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Abstract

Three-dimensional exact solutions for temperature and thermoelastic stresses in multilayered anisotropic plates are derived for ad-
vanced boundary-value problems with general boundary conditions. The extended Stroh formalism is formulated to include the thermal
coupling with the Eringen nonlocal elasticity theory that captures small scale effects. The simply supported structures are subjected
to time-harmonic distributions of temperature, combined with tractions, which are represented by means of Fourier series expansions.
In particular, the prescribed loads on both the bottom and top surfaces include the uniformly and heterogeneously distributed normal
stresses, while imperfect thermal and mechanical contacts between constituents are incorporated at the internal interfaces. Recursive
field relations for multilayered plates with imperfect interfaces are consistently articulated by virtue of the traditional propagation ma-
trix method, which is further completed by the dual variable and position technique to overcome numerical instability issues. Three
application examples are proposed to throw light on various effects of the externally applied loads and internal imperfections on the
thermoelastic fields in multilayered structures. The residual stress fields in graphite fiber-reinforced epoxy matrix composites are shown
to be drastically different from those predicted by the classical elasticity theory when nonlocal effects are significant. The stacking
sequence and the number of copper and molybdenum in laminated anisotropic plates are of great importance in tailoring interfacial
properties, especially if the thermally conducting boundaries are taken into account. The forced vibration analysis of thermal barrier
coatings on nickel based superalloys is investigated, including interfacial bonding effects between adjoining layers. Depending on the
input frequency amplitude, severe oscillating displacements and stresses take place in the single crystal superalloys that can endanger
the safety-related stability and integrity of aircraft engines. Overall, the present formalism should be utilized in the optimal design of
sophisticated multilayered structures with desired steady-state and time-harmonic thermoelastic responses.
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1. Introduction

High performance structures made of multilayered metal composites are extensively applied to wide-range engineering problems in
the aeronautical and aerospace industries, particularly due to their unique structural integrity and high strength-to-weight and stiffness-
to-weight ratios (Kelly and Zweben, 1964). While the layered composites provide better mechanical properties than those of their
individual material components used alone, crack initiation and crack propagation leading to catastrophic failure need to be prevented in
operational safety design of laminated materials (Tabiei and Zhang, 2018). Such precautions require accurate predictions of the three-
dimensional deformation and stress states in the composite structures. In aircraft engines, rotating high-pressure turbine blades work
in severe temperature environments and are furthermore subjected to high frequency vibration events, for which the thermomechanical
resonance effects may dramatically reduce the service life of the engines. This work is focused on exact field solutions for time-harmonic
vibration response of multilayered composites using nonlocal thermoelasticity theory with specific conditions at the internal interfaces.
Besides the conforming finite element analysis for similar problems (Bhangale and Ganesan, 2006a, Carrera, 2000, Tran et al., 2007,
Vidal and Polit, 2008), the present framework is of particular value since the corresponding economical solutions can predict exactly
the vibrational behavior of multilayered systems without any numerical dispersions and can therefore be used as benchmarks for various
numerical methods in nonlocal thermoelasticity.

The three-dimensional problem of determining the strains and stresses which occur in homogeneous rectangular parallelepipeds
subjected to given surface forces is one of the oldest problems in the theory of elasticity (Lamé, 1852, Mathieu, 1868, Poisson, 1829).
From mathematical aspects, the exact and general solutions have been represented by arbitrary periodic functions expanding into infinite
trigonometric series of sine and cosine terms with coefficients to be determined using specific applied conditions at external surfaces
(Hutchinson, 1967, Lamé, 1852, Mathieu, 1868, 1890, Mindlin, 1956). Later, the inhomogeneous problem of laminated composite plates
consisting of isotropic and orthotropic layers has been rigorously covered using similar mathematical treatments under various approxi-
mate plate theories and various types of edge boundary conditions (Pagano, 1970, Reddy, 1984, Srinivas and Rao, 1970, Touratier, 1991,
Whitney and Pagano, 1970).

Since the relevant analytical works by Srinivas and Rao (1970) and Pagano (1970), the particular case of layered composites under
simply supported lateral conditions has been investigated to describe the displacement and stress distributions in series of bidirectional
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square-symmetric laminates under static bending forces. A vibration analysis of simply supported orthotropic plates subjected to several
dynamic pulses has been extended using the Fourier series expansion of the load functions (Dobyns, 1981, Taylor and Nayfeh, 1996). The
vibration frequencies and mode shapes have therefore been determined as well as the corresponding field solutions for plate deflections,
bending strains, and normal shear forces due to the dynamic loads. It is worth noting that the twofold advantage of the simply supported
plate conditions is due to the resulting eigenvalue problems that can be solved analytically and to the corresponding feasibility in
designing experiments for static and free vibration responses of layered plates (Kapuria et al., 2008). Because of these specific and
attractive features, the simply supported elastic plate model has been extended to include the multiphase coupling effect among the
mechanical, electrical and magnetic fields for both static deformation (Bhangale and Ganesan, 2006b, Pan, 2001) and free vibration (Pan
and Heyliger, 2002) responses in crystalline metal composites as well as in quasicrystalline multi-structures (Yang et al., 2015, 2017).

As the structural length decreases towards the sub-microscale regime, numerous experiments have observed size-dependent mechan-
ical properties in metals (Poole et al., 1996, Wu et al., 2005) that cannot be captured by the classical scale-free continuum theories.
Several size-dependent theories that contain additional internal length scale have also been developed to overcome such limitations, e.g.,
the micropolar (Toupin, 1973) and micromorphic (Eringen, 1967, Mindlin and Eshel, 1968) continuum theories, and nonlocal integral
theories that have been stimulated by the pioneer work of Eringen and co-workers (Eringen, 1972, Eringen and Edelen, 1972). The
latter consists in postulating that the stress field at a given material point is related to the strain state at that location and to a nonlocal
contribution due to the surrounding medium characterized by a convolution integral form with attenuation kernel functions. By focusing
on solid-state physics, the long-distance force effects between atoms and the internal length scale are phenomenologically considered
in the construction of the stress-strain constitutive equations (Eringen, 1983), without variational arguments. The Eringen elasticity
theory has also been conveniently used to analyze many engineering problems in nonlocal elasticity whereby the structural response is
strongly influenced by the presence of a microstructure, such as the wave propagation in heterogeneous materials (Maugin, 1999), the
stress evaluation at both the dislocation cores (Eringen, 1977) and crack tips (Eringen et al., 1977) as well as the free vibration analysis
(Waksmanski and Pan, 2014) and buckling (Guo et al., 2019) in multilayered nanoplates. Although the Eringen theory (Eringen, 1983)
did not provide extra boundary conditions required by the constitutive Helmholtz-based partial differential equations, the introduction of
nonlocal ingredients into the conventional simply supported plate theories with proper values of nonlocal parameter −through a least-
square fitting procedure− has shown excellent size-dependent predictions compared to molecular dynamics simulations in the biaxial
buckling response of single-layered graphene sheets (Ansari and Sahmani, 2013).

Furthermore, composite aircraft structures are exposed to thermal environments including severe temperature gradients, for which
the anisotropic thermal properties of the individual material components cannot be ignored in a modern structural design of gas turbine
blades with advanced ceramic coatings (Padture, 2016). Similarly to the elasticity theory in predicting the deformation and stress states
in anisotropic solids, the non-canonical form of the differential operators makes most of the traditional analytical solution procedures
for steady-state heat conduction problems (Mulholland and Cobble, 1972) either inapplicable or intractable (Noor and Burton, 1992).
Thus, analogous Fourier series expansions as in elasticity have been proposed by Padovan (1975) to solve the three-dimensional heat
transfer problem of rectangular laminated plates subject to thermal loads, which have further been extended to combined loads using the
quasi-static theory of linear thermoelasticity (Bhaskar et al., 1995, Savoia and Rao, 1995, Tungikar, 1994). The inherent thermoelastic
problems are of critical importance since the interaction between the elastic strain and thermal mismatches and also the corresponding
thermal stress concentrations may influence the local driving forces for crack propagation in composite materials (Khaund et al., 1977),
which is a major cause of fracture and interfacial delamination of thermal barrier coating systems (Evans and Hutchinson, 2007). Under
static deformation, additional coupling effects including piezoelectric fields in layered plates have been formulated (Wang and Pan,
2007), whilst Yang et al. (2018) has recently investigated the thermoelastic quasicrystal response in layered plates by surface loading.
To the best of the authors’ knowledge, however, the corresponding time-dependent thermoelastic vibration response of a multilayered
composite with imperfect interface conditions and nonlocal effects has not yet been treated.

The common assumption made by most of the aforementioned works is related to the ideal perfectly bonded conditions at interfaces
between adjoining plates, which requires the continuity of the elastic displacement and traction vectors as well as the temperature and
the normal heat flux across all internal boundaries. Although these interface conditions are necessary to solve the mathematical problem
in hetero-thermoelasticity, appropriate conditions must strongly reflect the physical properties of the interfaces, particularly for complex
multilayered thermal barrier coating systems. Due to the experimental evidence, most of the mechanically compliant interfaces are
structurally imperfect in heterostructures (Hirth and Lothe, 1992, Sutton and Balluffi, 1995). While dislocation-based models have been
formulated to describe the crystallographic character of heterophase interfaces in terms of discrete dislocation networks (Vattré, 2015,
2016, 2017), phenomenological continuum approaches that smear out the detailed dislocation arrangement have frequently been applied
to model the effects of imperfect interfaces. For instance, the general linear spring-type model under isothermal conditions has been
proposed (Fan and Wang, 2003, Ru and Schiavone, 1997) by specifying a continuous traction vector but a discontinuous displacement
field across the imperfect interface, for which the components of the given displacement jump are assumed to be linearly proportional
to the interfacial traction components. For the thermal characteristics, the imperfect interfacial contacts may be related to thermally
−weakly or highly− conducting boundaries. More specifically, the normal heat flux is continuous but the temperature is discontinuous
across the interface for thermally weakly conducting interfaces (Benveniste and Miloh, 1986, Benveniste, 1999), which includes Kapitza
contact thermal resistance with a temperature jump proportional to the normal heat flux (Kapitza, 1941), as similarly defined in the elastic
spring model. On the other hand, the temperature is continuous across the interface whereas the normal heat flux has a discontinuity
across the interface for highly conducting interfaces (Benveniste, 1999, 2006), which is proportional to the local surface Laplacian of
temperature. Because of the process-induced surface defects during fusion welding or layer-by-layer additive manufacturing of metallic
aircraft components, a detailed treatment of imperfect interfaces is undoubtedly of paramount importance to understand their influence
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Figure 1: (a) Three-dimensional schematics of a multilayered anisotropic system that is arbitrarily composed ofN rectangular layers with nonlocal thermoelastic properties
and general imperfect conditions on the internal interfaces. (b) The combined time-harmonic loads are applied on both bottom and top surfaces. The temperature profiles
are uniformly distributed, while the normal tractions can be heterogeneously distributed on the external surfaces.

on fatigue performance and corrosion damage.
In this work, a comprehensive analysis is carried out on the time-harmonic response of thermoelastic, anisotropic, and multilayered

plates. The layered structure is assumed to be nonlocal with further general imperfect conditions on the internal interfaces between
the homogeneous layers. As reviewed above, previous analyses for the thermoelastic layered plates have been conducted under the
assumption of static deformation, within which the exact closed-form solutions have been evaluated for individual lower Fourier series
terms only. For such restricted circumstances, the traditional propagation matrix method can straightforwardly be applied due to the basic
mathematical operations involved. However, because both the positive and negative exponential terms are contained in the propagation
matrix method, this technique would fail when the Fourier series term is relatively high and/or when the dynamic frequency is relatively
high (Pan, 2019). Thus, in order to take care of the time-harmonic vibration with high frequency as well as higher-order Fourier
series terms for thermoelatically distributed and coupled loading problems, the recent dual variable and position technique (Liu et al.,
2018, Pan, 2019) has been reformulated by conveniently introducing an elegant rearrangement in the central transfer matrices from the
propagation matrix method, combined with the Stroh formalism with nonlocal and thermal effects.

The paper falls into four parts and is organized as follows. The coupled boundary-value problem is described in Section 2. In
Section 3, the general time-harmonic solutions for each homogeneous and Eringen-type nonlocal layer are derived by means of double
Fourier series expansions. The recursive framework is then developed in Section 4 to determine the exact solutions in the entire multilay-
ers by transferring specific field matrices, including both mechanical and thermal imperfections at internal interfaces. Three application
examples are discussed in Section 5, and conclusion remarks are drawn in Section 6.

2. Description of the hetero-thermoelastic problem

Figure (1a) describes the three-dimensional multilayered structure that is composed of an arbitrary number ofN -bonded orthotropic,
dissimilar, linearly thermoelastic, and rectangular layers with nonlocal effects. Here and in the following, the individual and finite
thickness is hj = zj+1− zj for the jth layer, with j = 1, . . . ,N . A global orthogonal system (x,y,z) = (x1,x2,x3) with Cartesian
coordinates is attached to the multilayers where the origin is located at one of the four corners on the bottom surface and all plates
are defined in the positive z-region. Thus, the lower and upper interfaces of layer j are defined as zj and zj+1, respectively, and the
in-plane x ‖ x1- and y ‖ x2- directions are aligned with the horizontal edges of the plate boundaries. It follows that z1 = 0 and zN+1 =H
at the bottom and top surfaces, respectively, with H the total thickness in the vertical direction of the multilayers, while the common
dimensions in the x ‖ x1- and y ‖ x2- directions are Lx and Ly for all plates. The four lateral sides are assumed to satisfy the simply
supported boundary conditions, and the general combined thermal and mechanical loads are applied on the bottom and top surfaces
of the multilayers. Some of the internal interfaces between the adjacent layers are perfectly or imperfectly connected, which will be
discussed later on.

