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1. The Model of Immune Response

In this work, we study the model of viral infection spreading in the lymphoid
tissue

∂v

∂t
= D1

∂2v

∂x2
+ kv(1 − v) − cv, (1.1)

∂c

∂t
= D2

∂2c

∂x2
+ φ(v)c(1 − c) − ψ(v)c, (1.2)

where v is the dimensionless virus concentration, c is the concentration of
immune cells, diffusion terms describe random motion of viruses and cells.
The second term in the right-hand side of Eq. (1.1) corresponds to the virus
multiplication rate, and the last term its elimination by immune cells. The
last two terms in the right-hand side of Eq. (1.2) describe proliferation and
death of immune cells. Both of them depend on the virus concentration.
According to their biological meaning, the functions φ(v) and ψ(v) are posi-
tive for v > 0, and growing with saturation. Precise mathematical conditions
will be formulated below.

The models of immune response are often considered in the form of
ODEs and DDEs (see [1,2] and the references therein). Travelling waves
describing the propagation of virus infection in the tissue were studied in
[3,7] in the case of a single reaction–diffusion equation with delay. System
of Eqs. (1.1), (1.2) was introduced in [4]. Numerical simulations showed that
infection can propagate in the tissue as a reaction–diffusion wave. In this
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work, we will prove the existence of such waves in some particular cases. A
travelling wave solution of system (1.1), (1.2) is a solution v(x, t) = V (x−st),
c(x, t) = C(x−st) on the whole axis, where s is the wave speed and the func-
tions V (ξ), C(ξ) satisfy the system of equations

D1V
′′ + sV ′ + kV (1 − V ) − CV = 0, (1.3)

D2C
′′ + sC ′ + φ(V )C(1 − C) − ψ(V )C = 0. (1.4)

We will look for solutions of this system with the limits

V (±∞) = v±, C(±∞) = c±, (1.5)

where the values v± and c± are specified in equalities (2.3) below. Let us
recall that the constant s is unknown. It should be found together with the
functions V (ξ) and C(ξ).

Existence of waves for system (1.3), (1.4) is known in some particular
cases. Let us write this system in the vector form:

Dw′′ + sw′ + F(w) = 0. (1.6)

Here D is a diagonal matrix of diffusion coefficients, w = (V,C), the vector
function F(w) corresponds to the nonlinear terms in Eqs. (1.3), (1.4).

Monotone systems Suppose that φ(v) ≡ const. Then for w ≥ 0 (here and
below the inequalities between vectors are understood componentwise)

∂Fi

∂wj
≤ 0, i, j = 1, 2, i �= j. (1.7)

By a change of variables w1 → 1 − w1, this system can be reduced to a
monotone system for which the last inequalities are opposite. Existence of
waves for the monotone systems is known [8,9,14].

Locally monotone systems For simplicity of presentation, suppose that
inequalities (1.7) are strict. The system is called locally monotone if these
inequalities are satisfied not everywhere but only at zero lines of the func-
tions Fi(w) [8,9].1 Let us introduce the function

f(V ) = 1 − ψ(V )

φ(V )
. (1.8)

Since φ(V ) > 0, ψ(V ) > 0 for V ≥ 0, then f(V ) < 1.
If C = f(V ), then F2(w) = 0 and

∂F2

∂w1

= φ′(V )C(1 − C) − ψ′(V )C = φ′(V )C

(

ψ(V )

φ(V )
−

ψ′(V )

φ′(V )

)

= φ(V )Cf ′(V ).

Suppose that f ′(V ) < 0. Then from the equality F2(w) = 0 it follows that
∂F2/∂w1 < 0 (C > 0, φ(V ) > 0). The inequality ∂F1/∂w2 < 0 is satisfied
everywhere (V > 0). Hence, up to the change of variables the system is locally
monotone. Existence of waves for such systems is proved in [8,9].

In this work, we will prove the existence of solutions of problem (1.3)–
(1.5) in a more general case where the function f(V ) is not monotonically

1The system is locally monotone if the derivatives in (1.7) are positive. This case can be
obtained from the case with negative derivatives by a change of variables.
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decreasing. This case is interesting for the biological applications. In the next
section, we will present the conditions on this function, we will also formulate
the main result of this work and will describe the method of proof.

