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Drug resistance (DR) is a phenomenon characterized by the tolerance of a disease to pharmaceutical treatment. In cancer patients, DR is one of the main
challenges that limit the therapeutic potential of the existing treat-ments. Therefore, overcoming DR by restoring the sensitivity of cancer cells would be greatly 
beneficial. In this context, mathematical modeling can be used to provide novel therapeutic strategies that maximize the efficiency of anti-cancer agents and
potentially overcome DR. In this paper, we present a new multiscale model devoted to the interaction of potential treatments with multiple myeloma (MM)
development. In this model, MM cells are represented as individual objects that move, divide, and die by apoptosis. The fate of each cell depends on 
intracellular and extracellular regulation, as well as the administered treatment. The model is used to explore the combined effects of a tyrosine-kinase inhibitor
(TKI) with a pentose phosphate pathway (PPP) inhibitor. We use numerical simulations to tailor effective and safe treatment regimens that may eradicate the
MM tumors. The model suggests that an interval for the daily dose of the PPP inhibitor can maximize the responsiveness of MM cells to the treatment with TKIs.
Then, it demonstrates that the combination of high-dose pulsatile TKI treatment with high-dose daily PPP inhibitor therapy can potentially eradicate the
tumor.The predictions of numerical simulations using such a model can be considered as testable hypotheses in future pre-clinical experiments and clinical
studies.

1. Introduction

Drug resistance (DR) is a well-known phenomenon that circumvents
the sensitivity of cancer cells to treatments. DR can be acquired by
different mechanisms and frequently can be induced by chemotherapy
itself. In fact, chemotherapy can eliminate susceptible clones, thereby
altering the composition of cancers and making them more aggressive
due to the survival of resistant clones. Chemotherapy can also alter the
metabolism or the genetics of the cancerous cells and, thereby, increase
their resistance to the treatment [1]. In this context, mathematical
modeling can be used to gain insights on the mechanisms that confer
DR to cancer cells, as well as to design novel therapeutic strategies that
can overcome this resistance and restore the sensitivity of the tumor to
the treatment.

To illustrate the applications of mathematical modeling in an effort
to overcome drug resistance in cancer, we consider the case of multiple

myeloma (MM). MM is a progressive hematological malignancy of
plasma cells characterized by a complex genetic background. In MM,
the epidermal growth factor receptor (EGFR) pathway is one of the
commonly altered pathways with surface membrane EGFRs and their
downstream signaling components Ras and Raf among the most com-
monly mutated proteins [2]. Some of the acquired mutations increase
the expression of the corresponding protein such as EGFR, whereas
others downregulate the inactivation of signaling proteins such as Ras
and Raf. As a result, the concentration of active ERK, the EGFR tyrosine
kinase-signaling pathway component that translocates to the nucleus,
induces to an elevation of active transcription factors in the nucleus and
promotes MM cell proliferation [3].

EGFR inhibitors represent attractive therapeutic agents for MM
because they reduce the activation of EGFRs. Tyrosine Kinase Inhibitors
(TKIs) such as erlotinib and gefitinib are a class of EGFR inhibitors that
bind and inhibit EGFRs, thereby decreasing their specific kinase
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activity, which leads to tyrosine phosphorylation in the Raf-Ras-MEK-
ERK signaling pathway. These TKIs inhibit EGFR signaling and reduce
the number and diameter of EGFR clusters that bind EGF on the cell
surface [4]. Sorenafinib, another TKI that acts on the Raf-Ras-MEK-ERK
signaling pathway, has activity against MM cells in vitro [5] but did not
have anti-myeloma activity as a single agent in clinical trials. In vitro,
the sensitivity of MM cells to these EGFR inhibitors is reduced by an
accompanying resistance provoked by changes in the metabolism of the
tumor cells [6]. These metabolic changes involve a shift in glucose
metabolism to the pentose phosphate pathway (PPP) which promotes
the proliferation of the cells [7]. The PPP pathway contributes to DNA
synthesis in two major ways: 1) PPP supplies the pentose moiety of
ribonucleotides and deoxynucleotides, and 2) chemical reduction of the
cofactor nicotinamide adenine dinucleotide phosphate (converting
NADP+ to NADPH) by the PPP is required for the activity of ribonu-
cleotide reductase, the enzyme responsible for the conversion of ribo-
nucleotieds to deoxynucleotides. As a result, high levels of DNA
synthesis and MM cell proliferation can occur despite the inhibitory
effects of the TKIs.

