTRL.

Prokaryotic alpha-diversity

For  the  first  mesocosm experiment,  all  the  ⍺-diversity  indices  except  equitability

varied  significantly  over  time  (Table  1A  and  Supplementary  Figure  5).  Globally,

prokaryotic  ⍺-diversity  indices  significantly  decreased  over  time  in  all  conditions

(ANOVA, P < 0.05). After the metal addition (T0), the Chao1 index was significantly

lower in Cu-treated conditions (i.e., 41p Cu and 41p Cu+Pb) relative to both initial

seawaters  from  41p  and  condition  41p  CTRL  (ANOVA,  P <  0.001).  Simpson’s

diversity was significantly higher in metal-treated conditions (i.e., 41p Cu, 41p Pb,

and 41p Cu+Pb) relatively to condition 41p CTRL (ANOVA, P < 0.001). No significant

difference  was  observed  in  equitability,  observed  richness,  and  Shannon  indices

between conditions.

For  the  second  mesocosm  experiment,  all  the  ⍺-diversity  indices  except

equitability varied significantly over time (Table 1B and Supplementary Figure 6). All

prokaryotic  ⍺-diversity  indices  significantly  decreased  over  time  in  all  conditions,

especially after the 7th day of the experiment (ANOVA,  P < 0.05). Average Chao1,

observed OTUs, and Shannon indices varied across conditions, and they were lower

in  condition  LAZ  Cu  relative  to  LAZ  CTRL  (ANOVA,  P  <  0.05).  No  significant

difference was observed in all ⍺-diversity indices between conditions 6ext CTRL and
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6ext  Cu.  Finally,  all  ⍺-diversity  indices  measured  in  the  second  mesocosm

experiment were lower compared to those of the first mesocosm experiment.

Prokaryotic community is strongly shaped by Cu in contrast to Pb

In  the  first  mesocosm,  the  most  abundant  dominant  phyla/classes  (>  1%  of  all

sequences  across  all  samples)  were  Alphaproteobacteria,  Gammaproteobacteria,

Flavobacteriia and  Cyanobacteria, representing  96%  of  the  overall  relative

abundance. Archaea represented less than 1% of the  prokaryotic community of all

samples and thus were grouped with all the “other” rare taxa (< 1% of all sequences

across all samples) in subsequent analysis. 

Among  the  abundant  families,  10  representative  families,  determined  by

SIMPER analysis, significantly differed treatments over time (Supplementary Table

5). Their relative abundances are shown in Figure 2.  Rhodobacteraceae,  Family I

(Cyanobacteria),  Alteromonadaceae, and SAR11 Surface 1 clade decreased in Cu-

treated conditions compared to 41p CTRL or 41p Pb. These families contributed to

20 ± 1.3%, 16 ± 4.6%, 6.7 ± 2.5%, and 3.0 ± 0.76% of  the overall  dissimilarity

between these two conditions, respectively. Conversely, the relative abundance of

Hyphomonadaceae,  Flavobacteriaceae,  and  Halieaceae increased  in  Cu-treated

conditions compared to 41p CTRL or 41p Pb and contributed to 34 ± 8.1%, 17 ±

4.4%, and 4.8 ± 1.6% respectively of  the overall  dissimilarity  between these two

groups of conditions.

Moreover,  19  genera  showed  overall  significant  differences  between

conditions at the end of the experiment (TF) (Supplementary Table 6). Among these

genera, only 4 were responsible for the structural change in Pb-treated condition.
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The relative abundance of Alteromonas, Glaciecola, and unknown SAR11 Surface 2

clade  significantly increased while  Erythrobacter nearly disappeared when only Pb

was added.  Synechococcus,  Litorimicrobium,  and to a lesser extent,  CHAB XI 27

decreased in 41p Cu compared to 41p CTRL. Conversely, Parvularcula, NS5 marine

group and Hyphomonas increased in 41p Cu compared to 41p CTRL (Figure 3).

Samples from the first mesocosm study were mainly clustered by conditions

(PERMANOVA, R2 =  0.41;  P  < 0.001)  and in  a lesser  extent  by sampling times

(PERMANOVA, R2 = 0.34; P < 0.001) or interaction (PERMANOVA, R2 = 0.17; P <

0.001) (Figure 4 and Supplementary Table 4A). At the beginning of the experiment

(T0),  prokaryotic  community  structures  were  similar  between  all  conditions,  and

significantly different from the initial seawater at 41p (Supplementary Table 4B). After

the  7th day,  Cu-treated  conditions  (41p  Cu  and  41p  Cu+Pb)  shown  significantly

different prokaryotic community structures from the other conditions (41p, 41p CTRL,

and 41p Pb) at each sampling time, especially at the end of the experiment (TF).