2. Main Result

We suppose that φ(V ) and ψ(V ) are positive infinitely differentiable functions
defined for V ≥ 0 and the function f(V ) satisfies the following conditions.

Condition 1. 0 < f(V ) < 1 for V ≥ 0; f(0) > k; f(V ) > f(0) for 0 < V < V∗

for some V∗; f(V ) has a single maximum for V = vm; f ′(V ) < 0 for V > vm

(Fig. 1, left).

Condition 2. Equation f(v) = k(1−v) has two solutions, vu and v+, vu < v+.
Moreover, f ′(vu) < −k, f ′(v+) > −k.

Consider the ODE system corresponding to (1.1), (1.2):

dv

dt
= kv(1 − v) − cv, (2.1)

dc

dt
= φ(v)c(1 − c) − ψ(v)c. (2.2)

From Conditions 1 and 2, it follows that there are four stationary points,
P0 = (0, 0), P1 = (0, f(0)), P2 = (vu, f(vu)), P3 = (v+, f(v+)), where vu and
v+ are solutions of the equation f(v) = k(1−v), vu < v+. The points P0 and
P2 are unstable, P1 and P3 are stable, their eigenvalues are negative. Set

v− = 0, c− = f(0), c+ = f(v+). (2.3)

Hence, the limits (1.5) correspond to the stable stationary points of system
(2.1), (2.2). Therefore, we consider the existence of waves in the bistable case.

The main result of this work is given by the following theorem.

Figure 1. Left: functions f(v) and g(v) (Sect. 3). Right: func-
tions f0(v) = f(v) in the original problem and f1(v) in the
model problem
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Theorem 2.1. Suppose that the infinitely differentiable functions φ(V ) and
ψ(V ) are positive for V ≥ 0, and the function f(V ) given by (1.8) satisfies
Conditions 1 and 2. Then problem (1.3)–(1.5) has a solution for some value
of s.

The remaining part of this work is devoted to the proof of this theorem. The
proof uses the Leray–Schauder (LS) method which is based on the topological
degree for elliptic operators in unbounded domains [12,13] and on a priori
estimates of solutions in properly chosen weighted spaces. The main idea of
the LS method is to reduce our original problem to some model problem with
given properties and to obtain a priori estimates of solutions in the process
of this homotopy. As a model problem we will choose a similar problem
with a decreasing function f(V ) (Fig. 1, right). In this case, we get a locally
monotone system for which the existence of waves and the required properties
are known.

In the next section, we will introduce function spaces and operators
and will recall the required results concerning the topological degree. The
following sections will be devoted to the construction of a homotopy and to
a priori estimates of solutions.

3. Operators and Spaces

For the functional setting, let us introduce the Hölder space Ck+α(R) consist-
ing of vector-functions of class Ck, which are continuous and bounded on the
axis R together with their derivatives of order k, and such that the derivatives
of order k satisfy the Hölder condition with the exponent α ∈ (0, 1). The norm
in this space is the usual Hölder norm. Set E1 = C2+α(R), E2 = Cα(R).

Next, we introduce the weighted spaces E1
µ and E2

µ with μ(x) =
√

1 + x2.
These spaces are equipped with the norms:

‖w‖Ei
µ

= ‖wμ‖Ei , i = 1, 2.

Following [8,9], we introduce the operators which will allow us to study
travelling waves, that is solutions of problem (1.3)–(1.5). Consider an infin-
itely differentiable vector-function η(x) such that

η(x) =

{

w− , x ≤ −1
w+ , x ≥ 1

,

where w± = (v±, c±). Set w = u + η and consider the operator

A(u) = D(u + η)′′ + s(u + η)′ + F (u + η), (3.1)

acting from E1
µ into E2

µ.