Among limited methods that can be used in order to overcome the
resistance to EGFR inhibitors in MM cells, inhibition of the PPP with the
antimetabolite 6-aminonicotinamide (6-AN) reduced the resistance of
MM in vitro [7]. The proliferation rate of MM cells without N-Ras and
K-Ras mutations was reduced to 25% of control when 6-AN was ad-
ministered. Resistance was restored when NADPH was added [7] which
indicates that the EGFR inhibitors upregulate the expression of this
metabolic cofactor. However, the clinical use of 6-AN represents a
challenge due to its high toxicity [8] and rapid clearance [9]. Therefore,
it is difficult to develop effective and safe treatment regimens that
combine both an EGFR inhibitor and a PPP inhibitor. However, this
challenging problem can be approached and appropriately examined
using mathematical modeling. With the results of mathematical mod-
eling, the most appropriate schedules and doses of the two interacting
treatments, TKI and 6-AN, can be tested in subsequent pre-clinical and
clinical in vivo studies.

Mathematical modeling has been used previously to gain insights
into the mechanisms that confer DR to cancer cells and predict the
outcome and anti-cancer therapies. The first type of model that was
developed uses ordinary differential equations (ODEs) to describe the
intraclonal heterogeneity of tumors and how it evolves during che-
motherapy [10,11]. The advantage of this type of model is the potential
to study intraclonal heterogeneity and its evolution theoretically and
numerically [12]. In addition, ODE-based models can be used to study
the changes that take place at the intracellular level during the treat-
ment [13]. In this context, global sensitivity analysis can be used to
determine the intracellular proteins that most affect the responsiveness
of tumor cells to the treatment. Furthermore, ODEs can be used to si-
mulate the pharmacokinetics and pharmacodynamics (PK-PD) of
treatments and the accompanying emergence of drug resistance [14].
The second type of model that studied drug resistance in cancer uses
partial differential equations (PDEs) to represent the interaction be-
tween tumors and their micro-environment. Spatiotemporal dynamics
of solid tumor growth during chemotherapy can be studied using this
approach [15]. Other models that use PDEs consider the population of
cells to be structured by a phenotypic variable [16]. An advantage of
these models is the potential to use the optimal control theory in order
to design optimal treatment strategies that can potentially overcome DR
[17].

Agent-based modeling is another approach that can be used to si-
mulate the effects of DR and chemotherapy on tumor growth. In this
type of model, cells are represented as individual agents that can in-
teract with their local environments. Agent-based modeling provides a
high-fidelity description of cell-cell interactions. An in silico study in
this category revealed that the optimal strategy used to overcome DR
should correspond to the specific mechanism that induces the resistance
[18]. Individual-based models can also be structured by cell phenotype.

In this case, simplified PDE models could be derived that yielded the
same results as the more sophisticated individual-based models and
permitted them to be studied analytically [16]. Hybrid discrete-con-
tinuous models are another type of models that can be used to describe
tumor growth during chemotherapy. These models use a discrete re-
presentation of cells and a continuous description of the extracellular
and intracellular regulation networks, thereby combining mechanisms
that take place at several scales in a single model. A hybrid discrete-
continous model has shown that angiogenesis may contribute to the
emergence of DR to TKIs [19]. Another model has revealed that the
administration of EGF can overcome the resistance of lymph node
metastases to immunotherapy with programmed death-1/programmed
death-ligand1 blockade [20]. The role of cell-cycle mediated drug re-
sistance and intraclonal heterogeneity was investigated using a hybrid
multiscale model [21]. PK-PD modeling of anti-cancer drugs can be
easily integrated within these models, which increases their practicality
and usefulness [22]. We have previously studied intraclonal hetero-
geneity and response to the treatment using hybrid discrete-continuous
models [23,24].

In this work, we develop a multiscale model to describe the devel-
opment of MM tumors and their response to the targeted therapy with
TKIs. In this new model, cells are represented as elastic spheres that
move, divide, and undergo apoptosis. The fate of each cell is regulated
by intracellular and extracellular networks as well as its response to the
treatment. ODEs are used to describe intracellular signaling and me-
tabolism while PDEs are used to simulate the concentration of cytokines
and drugs in the extracellular matrix. We introduce treatment with
gefitinib and 6-AN using an appropriate pharmacokinetic submodel,
and we consider that the gefitinib induces DR in MM cells. We use
numerical simulation to quantify the effects of metabolic shifts on the
acquisition of drug resistance to TKIs by MM cells. Then, we evaluate
the response of MM tumors to different treatment combinations of ge-
fitnib and 6-AN.