2.1. Nonlocal constitutive and governing equations

In the nonlocal theory of steady-state heat conduction, the nonlocal heat flux vector qi in W/m2 is proportional to the local temperature
gradient (Yu et al., 2016), as follows(
1− l2T∇

2)qi =−kij T,j , (1)
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where lT is the thermal nonlocal parameter in m, kij are the coefficients of thermal conductivity in W/m/K, and T is the temperature
in K. In eq. (1), a comma followed by index j denotes partial differentiation with respect to the position xj of a material point with
j = 1,2,3, and a repeated index implies summation over the range of the index, while ∇2 is the 3D Laplacian operator. On the other
hand, the anisotropic constitutive relations for each linear and homogeneous Eringen nonlocal plate (Eringen, 1983) including thermal
stresses are given by(
1− l2E∇

2)σij = cijkluk,l−βijT = cijkluk,l− cijklαklT , (2)

where lE is the elastic nonlocal parameter, σij is the nonlocal elastic stress tensor in N/m2, cijkl are the elastic stiffness constants in
N/m2, uk is the elastic displacement vector in m, and βij are the thermal constants in N/m2/K. In general, the coefficients βij can be
obtained in terms of the thermal expansion coefficients αkl in 1/K and the stiffness tensor, as defined in eq. (2). For orthotropic materials
with the three orthogonal planes of symmetry in the fixed Cartesian coordinates (x1,x2,x3), eq. (2) can be expressed in the matrix form
as

(
1− l2E∇

2)

σ11
σ22
σ33
σ23
σ13
σ12

=


c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66




u1,1
u2,2
u3,3

u2,3 +u3,2
u1,3 +u3,1
u1,2 +u2,1

−

β11
β22
β33
0
0
0

 T , (3)

with cij the stiffness tensor indexed in Voigt notation. For each individual plate, the balance equation for the steady-state thermal flux
without internal heat sources and the time-harmonic equation for the linear thermoelastic deformations in the absence of body forces
acting on the materials are both defined by

{
qi,i = 0 ,

σij,j−ρüi = 0 ,
(4a)
(4b)

with ρ being the mass density in kg/m3, and the superposed dot denotes the differentiation with respect to time. Assuming time-harmonic
vibration motion, the field solution of the elastic displacement vector ui in eqs. (3) and (4b) is sought in the complex standard form and
is separated into a function of position and a function of time, as follows

ui (x1,x2,z, t) = ûi (x1,x2,z) eiωt , (5)

where ûi is the time-independent nonlocal displacement vector, ω is the angular vibration frequency of excitation in rad/s, and t is time
in s. Substituting eq. (5) into eq. (2), the governing partial differential equation of motion in eq. (4b) reads

ρω2 (1− l2E∇
2)ui+ cijkluk,lj−βijT,j = 0 , (6)

for which the corresponding solution of the deformation state has no effects on temperature. Thus, the general thermal stress problem
separates into two distinct problems to be solved consecutively. The steady-state thermal stress analysis can be carried out by solving
the heat conduction problem with eq. (4a) first, also by obtaining the temperature field in the static form of eq. (1), and then solving
the elasticity problem and determining the thermally induced deformations and stresses from eq. (6). To solve this three-dimensional
problem, a representation of field solutions by means of double Fourier trigonometric expansions is considered.

2.2. The three-dimensional boundary-value problem

In the present boundary-value problem, the appropriate boundary conditions that must be satisfied are those on the external surfaces,
i.e., at the edges of the multilayered rectangular plate and both horizontal surfaces where the combined time-harmonic thermal and
mechanical loads are prescribed, as well as those on the internal interfaces of the multilayered rectangular plates. These boundary
conditions are described in the following sections.

2.2.1. External boundary conditions
For the simply supported rectangular composite materials with ideal constraints at the edges, the prescribed boundary conditions at

four vertical surface planes are expressed as

{
u2 = u3 = σ22 = T = 0 , at : x1 = 0, and x1 = Lx ,

u1 = u3 = σ11 = T = 0 , at : x2 = 0, and x2 = Ly ,

(7a)
(7b)

for all plates along the entire thickness of the multilayered materials. On the other hand, the boundary conditions B on the bottom
surface are assumed to be sufficiently general to solve the thermoelastic problem in multilayered materials, where both the time-harmonic

4



temperature T and normal stress vector ti are expressed using the two-dimensional Fourier series ansatz (Dobyns, 1981, Srinivas and
Rao, 1970, Taylor and Nayfeh, 1996), as follows

B :



T (x1,x2,z = 0, t) = eiωt
∞

∑
m=1

∞

∑
n=1

T̄ B
mn sin(pmx1) sin(qnx2) ,

ti (x1,x2,z = 0, t) =

σ31 (x1,x2,z = 0, t)

σ32 (x1,x2,z = 0, t)

σ33 (x1,x2,z = 0, t)

= eiωt
∞

∑
m=1

∞

∑
n=1

σ̄
B
31mn cos(pmx1) sin(qnx2)

σ̄B
32mn sin(pmx1) cos(qnx2)

σ̄B
33mn sin(pmx1) sin(qnx2)

 ,
(8a)

(8b)

where the quantities T̄ B
mn and t̄B

mn =
[
σ̄B

31mn, σ̄
B
32mn, σ̄

B
33mn

]t are the Fourier amplitudes applied on the bottom surface, with the super-
script t indicating the vector transpose. In eqs. (8), the half-wave numbers are given by pm =mπ/Lx and qn = nπ/Ly , with m and n
being two positive integers, so that all Fourier series expansion coefficients are related to the summations for m and n. Similarly, the
external boundary conditions T on top surface are given by

T :



T (x1,x2,z =H,t) = eiωt
∞

∑
m=1

∞

∑
n=1

T̄ T
mn sin(pmx1) sin(qnx2) ,

ti (x1,x2,z =H,t) =

σ31 (x1,x2,z =H,t)

σ32 (x1,x2,z =H,t)

σ33 (x1,x2,z =H,t)

= eiωt
∞

∑
m=1

∞

∑
n=1

σ̄
T
31mn cos(pmx1) sin(qnx2)

σ̄T
32mn sin(pmx1) cos(qnx2)

σ̄T
33mn sin(pmx1) sin(qnx2)

 ,
(9a)

(9b)

where T̄ T
mn and t̄T

mn =
[
σ̄T

31mn, σ̄
T
32mn, σ̄

T
33mn

]t are the Fourier amplitudes applied on the top rectangular surface at z =H . It is worth
noting that the double Fourier series expansions in eqs. (8) and (9) satisfy the homogeneous lateral boundary conditions given in eq. (7),
with m and n occurring as parameters. In the following, both superscripts over pm and qn are omitted to avoid notational complexity,
unless needed, and whenever the periodic terms arise, summation over m and n must be made.

2.2.2. Internal boundary conditions
The traditional boundary condition for mechanically compliant non-ideal interfaces in anisotropic composite laminates, which en-

ables conformability to non-flat and irregularly shaped surfaces to accommodate the residual stresses between two adjacent materials,
are formulated as followsJσ3j (x1,x2,z = zk, t)K

+

− = σ3j (x1,x2,z = z+

k, t)−σ3j (x1,x2,z = z−k, t) = 0 ,

Juj (x1,x2,z = zk, t)K
+

− = uj (x1,x2,z = z+

k, t)−uj (x1,x2,z = z−k, t) = α(k)

j σj3 (x1,x2,zk, t) ,

(10a)

(10b)

for j = {1,2,3}, where both superscripts + and − denote the limit values from the upper and lower sides of any interface of interest
located at z = zk, with k = 2, . . . ,N . The mechanical contact feature in eqs. (10) is the general spring-type interface condition where
traction is continuous but the elastic displacements experience a jump crossing the interface. The proportional interface coefficients α(k)

j

in m3/N are also designated by interface compliances. In practice, when the latter interface compliances approach zero, the standard
condition for ideal mechanical interfaces is verified, while the completely mechanically debonded interfaces are characterized when the
interface coefficients tend to infinity.

As part of the thermal conduction, two anisotropic boundary conditions are taken into account to represent weakly and highly
conducting non-ideal interfaces. For weakly conducting interfaces, the Kapitza model is used to describe a possible interfacial thermal
resistance, as followsJq3 (x1,x2,z = zk, t)K

+

− = q3 (x1,x2,z = z+

k, t)− q3 (x1,x2,z = z−k, t) = 0 ,

JT (x1,x2,z = zk, t)K
+

− = T (x1,x2,z = z+

k, t)−T (x1,x2,z = z−k, t) =−β
(k)

T q3 (x1,x2,zk, t) ,

(11a)

(11b)

causing a jump in the temperature and thus changing the effective thermal conductivity of the composite material. In eq. (11b), the
adiabatic condition at the contact interfaces is obtained when the non-negative interfacial constant β(k)

T in Km2/W tends to infinity. On
the other hand, the boundary conditions for highly conducting imperfect interfaces are written asJq3 (x1,x2,z = zk, t)K

+

− = q3 (x1,x2,z = z+

k, t)− q3 (x1,x2,z = z−k, t) = γ(k)

T ∇
2
2DT (x1,x2,zk, t) ,

JT (x1,x2,z = zk, t)K
+

− = T (x1,x2,z = z+

k, t)−T (x1,x2,z = z−k, t) = 0 ,

(12a)

(12b)

where ∇2
2D = (∂11 +∂22) is the surface Laplacian operator and γ(k)

T is a non-negative interfacial parameter in W/K, for which the upper
material is connected to the adjacent lower material with infinite conductivity if γ(k)

T approaches infinity.
For both interfacial heat conditions given in eqs. (11) and (12), the perfect thermal conditions for ideal interfaces are met when

β(k)

T = γ(k)

T = 0, exhibiting the continuity of temperature and heat flux at ideal interfaces. Because all aforementioned relations are
proportional to the common factor eiωt, the above mechanical and thermally internal boundary conditions can conveniently be expressed
with respect to time-independent field quantities by omitting the time parameter t in eqs. (10), (11) and (12).
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3. General series solutions for each Eringen nonlocal plate

General and exact field solutions for each three-dimensional homogeneous plate are derived using the pseudo-Stroh formalism with
respect to the nonlocal constitutive relations developed in Section 2.1. The corresponding expressions fulfill both governing equations for
thermoelasticity given in eqs. (4a) and (6) exactly in terms of Fourier series expansion functions, which will be further used to determine
the complete solutions for multilayered plates by assembly techniques in Section 4. For clarity, a convenient local coordinate system
(x1,x2,z

′) is attached to the individual jth layer, with origin at the point where the global x3 ‖ z axis intersects the bottom surface of the
jth plate. The local axes are also parallel to the global axes such that z′ and z are related to each other by a translation. The temperature
and the nonlocal heat flux vector are first determined in Section 3.1, while Sections 3.2 and 3.3 are associated with the so-called primary
and secondary variables of the thermoelastic solutions. The displacement ui and traction ti components are the six primary variables
calculated by a specific eigenvalue problem, whereas the three secondary in-plane components τi = [σ11, σ12, σ22]

t can be expressed in
terms of the primary variables using the constitutive relations.

3.1. Thermal field solutions
Similarly to the expressions for the external boundary conditions on the bottom B and top T surfaces in eqs. (8a) and (9a), the

formal time-harmonic solutions for the temperature and normal heat flux components are written to satisfy exactly the simply supported
boundary conditions by means of the separation of variables method combined with a Fourier sine-series expansion form, as follows[
T (x1,x2,z

′, t)

q3 (x1,x2,z
′, t)

]
= eiωt

∞

∑
m=1

∞

∑
n=1

[
T̄ (z′) sin(px1) sin(qx2)

q̄3 (z
′) sin(px1) sin(qx2)

]
= eiωt eηz

′ ∞

∑
m=1

∞

∑
n=1

[
f sin(px1) sin(qx2)

g sin(px1) sin(qx2)

]
, (13)

where T̄ (z′) = f eηz
′

and q̄3(z
′) = g eηz

′
are two unknown z′-dependent functions, within which f , g and η are the coefficients to be

determined. Thus, eq. (13) and the corresponding thermal material properties are explicitly defined for each layer j of the composite
plate of interest. Furthermore, for symmetric reasons with respect to the three coordinate planes, the remaining in-plane components q1
and q2 of the heat flux vector are expressed by interchanging the sine and cosine terms in the appropriate directions along x1 and x2,
respectively, as formulated in eqs. (8b) and (9b). Thus, the three components qi of the heat flux can be obtained from eq. (1) as(
1− l2T

(
η2−p2− q2))q1

(
x1,x2,z

′, t
)
=−k11 peiωt eηz

′
f cos(px1) sin(qx2) , (14a)(

1− l2T
(
η2−p2− q2))q2

(
x1,x2,z

′, t
)
=−k22 q eiωt eηz

′
f sin(px1) cos(qx2) , (14b)(

1− l2T
(
η2−p2− q2))q3

(
x1,x2,z

′, t
)
=−k33 η eiωt eηz

′
f sin(px1) sin(qx2) , (14c)

where the linear Helmholtz-type differential operator ∇2 in eq. (1) has explicitly been replaced with (η2− p2− q2), which obviously
exhibits in essence a subsequent advantage of using such Fourier series representation in nonlocal thermoelasticity. Substituting the
derivatives of the heat flux components of eqs. (14) into the governing heat conduction eq. (4a), the following eigenrelation is obtained(
k11 p