Functionalization of the parameter Solution w(x) of Eq. (1.6) is invariant with
respect to translation in space. Along with any solution w(x), the functions
w(x + h) also satisfy this equation for any real h. This property of solutions
of autonomous problems on the whole axis implies the existence of a zero
eigenvalue of the linearized operator A′. Therefore, we cannot find the index
of the solution (the index is understood here as the value of the degree with
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respect to a small ball containing the solution). Moreover, this family of
solutions is not bounded in the weighted norm. Therefore, we cannot apply
the Leray–Schauder method to study the existence of solutions.

To overcome these difficulties we introduce functionalization of the
parameter s [9] (Chapter 2). This means that instead of the unknown con-
stant s we introduce some given functional s∗(u) such that s∗(u(· + h)) is
a monotone function of h with the values from −∞ to ∞. Hence, equation
s∗(u(· + h)) = s has a unique solution h for any wave speed s. Therefore, we
obtain an equivalent problem without invariance of solutions with respect to
translation in space. We set s∗(u) = log(ρ(u)), where

ρ(u) =

(
∫ ∞

−∞

|u(x) + η(x) − w+|2σ(x)dx

)1/2

,

σ(x) is a monotonically increasing function such that σ(x) → 0 as x → −∞,

σ(x) → 1 as x → ∞,
∫ 0

−∞
σ(x)dx < ∞.

Homotopy Along with problem (1.3)–(1.5), we consider a similar problem

D1V
′′ + sV ′ + kV (1 − V ) − CV = 0, (3.2)

D2C
′′ + sC ′ + φτ (V )C(1 − C) − ψτ (V )C = 0, (3.3)

V (±∞) = v± , C(±∞) = c± (3.4)

with the functions φτ (V ) and ψτ (V ) depending on parameter τ ∈ [0, 1]. The
corresponding operator

Aτ (u) = D(u + η)′′ + s∗(u)(u + η)′ + Fτ (u + η), (3.5)

acts from E1
µ into E2

µ. We suppose that the functions φτ (V ) and ψτ (V ) are
sufficiently smooth with respect to both variables V and τ . Furthermore, the
function

fτ (V ) = 1 − ψτ (V )

φτ (V )
(3.6)

either satisfies Condition 1 (where vm and V∗ can depend on τ), or it is
monotonically decreasing.

We begin with the construction of the function fτ (v), where f0(v) equals
the original function f(v), and f1(v) is a monotonically decreasing function
(Fig. 1, right). We will construct the homotopy in such a way that fτ (v) has
a single maximum or it is a monotone function.

Let us introduce an auxiliary infinitely differentiable function h(v) such
that the following conditions are satisfied: h(v) ≥ f(v) for 0 ≤ v ≤ v+,

h′(v) ≤ 0, 0 ≤ v ≤ v+, h(v) ≡ f(v), vm + ǫ ≤ v ≤ v+,

h(v) ≡ h(vm), 0 ≤ v ≤ vm.

Here ǫ is a small positive constant. At the first step of homotopy we set

fτ (v) = (1 − 2τ)f(v) + 2τh(v).

Hence, for τ = 0 we have the original function and for τ = 1/2 the auxiliary
function h(v). Obviously, fτ (v) has a single maximum for 0 ≤ τ < 1/2.
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We can now define the function f1(v). It is any decreasing infinitely
differentiable function such that f1(v) ≥ h(v) for 0 ≤ v ≤ v+ and f1(v) ≡
f(v) for vm + ǫ ≤ v ≤ v+. Set

fτ (v) = (2 − 2τ)h(v) + (2τ − 1)f1(v).

The function fτ (v) is monotonically decreasing for 1/2 < τ ≤ 1.
Next, we define the functions φτ and ψτ . We set φτ (v) ≡ φ(v), such

that this function does not depend on τ , and ψτ (v) = (1 − fτ (v))φ(v). Since
f(v) < 1 for 0 ≤ v ≤ v+, then we can construct the homotopy in such way
that fτ (v) < 1 for 0 ≤ v ≤ v+, 0 ≤ τ ≤ 1. Hence ψτ (v) > 0.