2. A hybrid discete-continuous model of MM progression and its
interaction with the treatment

We develop here a hybrid discrete-continuous model to describe the
action of EGFR inhibitors on MM cells, and thereby, to understand the
resistance to TKIs in MM and to develop therapeutic strategies that can
potentially overcome it. We consider a 2D domain corresponding to a
200 μm × μm section of the bone marrow, the site of MM tumors. We
simulate the response of MM tumors in this area to different treatment
protocols as shown in Fig. 1.

2.1. Cell motion

The model consists of cells represented as elastic spheres. Each cell
is characterized by the coordinates of its center xi as well as its radius.
In the process of cell division, cells increase their radius and push the
adjacent cells, if the distance between their centers hij is less than the
sum of their radii +r r1 2. To describe the elastic force between cells, let
us consider two cells whose centers are denoted by xi and xj. The motion
of each cell is described by Newton’s second law:

+ =mx µx f¨ 0,i i

j i

ij

(1)

where m is the mass of the cell, μ is the friction factor due to contact
with the surrounding medium. The repulsive force between two cells is
given by the formula:

=

< <

f
K h h h h

h h

,

0 ,
,ij

h h

h h h i ij

ij

( ) 0 0

0

ij

ij

0

0 1

where hij is the distance between the centers of the two cells i and j, h0 is
the sum of their radii, K is a positive parameter. The force between the
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cells tends to infinity if hij decreases to h h0 1. Cell elasticity was
considered to properly describe the reorganization of the tissue fol-
lowing the division of a cell.

2.2. Intracellular regulation

The division of individual MM cells depends on the number of
synthesized proteins, which depend upon the translation of mRNAs
transcribed from specific genes, and the completion of nuclear DNA
replication. The rate of this process depends on the number of active
transcription factors in the nucleus as well as on the intracellular con-
centrations of ribonucleotides and deoxyribonucleotides required for
the DNA synthesis. The activation of transcription factors depends on
the translocation of active ERK [25], whereas the production of ribo-
nucleotides and deoxyribonucleotides is regulated by the intracellular
concentration of reduced nicotinamide adenine dinucleotide phosphate
(NADPH), which is the product of the PPP activity [26]. We have re-
presented these mechanisms in Fig. 2. We use the following system of
equations to describe the intracellular regulation of each cell:
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Eq. 2 describes the concetration of active ERK in each cell. The first
term in the right-hand side of this equation describes the cumulative
effect of EGFR/ERK signaling. This signaling is upregulated by the
concetration of ERK inside the cell and blocked by the external EGFR
inhibitors. The second term corresponds to the inactivation of ERK.

Next, Eq. 3 represents the activation of transcription factors (TFs) in
the nuleus (Ti), a process that depends on the translocation of ERK
molecules. In parallel, we describe the production of the cofactor
NADPH (Ni) using Eq. 4. NADPH is a product of the PPP that partici-
pates in the formation of the ribonucleotides and deoxyribonucleotides.
In this equation, the first term in the right-hand side of this equation
characterizes the reduction of NADP+ to NADPH by the PPP under

normal conditions. The second term describes the increase in the pro-
duction of NADPH caused by the resistance to the EGFR inhibitors (via
the induction of the PPP). The third term in the right-hand side of the
equation describes the decrease in NADPH caused by the PPP inhibitor
6-AN. The last term represents the oxidation of NADPH to NADP+.

Then, Eq. 5 simulates the production of DNA. In this equation, Ri

describes the rate of DNA replication which depends on the number of
transcription factors in the nucleus (Ti). Therefore, we consider that
=R T*i i4 .
The cell dies by apoptosis if the concentration of synthesized DNA in

the cell does not achieve a threshold D*. Otherwise, it divides and gives
rise to two daughter cells.

Finally, we use Eq. 6 to describe the concentration of 6-AN inside
each cell. The first term in the right-hand side of that equations de-
scribes the accumulation of intracellular 6-AN by the cell and the
second term describes its degradation.

2.3. Extracellular regulation

The fate of MM cells depends upon the extracellular concentration
of two molecules: epidermal growth factor (Gf) and EGFR inhibitor (Ie).
We describe their respective spatial concentrations using the following
system:

=

G

t
D G W G b G ,

F

G F G F F1F F (7)

=

I

t
D I W I b I ,

e

I e I e e2e e (8)

Eq. 7 describes the concentration of the epidermal growth factor
(Gf). In this equation, DGF

represents the diffusion coefficient,WGF
is the

consumption rate by tumor cells determined at the center of the of MM
cells, and b1 is the degradation/clearance rate of the cytokine. We
prescribe Robin condition at the four boundaries of the domains to si-
mulate the influx of EGF proteins to the computational domain. This
imposed boundary condition is given as follows:

=

G

n
G G G( ),

F

F F0
0

where GF0 is a positive constant. Similarly, we describe the con-
centration of the EGFR inhibitor as follows:

Eq. 8 simulates the concentration of the EGFR inhibitor in the bone
marrow section. In this equation, DIe

is the diffusion coefficient,WIe
is

the consumption rate by tumor cells, and b2 is the degradation/clear-
ance rate of the inhibitor. This imposed boundary condition depends on

Fig. 1. A representation of the architecture of the model. Treatment schedules are introduced in order to simulate the pharmacokinetics of gefitinib and 6-AN. The
two drugs affect the intracellular and extracellular regulation of MM cells. In this way, the response of the tumor to the treatment is predicted.
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the administration protocol =I I t( ( ))e 0 . The spatial concentration of 6-
AN is not described due to its rapid clearance.

2.4. PK modeling of EGFR inhibitors and 6-AN

Gefinitib is a TKI which can be used in the targeted therapy of
several types of cancer including MM. The regimen that is usually
prescribed for this treatment consists of a daily dose of 250 mg.
However, it is also possible to administer higher doses on fewer days
such that the total administered dose at the end of the treatment re-
mains the same. For example, a daily dose of 500 mg can be adminis-
tered once every two days or a higher dose of 1000 mg can be pre-
scribed once every four days. These treatment regimens were proven to
be safe in clinical trials [27].

The agent 6-AN is administered to inhibit the PPP and, thereby,
increase the sensitivity of MM cells to gefitinib therapy. 6-AN is po-
tentially highly toxic and is capable of irreversible neurologic damage,
which is related to cumulative administered dose [8]. The maximally
tolerated dose is 5.6 mg/kg which can be, for example, administered at
a dose of 0.2 mg/kg/d for a 4-week period or 0.4 mg/kg/d for a 2-week
period. The highest dose that can be administered daily is 1.5 mg/kg.
However, this dose can only be tolerated for 2–3 days due to neuro-
toxicity. Therefore, systemic modeling of the effect of 6-AN on the

nervous system is not needed to conduct the present study. Under these
circumstances, we evaluate the effects of treatment regimens consisting
of both gefitinib and 6-AN on a MM tumor. In our simulations, we vary
the treatment regimens of gefitinib and 6-AN each time. We assume
that the treatment with 6-AN is terminated when the cumulative dose
reaches 5.6 mg/kg to avoid toxicity. Gefitinib and 6-AN regimens are
shown in Fig. 3.

We simulate the EGFR inhibitor-based treatment protocol using the
ODE:

=

I

t
m I t n I( ) ,

0
1 1 0 (9)

where I(t) is a time-dependent function that describes the treatment
protocol. It is equal to a constant value which corresponds to the ad-
ministered dose I until the onset of action time is elapsed and to zero at
other times. m1 and n1 are two positive constants. The onset of action
for gefitinib is considered to be 4.5 h [28]. We use the same type of
equation to describe the pharmacokinetics of 6-AN:

=

A

t
m A t n A( ) .

e

e2 2 (10)

where A(t) corresponds the dose A after the administration of 6-AN
until the onset of action time exprires and to zero at other times. The 6-
AN onset of action is estimated to be 30 min [9]. The last two equations

Fig. 2. Schematic representation of the action of gefitinib and erlotinib on MM cells and the acquired adaptive resistance. The two inhibitors (either gefitinib, as
shown here, or erlotinib) block the EGFRs signaling and reduce EGFRs that can bind to their ligand, EGF. EGFR complexes activate the Ras protein and trigger the
Ras/ERK cascade. The final output of this pathway, ERK, translocates to the nucleus and contributes to the activation of transcription factors (TFs). Active TFs control
the rate of transcription of genetic information from DNA to RNA which participates in protein synthesis. Some of these proteins promote the growth and division of
the cell. The inhibition of EGFR shifts glucose metabolism to the PPP when mutations in genes within the EGFR pathway are acquired. As a result, the production of
the cofactor NADPH is upregulated. Increased ribonucleotides and deoxyribonucleotides secondary to increased NADPH leads to optimal nucleic acid synthesis
allowing the growth and division of the cell despite the lower number of active transcription factors in the nucleus due to the EGFR inhibition. Cell membrane in
yellow, cytoplasm in pink, and nucleus is violet. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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allow us to determine the respective tissue concentrations of EGFR and
6-AN as functions of the administered drug protocols. Drug metabolism
is considered implicitly through the choice of the parameters.