2 +k22 q
2−k33 η

2)f = 0 , (15)

where two nontrivial eigenvalue solutions {η1,η2} for η with k33 , 0 are given by

η =±
√
(k11 p2 +k22 q2)/k33 ⇒ η1 =

√
(k11 p2 +k22 q2)/k33 =−η2 , (16)

by eliminating the trivial solution f = 0 from eq. (15). According to eq. (13), the derivative of the normal heat flux reads

q3,3
(
η2−p2− q2)= η eiωt eηz

′
g sin(px1) sin(qx2) , (17)

so that a similar relation as eq. (15) is obtained by substituting eq. (17) and the derivatives of eqs. (14a) and (14b) in eq. (4a), as follows((
1− l2T

(
η2−p2− q2))k11 p

2 +
(
1− l2T

(
η2−p2− q2))k22 q

2)f +η g = 0 , (18)

at every material point and for all time. Consequently, eqs. (15) and (18) can together be recast into the following time-independent
linear system

−
[

0
((

1− l2T
(
η2−p2− q2

))
k33
)−1(

1− l2T
(
η2−p2− q2

))(
k11 p

2 +k22q2
)

0

][
f
g

]
= η

[
f
g

]
, (19)

where a set of homogeneous algebraic equations leads to a classical eigenvalue problem for each pair of integers m and n. Without the
proportional sine and cosine terms for clarity, the general z′-dependent solutions for the steady-state thermal quantities in each Eringen
nonlocal layer can be expressed as[
T̄ (z′)
q̄3 (z

′)

]
=

[
f1 f2
g1 g2

][
eη1z

′
0

0 eη2z
′

][
d1
d2

]
, (20)

6



where the eigenvalues {η1,η2} = ηk are given in eq. (16), and fk and gk are the corresponding eigenvectors of eq. (19) with respect to
ηk. In eq. (20), both quantities d1 and d2 are two unknown constants to be determined by the thermal interface boundary conditions,
as considered in Section 4. While the extracted eigenvalues ηk from standard techniques and the corresponding eigenvectors fk in the
nonlocal case are the same as those in the local case, the eigenvectors gk are different and depend on the nonlocal thermal parameter
lT, with gk = glocal

k /(1− l2T (η2− p2− q2)). A set of solution for the local eigenvectors is conveniently chosen to satisfy the relation
f1 +f2 +g1 +g2 = 1− l2T (η2−p2− q2), so that[
f1 f2
g1 g2

]
=−

[
−1 (2k33η1)

−1

k33η1
(
1− l2T

(
η2−p2− q2

))−1 (
2
(
1− l2T

(
η2−p2− q2

)))−1

]
, (21)

which can be substituted into eq. (20) and subsequently into eq. (13) to determine the general three-dimensional time-dependent solutions
for both the temperature and normal heat flux. To complete the z′-dependent heat flux solutions with the in-plane components, q1 and q2
are written as follows[
q̄1 (z

′)
q̄2 (z

′)

]
=−

[
k11 p 0
k22 q 0

][
T̄ (z′)
q̄3 (z

′)

]
=−

[
k11 p 0
k22 q 0

][
f1 f2
g1 g2

][
eη1z

′
0

0 eη2z
′

][
d1
d2

]
, (22)

with the help of eq. (20). Again, the corresponding general solutions q1(x1,x2,z
′, t) and q2(x1,x2,z

′, t) at any desired material point
and any time in each plate can straightforwardly be obtained by inserting the sine and cosine terms as well as the time-dependent factor
eiωt in eq. (22) with eq. (21).

3.2. Primary elastic solutions for the displacement and traction vectors
Similarly to the thermal contribution, the general elastic displacement vector under time-harmonic motion is expressed as

ui
(
x1,x2,z

′, t
)
= eiωt

∞

∑
m=1

∞

∑
n=1

ū1 (z
′) cos(px1) sin(qx2)

ū2 (z
′) sin(px1) cos(qx2)

ū3 (z
′) sin(px1) sin(qx2)


= eiωt

∞

∑
m=1

∞

∑
n=1

esz
′

a1 cos(px1) sin(qx2)

a2 sin(px1) cos(qx2)

a3 sin(px1) sin(qx2)

+feηz
′

r1 cos(px1) sin(qx2)

r2 sin(px1) cos(qx2)

r3 sin(px1) sin(qx2)


 ,

(23)

where the first part in the double Fourier series decomposition is the elastic homogeneous solution, while the second part is the particular
solution of the thermal effect derived in the previous Section 3.1. In eq. (23), the quantity s is the eigenvalue, while ai are the components
of the corresponding eigenvector to be determined as well as the unknown components ri with respect to the thermal quantities η and f
defined in eq. (13). Furthermore, the traction vector ti is assumed as

ti
(
x1,x2,z

′, t
)
= eiωt

∞

∑
m=1

∞

∑
n=1

σ̄31 (z
′) cos(px1) sin(qx2)

σ̄32 (z
′) sin(px1) cos(qx2)

σ̄33 (z
′) sin(px1) sin(qx2)


= eiωt

∞

∑
m=1

∞

∑
n=1

esz
′

b1 cos(px1) sin(qx2)

b2 sin(px1) cos(qx2)

b3 sin(px1) sin(qx2)

+feηz
′

w1 cos(px1) sin(qx2)

w2 sin(px1) cos(qx2)

w3 sin(px1) sin(qx2)


 ,

(24)

where the four vectors {ai, ri, bi,wi}= {a,r,b,w} in eqs. (23) and (24) are written as follows

a=
[
a1, a2, a3

]t
, r =

[
r1, r2, r3

]t
,

b=
[
b1, b2, b3

]t
, w =

[
w1, w2, w3

]t
,

(25)

for which nonlocal relations between the expansion coefficients of the displacement and traction vectors can be derived. Substituting
eqs. (23) and (24) into eq. (3), the nonlocal constitutive relation for each thermoelastic plate yields(
1− l2E

(
s2−p2− q2))(esz′b+feηz

′
w
)
= esz

′
b̃+feηz

′
w̃ = esz

′ [−Rt +sT
]
a+feηz

′ ([−Rt +ηT
]
r−k2

)
, (26)

where a tilde, here and in the following, denotes the local quantities since the latter relation is recovered to the traditional Cauchy
continuum as the nonlocal length lE approaches zero. In eq. (26), both involved matrices R and T are given by

R =

 0 0 pc13
0 0 qc23

−pc55 −qc44 0

 , (27a)

T =

 c55 0 0
c44 0

sym c33

= Tt , (27b)
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while the vector k2 is defined by

k2 =
[
0, 0, β33

]t
, (28)

exhibiting the thermal effect. Furthermore, introducing eq. (23) into eq. (6), the governing equation of motion reads

esz
′ [

Q+s
(
R−Rt)+s2 T+ρω2 (1− l2E (s2−p2− q2))I 3×3

]
a+ . . .

feηz
′ {[

Q+η
(
R−Rt)+η2 T+ρω2 (1− l2E (η2−p2− q2))I 3×3

]
r−k1−ηk2

}
= 0 3×1 ,

(29)

where the involved matrix Q is defined by

Q =−

p2c11 + q
2c66 pq(c12 + c66) 0

p2c66 + q
2c22 0

sym p2c55 + q
2c44

= Qt , (30)

and the subsequent vector k1 by

k1 =
[
pβ11, qβ22, 0

]t
, (31)

while I 3×3 in eq. (29) is the identity matrix. Thus, according to both eqs. (26) and (29), two individual relations between the vectors in
eq. (25) can be formulated by identification as follows

b̃=
(
1− l2E

(
s2−p2− q2))b= [−Rt +sT

]
a=−s−1 [Q+ρω2 (1− l2E (s2−p2− q2))I 3×3 +sR

]
a , (32a)

w̃ =
(
1− l2E

(
η2−p2− q2))w =

[
−Rt +ηT

]
r−k2 =−η−1 [Q+ρω2 (1− l2E (η2−p2− q2))+ηR

]
r+η−1k1 , (32b)

which can be recast into two quadratic eigenequations, i.e.[
Q̃+s

(
R−Rt)+s2 T̃

]
a= 0 3×1 , (33a)[

Q̃+η
(
R−Rt)+η2 T̃

]
r−k1−ηk2 = 0 3×1 , (33b)

where Q̃ and T̃ are time-harmonic and length-dependent symmetric matrices, given by

Q̃ = Q+ρω2 (1+ l2E (p2 + q2))I 3×3 = Q̃t , (34a)

T̃ = T−ρω2l2E I 3×3 = T̃t , (34b)

where Q and T are defined in eqs. (30) and (27b), respectively. Finally, eqs. (33) with the help of eqs. (32) can further be converted into
the following linear eigensystems of equations[

T̃−1Rt T̃−1

−Q̃−RT̃−1Rt −RT̃−1

][
a

b̃−ρω2l2E sa

]
= s

[
a

b̃−ρω2l2E sa

]
, (35a)[

T̃−1Rt T̃−1

−Q̃−RT̃−1Rt −RT̃−1

][
r

w̃−ρω2l2E ηr

]
= η

[
r

w̃−ρω2l2E ηr

]
−
[
0 3×3 T̃−1

I 3×3 −RT̃−1

][
k1
k2

]
, (35b)

which are defined for any values of ω, lE, m, and n. Equation (35a) is the extended pseudo-Stroh sextic formalism (Stroh, 1958, 1962,
Ting, 1996) that provides a general solution for the generalized plane-strain deformation in a linear anisotropic medium, while eq. (35b)
is equivalently solved for the eigenvectors associated to the both thermal roots η1 and η2 = −η1, obtained in eq. (16). Both linear
pseudo-Stroh eigensystems in eqs. (35) have a similar structure as in the local and quasi-static ones, which can thus be solved for the
six corresponding eigenvalues and eigenvectors. Because the elasticity tensor is positive, these complex quantities appear in complex
conjugate pairs (Eshelby et al., 1953) and can be conveniently rearranged such that the first three eigenvalues {s1,s2,s3} have positive
real parts with Re(s1)≥Re(s2)≥Re(s3), while the remaining solutions have opposite signs {s4 =−s1,s5 =−s2,s6 =−s3} to the first
three eigenvalues. After solving the eigenvalues and eigenvectors of both eigensystems, only the eigenvector parts related to vectors a
and r are kept, whereas the additional parts related to vectors b andw are subsequently deduced using eqs. (32a) and (32b), respectively.

Similarly to eq. (20) for the thermal contribution, the general solution for the z′-dependent coefficients of displacement ūi and
traction t̄i fields for each layer j can be expressed as[
ū(z′)

t̄(z′)

]
=

[
A† A††

B† B††

][
〈es†z

′〉 0 3×3

0 3×3 〈es††z
′〉

][
K†

K††

]
+

[
r1 r2

w1 w2

][
eη1z

′
0

0 e−η1z
′

][
f1 0
0 f2

][
d1

d2

]
, (36)

8



where K† and K†† are 3×1 constant column matrices to be determined from the thermomechanical interface boundary conditions, which
are also analogous to d1 and d2 in eq. (22) from the purely thermal boundary conditions, as described in the Section 4. The six complex
eigenvalues s of eq. (35a) and quantities K in eq. (36) are ordered as follows

s† =
[
s1, s2, s3

]t
, s†† =

[
s4, s5, s6

]t
,

K† =
[
K1, K2, K3

]t
, K†† =

[
K4, K5, K6

]t
,

(37)

and the corresponding 3×3 submatrices are defined as

A† =
[
a1, a2, a3

]
, A†† =

[
a4, a5, a6

]
,

B† =
[
b1, b2, b3

]
, B†† =

[
b4, b5, b6

]
,

(38)

such that A† and B† are the collections of eigenvectors associated with the first three eigenvalues s†, while A†† and B†† are related to
the eigenvectors of the eigenvalues s††. In eq. (36), the z′-dependent diagonal and exponential matrices are represented by

〈es†z
′〉= diag

[
es1z

′
, es2z

′
, es3z

′]
, 〈es††z

′〉= diag
[
es4z

′
, es5z

′
, es6z

′]
, (39)

while both constants f1 and f2 are defined in eq. (21). Furthermore, the thermal-related eigenvectors r1 and w1 in eq. (36) correspond
to the specific eigenvalue η = η1, and r2 and w2 to η = η2 =−η1, which are solved by means of eq. (35b) as[
r
w̃

]
=−

[
−T̃−1Rt +η I 3×3 −T̃−1

Q̃+RT̃−1Rt RT̃−1 +η I 3×3

]−1 [
0 3×3 T̃−1

I 3×3 −RT̃−1

][
k1
k2

]
, (40)

where Q̃, R, and T̃ are given by eqs. (34) and (27) as well as k1 and k2 by eqs. (31) and eq. (28), respectively.
For each pair of integersm and n, the general solutions of eqs. (23) and (24) for displacement ui(x1,x2,z

′, t) and traction ti(x1,x2,z
′, t)

fields in each homogenous nonlocal plate are also obtained by introducing the sine and cosine terms as well as the time-dependent factor
eiωt in eq. (36) and by solving the aforementioned eigenequations based on the Stroh formalism.