Finally, there was no significant difference in communities between 41p CTRL and

41p  Pb,  as  well  as  between  41p  Cu  and  41p  Cu+Pb  at  each  sampling  time

(Supplementary Table 4).

Influence of TME exposure history on copper effects

Prokaryotic community composition and structure 

Concerning prokaryotic communities sampled from 3 geochemically contrasted sites

(a low contaminated site (41p),  an intermediately contaminated site (LAZ),  and a

highly  contaminated  site  (6ext)), the  most  abundant  phyla/classes  (>  1%  of  all

sequences  across  all  samples)  were  Alphaproteobacteria,  Gammaproteobacteria,
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Flavobacteriia  and  Cyanobacteria,  representing  94%  of  the  overall  relative

abundance.  At  the  family  taxonomic  rank,  Rhodobacteraceae  (25  ±  1.5%),

Flavobacteriaceae (16 ± 1.1%),  Hyphomonadaceae (11 ± 1.3%),  SAR11 Surface 1

clade (6.3 ± 0.89%), and Halieaceae (6.0 ± 0.59%) included the majority of the total

sequences (Figure 5). As for the first mesocosm experiment, Archaea represented

less than 1% of the prokaryotic community of all samples, and they were considered

in the group “other” corresponding to the rare taxa in further analyses.

NMDS plot and PERMANOVA tests showed significant clusters corresponding

to both sampling times and conditions (Figure 6 and Supplementary Table 7A). At all

taxonomic rank, Cu addition (PERMANOVA, R2 = 0.58; P < 0.001) showed a greater

influence on community variations than time (PERMANOVA, R2 = 0.14; P < 0.001) or

interaction between time and experimental condition (PERMANOVA, R2 = 0.20; P <

0.001)  (Supplementary  Table  7A).  Prokaryotic community  structures  were

significantly similar between initial  seawaters from LAZ and 6ext  and significantly

different to the initial seawater from 41p (Supplementary Table 7B). At the beginning

of the experiment (T0), similarly to what was observed for 41p in the first experiment,

the prokaryotic community structures in each control conditions were not significantly

dissimilar from related Cu-treated ones (LAZ CTRL vs LAZ Cu, and 6ext CTRL vs

6ext Cu). After the 7th day, and until the end of the experiment, significant differences

were clearly observed between Cu-treated and non-Cu-treated communities for 41p

and  LAZ.  Conversely,  pairwise  comparisons  showed  no  significant  difference

between 6ext CTRL and 6ext Cu, whatever the sampling time.
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Representative  taxa  responsible  for  structural  changes  between  control  and  Cu-

treated conditions

SIMPER analyses revealed that 12 representative families significantly differed initial

seawaters,  but  also  control  and  Cu-treated  conditions  throughout  experiment

duration (Figure 5 and Supplementary Table 8).  SAR11 Surface 1 and  Surface 2

clades, Hyphomonadaceae, and Family I (Cyanobacteria) were higher in 41p than in

LAZ and 6ext, while Flavobacteriaceae and Rhodobacteraceae were more abundant

in  LAZ and 6ext  than in  41p (Supplementary Table 8).  Finally,  major  differences

between  LAZ  CTRL  and  LAZ  Cu  were  explained  by  the  variation  of  relative

abundances  of  Hyphomonadaceae,  Rhodobiaceae,  Cryomorphaceae and

Alteromonadaceae.

At a lower taxonomic rank, among the 176 genera recorded, 34 significantly

differed control and Cu-treated conditions at the end of the experiment (TF) (Figure 3

and Supplementary Table 9). In addition, the genera Salinihabitans and Rhodobium

discriminating 41p CTRL from 41p Cu, decreased in LAZ Cu compared to LAZ CTRL

while  Jannaschia,  unknown  Cryomorphaceae,  and  Hirschia increased  in  LAZ Cu

compared to LAZ CTRL.  Ruegeria  decreased in 6ext Cu compared to 6ext CTRL

while Formosa, OCS116 clade, and Methylotenera increased in 6ext Cu compare to

6ext  CTRL.  Finally,  representative  genera  responsible  for  structural  changes

between control conditions and Cu-treated conditions for 41p and LAZ were mainly

abundant genera while for 6ext, representative genera were mainly rare genera (<

1% of all sequences across all samples).
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Discussion

Copper exposure induced changes in prokaryotic community

In  both  mesocosm  experiments,  temporal  variations  in  prokaryotic community

structure were observed regardless of metal additions. However, metal addition led

to  stronger  changes  of  community  structure  than  the  experimental  setup  or  the

experiment time. Copper exposure killed more than 99% of the ultraphytoplanktonic

community. The selective pressure of metals on phytoplankton and more precisely

on  ultraphytoplankton  is  now  well  documented  (Echeveste,  Agustí  and  Tovar-