2.5. Model implementation

We determined the values of some model parameters from the lit-
erature. These parameters include the diffusion coefficient of EGF as
well as the pharmacokinetics properties for gefitinib and 6-AN. The
parameters m1 and m2 were fitted by comparing with experimental
measurement for the tissue concentrations of gefitinib [28] and 6-AN
[9] when different doses are administered. Next, we have estimated the
parameters that describe the intracellular regulation of MM cells by
numerically solving the system (2)-(6) separately in the absence of
treatment. A threshold of produced DNA (D*) was determined such that
the cell divides when it is sufficiently exposed to EGF. Then, the
treatment was introduced and the parameters α3 and γ3 were fitted to
reproduce experimental findings described in Fig. 4A of the study Chen

et al. 2015 [7]. We provide the values of parameters in Table 1 of the
Appendix.

The code was implemented in C++ in an object-oriented pro-
gramming (OOP) architecture. The software ParaView was used to vi-
sualize the results. The CPU time for each simulation is around 50 min
on a computer with four cores and 6 GB of RAM. Details of the nu-
merical implementation of the hybrid model can be found in the ap-
pendix of a previous work [23].

3. Results

3.1. Parameter calibration and model validation

As previously mentioned, some of the parameters were taken from
the literature while the rest were fitted to reproduce experimental
findings in [7]. The experiments shown in Fig. 4A of this work quantify
the proliferation of MM cells in normal conditions and under treatment
with gefitinib and/or 6-AN. The proliferation of these cells is slightly

Fig. 3. Three regimens used for gefitinib (A) and five regimens used for 6-AN (B) therapies.
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Fig. 4. Quantitative validation of the model showing the percent of proliferating rate of MM cells exposed 5 μM gefitinib and/or 0.4 mg/kg/day of 6-AN during 52 h.
Model parameters were calibrated such that the simulated rate of cell proliferation approximate the observed ones in the experiments of Chen et al. 2015 [7].

Fig. 5. A) The effect of gefitnib therapy and induced resistance on the number of cells in the tumor. Treatment with 6-AN is not considered in any of these
simulations. B) Three stages of MM tumor resistance to gefitinib and growth in numerical simulations (from left to right).
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decreased when a dose of 5 μM gefitinib is administered to the tumor
during 48 h. It only decreases significantly when gefitinib and 6-AN, the
PPP inhibitor, are both administered. The rate of cell proliferation,
which is calculated as the percent of cells that divide at the end of their
lifetime, was used as a metric to calibrate the model using the experi-
mental data. We began by considering the case in which a gefitinib dose
of 5 μM is administered in vitro during 48 h and computing the pro-
liferation rate in this period of time. This corresponds to a tissue con-
centration of =I mg ml2.23 /e

1 because the molecular mass of geftinib
is equal to 446.902 g/M. In this case, we fit the parameter α3 such as the
proliferation rate is only reduced by approximately 25%.

Next, we introduce the effect of the PPP inhibitor 6-AN. In the ab-
sence of an indication of the 6-AN dose administered in the previous
experiments, we consider a daily administration of 0.4 mg/kg once
daily because it is the dose that was used in clinical settings [8]. We fit,
γ3, the rate of PPP inhibition by 6-AN, such that the simulated rate of
cell proliferation corresponds to approximately 22%, similar to the
experimental results [7]. Finally, we simulate the case where only 6-AN
is administered by keeping the same parameter set as before and
=I mg ml0 /e . In this case, the simulated proliferation rate is slightly

reduced than the experimentally observed one. However, it is not
possible to improve the model prediction for this case, as changing any
of the parameters would result in a change of the model predictions for
the other cases. We show the experimentally observed vs. the numeri-
cally simulated rates of cell proliferation in Fig. 4 using 5 μM gefitinib
and 0.4 mg/kg/day of 6-AN.

3.2. Numerical simulations confirm the role of metabolic shifts in confering
DR to continuous and pulsatile gefitinib treatment

We begin by studying the dynamics of tumor growth during gefi-
tinib treatment. We consider an initial MM tumor consisting of ap-
proximately 100 cells, with each cell at the beginning of its cell cycle.
Numerical simulations predict that in the absence of the treatment, MM
cells divide with a probability of approximately 100%, similar to the
experimental data [7] (Fig. 5, A). To evaluate the response of MM cells
to gefitinib, we repeat the tumor growth simulation under the same
conditions, and we introduce gefitnib therapy. First, we consider the
commonly prescribed treatment regimen of a 250 mg dose every day.
The treatment with this daily gefitinib dose does not decrease the
proliferation rate of MM cells. Therefore, the tumor continues to grow
and occupies the whole computational domain (Fig. 5, A and B). Thus,
administration of gefitinib alone is not sufficient to eliminate the tumor
due to drug resistance resulting from metabolic shifts that upregulate
the PPP. In the absence of these metabolic changes affecting the PPP
( = 03 ), the model predicts that the tumor will be eliminated within
few days by gefitinib (see curve of 250 mg + no metabolic shifts in
Fig. 5, A).