3.3. Secondary elastic solutions for the in-plane stress components

In order to complete the total stress fields, the remaining in-plane stresses τi are organized as follows

τi
(
x1,x2,z

′, t
)
= eiωt

∞

∑
m=1

∞

∑
n=1

σ̄11 (z
′) sin(px1) sin(qx2)

σ̄12 (z
′) cos(px1) cos(qx2)

σ̄22 (z
′) sin(px1) sin(qx2)


= eiωt

∞

∑
m=1

∞

∑
n=1

esz
′

c1 sin(px1) sin(qx2)

c2 cos(px1) cos(qx2)

c3 sin(px1) sin(qx2)

+feηz
′

v1 sin(px1) sin(qx2)

v2 cos(px1) cos(qx2)

v3 sin(px1) sin(qx2)


 ,

(41)

which is similarly defined as in eqs. (23) and (24). Substituting the displacement expansion eq. (23) and the in-plane stress eq. (41) into
eq. (2), additional explicit relations between the associated expansion coefficients are derived, i.e.

(
1− l2E

(
s2−p2− q2))c1

c2
c3

=

−pc11 −qc12 sc13
qc66 pc66 0
−pc12 −qc22 sc23

a1
a2
a3

 , (42a)

(
1− l2E

(
η2−p2− q2))v1

v2
v3

=

−pc11 −qc12 ηc13
qc66 pc66 0
−pc12 −qc22 ηc23

r1
r2
r3

−
β11

0
β22

 , (42b)

which are further used to determine the expansion coefficients of the in-plane stress vector. Thus, the solution of the z′-dependent
in-plane stresses in eq. (41) is the summation over all the eigenvalues, given byσ̄11 (z

′)

σ̄12 (z
′)

σ̄22 (z
′)

=
6

∑
i=1

1
1− l2E

(
s2
i −p2− q2

)
−pc11 −qc12 sic13

qc66 pc66 0
−pc12 −qc22 sic23

a1i
a2i
a3i

esiz
′
Ki+ . . .

2

∑
i=1

1
1− l2E

(
η2
i −p2− q2

) fidi eηiz′

−pc11 −qc12 ηic13

qc66 pc66 0
−pc12 −qc22 ηic23

r1i
r2i
r3i

−
pβ11

0
qβ22

 ,

(43)
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where esiz
′
Ki can be obtained by using the expression of the displacement vector in eq. (36), so that[ 〈

es1z
′〉K†〈

es2z
′〉K††

]
=

[
A† A††

B† B††

]−1 [
ū(z′)

t̄(z′)

]
−
[

A† A††

B† B††

]−1 [
r1 r2

w1 w2

][
f1d1 eη1z

′

f2d2 e−η1z
′

]
, (44)

while dieηiz
′

is given by eq. (20) as follows[
eη1z

′
d1

e−η1z
′
d2

]
=

[
f1 f2

g1 g2

]−1 [
T̄ (z′)

q̄3 (z
′)

]
=
(
1− l2T

(
η2−p2− q2))[−g2 f2

g1 −f1

][
T̄ (z)

q̄3 (z)

]
, (45)

within which the inverse of the specific matrix of thermal eigenvectors is explicitly defined by[
f1 f2
g1 g2

]−1

=
(
1− l2T

(
η2−p2− q2))[−g2 f2

g1 −f1

]
, (46)

and the corresponding components by eq. (21). Again, the general solutions for the in-plane stress components τi(x1,x2,z
′, t) in eq. (41)

are obtained for each homogeneous Eringen nonlocal plate by considering the sine and cosine terms as well as the time-dependent factor
eiωt in eq. (43). Importantly, eqs. (41) and (43) show that once the temperature, the normal heat flux, the displacement and traction
vectors are known, the remaining in-plane stress field components are inherently provided by algebraic operations.

4. Recursive field relations for multilayered plates with imperfect interfaces

Combined with the previous pseudo-Stroh formalism using the Eringen nonlocal thermoelasticity, two recursive techniques, namely
the transfer matrix and the dual variable and position techniques, are formulated to determine the local relations between field quantities
at both opposite interfaces of each individual plate, and then propagate the corresponding solutions recursively, but differently, through
all layers. While the forward propagation from the bottom to the top surfaces is performed in the first method, a mixed forward and
backward propagation of solutions is subsequently introduced in the second technique, as described in Sections 4.1 and 4.2, respectively.
Numerical comparison and differences that emerge from these two approaches are shown and discussed in the application Section 5. In
the following, general conditions for imperfect interfaces are included in both recursive approaches. For the sake of clarity, because only
the z′-dependent field expressions from the former solutions are needed to derive the diverse propagation and imperfect matrices using
algebraic manipulations, the sine and cosine functions of x1 and x2 as well as the time-dependent factor eiωt are conveniently omitted.
The physical quantities are then straightforwardly appended to determine the final recursive relations.

4.1. Approach I: The transfer matrix technique

The first procedure to determine the thermoelastic vibration responses of irregularly multilayered plates is based on the transfer matrix
method (Gilbert and Bachus, 1966, Pan, 2001). In practice, the technique consists first in transferring the general field solutions derived
in the eqs. (20) and (36) from the bottom of each homogeneous plate j at zj to the upper surface at zj+1. The forwarding thermoelastic
solutions are then conveniently reformulated in terms of the propagating matrix relations to analyze the global multilayered system
by means of specific boundary conditions across the internal interfaces. The coefficients in the corresponding series expansions are
identified using the specific boundary conditions at the external surfaces as well as the internal interfaces described in Section 2.2.

4.1.1. Single-layer propagation matrix
The z′-dependent thermal solutions for any layer j of thickness hj can be specified in the local coordinate system with respect to the

top interface at z′ = zj+1 = hj , as follows[
T̄ (z′)
q̄3 (z

′)

]
z′=zj+1

=

[
f1 f2
g1 g2

][
eη1hj 0

0 e−η1hj

][
d1
d2

]
j

, (47)

according to eq. (20), with η2 = −η1. On the other hand, when the thermal solutions are set to the lower interface at z′ = zj = 0, the
unknown thermal constants in eq. (20) are reduced to[
d1
d2

]
j

=

[
f1 f2
g1 g2

]−1 [
T̄ (z′)
q̄3 (z

′)

]
z′=zj

, (48)

so that combining eq. (47) with eq. (48) yields the major propagation relation for the thermal part, as[
T̄ (z′)
q̄3 (z

′)

]
z′=zj+1

=

[
f1 f2
g1 g2

][
eη1hj 0

0 e−η1hj

][
f1 f2
g1 g2

]−1 [
T̄ (z′)
q̄3 (z

′)

]
z′=zj

, (49)
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which links the local temperature and the normal heat flux from the bottom to the top surface for each individual plate. Furthermore,
substituting the thermal unknowns d1 and d2 from eq. (47) into eq. (36), the vectors K† and K†† can be expressed as follows[

K†

K††

]
j

=

[
A† A††

B† B††

]−1 [
ū(z′)

t̄(z′)

]
z′=zj

−
[

A† A††

B† B††

]−1 [
r1 r2

w1 w2

][
f1 0
0 f2

][
e−η1hj 0

0 eη1hj

][
f1 f2

g1 g2

]−1 [
T̄ (z′)
q̄3 (z

′)

]
z′=zj+1

, (50)

establishing an intermediate equation between the elastic quantities at the bottom surface and the thermal solutions at the top surface.
After algebraic manipulation that consists in setting z′ = zj+1 in eq. (36) and then substituting the result into eq. (50) with the help of
eqs. (46), (47) and (49), the subsequent propagation relation for the mechanical part is given by

[
ū(z′)

t̄(z′)

]
z′=zj+1

=

[
A† A††

B† B††

][〈
es†hj

〉
0 3×3

0 3×3

〈
es††hj

〉][A† A††

B† B††

]−1 [
ū(z′)

t̄(z′)

]
z′=zj

. . .

−
(
1− l2T

(
η2−p2− q2))[r1 r2

w1 w2

][
f1g2 eη1hj −f1f2 eη1hj

−f2g1 e−η1hj f1f2 e−η1hj

][
T̄ (z′)
q̄3 (z

′)

]
z′=zj

. . .

−
(
1− l2T

(
η2−p2− q2))[A† A††

B† B††

][〈
es†hj

〉
0 3×3

0 3×3

〈
es††hj

〉][A† A††

B† B††

]−1 [
r1 r2

w1 w2

][
−f1g2 f1f2

f2g1 −f1f2

][
T̄ (z′)
q̄3 (z

′)

]
z′=zj

,

(51)

where the two last contributions evidence the thermal coupling part to elasticity. Both eqs. (49) and (51) can together be combined to
obtain the specific and concise relation between the thermomechanical solutions at the lower and upper surfaces for any homogeneous
layer j, as follows
ū(z′)

t̄(z′)

T̄ (z′)

q̄3 (z
′)


z′=zj+1

=


[

E11 E12

E21 E22

][
L11 L12

L21 L22

]
0 2×6

[
F11 F12

F21 F22

]

j


ū(z′)

t̄(z′)

T̄ (z′)

q̄3 (z
′)


z′=zj

= Pj (hj)


ū(z′)

t̄(z′)

T̄ (z′)

q̄3 (z
′)


z′=zj

, (52)

where Pj (hj) is the transfer matrix function of the finite thickness hj , and the submatrices are given by[
E11 E12

E21 E22

]
6×6

=

[
A† A††

B† B††

][〈
es†hj

〉
0 3×3

0 3×3

〈
es††hj

〉][A† A††

B† B††

]−1

, (53a)[
L11 L12

L21 L22

]
6×2

=−
(
1− l2T

(
η2−p2− q2)){[r1 r2

w1 w2

][
f1g2 eη1hj −f1f2 eη1hj

−f2g1 e−η1hj f1f2 e−η1hj

]
+

[
E11 E12

E21 E22

][
r1 r2

w1 w2

][
−f1g2 f1f2

f2g1 −f1f2

]}
,

(53b)[
F11 F12

F21 F22

]
2×2

=
(
1− l2T

(
η2−p2− q2))[f1 f2

g1 g2

][
eη1hj 0

0 e−η1hj

][
−g2 f2
g1 −f1

]
, (53c)

which are uniquely defined for any laminate with specific homogeneous nonlocal elastic and thermal properties as well as specific
geometrical characteristics.

4.1.2. Thermomechanical interface matrix
By virtue of the various interface boundary conditions from Section 2.2.2, the interface between two adjacent layers at z′ = zk is

considered, within which perfect/imperfect thermal and mechanical properties are described by introducing the general 8× 8 interface
matrix Zk, as follows
ū(z′)

t̄(z′)

T̄ (z′)

q̄3 (z
′)


z′=z+k

= Zk


ū(z′)

t̄(z′)

T̄ (z′)

q̄3 (z
′)


z′=z−k

=

[
ZE 0 6×2

0 2×6 ZηT

]
k


ū(z′)

t̄(z′)

T̄ (z′)

q̄3 (z
′)


z′=z−k

, (54)

where the sine and cosine terms as well as the factor eiωt in the field solutions have been omitted, for convenience. In eq. (54), both
locations z−k and z+

k denote the lower and upper sides of the interface, respectively, while the coupling submatrices ZE and ZηT are related
to the mechanical and thermal interface properties, respectively. In particular, the symbol η with binary values {0,1} reflects the two
different types of thermally conductive interfaces introduced in Section 2.2.2, where η = 0 is associated with the specific conditions for
weakly conducting interfaces, and η = 1 with highly conducting interfaces.
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According to eq. (10), the mechanical compliance condition at interfaces can be expressed as follows

ZE =

[
I 3×3 diag

[
α(k)

1 , α
(k)

2 , α
(k)

3
]

0 3×3 I 3×3

]
, (55)

for which the continuity of the elastic displacement and traction vectors can be prescribed when all components α(k)

i = 0, so that eq. (55)
can be reduced to the idealistic mechanical condition for all perfectly bonded interfaces. On the other hand, the thermally imperfect
matrix is defined by

ZηT = (1−η)Z−T +ηZ+
T , (56)

which is therefore used to distinguish thermal insulation or high heat conduction properties of interfaces. Thus, the thermally weakly
conducting interface, described by a discontinuous temperature, is formally rewritten from eq. (11) by using the following interfacial
matrix, i.e.

Z0
T = Z−T =

[
1 −β(k)

T

0 1

]
, (57)

while the highly conducting interface, characterized by a discontinuous jump in the normal heat flux across the interface in eq. (12), is
defined by

Z1
T = Z+

T =

[
1 0

−γ(k)

T

(
p2
m+ q2

n

)
1

]
, (58)

where one component depends explicitly on pm and qn, consequently onm and n. It is worth mentioning that all Z-matrices in eqs. (55),
(57) and (58) are uniquely defined for the kth internal interface. In other words, there are as many anisotropic interfacial properties that
can be different from each other as there are imperfect interfaces in a given multilayered plate.

4.1.3. Forward recursive field solutions in multilayers
The recursive transfer matrix method for multilayered solids with general boundary conditions at all internal interfaces between

adjacent materials can be formulated by applying eq. (52) combined with eq. (54) repeatedly through successive layers. In the global
coordinate system, the propagation relation between the physical displacement, traction, temperature, and normal heat flux components
on the bottom and top surfaces for any arbitrary multilayers in presence of perfect/imperfect internal interfaces is therefore given by
ū(z)

t̄(z)

T̄ (z)

q̄3 (z)


z=H

=

( N

∏
j=2

Pj (hj) Zj
)

P1 (h1)

= N 8×8


ū(z)

t̄(z)

T̄ (z)

q̄3 (z)


z=0

=


[

N11 N12

N21 N22

] [
N13 N14

N23 N24

]
0 2×6

[
N33 N34

N43 N44

]


ū(z)

t̄(z)

T̄ (z)

q̄3 (z)


z=0

, (59)

for which the internal interfaces are defined for j > 1. In eq. (59), the global 8× 8 matrix N contains specific submatrices as a result
of the product of the local transfer matrices by the corresponding interface matrices. In particular, for ideal description of multilayered
structures with perfect interfaces, ∀j : Zj = I 8×8, such that N transfers successively the field solutions by satisfying the continuity of all
components.