Topological degree The linearized operator about any function in E1
µ satis-

fies the Fredholm property and has the zero index. The nonlinear operator is
proper on closed bounded sets. This means that the inverse image of a com-
pact set is compact in any closed bounded set in E1

µ. Moreover, the operator
Aτ (u) is proper with respect to the ensemble of variables (u, τ). Finally, the
topological degree can be defined for this operator. All these properties can
be found in [9–13]. Alternative degree constructions for Fredholm and proper
operators can be found in [5,6].

4. Properties of Solutions

As before, we consider the system

D1V
′′ + sV ′ + kV (1 − V ) − CV = 0, (4.1)

D2C
′′ + sC ′ + φτ (V )C(1 − C) − ψτ (V )C = 0 (4.2)

on the whole axis with the limits

V (−∞) = 0, C(−∞) = fτ (0), V (∞) = v+, C(∞) = fτ (v+) (4.3)

at infinities. For simplicity of notation, the subscript τ can be sometimes
omitted.

Definition. Denote by K the set of functions v(x), c(x) ∈ C2+α(R) which
satisfy boundary conditions (4.3) and such that the following monotonicity
conditions are satisfied:
v′(x) > 0 for all x ∈ R,
c′(x) < 0 for all x ∈ R or c(x) has a single maximum: c′(x) > 0 for x < x∗,
c′(x) < 0 for x > x∗ and some x∗, which can depend on c(x).
For functions in the set K, since v(x) is a monotonically increasing function,
we can introduce the function c = g(v) such that c(x) = g(v(x)) (Fig. 1, left).

We will consider solutions of problem (4.1)–(4.3) from the set K. We
will show that this set of solutions is closed and that it is separated from
other solutions. Together with compactness of the set of solutions, which
follows from the properness of the corresponding operators, these properties
will allow us to apply the Leray–Schauder method to this subset of solutions
and not to all solutions.
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4.1. The Set K is Closed

We begin with some properties of solutions from the set K.

Lemma 4.1. Suppose that (v0(x), c0(x)) ∈ K is a solution of system (4.1),
(4.2), and c0(x) has a maximum at x = x∗. Then v0(x∗) ≤ V∗, c0(x∗) ≤
f(v(x∗)), where V∗ is defined in Condition 1.

Proof. Denote v∗ = v0(x∗). We need to prove that v∗ ≤ V∗ and g(v∗) ≤ f(v∗).
Suppose that g(v∗) > f(v∗). Then

D2c
′′
0(x∗) = −φ(v0(x∗))c0(x∗)(1 − c(x∗)) + ψ(v0(x∗))c0(x∗)

= −φ(v0(x∗))c0(x∗)(f(v0(x∗)) − c0(x∗))

= −φ(v0(x∗))c0(x∗)(f(v0(x∗)) − g(v0(x∗))) > 0. (4.4)

Therefore, we obtain a contradiction with the assumption that the function
c0(x) has a maximum at x = x∗. This argument will often be used below.
Here we do not use the assumption that (v0(x), c0(x)) ∈ K.

Suppose now that v∗ > V∗. Since g(v∗) ≤ f(v∗), then g(v∗) < f(0).
Hence, c0(x∗) < c0(−∞). We obtain a contradiction with the assumption
that the only extremum of the function c0(x) is a maximum reached at
x = x∗. �

Lemma 4.2. Consider a sequence of solutions (vn(x), cn(x)) ∈ K of problem
(4.1)–(4.3) (with possibly different values of τ = τn and s = sn), and suppose
that (vn(x), cn(x)) → (v0(x), c0(x)) strongly in C1(R), where (v0(x), c0(x)) is
a solution of problem (4.1)–(4.3) with τ = τ0, s = s0. Then v′

0(x) > 0 for all
x ∈ R.

Proof. Since v′
n(x) > 0 for all x ∈ R and n, then v′

0(x) ≥ 0, x ∈ R. Suppose
that the assertion of the lemma does not hold and there exists x0 such that
v′
0(x0) = 0. Then v′′

0 (x0) = 0.
By virtue of the condition of the lemma, (v0(x), c0(x)) is a solution of

problem (4.1)–(4.3). Hence, v0(x0) > 0, and from Eq. (4.1) it follows that
c0(x0) = k(1 − v0(x0)). Differentiating Eq. (4.1), we get

D1v
′′′
0 (x0) = c′

0(x0)v0(x0).