We compare the effects of daily 250 mg dosing versus pulsatile, less
frequent, but larger doses of gefitinib on the development of a MM
tumor. We consider three schedules of gefitinib: 250 mg once every
day, 500 mg once every two days, and 1000 mg once every four days.
Numerical simulations predict that the three regimens cannot eliminate
the tumor, as shown in Fig. 5, A. However, pulsatile treatments with

Fig. 6. The changes in MM cells population when treated with gefitinib and differing regimens of 6-AN. Each curve corresponds to one of the gefitinib regimens
shown in the legend of the corresponding plot. The regimens of 6-AN are different in each case: A) 0.2 mg/kg daily for four weeks, B) 0.8 mg/kg daily for one week,
C) 1.5 mg/kg daily for four days.
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larger doses slightly reduce the growth rate of the tumor. The admin-
istration of 1000 mg once every four days results in more elimination of
MM cells than the administration of 500 mg once every two days
(Fig. 5, A).

3.3. The model suggests an interval of 6-AN dosing that maximizes the anti-
MM effects of gefitinib

After studying the response of MM to gefitnib alone, we now in-
troduce 6-AN to mitigate for the metabolic changes induced by gefi-
tinib. 6-AN inhibits the PPP, thereby reducing the production of
NADPH. As a result, the synthesis of DNA is restricted, and this re-
striction promotes apoptosis of the cell. To investigate the effects of 6-
AN daily doses on the response of the tumor to gefitnib, we conduct
numerical simulations for the various 6-AN-tolerated treatment sche-
dules. When the administered 6-AN daily dose is low (A ≤ 0.3mg/kg
each day), the PPP is not sufficiently inhibited to compensate for the
metabolic shifts provoked by gefitinib. However, the proliferation rate
of cells is reduced as the daily dose of 6-AN increases and begins to
increase the rate of apoptosis. Therefore, the tumor grows steadily but
more slowly with 6-AN than without it. The changes in MM cell po-
pulations during treatment with gefitinib in addition to a daily dose of
6-AN equal to 0.2 mg/kg is represented in Fig. 6, A.

When the daily dose of 6-AN is between 0.4 mg/kg and 0.9 mg/kg,
the tumor is eliminated as shown in Fig. 7. The tumor is eradicated
faster as the dose of 6-AN increases. Overall, the elimination of the
tumor takes around three to six days depending on the administered 6-
AN dose and the gefitinib treatment schedule (Fig. 6, B). In this case,
the apoptosis of MM cells is mediated by the accumulated intracellular
concentration of 6-AN and the availability of EGF.

When the administered daily dose of 6-AN exceeds 1 mg/kg, some
MM cells survive after the termination of 6-AN therapy due to the short
period of treatment with high daily doses and the rapid clearance of 6-
AN. These surviving cells will form new foci of tumor cells which result
in the relapse of MM (daily 250 mg gefitinib and 1.5 mg/kg 6-AN doses
in Fig. 6, C and Fig. 8). Therefore, an interval exists for the daily dose
for 6-AN which maximizes the elimination of MM cells.

3.4. Combination of high-dose pulsatile gefitinib treatment and high-dose 6-
AN therapy promotes the rapid elimination of MM cells

The effects of gefitinib and 6-AN remain approximately the same
when we consider pulsatile regimens for gefitinib. The two treatments
eliminate the tumor when the daily prescribed dose of 6-AN is between
0.3 mg/kg and 0.9 mg/kg (Fig. 6, B and Fig. 9, A). However, when we
combine a high 6-AN dose (higher or equal to 1.2 kg/mg daily) with

Fig. 7. Snapshots of a numerical simulation describing tumor elimination. A) The initial tumor consists of approximately 60 cells. B) The maximal expansion of the
tumor. C) The elimination of the majority of tumor cells days after its expansion with only few niches of cells remaining. D) The complete eradication of the tumor.
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high-dose pulsatile gefitinib (1000 mg once every four days), then the
tumor is eliminated within two days (Fig. 6, C). The elimination of the
tumor is also observed when the maximally tolerated dose of 6-AN
(1.5 kg/mg/d) is combined with a pulsatile gefitinib treatment con-
sisting of 500 mg once every two days. We have summarized the MM
tumor responses to the combination of various gefitinib and 6-AN
treatment regimens in Fig. 9, A.