A similar propagation relation for the field quantities as eq. (59) from the bottom surface to any location zf in plate j of a multilayered
laminate can merely be expressed as follows
ū(zf )

t̄(zf )

T̄ (zf )

q̄3 (zf )


zj≤zf ≤zj+1

= Pj (zf −zj−1)Zj×Pj−1 (hj−1)Zj−1× . . .×P2 (h2)Z2×P1 (h1)


ū(z)

t̄(z)

T̄ (z)

q̄3 (z)


z=0

, (60)

where the field quantities on the right-hand side at z = 0 can be rewritten to meet the external boundary conditions described in Sec-
tion 2.2.1. By means of the prescribed mechanical tractions t̄B

mn and t̄T
mn as well as temperatures T̄ B

mn and T̄ T
mn applied on both the

bottom and top surfaces at z = 0 and z =H , as described by eqs. (8) and (9), respectively, eq. (59) yields a set of eight equations with
eight unknowns, namely
ū(H) = N11 ū(0)+N12 t̄

B
mn+N13 T̄

B
mn+N14 q̄3 (0) ,

t̄T
mn = N21 ū(0)+N22 t̄

B
mn+N23 T̄

B
mn+N24 q̄3 (0) ,

T̄ T
mn =N33 T̄

B
mn+N34 q̄3 (0) ,

q̄3 (H) =N43 T̄
B
mn+N44 q̄3 (0) ,

(61a)

(61b)

(61c)

(61d)
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for which the solutions of ū(0) and q̄3(0) can be uniquely determined by considering eqs. (61b), (61c) and (61d). Thus, substituting the
latter fields into eq. (60), the exact closed-form solution for the displacement and traction vectors as well as the temperature and normal
heat flux are defined at any position zf within the jth plate by
ū(zf )

t̄(zf )

T̄ (zf )

q̄3 (zf )


zj≤zf ≤zj+1

= Pj (zf −zj−1)Zj
( j−1

∏
k=2

Pk (hk) Zk
)

P1 (h1)


N−1

21

[
t̄T
mn−N22 t̄

B
mn−N23 T̄

B
mn−N−1

34 N24
(
T̄ T
mn−N33 T̄

B
mn

)]
t̄B
mn

T̄ B
mn

N−1
34

(
T̄ T
mn−N33 T̄

B
mn

)

z=0

,

(62)

where the remaining in-plane stress components τ̄ (zf ) are deduced using eqs. (43 – 46). Finally, the corresponding physical solutions
with respect to (x1,x2,x3) and time t are straightforwardly obtained by introducing in eq. (62) the double sums of infinite sine and cosine
series over m and n as well as the time-dependent factor eiωt assigned to eqs. (13), (23) and (24), thus without modifying the intrinsic
transfer and interface matrices. In Section 5, several Fourier expansion amplitudes for specific prescribed temperature and tractions used
in eq. (62) are explicitly written for various application examples.

4.2. Approach II: The dual variable and position technique
The dual variable and position procedure combined with the Stroh formalism (Liu et al., 2018), inspired from the extended precise

integration method (Ai and Cheng, 2014), is subsequently used to propagate the vectorial solutions among different layers. The main
operation consists of avoiding critical positive signs in the exponential Fourier series derived in Section 3, which leads to i) divergence-
free solutions without spurious oscillations for large amplitudes of frequencies or half-wave numbers, and to ii) a computational cost
similar to the first transfert matrix technique with high accuracy. The single-layer transfer matrix in eq. (52) is used to assemble field
solutions and further to determine alternative recursive relations in multilayered structures including imperfect interfaces. Here again,
the series expansion coefficients are formulated with respect to the specific boundary conditions applied at the external surfaces.

4.2.1. Dual variable and position matrix for each homogeneous plate
In the following, eq. (52) is conveniently reordered to harmonize the dimensions of the submatrices in the transfer matrix Pj as

follows
ū(z′)

T̄ (z′)

t̄(z′)

q̄3 (z
′)


z′=zj+1

= Pj (hj)


ū(z′)

T̄ (z′)

t̄(z′)

q̄3 (z
′)


z′=zj

=

[
P11 P12

P21 P22

]
j


ū(z′)

T̄ (z′)

t̄(z′)

q̄3 (z
′)


z′=zj

, (63)

where the underbar notation stands for the corresponding rearrangement of field solutions. In eq. (63), the 4×4 submatrices Pξδ are
explicitly obtained by straightforward permutation and are also defined by

Pξδ =
[

Eξδ Lξδ
0 1×3 Fξδ

]
, (64)

where the Greek subscripts ξ and δ take on the values 1 and 2, accordingly to eq. (52). Furthermore, two adequate 4×1 vectors ūT̄ and
t̄q̄ are introduced for reasons of clarity, such that eq. (63) reads[
ūT̄ (z

′)

t̄q̄ (z
′)

]
z′=zj+1

=

[
P11 P12

P21 P22

]
j

[
ūT̄ (z

′)

t̄q̄ (z
′)

]
z′=zj

, with :

{
ūT̄
(
z′
)
=
[
ū
(
z′
)
, T̄
(
z′
)]t

t̄q̄
(
z′
)
=
[
t̄
(
z′
)
, q̄3

(
z′
)]t

,
(65)

and the cross field solutions at z′ = zj and z′ = zj+1 are obviously related to each other by

[
ūT̄ (zj)

t̄q̄ (zj+1)

]
=

[
P11 0 4×4

−P21 I 4×4

]−1

j

[
I 4×4 −P12

0 4×4 P22

]
j

[
ūT̄ (zj+1)

t̄q̄ (zj)

]
=

[
P−1

11 −P−1
11 P12

P21P−1
11 −P21P−1

11 P12 +P22

]
j

[
ūT̄ (zj+1)

t̄q̄ (zj)

]
= Vj8×8

[
ūT̄ (zj+1)

t̄q̄ (zj)

]
,

(66)

where Vj8×8 is the dual variable and position matrix with components that are related to the transfer submatrices as follows

Vj11 =
[
P−1

11

]
j
, Vj12 =

[
−P−1

11 P12
]
j
,

Vj21 =
[
P21P−1

11

]
j
, Vj22 =

[
−P21P−1

11 P12 +P22
]
j
,

(67)

for any plate j bonded by the lower interface at zj and the upper interface at zj+1. The iterative procedure is established by considering
the similar sequence for the adjacent layer j−1 bounded by both interfaces at z′ = zj−1 and z′ = zj , and by making use of the continuity
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conditions of the expansion coefficients at z′ = zj . Thus, the recursive relation that propagates the thermoelastic solutions from the
bottom interface of j−1th layer to the upper interface of the adjacent jth layer is given by[
ūT̄ (zj−1)

t̄q̄ (zj+1)

]
=

[
Vj−1:j

11 Vj−1:j
12

Vj−1:j
21 Vj−1:j

22

][
ūT̄ (zj+1)

t̄q̄ (zj−1)

]
, (68)

where the superscripts j−1:j denote the resulting propagation submatrices from layer j−1 to layer j, for any perfect internal interfaces
described for j = 2, . . . ,N . The corresponding 4×4 recurrence layer-to-layer submatrices in eq. (68) are defined by

Vj−1:j
11 = Vj−1

11 Vj11 +Vj−1
11 Vj12

[
I 4×4−Vj−1

21 Vj12

]−1
Vj−1

21 Vj11 ,

Vj−1:j
12 = Vj−1

12 +Vj−1
11 Vj12

[
I 4×4−Vj−1

21 Vj12

]−1
Vj−1

22 ,

Vj−1:j
21 = Vj21 +Vj22

[
I 4×4−Vj−1

21 Vj12

]−1
Vj−1

21 Vj11 ,

Vj−1:j
22 = Vj22

[
I 4×4−Vj−1

21 Vj12

]−1
Vj−1

22 ,

(69a)

(69b)

(69c)

(69d)

where the individual elements Vjξδ are specified in eq. (67).

4.2.2. Interfacial duality properties
For the general layered case that is bounded by two imperfect interfaces, the layer-to-layer eqs. (69) can be extended by introducing

and rearranging the interface matrix characterized in Section 4.1.2, and by propagating the thermoelastic solutions from the lower side
at z′ = z−j to the upper side at z′ = z+

j . Thus, for the lower interface at z′ = zj , designated in the following by ”int. L”, the interfacial
dual variable and position form of eq. (54) reads[
ūT̄ (z

−
j )

t̄q̄ (z
+

j )

]
= Zint.L

j

[
ūT̄ (z

+

j )

t̄q̄ (z
−
j )

]
, (70)

where the corresponding elements of the interfacial matrix Zint.L
j are defined by

Zint.L
j =

[
Zint.L

11 Zint.L
12

Zint.L
21 Zint.L

22

]
j

=

[
I 4×4 −diag

[
α(j)

1 , α
(j)

2 , α
(j)

3 ,−(1−η)β(j)

T

]
diag

[
0, 0, 0,−ηγ(j)

T

(
p2
m+ q2

n

)]
I 4×4

]
, (71)

combining eqs. (55), (57) and (58) with eqs. (66) and (67). By virtue of eq. (70), the particular interface ”int. L” is conceptually
considered as a distinct layer with an infinitely small thickness. In eq. (71), the binary term η = 0 or = 1 stands for weakly or highly
conducting interfaces, respectively, as expressed in Section 4.1.2. Furthermore, the propagation from z+

j to any fictitious horizontal
surface at zf in layer j is described by[
ūT̄ (z

+

j )

t̄q̄ (zf )

]
=

[
Vj11 Vj12

Vj21 Vj22

][
ūT̄ (zf )

t̄q̄
(
z+

j

) ] , (72)

according to eq. (66) with eq. (67), so that eqs. (70) and (72) are combined as follows[
ūT̄ (z

−
j )

t̄q̄ (zf )

]
=

[
Vint.L:j

11 Vint.L:j
12

Vint.L:j
21 Vint.L:j

22

][
ūT̄ (zf )

t̄q̄ (z
−
j )

]
, (73)

as defined in eq. (68). Using eqs. (69), the corresponding recurrence relations in eq. (73) are given by
Vint.L:j

11 = Vj11 +Vj12 Yj12 Zint.L
21 Vj11 ,

Vint.L:j
12 = Zint.L

12 +Vj12 Yj12 ,

Vint.L:j
21 = Vj21 +Vj22 Yj12 Zint.L

21 Vj11,

Vint.L:j
22 = Vj22 Yj12 ,

(74a)

(74b)

(74c)

(74d)

in which Yj12 is explicitly formulated as follows

Yj12 =
[

I 4×4−Zint.L
21 Vj12

]−1
= diag

[
1, 1, 1, F11

(
F11 +ηγ

(j)

T

(
p2
m+ q2

n

)
F12
)−1
]
, (75)

which is reduced to the identity matrix, when γ(j)

T = 0. In eq. (75), both thermal scalars F11 and F12 are given in eq. (53c).
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Applying the same procedure for the potential imperfect interface ”int. U” at the upper surface of the layer j, the subsequent interfa-
cial dual variable and position relation at zj+1 is given[
ūT̄ (z

−
j+1)

t̄q̄ (z
+

j+1)

]
= Zint.U

j+1

[
ūT̄ (z

+

j+1)

t̄q̄ (z
−
j+1)

]
, (76)

where Zint.U
j+1 is similarly defined as in eq. (71), while eq. (68) becomes[

ūT̄ (zf )

t̄q̄ (z
+

j+1)

]
=

[
Vj: int.U

11 Vj: int.U
12

Vj: int.U
21 Vj: int.U

22

][
ūT̄ (z

+

j+1)

t̄q̄ (zf )

]
, (77)

with the following propagation submatrices from the layer j to ”int. U”, as follows

Vj: int.U
11 = Vj11 +Vj11 Zint.U

12

[
I 4×4−Zint.U

12 Vj21

]−1
Vj21 ,

Vj: int.U
12 = Vj12 +Vj11 Zint.U

12

[
I 4×4−Zint.U

12 Vj21

]−1
Vj22 ,

Vj: int.U
21 = Zint.U

21 +
[

I 4×4−Zint.U
12 Vj21

]−1
Vj21 ,

Vj: int.U
22 =

[
I 4×4−Zint.U

12 Vj21

]−1
Vj22 ,

(78a)

(78b)

(78c)

(78d)

which differ from eqs. (74). It is worth noting, however, that eqs. (74) and (78) are equivalent and are reduced to the elements and
submatrices for the perfect interfacial case, when the perfect thermoelastic interface conditions are satisfied, when β(k)

T = γ(k)

T = α(k)

i = 0
in all Zint-matrices.

4.2.3. Recursive criss-cross solutions in multilayers
By continuously propagating eq. (68) through all layers from the bottom external surface at z1 = 0 to the top surface at zN+1 =H

and passing all internal interfaces, the corresponding recursive relation for thermoelastic solutions is formulated as follows[
ūT̄ (0)
t̄q̄ (H)

]
= V1:N

8×8

[
ūT̄ (H)

t̄q̄ (0)

]
=

[
V1:N

11 V1:N
12

V1:N
21 V1:N

22

][
ūT̄ (H)

t̄q̄ (0)

]
, (79)

where the built-in layer-to-layer submatrices Vj−1:j
ξδ from the layer j−1 to layer j with j = 2, 3 , . . . ,N , are given by eqs. (74) and (78)

for any lower and upper interfaces at zj and zj+1, respectively. For any field point zf in layer j, eq. (79) is therefore split into two
equivalent systems that recursively propagate the solutions from z1 = 0 to zf and from zf to zN+1 =H to obtain the following sets of
linear equations, i.e.