Sánchez  2012;  Lafabrie  et  al. 2013;  Coclet  et  al. 2018). In  parallel  to  the

phytoplankton  mortality,  we  observed  an  increase  in  heterotrophic  prokaryotes’

abundance and a decrease in their  -diversity if they originated from the lower and

intermediately contaminated sites. This abundance increases thus seemed to relate

the development of a limited number of opportunistic r-strategists that efficiently use

the organic resources released by the phytoplanktonic decay (Odum, 1969; Pianka,

1970).  This  behavior  has already been observed with  the  highly  reactive  marine

microbial community  (Buchan  et al. 2014; El-Swais  et al. 2015). Taken altogether,

these observations highlight  the strong interdependence between  prokaryotic and

phytoplanktonic communities, which could partly explain Cu-responses of microbial

communities through indirect trophic relationships.

When considering  the  widely  reported  bacterial  resistance  to  metals  (Nies

1999; Baker-Austin  et al. 2006), the response of the  prokaryotic community to Cu

addition might also be due to the persistence or proliferation of resistant taxa, which

can be higher than the extinction rate of sensitive taxa (Wang et al. 2015; Qian et al.

2017).
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Significant differences in community structure between the control and the Cu-

added  conditions  were  found  at  all  sampling  time.  Particularly,  Hirschia

(Hyphomonadaceae),  NS4 and NS5 marine groups,  Formosa and  Tenacibaculum

(Flavobacteriaceae) increased  in  Cu-treated  conditions  for  both  mesocosm

experiments, indicating that they could be more resistant or take advantage from

copper addition and phytoplankton decay (Pinhassi et al. 2004). Hyphomonadaceae

were known to be abundant in plastic-attached biofilm communities (Zettler, Mincer

and Amaral-zettler 2013; Bryant et al. 2016; De Tender et al. 2017; Oberbeckmann

et al. 2018), especially in disturbed environments (Briand et al., 2017; Coclet, et al.,

submitted).  However,  the  results  in  this  paper  demonstrate  for  the  first  time  the

significant presence of this group in the prokaryotic community of metal contaminated

seawater. Flavobacteriacea was also a major component of the microbial community

in strongly disturbed and metal-contaminated environments (Allen et al. 2013; Wang

et al. 2015; Zouch et al. 2018; Coclet et al. 2019).  Finally, the previous observation

that Tenacibaculum and Formosa genera are positively selected in Cu-amended 6ext

water as abundant and representative taxa from the most contaminated site (6ext)

during a one-month-long survey, is in agreement with the idea of a similar selective

pressure in situ as that observed in our previous field study experiment (Coclet et al.

2019). Conversely, members of Rhodobacteraceae, Family I (Cyanobacteria, mainly

Synechococcus),  Alteromonadaceae,  and  SAR11  Surface  1 clade families  have

been proposed to be sensitive in situ to high trace metal levels (Cassier-Chauvat and

Chauvat  2014;  Coclet  et  al. 2018,  2019;  Corcoll  et  al. 2019) or  characteristic  of

marine  zones  away  from  anthropogenic  influence  (Gilbert  et  al. 2009,  2012;

Fuhrman, Cram and Needham 2015). 
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Thus, our study reveals the sensitivity of a part of the prokaryotic community

to Cu contamination representative from a harbor, by a combination of direct (i.e.

toxicity)  or  indirect  (i.e.  related to  phytoplankton decay)  processes,  as suggested

recently in a field study (Coclet et al. 2019).

Limited effects of Pb contamination on prokaryotic community

In  our  study,  the effect  of  Pb exposure on  prokaryotic communities was far  less

pronounced than the effect of Cu exposure. Pb addition using nitrate salts appeared

to have limited impact on prokaryotic diversity and structure, with no detectable effect

on ultraphytoplankton. Moreover, it  did not prove to have a synergistic interaction

with Cu. The weak toxicity of Pb on prokaryotic communities could be explained by

its resistance and detoxification mechanisms, which are very efficient in microbial

organisms (Trevors, 1989; Nies, 1999; Nayar  et al., 2004;  Naik and Dubey, 2013).

Additionally, the dichotomy between Cu and Pb effects could be due to the difference

in  their  concentrations  added  in  our  mesocosms  as  well  as  their  bioavailability.

Indeed, to mimic the contamination levels observed in Toulon Bay, Pb concentrations

were 20-fold lower than Cu concentrations, thus reducing the dose at which the cells

were exposed. No data is available in the literature concerning tolerance threshold of

marine bacterial communities against Pb contamination. Pb dissolved concentration

was constant throughout the experiment, indicating no Pb adsorption on mesocosm

materials or on microbial cells. Thus, the surface reactive behavior of Pb might not

have  induced  a  reduced  bioavailability  by  reducing  its  dissolved  concentration.