3.5. The level of PPP induction by gefitinib narrows down the interval of 6-
AN that maximizes the elimination of MM cells

After understanding the global behavior of the model, we quantify
the effects of the metabolic shifts induced by gefitinib on the response
to the treatment with gefitnib and 6-AN combination. To achieve this,
we administer a continuous treatment schedule of gefitnib and we vary
the rate of PPP induction by gefitinib (α3) as this is a parameter that is
difficult to estimate from experimental data. We search for the interval
of 6-daily AN dosing that eliminates the MM tumor for each value of α3.
As before, the treatment is terminated when the maximal administered
dose of 6-AN reaches 5.6 mg/kg. The model shows that an increase in
the rate of PPP upregulation by gefitinib would shrink the interval of 6-
AN daily dosing that induces MM elimination (Fig. 9, B).

4. Discussion

This paper presents a modeling study of the response of MM tumors
to targeted therapy with TKIs. The objective of this study is not to de-
termine the dosing intervals that eliminate MM cells. In fact, such
dosing intervals could depend on several things like the patient char-
acteristics and the MM cells phenotype. Thus, the aim of this work is to
generate testable treatment strategies for MM that combine a TKI with a
PPP inhibitor. To achieve this, we have developed a multiscale model
that describes the action of gefitinib and 6-AN on MM cells. First, we
simulated the concentrations of gefitinib and 6-AN in the extracellular
matrix using an appropriate pharmacokinetics model. These con-
centrations affect the extracellular and intracellular regulation of MM
cells in the course of treatment. We began by studying the effects of
gefitinib alone and predicted the outcome of continuous and pulsatile
gefitinib therapy on MM. The model confirms that the metabolic
changes provoked by gefitinib make MM cells resistant to this treatment
as observed in the experiments [7]. Furthermore, the model reveals that
the pulsatile administration of gefitinib is slightly more efficient than
continuous dosing. This is in a good qualitative agreement with ex-
periments in an animal study [29]. Numerical simulations were used to
gain insights into the complex interaction between MM drug resistance
and TKIs. We have shown that a 6-AN dosing interval exists which

Fig. 8. Snapshots of a numerical simulation describing tumor relapse. A) The initial tumor. B) The maximal expansion of the tumor. C) The elimination of the
majority of MM cells due to the combined EGFR and PPP inhibition except few cells. D) The surviving cells form new tumors which leads to tumor recurrence.
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maximizes the responsiveness of MM cells to the targeted therapy with
TKIs. Moreover, our numerical simulations predict that the high-dose
pulsatile gefitinib, combined with high-dose 6-AN, achieve maximal
anti-myeloma effects.

The spatial effects play an important role in shaping the dynamics of
the model. MM cells consume both EGF and gefitinib. Therefore, the
relative location of each cell in the tumor determines its fate. For ex-
ample, MM cells that are located in core of the tumor are not exposed to
as high concentrations of gefitinib as MM cells located more periph-
erally in the tumor focus. As a result, these MM cells in the centrale core
survive longer than the MM cells that are located at the periphery of the
tumor, despite the relative scarcity of the available growth factors in
this central area. It is these cells that will cause a relapse of the tumor
after the termination of the treatment with 6-AN due to its toxicity. The
multiscale nature of the model allowed us to describe the complex in-
teractions that exist between MM cells and the treatment across several
scales of biological organization. At the intracellular level, gefitinib and
6-AN cause metabolic changes to MM cells. Whereas the rate of gefi-
tinib consumption by MM cells is determined by its concentration at the

extracellular level. In addition, gefitinib reaches the tissue after being
absorbed orally. Therefore, the model can be used to integrate experi-
mental data obtained from a wide range of acquisition techniques such
as flow cytometry and nano-imaging.

Some of the model parameters were obtained from the previous
publications. These parameters include the onset of action and the half-
life times of gefitinib and 6-AN. The diffusion coefficients and de-
gradation rates of the extracellular cytokines were taken from previous
publications. The rest of the model parameters were fitted in order to
reproduce experimental results [7]. To ensure the robustness of the
model, the cell cycle of all MM cells is set to the beginning of the G1
phase at the start of each simulation. Therefore, the model predictions
remain the same for repeated simulations. As a result, the only re-
maining source of stochasticity in the model is a perturbation that is
added to the cell cycle of each individual cell. While these small per-
turbations can slightly change the qualitative results, they are not suf-
ficient to completely modify the dynamics of tumor growth. Assuming
the cell cycles of MM cells to be synchronized also allowed us to in-
terpret the obtained results and to conduct a systemic exploration of the