[
ūT̄ (0)
t̄q̄ (zf )

]
=

[
V1:j

11 V1:j
12

V1:j
21 V1:j

22

][
ūT̄ (zf )

t̄q̄ (0)

]
,

[
ūT̄ (zf )

t̄q̄ (H)

]
=

[
Vj:N

11 Vj:N
12

Vj:N
21 Vj:N

22

][
ūT̄ (H)

t̄q̄ (zf )

]
,

(80a)

(80b)

which can be recast as follows
V1:j

11 0 4×4 −I 4×4 0 4×4

V1:j
21 −I 4×4 0 4×4 0 4×4

−I 4×4 Vj:N
12 0 4×4 Vj:N

11

0 4×4 Vj:N
22 0 4×4 Vj:N

21



ūT̄ (zf )

t̄q̄ (zf )

ūT̄ (0)
t̄q̄ (H)

=


−V1:j

12 t̄q̄ (0)

−V1:j
22 t̄q̄ (0)
0 4×1

t̄q̄ (H)

 , (81)

where the external boundary-value solutions t̄q̄ (0) and t̄q̄ (H) on the right-hand side must be written with respect to the prescribed
mechanical tractions t̄B

mn and t̄T
mn as well as temperatures T̄ B

mn and T̄ T
mn on both the bottom and top surfaces at z = 0 and z = H ,

respectively. Considering the main components of the general matrix V1:N
8×8 in eq. (79) as follows

V1:N
8×8 =


[

M11 M12

0 1×3 M22

][
M13 M14

0 1×3 M24

]
[

M31 M32

0 1×3 M42

][
M33 M34

0 1×3 M44

]
 , (82)
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case 1 case 2 case 3
Property unit graphite/epoxy soft core Cu Mo ZrO2 Al2O3 β-NiAlPt CMSX4

k11 W/m/K 50.0 50.0 401.0 142.0 1.5 8.0 20.0 20.0
k22 W/m/K 0.5 50.0 401.0 142.0 1.5 8.0 20.0 20.0
k33 W/m/K 0.5 50.0 401.0 142.0 1.5 8.0 20.0 20.0
α11 10−6/K −2.0 30.0 16.5 5.3 10.0 8.0 15.0 14.0
α22 10−6/K 50.0 30.0 16.5 5.3 10.0 8.0 15.0 14.0
α33 10−6/K 50.0 30.0 16.5 5.3 10.0 8.0 15.0 14.0
c11 GPa 201.55 1.62 168.4 460.0 405.0 498.0 199.0 174.0
c22 GPa 9.16 3.24 168.4 460.0 405.0 498.0 199.0 174.0
c33 GPa 9.16 3.24 168.4 460.0 405.0 498.0 199.0 174.0
c12 GPa 3.10 1.25 121.4 176.0 110.0 163.0 137.0 97.0
c13 GPa 3.10 1.25 121.4 176.0 110.0 163.0 137.0 97.0
c23 GPa 2.32 1.38 121.4 176.0 110.0 163.0 137.0 97.0
c44 GPa 2.20 3.70 75.4 110.0 58.0 147.0 116.0 112.0
c55 GPa 5.00 0.80 75.4 110.0 58.0 147.0 116.0 112.0
c66 GPa 5.00 0.80 75.4 110.0 58.0 147.0 116.0 112.0
ρ kg/m3 5680.0 3950.0 5960.0 8374.0

Table 1: Constituent thermoelastic properties for an effective graphite fiber/epoxy matrix composite (example 1) and a multilayered thermal barrier on a superalloy
(example 2). The thermal expansion coefficients kii are in W/m/K, the thermal conductivities αii in 10−6 /K, the elastic stiffness components cij are in GPa, and the
densities ρ in kg/m3. All anisotropic properties of the graphite/epoxy composite are effective that have been calculated using a classical homogenization procedure.

the vectors t̄q̄ at both external surfaces on the right-hand side of eq. (81) are analytically determined by solving eq. (79) and are also
given by

t̄q̄ (0) =

[
t̄B
mn

−M−1
24

(
M22 T̄

T
mn− T̄ B

mn

)] , (83a)

t̄q̄ (H) =

[
t̄T
mn

−M−1
24

(
(M22M44−M24M42) T̄

T
mn−M44 T̄

B
mn

)] , (83b)

which are valid for any integers m and n, as explicitly described in Section 5.1 for various combined examples of external boundary
conditions. The physical solutions for the displacement, temperature, traction vectors, and normal heat flux defined at any position zf
within the jth layer are determined by inverting the left-hand side matrix of eq. (81) and simply introducing the double sums of infinite
sine and cosine series over m and n as well as the time-dependent factor eiωt. Identical to the previous approach I in Section 4.1, the
remaining in-plane stress components τ̄ (zf ) are obtained from eqs. (43 – 46).

5. Application examples

Illustrative examples of the present theory of thermoelasticity in multilayered structures subjected to external distributed loads are
provided for various thermal stress problems. General surface distributions of temperature and tractions in arbitrary rectangular domains
on the opposite sides are reported in Section 5.1, including uniformly and heterogeneously distributed loads. These treatments complete
the solutions in eq. (83) by determining the specific expansion coefficients in accordance with the prescribed boundary conditions. Three
cases are analyzed and specific effects on the field solutions in modern applications are qualitatively described. The preliminary case 1
is related to the steady-state and transient thermoelastic response of composite-faced soft-core sandwich plates with high anisotropy.
Effects of the aspect ratios, of the length scale nonlocal parameter with respect to the classical theory, and of two types of external loads
on the multilayered structure are discussed in Section 5.2. Comparison between the propagation matrix method and the dual variable
and position technique on the convergence of field solutions are evaluated, exhibiting the computational instability issues inherent in
the former. In Section 5.3, case 2 illustrates further the effects on the converged solutions in metallic multilayers composed of Cu and
Mo plates, including the number and the stacking sequences of individual layers as well as specific boundary conditions with imperfect
thermal contact between constituents. In Section 5.4, case 3 examines the residual stress fields in thermal barrier coated superalloys
induced by several boundary-value conditions. In particular, forced vibration analysis of four-layered superalloys is investigated with
special attention on the temperature-dependent material properties as well as the imperfect mechanical contact properties at internal
interfaces. Comparison with the equivalent homogeneous problem, the role played by the thermal barrier coating made of a low-thermal
conductivity ceramic is quantified. The material properties used in these three cases are defined in Table 1.

5.1. Distributed surface loads for external temperature and tractions
As pictured in Fig. (1b), general two-dimensional distributions of temperature and normal stresses are applied on both the bottom

and top surfaces in an arbitrary manner. Without loss of generality, the temperature is always uniformly distributed on both external
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Figure 2: (a) Cross section of the two-dimensional Gaussian kernel with respect to two standard deviations. (b) Rectangular distribution of the normal stress field applied
to the external surface with m = n = 30 harmonic terms. (c) Convolution of the rectangular distributed load with the Gaussian pulses, which gives rise to smoothed
normal tractions without spurious oscillations. This procedure avoids the standard Gibbs phenomenon near singularities in piecewise discontinuous functions.

surfaces with different amplitudes, while the tractions can be heterogeneously distributed within rectangular domains. Using a spreading
procedure by convolution with a Gaussian function to regularize the stress singularities at the dislocation cores (Vattré and Pan, 2019),
the latter distribution can be adequately and advantageously (for numerical reasons) described using only a few first terms in each
Fourier series. For both types of uniformly and heterogeneously distributed loads, the corresponding series expansion coefficients are
analytically determined.

5.1.1. Homogeneously distributed loads
With regard to the Fourier series representations of the temperature, the corresponding series expansions T̄ B

mn in eq. (8a) for a
uniform distribution on the bottom surface is merely defined for any combination of m and n by

T̄ B
mn=


16

π2mn
T̄ B , n and m odd ,

0 , n or m even ,

(84a)

(84b)

where T̄ B is the physical prescribed temperature in K. On the top surface, similar expressions as in eqs. (84) for the uniformly distributed
temperature T̄ T

mn are derived with respect to the constant T̄ T. Without loss of generality, the forced vibration treatment of multilayered
plates under a time-harmonic normal traction is considered, while all other traction components at bottom and top surfaces are zero.
Thus, the double Fourier series expansions for applied tractions at the bottom surface are given by

t̄B
mn =

[
0, 0, σ̄B

33mn
]t
, (85)

where the uniformly distributed normal traction σ̄B
33mn is analogously defined to eq. (84a) by

σ̄B
33mn=


16

π2mn
σ̄B

33 , n and m odd ,

0 , n or m even ,

(86a)

(86b)

with σ̄B
33 being constant in Pa. The specific free surface condition is also satisfied by imposing σ̄B

33 = 0 in eq. (86a). The same treatment
for the applied tractions t̄T

mn at the top surface is completed, and the free-standing condition on multilayered structures can be investi-
gated for σ̄T

33 = σ̄B
33 = 0. Importantly, eqs. (84−86) as well as the equivalent expressions for the top surface are introduced into eq. (62)

and into eqs. (83) and then eq. (81) to determine the field solutions using approaches I and II from Sections 4.1 and 4.2, respectively, for
any m and n. In practice, the Fourier series expansions t̄T

mn can, however, be formulated to provide a heterogeneously-distributed load
on the top surfaces, as described in Section 5.1.2

5.1.2. Heterogeneous spreading normal loads for tractions
Following the procedure for core-spreading dislocations by Vattré and Pan (2019), the normal stress vector tT3 on the top rectangular

surface in eq. (9b) is first conveniently convolved with a Gaussian kernel $, as follows

∗tT3 (x1,x2,z =H,t) = eiωt
∞

∑
m=1

∞

∑
n=1

σ̄T
33mn sin(pm (x1−Lx/2)) sin(qn (x2−Ly/2)) ∗ $ (x1,x2) , (87)

where a practical change of space variable for further operations is advocated to shift the applied loads relative to x1 = x2 = 0. In eq. (87)
and in the following, the pre-superscript ∗ indicates the quantities that have been convoluted by the weighted functions. As displayed in
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Fig. (2a) with two standard deviations, the Gaussian function $ is defined by

$ (x1,x2) =
e−(x1+x2)

2/r2
0

πr2
0

, with :
ˆ

∞

−∞

ˆ
∞

−∞

$ (x1,x2) dx1dx2 = 1 , (88)

where r0 ≥ 0 is the spreading-stress parameter. Equation (87) is reduced to

∗tT3 (x1,x2,z =H,t)≡ eiωt
∞

∑
m=1

∞

∑
n=1

σ̄T
33mn

ˆ
∞

−∞

ˆ
∞

−∞

sin
(
pm
(
x′1−Lx/2

))
sin
(
qn
(
x′2−Ly/2

))
$
(
x1−x′1,x2−x′2

)
dx′1dx′2

= eiωt
∞

∑
m=1

∞

∑
n=1

σ̄T
33mn e−(πmr0/(2Lx))

2
sin
(
pm
(
x′1−Lx/2

))
e−(πnr0/(2Ly))

2
sin
(
qn
(
x′2−Ly/2

))
,

(89)

such that r0 = 0 yields to the classical solution in the Fourier series representations. For heterogeneously distributed normal traction
over the two-dimensional rectangular domain −λx ≤ x1 ≤ λx and −λy ≤ x2 ≤ λy on the top surface, the expansion series coefficients
are determined by the Fourier-Kaplan-Sonnemann transform technique, as follows

∗σ̄T
33mn=


4

LxLy
eiωt−(πmr0/(2Lx))

2−(πnr0/(2Ly))
2
σ̄T

33

ˆ λx

−λx

ˆ λy

−λy
sin
(
pm
(
x′1−Lx/2

))
sin
(
qn
(
x′2−Ly/2

))
dx1dx2 , n and m odd ,

0 , n or m even ,

(90a)

(90b)

which, after carrying out the double integral, read

∗σ̄T
33mn=

(−1)
m+3

2 (−1)
n+3

2
16

π2mn
eiωt−(πmr0/(2Lx))

2−(πnr0/(2Ly))
2
σ̄T

33 sin
(
πmλx
2Lx

)
sin
(
πnλy
2Ly

)
, n and m odd ,

0 , n or m even ,

(91a)

(91b)

so that the corresponding Fourier series expansions t̄T
mn in eq. (83b) for spreading-stress tractions at the top surface are given by

t̄T
mn =

[
0, 0, ∗σ̄T

33mn
]t
, (92)

for any m and n. To illustrate the advantage of using the aforementioned spreading procedure on the heterogeneously distributed
loads, Fig. (2b) and (2c) show the standard Fourier series representation of the normal traction and the convolution of the latter with
the Gaussian kernel on an arbitrary square surface, respectively. The profiles are depicted along the x1-axis with x2 = Ly/2, where
Lx = Ly = 10 m, and m = n = 30 Fourier terms in eq. (89) as well as σ̄T

33 = 3 Pa, and λx = λy = 4 m in eq. (91a) with respect to
both standard deviations. It is also shown that the spreading-load procedure inhibits the Gibbs phenomenon near singularities on each
of the four edges of the square, within which the normal traction is distributed, and the prescribed traction converges conditionally and
numerically faster without spurious oscillations than the standard expansions to the exact solution, even with small value of r0.