Therefore, our study does not allow us to explain precisely this difference of toxicity

between Cu and Pb, but the non-essential nature of Pb and potential different ways
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to  enter  the cells  than Cu represent  hypotheses that  should be studied in  future

research (Han et al. 2014).

The  relative  abundance  of  Glaciecola taxon  significantly  increased  while

Erythrobacter became undetectable when only Pb was added. Glaciecola has been

described to be an opportunistic member of prokaryotic communities, its abundance

increasing rapidly following an increase in DOC concentration (Sipler et al. 2017; von

Scheibner,  Sommer  and  Jürgens  2017). Since  DOC  concentrations  in  our

experiment were similar in all conditions, the ability of Glaciecola to take advantage

compared to other taxa in a Pb contaminated sea water remains unexplained. The

genus Erythrobacter was found to be important taxa in surface-attached communities

(Zettler, Mincer and Amaral-zettler 2013; Dussud  et al. 2018; Oberbeckmann et al.

2018), and notably in contaminated ecosystems (Catão et al. submitted; Briand et al.,

2017;  Pollet  et al.,  2018; Coclet,  et al.,  submitted).  Thus, the strong decrease of

Erythrobacter in the water after Pb addition could be explained by the ability of this

genus to form biofilms in the mesocosms. Indeed, biofilms are one of the most widely

distributed and successful modes of life in water environment (Stoodley et al. 2002;

Flemming et al. 2016) and a strategy that microorganisms might use to protect them

from toxic metals (Harrison, Ceri and Turner 2007).

TME exposure history determines Cu effects on prokaryotic communities

Trace metal contamination gradients in Toulon bay have been already described by

punctual mappings (Jean et al. 2012; Dang et al. 2015b; Coclet et al. 2018) or during

short  (Coclet  et al. 2019) and long-term surveys  (Layglon  et al.,  under  revision).

These studies demonstrated that TME contamination gradients persists at a pluri-
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annual  scale in Toulon Bay.  This led us to assume that  prokaryotic communities

sampled along this contamination gradient could present different metals exposure

histories.  Cu addition in both low (41p) and in intermediately (LAZ) contaminated

seawaters induced important changes in  prokaryotic community structure, while Cu

addition  in  seawater  originating  from  a  chronically  contaminated  site  (6ext)  only

weakly impacted the  prokaryotic community  structure.  Based on the PICT theory

(Gustavson et al. 1999; Blanck 2002), this observation validates our assumption and

demonstrates the adaptive potential of prokaryotic communities to withstand elevated

Cu concentrations.  This  adaptation  must  have developed rapidly  since the  water

residence time in Toulon Bay has been estimated to a few days (Dufresne, Duffa and

Rey 2014), even if this estimation is probably not representative to what happens in

very enclosed docks such as the one where we sampled contaminated water (6ext).

This adaptive potential could be the result of the presence of a higher proportion of

tolerant species in the most contaminated seawater, representative of a strong and

chronic  metal-exposure  history  of  these communities  (Carman,  Fleeger  and

Pomarico 2000).  This hypothesis is in agreement with the very small  variation of

structure after Cu addition in the community sampled from the most contaminated

site.  Indeed,  for  this  community,  we  mainly  observed  changes  in  the  relative

abundance of rare taxa.

We hypothesize that mechanisms of toxicity and resistance to Cu co-occur in

prokaryotic  communities  from  low  and  intermediately  contaminated  sites.  The

observed dissimilarity in prokaryotic structures between these communities after Cu

exposure could be the result of differences in initial community composition in 41p

and  LAZ seawaters.  To  the  best  of  our  knowledge,  our  study  provides  the  first
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evidence that TME exposure history may play a critical role in marine  prokaryotic

community response to re-current metal contamination.

Conclusion

From  our  mesocosm  experiences,  we  can  conclude  that  harbor-relevant  Cu

exposure affects abundance, diversity and structure of prokaryotic communities from

both low and intermediately TME contaminated seawaters. The effect of Cu addition

is  visible  through  both  the  disappearance  of  sensitive  taxa  and  the  selection  of

adapted  ones.  We  also  demonstrated  that  TME  exposure  history  has  a  strong

influence  on  the  response  of  prokaryotic  communities to  newer-current

contamination,  as  prokaryotic communities  from  contaminated  site  were  less

impacted by Cu addition. Conversely, we showed limited impacts of Pb exposure

compared  to  Cu  contamination,  probably  due  to  the  low  toxic  potential  against

prokaryotes and  the  efficiency  of  its  resistance  and  detoxification  mechanisms.

Finally, our observations suggest both direct (toxic) and indirect (trophic) effects of

TME contaminations, highlighting the need for studies of the complexity of both biotic

and abiotic interactions.
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