Fig. 9. A) Summary of the effects for the combination of gefitinib and 6-AN treatment regimens on MM tumors. The cases in blue correspond to the strategies
resulting in the elimination of the tumor while the cases in white represent the strategies that result in the growth or the relapse of the MM tumor. B) The outcome of
numerical simulations for different values for the rate of PPP upregulation by gefitinib (α3, x-axis) and for different regimens of 6-AN (y-axis). The results show that
the interval of 6-AN daily dose that maximizes the elimination of MM cells by gefitinib as a function of the upregulation rate of PPP by gefitinib. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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model. The goal of this model exploration study is to design optimal
treatment strategies that combine an EGFR inhibitor with a PPP in-
hibitor. A sensitivity analysis study of the model parameters will be
conducted in a forthcoming work. Furthermore, it is possible to im-
plement algorithms that optimize the treatment regimens by solving an
optimal control problem [30,31].

However, this study has some limitations that should be considered
before testing the obtained treatment strategies in pre-clinical experi-
ments and clinical studies. Some of these limitations are due to the
limited availability of data in the literature. In particular, dose-effect
curves of the combined effects of gefitinib and 6-AN could be used to
calibrate the model, thereby making its predictions more reliable. In
addition, the parameters that were taken from the literature correspond
to experiments that were conducted on different organisms. For ex-
ample, the parameters α3 and γ3 were fitted to reproduce in vitro ex-
periments on human MM cells. While the pharmacokinetics parameters
were taken from in vivo studies in rat and dog. As a result of these
limitations, further calibration of the model is needed before it can be
used to design clinical trials. Still, it demonstrates how the exploration
of mathematical models could be used to develop treatment strategies
that are based on drugs that are highly toxic and/or have a rapid
clearance. Furthermore, the effectiveness of this drug combination is
restricted to the MM tumors which do not harbor any mutations in the
Ras and Raf oncogenes. These mutations cause a drug resistance of the

treatment but with a different mechanism that involves the intracellular
components of the EGFR internal signaling mechanism. We have stu-
died the effects of alteration in the EGFR pathway using a 3D stochastic
multiscale model in a previous work [32]. This model can be used in the
future to investigate the impact of stochastic alterations in the in-
tracellular regulation of cells on the response of MM tumors to che-
motherapy. Finally, the potential resistance caused by MM intraclonal
heterogeneity to these treatment protocols are not studied in the cur-
rent model and will be investigated in a forthcoming work.
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Appendix: model parameters

In this section we present the parameters that were considered in the numerical simulation. The list of parameters is provided in Table 1.

Table 1
Values of parameters used in simulations with the hybrid model. δ is an arbitrary length unit. NU refers to non-dimensional unit.

Parameter Value Unit Description
dt 0.02 min time step

DGF 0.86 min.
2 1 diffusion coefficient of EGF [33]

DIe 1.5 h.2 1 diffusion coefficient of gefitinib

WGF ×5 10
2

min
1 consumption rate of EGF by MM cells

WIe ×5 10
2

min
1 consumption rate of gefitinib by MM cells

b1 ×1 10
3 min

1 degradation rate of EGF

b2 ×1 10
3 min

1 degradation rate of gefitinib

m1 ×4.5 10
3 ml min1 1 rate of gefitinib distribution in the bone

marrow [28]
n1 ×2.77 10

3 min
1 degradation rate of gefitinib [28]

m2 ×3.15 10
2 ml min1 1 rate of 6-AN distribution in the bone marrow

[9]
n2 ×2.15 10

2
min

1 degradation rate of 6-AN [9]

α1 ×8 10
2 ml ng min/ 1 1 rate of ERK activation by EGF

d1 ×1 10
3 min 1 ERK degradation

β1 5 ml/ng rate of active ERK inhibition by geftinib
α2 0.2 min

1 transcription factors activation by ERK

d2 0.1 min
1 transcription factors degradation rate

β3 0.1 min
1 NADPH reduction rate

α3 variable ml/ng.min rate of NADPH upregulation by gefitinib
γ3 0.3 ml/ng.min the rate of NADPH downregulation by 6-AN
d3 0.1 min

1 oxidation rate of NADPH to NADP+

α4 0.2 min
1 the rate of DNA synthesization

E0 1 NU maximal capacity of active and inactive EGFR
in a cell

T0 1 NU maximal capacity of active and inactive TFs in
a cell

N0 1 NU maximal capacity of active and inactive
NADPH in a cell
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