5.2. Cross-ply layers in composite laminates
As in Savoia and Rao (1995), unidirectional graphite-epoxy composites with fibers oriented along the x1-direction (material I)

and a soft core (material II) are investigated. The thermoelastic properties of both materials for this application case 1 are reported in
Table 1. The steady-state thermoelastic bending of the three-layered sandwich square plates with Lx/Ly = 1 are subjected to a sinusoidal
temperature that rises at both external horizontal surfaces, with T̄ B = 1 K, and T̄ T =−1 K. The general coupled thermoelastic loads can
be applied by combining the previous thermal loading with normal stresses, defined by t̄B =−1 MPa, and t̄T =−1 MPa. The thicknesses
of the soft core (material II) and the two stiff external layers (material I) are equal to 0.6H and 0.2H , respectively, where H = 100 nm
is the thickness of the multilayered system. As a preliminary and practical analysis, the field solutions are determined for a few terms in
the Fourier series, for which the nonlocal parameter is used as a phenomenological ingredient, with no physical meaning. For the sake of
simplicity, both nonlocal parameters lT and lE are assumed equal, thus lT = lE = l. In this Section 5.2, all through-the-thickness profiles
are depicted for x1 = x2 = Lx/2, thus along the z-direction, and the calculations are performed using m = n = 1, unless specified
otherwise.

Fig. (3) shows the effects of the ratios of Lx/H and l/H on various thermoelastic field solutions, by varying the lateral length Lx as
well as the nonlocal parameter l, where the entire thickness H is kept fixed. Figs. (3a) and (3b) depict thermal quantities using the local
thermoelastic theory, that is l = 0. For thinner plates, the temperature profile tends to a linear distribution through each individual layer,
as illustrated in Fig. (3a), while nonlinear exponential branches appear in the graphite-epoxy composite plates for larger thicknesses.
This trend indicates that when the aspect ratio is small, namely Lx/H < 5, the standard thin-plate result may be invalid, even though
the temperature remains linear (close to zero) in the middle layer. The corresponding curves associated with the heat flux in Fig. (3b)
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are different from the temperature variation along the vertical z-direction. In particular, the normal heat flux is continuous across the
interfaces and tends also to be steeper for thinner systems, while significant gradient emerges at the external surfaces as Lx/H decreases.

The in-plane normal stress components σ11 and σ22 are displayed in Figs. (3c-f) for both extreme aspect ratios with further consid-
eration of nonlocal effect. Three ratios for the nonlocal analysis are examined. It is worth noting that with reference to the composite
stiff faces, higher in-plane stress levels occur in the direction perpendicular to the fibers. Moreover, due to material property mismatch
between the layers, these in-plane normal stresses are discontinuous at both interfaces, with significant discontinuities in σ11 when the
aspect ratio is small, as shown in Fig. (3d). The amplitudes of these discontinuities at internal interfaces are therefore less pronounced
for thinner plates, with negligible effect by the nonlocal parameter. However, the nonlocal parameter l has a significant influence on the
stress field for extremely thick plates subjected to thermal loads only, where the nonlocal parameter can completely change the variation
trend of the stresses, switching their signs and altering their magnitudes, as depicted by the blue curves in Figs. (3d) and (3f).

Figs. (4a-d) and (4e-h) illustrate the effects of the type of external loads on the vertical and horizontal displacement components u3
and u2, specially under the thermal only, as shown in Figs. (3), and under the combined thermal and mechanical load case, respectively.
Again, the two aspect ratios, i.e., Lx/H = 10 and Lx/H = 2, are considered, with further three values for the nonlocal parameter
l = 0 (i.e., local theory), l/H = 0.04, and l/H = 0.1, reasonably comparable to the range of similar parameters obtained by atomistic
models and hybrid atomistic/continuum mechanics under static and dynamic loadings (Ansari and Sahmani, 2013, Arash and Wang,
2012, Chen et al., 2017, Waksmanski and Pan, 2014). Regarding the displacement solutions induced by thermal loading only, the
effect of nonlocal parameter is significant when the aspect ratio is small (i.e., for thick layered plates), with different variation trends
by comparing Figs. (4a) to (4b) and (4c) to (4d). As compared to the thermal loading only, the vertical displacements for multilayers
subjected to combined loads are more sensitive to the nonlocal parameter than the corresponding horizontal displacement fields. This
feature is attributed to the horizontal displacement that has a lower-order curvature (i.e., linear versus quadratic) as compared to the
vertical component. Furthermore, except for extremely thick plates subjected to thermal load only, where a complete reversal variation
of the horizontal displacement occurs in Fig. (4d), both displacement components gradually vary with increasing nonlocal parameters. It
is also worth noting that the nonlocal parameter would enhance the nonlinearity of the elastic field solutions, especially near the external
surfaces and internal interfaces.

Figs. (5a-d) and (5e-h) picture the traction components σ33 and σ23 under thermal loading only and combined thermomechanical
loads, for both aspect ratios and the nonlocal parameter values, as in Figs. (4). It is noted first that these field solutions on both bottom
and top surfaces are either zero (i.e., free tractions for thermal loads) or equal to the applied tractions (i.e., under combined loads),
as requested. These values accurately validate the present formulation and the numerical results by means of the prescribed boundary
conditions. It is observed that the normal stress σ33 is equal to zero at the middle of the multilayers with an asymmetrical distribution
with respect to the median line at z/H = 0.5, while the residual shear component σ23 is symmetrically distributed. As shown in Figs. (5c)
and (5d) under thermal loading only, the highest magnitude of the stress component is either located close to the internal interfaces, or
in the middle of the top/bottom graphite-epoxy layers, respectively. On the other hand, both stress components are very sensitive to
the nonlocal parameter, with reversal distribution trends for thick plate with a large nonlocal parameter, similar to those observed in
Figs. (4). Under combined loads, however, these stresses are nearly independent of the nonlocal parameter, except for σ23 in Fig. (5h)
when the plate is thick and the nonlocal parameter is large.

Fig. (6) compares different thermoelastic field solutions obtained by both recursive methods from the Section 4, namely the propaga-
tion matrix method (PMM) and the dual variable and position (DVP) technique, under the combined thermomechanical load with various
numbers of Fourier series terms. It is also observed that for small numbers of harmonics m and n (i.e., from m= n= 1 to m= n= 4),
both PMM and DVP methods yield the same field solutions for thermal quantities T and q3, as well as the elastic stress components
σ11 and σ33. For m = n = 7, however, solutions by the PMM method dramatically diverge, while the DVP technique is still able to
rigorously determine the accurate solutions. Furthermore, it is shown that for modeling the distributed surface loading, the convergence
of σ33 to the exact solution is slower than σ11 using the DVP approach. In the following, converged solutions will be determined using
the DVP method with 128 terms in each Fourier series to meet an excellent agreement with the prescribed distribution of normal loads.

5.3. Multilayered structures with Cu and Mo plates

The steady-state thermoelastic response of the three- and five-layered systems composed of Cu and Mo layers is analyzed. Nano-
composites that consist of alternating Cu and Mo layers become increasingly important in the field of thermal management for electronic
devices. This is due to the excellent thermal properties that cannot be met by the individual constituents, but may be found by stacking
both layers since the heterogeneous Mo-based metallic multilayers have very strong interface bounding as well as high thermal con-
ductivity. The corresponding residual stresses with respect to specific interface conditions are therefore of major relevance in designing
novel multilayers with unprecedented thermomechanical properties.

The symmetric thin plates are considered with Lx/Ly = 1 and Lx/H = 10, while all individual plates have the same thickness
h = 20 nm. The properties of both Cu and Mo for this case 2 are listed in Table 1, and all the following calculations are performed
using the local thermoelasticity theory, thus with lT = lE = 0. Both thermal and thermomechanical loadings are examined, where the
steady-state temperature is uniformly distributed over both bottom and top surfaces with T̄ B = 300 K and T̄ T = 340 K, respectively. On
the other hand, the normal traction on the top surface is t̄T = 1 MPa, while the free traction condition is applied on the bottom surface.
Both perfectly and imperfectly thermal boundary conditions on internal interfaces are investigated in Figs. (7) and (8), respectively.

Fig. (7) shows various through-the-thickness elastic field profiles along the z-direction for x1 =Lx/4 and x2 = 3Lx/4. The influence
of the number of harmonic terms used in the Fourier series (i.e., m = n = 1 versus m = n = 128), of the number of individual layers
(i.e., three versus five) as well as of the stacking sequences (i.e., Cu /. . . / Cu versus Mo /. . . / Mo) are examined. The calculations that are
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carried out with 128 terms in each Fourier series yield the converged field solutions with high accuracy, while the first harmonic term
gives rise to results that are far from the exact solutions. Furthermore, since the reversal variation with respect to m and n are shown
for the normal σ33 and the transverse shear σ23 stress components, a sufficient number of Fourier series terms is highly recommended to
analyze realistic (i.e., converged) thermoelastic fields.

Compared to different layups, it is observed that the Cu/Mo/Cu and Cu/Mo/Cu/Mo/Cu multilayered systems exhibit higher mag-
nitude in the elastic displacement u3 than the Mo/Cu/Mo and Mo/Cu/Mo/Cu/Mo multilayers with piecewise variations. The largest
displacement amplitudes are located in the Cu layers. Overall, the magnitude of the stresses is reduced when the middle layer of the
sandwich (e.g., Cu/Mo/Cu) is replaced by a reversed sandwich (e.g., Cu/Mo/Cu/Mo/Cu). Furthermore, the normal stress σ33 is roughly
three times higher in Cu/Mo/Cu than in Mo/Cu/Mo with opposite sign. The in-plane stress component σ12 is almost uniformly dis-
tributed in each layer with the highest magnitude in the Mo layers. On the other hand, alternating zig-zag transverse shear stress σ23
profiles are observed with the largest magnitude at the internal interfaces.

Fig. (8) shows different through-the-thickness distributions of converged field solutions at x1 = x2 = Lx/2 for the Cu/Mo/Cu com-
posite in presence of thermally imperfect interfaces. As illustrated in Fig. (8a), both internal interfaces are assumed to have weak (red
curves), high (blue curves) conduction properties, while the third example case combines both weakly and highly conducting interfaces
(green curves). The solutions are compared to the results from calculations with perfectly thermal interface conditions (black curves).
Considering the internal interfaces with fictitious thin thicknesses hint, the corresponding interfacial conductivity kint in W/m/K is in-
troduced to link the intrinsic interfacial properties with the properties in bulk materials. Thus, both thermal parameters βT and γT for
weakly and highly conducting interfaces in eqs. (11b) and (12b) are defined by βT = δhint/kint and γT = δhint kint, where δ is an arbitrary
parameter that describes the relation between the effective thermal conductivity in multilayers and the interfacial conductivity, respec-
tively. Here, kint = 200 W/m/K, and hint = 1 nm, while δ = {0,103,104}. The case δ = 0 corresponds to the perfect thermal interface
conditions (black curves).

As for the temperature distribution in Fig. (8b), the prescribed boundary conditions are fulfilled at both external (top and bottom)
surfaces and internal interfaces, specially for weakly conducting interfaces that produce temperature discontinuities, as requested. The
temperature distribution is considerably altered by the imperfect interface conditions, with uniform profiles in the core materials in
presence of weak conductive interfaces. The weak thermal conditions at both interfaces give therefore rise to constant temperatures
in the outer layers as well, which are equal to the prescribed temperatures. On the other hand, the high conductive interfaces yield
to large temperature gradients with piecewise linear profiles in these layers. The normal displacement in Fig. (8c) is very sensitive to
the interface imperfection, for which the displacement profiles are relatively smoother nearby the highly than the weakly conducting
interfaces. The magnitude of u3 increases (decreases) with increasing (decreasing) severity of imperfection with thermally weak (high)
conduction, specially for the combined weak/high interfacial case that produces the largest magnitudes in the Cu/Mo/Cu composite. As
for the stresses, the continuous normal stress field σ33 in Fig. (8d), much smaller than σ11 in Fig. (8e) in magnitude, is dramatically
reduced for the highest conductive interfacial case, to zero for both interfaces with perfectly adiabatic conditions. Interestingly, when
the interfaces are weakly conductive, the magnitude of σ33 increases (decreases) for δ = 103 (δ = 104). On the other hand, the in-plane
stress field σ11 in the core material Mo becomes tensile for large amplitude of thermal imperfections with a compressive state in both
Cu layers, while the equivalent mises stress τvm in the entire Cu/Mo/Cu multilayered structure is strongly dependent on all considered
thermal conditions between both Cu and Mo materials, as shown in Fig. (8f).

5.4. Forced vibration of thermal barrier coatings on nickel based superalloys

The residual stress fields in a thermal barrier coated superalloy made of four layers, namely the zirconium dioxide (ceramic) ZrO2, the
thermally grown alumina oxide Al2O3, the β-NiAlPt coated Ni-based single crystal superalloy CMSX-4 are examined. The thermoelastic
properties are given in Table 1, while the thicknesses of each plate are hZrO2 = 100 µm, hAl2O3 = 20 µm, hNiAlPt = 200 µm, and
hCMSX-4 = 500 µm, respectively, as displayed in Fig. (10a), withLx=Ly = 10 mm. The thinner layer is also the thermally grown alumina
oxide, which exhibits the largest elastic properties as well. In terms of external boundary conditions, both thermal and mechanical loads
are applied, specially T̄ B = 300 K and T̄ T = 1300 K, while t̄T = 50 MPa and the bottom surface is free of tractions. In the following,
the steady-state and time-harmonic deformations are performed using the local thermoelasticity theory with 128 terms in each Fourier
series.

Fig. (9) shows the temperature T and residual stress field components σ33 and σ11 as well as the von Mises stress τvm in the four-
layered superalloy under high temperature on the top surface. The converged thermoelastic solutions are determined for four different
problems, namely i) the heterogeneous problem, where each layer has constant material properties (black curves), ii) the homogeneous
problem, for which all thermoelastic properties have been identified to the CMSX-4 material properties (green curves), iii) the previous
heterogeneous problem i) with a heterogeneously distributed normal traction on the top surface (red curves), and iv) the heterogeneous
case i) with temperature-dependent material properties (blue curves). The problem iii) is illustrated in Fig. (2), where the normal traction
of 50 MPa is applied (zero, outside) on a square with λx = λy = Lx/20 and r0 = λx/100. In the temperature-dependent application
case iv), each layer is subdivided into 128 thin plates, within which a slow-changing linear temperature variation is assumed. For
simplicity, the latter operation is conducted to the elastic constants that arbitrarily vary from their initial values listed in Table 1 at 300 K
to zero at 1600 K.

As shown in Fig. (9a), the heterogeneous temperature profile in the four-layered structure shows the main role played by the thermal
barrier coating made of a low-thermal conductivity ceramic. The latter provides a major temperature reduction, from the applied
temperature on the top surface T̄ T = 1300 K to 730 K at the upper surface of the thermally grown alumina oxide Al2O3, and to 615 K
at the upper surface the CMSX4 superalloy. Without such thermal barrier coatings for gas-turbine engines, the temperature is linearly
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distributed, as well as the in-plane σ11 and the von Mises τvm stresses that are continuous at the internal interfaces, as depicted by the
green lines in Fig. (9). These linear profiles differ from those provided by the more realistic heterogeneous calculations. It is clear that
advanced strategies are required for design engineers of high-pressure turbine blades protected by external thermal barrier coatings since
the efficient lifetime prediction of the superalloy/bond coat/thermal barrier systems are mainly controlled by the interactions among the
different layers.

The heterogeneous structure with a uniformly distributed traction on the top surface gives rise to a large magnitude of the in-
plane stress component σ11 in the individual thermally grown alumina oxide layer, which affects the corresponding von Mises stress
in Fig. (9d). The normal stresses σ33 are continuous at the internal interfaces, while large jumps in σ11 are located at the lower and
upper interfaces of the Al2O3 plate. Furthermore, it is also shown that the von Mises stress in the CMSX-4 superalloy is considerably
reduced by adding a low-thermal conductivity coating, which enhances the high-temperature strength heterogeneousof the multilayered
structure. Using the temperature-dependent properties, the von Mises stress decreases in CMSX-4, but fairly increases in both NiAlPt
and Al2O3 layers. Such differences in stress state may favor the phase transition of the β-NiAlPt coatings as well as the void formation
and crack initiation at the internal Al2O3/NiAlPt interface that could deteriorate the thermal barrier coating system and therefore reduce
the lifetime of turbine blades.

It is worth noting that the thermally grown alumina oxide layer would be plastically deformed, and the residual local stresses partially
released by introducing misfit dislocations at both ZrO2/Al2O3 and Al2O3/NiAlPt interfaces. This contribution could be adressed by
extending the recent work (Vattré, 2017, Vattré and Pan, 2018, 2019) to the linearized thermal elasticity theory in three dimensions. On
the other hand, the heterogeneously distributed normal load changes the sign of σ11 from tension to compression in the top ZrO2 layer,
and becomes constant in both NiAlPt and CMSX-4 layers. Significant differences between the homogeneously and heterogeneously
distributed traction are observed in the ceramic ZrO2 layer, where the von Mises stress considerably increases and decreases (with the
gradient amplitude, but with a opposite sign) from the top surface to the upper surface of the Al2O3 plate.

The time-harmonic vibration behavior of the coated single crystal superalloy is analyzed with forced frequencies ω from 0 to
108 rad/s, as illustrated in Fig. (10a). The normal displacement component u3 in Fig. (10b) shows two vibration behaviors in re-
sponse to the top surface harmonic excitation. When ω < 2.5× 107 rad/s, smooth displacement profiles are qualitatively identical to
the steady-state case. However, oscillating regimes are observed for the highest frequencies when ω > 2.5×107 rad/s, with alternating
positive and negative values with respect to the zero displacement field. The critical frequency ωc = 2.5× 107 is considered as the
resonant frequency, which produces infinite displacement amplitudes. Both steady-like and oscillating regimes can be identified in terms
of normal stress σ33, as illustrated by Fig. (10c) and (10d), respectively. It is shown that the number and distribution of the antinodes and
vibration nodes increase with increasing frequencies. Therefore, the heterogeneous thermal-mechanical response of time-harmonically
forced vibrations is more complicated than the quasi-static case, which needs to be adequately analyzed case by case for specific external
excitations.

The imperfect spring-type interface condition between the thermal barrier coating ZrO2 and the thermally grown alumina oxide
Al2O3 layer is introduced to model asperities and voids at the damaged oxide-metal ZrO2/Al2O3 interface. The interfacial spring
stiffness parameter α in eq. (10b) is arbitrarily specified as α= {0,10−10,10−8} m3/N, while the consequence on the normal stress field
component σ33 is shown in Figs. (11a) and (11b) for both aforementioned regimes with particular frequencies ω, respectively. When
ω = 0 rad/s, the influence of the imperfectly bounded interface conditions on σ33 is negligible, but interestingly, the spring interface
conditions cause strong oscillations in the top ZrO2 layer and the lower CMSX-4 superalloy for intermediate (red curves with symbols,
where ω = 106 rad/s) and high (blue curves with symbols, where ω = 108 rad/s) frequencies, respectively. Thus, depending on the
frequency vibration amplitudes on thermal barrier coated superalloys during very high cycle fatigue, severe deformations may occur
in the single crystal superalloys due to structural imperfections at high frequencies, where the oxide-metal interfaces could also act as
failure initiation sites.

For illustration, Fig. (12) shows the two-dimensional in-plane σ11, the normal σ33, and the von Mises τvm stresses for three repre-
sentative samples. The residual stress distribution in cross-section are displayed at x2 = Lx/2 with ideal perfectly bonded conditions,
namely the steady-state case with uniformly distributed normal tractions on the top surface (sample 1), the steady-state case with hetero-
geneously distributed normal tractions (sample 2), and the time-harmonic vibration case with ω = 107 rad/s and uniformly distributed
normal tractions (sample 3). The complex distribution of the residual stresses in the thermal barrier coated superalloy subjected to
different loadings can also be used to investigate the internal stress concentrations and to capture the early stages of the crack initiation
and propagation, especially close to the various internal interfaces.

6. Concluding remarks

Three-dimensional exact solutions for time-harmonic temperature and thermoelastic stresses in multilayered anisotropic layers are
derived with imperfect boundary conditions at internal interfaces using the mathematically elegant Stroh formalism. While the general
field solutions for each homogeneous plate are determined using the Eringen nonlocal elasticity theory to capture small scale effects, the
multilayered feature is recursively handed by combining the traditional propagation matrix method with the dual variable and position
technique. The present solutions are formulated by considering Fourier series expansions, consistently with the representations of
the uniformly and heterogeneously distributed loads in arbitrary rectangular domains at both opposite external surfaces. Application
illustrations are proposed to throw light on various effects of the externally applied loads and internal imperfections on the thermoelastic
fields in three representative multilayered structures, namely:
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1. The residual thermal stress fields in graphite fiber-reinforced epoxy matrix composites are shown to be drastically different from
those predicted by the classical elasticity theory when nonlocal effects are significant. The present phenomenologically defined
nonlocal parameter gives rise to important influence on the field solutions for nonlocal orthotropic plates subjected to thermal
loading. In particular, remarkable change in the magnitude and sign of the induced thermal stresses with increasing nonlocal
parameter is exhibited when the multilayered nanoscale plates are relatively thick. Molecular dynamics simulations could be
used to calibrate the appropriate characteristic values of nonlocal parameters and therefore to cautiously match the corresponding
predictions of scale effects in smaller sized structures.

2. Using enough harmonic terms in the Fourier series expansions, the converged thermoelastic solutions in multilayered structures
made of Cu and Mo plates are strongly dependent on the stacking sequence as well as the number of anisotropic laminates,
especially when the highly thermal conducting conditions are introduced at the internal interfaces.

3. The internal stress fields due to time-harmonically forced vibration in three-dimensional thermal barrier coated superalloys are de-
scribed using imperfect interfacial properties between adjoining layers and temperature-dependent material properties. Depending
on the input frequency amplitude, severe oscillating displacements and stresses take place in the four-layered superalloys that can
endanger the safety-related stability and integrity of aircraft engines. While the role played by the thermal barrier coating made
of a low-thermal conductivity ceramic is theoretically quantified, the oxide-metal interfaces is shown to act as preferential failure
initiation sites.

Overall, the present formalism can be utilized in the preliminary case-by-case design of multilayered samples with desired steady-
state and time-harmonic thermoelastic responses. Goodman, Haigh or Soderberg diagrams in the aeronautical and aerospace industries
could be improved by integrating such quantification of residual stress fields in turbine blades loaded at high temperatures with large
mean stresses and superimposed high-frequency cycle thermal fatigue.
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A. Vattré, 2017b. Elastic strain relaxation in interfacial dislocation patterns: II. From long- and short-range interactions to local reactions.
J. Mech. Phys. Solids 105, 283-305.
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Figure 3: Steady-state thermoelastic bending of a three-layered structure with square plates subjected to a sinusoidal temperature rise at the two external faces. The first
terms in the temperature expansion are considered, thus m = n = 1. The light grey regions are the unidirectional graphite-epoxy composites with fibers oriented along
the x1-direction, which are bonded by a soft core material. The through-the-thickness distributions for different values of the aspect ratios Lx/H and of the nonlocal
parameters l/H are depicted for (a) the temperature T , (b) the normal heat flux q3, (c-d) the in-plane stresses σ11, and (e-f) σ22. The standard local case corresponds to
the field solutions with l = 0.
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Figure 4: Steady-state thermoelastic bending of a three-layered structure with square plates subjected to a sinusoidal temperature and to a combined thermomechanical
loading at both external faces. The first terms in the Fourier series expansions are considered, thusm= n= 1. The light grey regions are the unidirectional graphite-epoxy
composites with fibers oriented along the x1-direction, which are bonded by a soft core material. Under thermal loading only, the through-the-thickness distributions for
different values of the aspect ratios Lx/H and of the nonlocal parameters l/H are depicted for (a-b) the normal displacement u3, and (c-d) the in-plane displacement u2.
Under combined loading, the profiles are analogously displayed for (e-f) u3, and (g-h) u2. The standard local case corresponds to the field solutions with l = 0.
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Figure 5: Steady-state thermoelastic bending of a three-layered structure with square plates subjected to a sinusoidal temperature and to a combined thermomechanical
loading at both external faces. The first terms in the Fourier series expansions are considered, thusm= n= 1. The light grey regions are the unidirectional graphite-epoxy
composites with fibers oriented along the x1-direction, which are bonded by a soft core material. Under thermal loading only, the through-the-thickness distributions for
different values of the aspect ratios Lx/H and of the nonlocal parameters l/H are depicted for (a-b) the normal stress σ33, and (c-d) the transverse shear stress σ23. Under
combined loading, the profiles are analogously displayed for (e-f) σ33, and (g-h) σ23. The standard local case corresponds to the field solutions with l = 0.
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Figure 6: Numerical efficiency comparison of thermoelastic field solutions obtained by the propagation matrix method (PMM) and the dual variable and position (DVP)
technique under combined loading, for various numbers of coefficients in the Fourier series by means of (a) the temperature T , (b) the normal heat flux q3, (c) the in-plane
stress σ11, and (d) the normal stress σ33. In (d), the range of the normal stress σ33 determined by the PMM approach with m= n= 7 is shown on the top axis.
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Figure 7: Steady-state thermoelastic bending of a three- and five-layered structures composed of Cu and Mo square plates subjected to a combined thermomechanical
loading at both external faces. Field solutions obtained by the first terms in the Fourier series expansions only are displayed by solid lines, while the converged results to
the exact solutions with 128 harmonic terms are shown by lines and symbols. The through-the-thickness distributions for different stacking sequences of individual layers
are depicted for (a-b) the normal displacement u3, (c-d) the normal stress σ33, (e-f) the in-plane shear stress σ12, and (g-h) the transverse shear stress σ23.
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Figure 8: Steady-state thermoelastic bending of the Cu/Mo/Cu structures subjected to a combined thermomechanical loading at both external faces. (a) Imperfect thermal
contact between constituents are introduced at both internal interfaces. The corresponding consequence in the through-the-thickness distributions of (b) the temperature
T , (c) the normal displacement u3, (d) the normal stress σ33, (e) in-plane stress σ11, and (f) the von Mises stress τvm.
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Figure 9: Steady-state response of a thermal barrier coated superalloy with four distinct layers subjected to a combined thermomechanical loading at both external faces.
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solutions are solved for four thermoelastic problems with perfectly bounded interfaces, as described in the text.
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through-the-thickness distributions of (a) the normal displacement u3, (c) the normal stress σ33 for low frequencies, and (c) the normal stress σ33 for the higher frequencies.
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Figure 11: Forced harmonic excitation analysis of the thermal barrier coated superalloy with imperfect mechanical contact between constituents. The corresponding
through-the-thickness distributions of (a) the normal stress σ33 for low frequencies, and (b) the normal stress σ33 for the higher frequencies
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Figure 12: Residual stresses in the thermal barrier coated superalloy for three illustrative boundary-value problems, namely the steady-state case with uniformly distributed
normal tractions on the top surface (sample 1), the steady-state case with heterogeneously distributed normal tractions (sample 2), and the time-harmonic vibration case
with ω = 107 rad/s and uniformly distributed normal tractions (sample 3).
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