We will show below that

c′
0(x0) < 0. (4.5)

Then v′′′
0 (x0) < 0, and we obtain a contradiction with the assertion that v0(x)

is a non-decreasing function for all x.
We proceed to the proof of inequality (4.5). We can apply Lemma 4.1

to the solutions (vn(x), cn(x)) ∈ K. Let vn(xn) = v∗, v0(x∗) = v∗. Then, by
virtue of the lemma, c′

n(x) < 0 for x ≥ xn. Since xn → x∗ as n → ∞, then
c′
0(x) ≤ 0 for x ≥ x∗. We continue with the following assertions:

1. For any small δ > 0 there exists x̂ ∈ [x∗, x∗ + δ] such that c′
0(x̂) < 0.

Indeed, it is sufficient to check that c0(x) �≡ c0(x∗) in any interval
[x∗, x∗ + δ]. If this is the case, then from Eq. (4.2) we conclude that
c0(x∗) ≡ c0(x) = f(v0(x)) in this interval (the subscript τ in fτ is
omitted for simplicity of notation). Hence, f(v0(x)) = f(v∗). Since
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f ′(v∗) < 0, then v0(x) ≡ v∗ for x ∈ [x∗, x∗ + δ]. Then it follows from
Eq. (4.1) that c0(x) = k(1 − v0(x)). On the other hand, f(v∗) > k(1 −
v∗). This contradiction proves the assertion.

2. For any small δ > 0, there exists x̄ ∈ [x∗, x∗ + δ] such that v′
0(x̄) <

0, c′
0(x̄) < 0. Let us take the value x̂ from the previous assertion. We

can show that v0(x) is not identically constant in some vicinity of
x̂. Indeed, if v0(x) ≡ v0(x̂), then we conclude from Eq. (4.1) that
c0(x) = k(1 − v0(x)). Hence, c0(x) ≡ c0(x̂). Then we conclude from
Eq. (4.2) that c0(x̂) = f(v0(x̂)). As above, we obtain a contradiction
with the inequality f(v∗) > k(1 − v∗).

3. From Lemma 4.3 below, it follows that c′
0(x) < 0, v′

0(x) > 0 for all
x ≥ x̄.

Suppose that inequality (4.5) does not hold and c′
0(x0) > 0. Consider

the function g0(v) such that g0(v0(x)) = c0(x). We have g(v1) = k(1 − v1),
where v1 = v0(x0), and g′(v1) > 0. Since g(0) = f(0) > g(v1), then g(v) has
a minimum at some v = v2, 0 < v2 < v1. Clearly, g(v2) < f(v2). Similar to
(4.4), we obtain c′′(x) < 0 at the point of minimum leading to a contradiction.

Consider, finally, the case where c′
0(x0) = 0. If c′′

0(x0) > 0, then x = x0

is a point of minimum. If c′′
0(x0) < 0, then x = x0 is a point of maximum.

Hence, there exists a minimum at some v = v2, 0 < v2 < v1. In both cases, we
get the same contradiction in sign of c′′(x). If c′′

0(x0) = 0, then from equation
(4.2) we get c0(x0) = f(v0(x0)). However, c0(x0) = g0(v(x0)) < f(v0(x0)).
This contradiction completes the proof. �

Lemma 4.3. Let (v0(x), c0(x)) be a positive solution of problem (4.1)–(4.3)
(not necessarily in the set K). Suppose that for some x1, v′

0(x1) > 0, c′
0(x1) <

0. Moreover, v′
0(x) ≥ 0, c′

0(x) ≤ 0 for x ≥ x1 and f ′(v) < 0 for v ≥ v0(x1).
Then v′

0(x) > 0, c′
0(x) < 0 for x ≥ x1.

Proof. Suppose that the assertion of the lemma does not hold and v′
0(x2) = 0

for some x2 > x1. Then v′′
0 (x2) = 0. Set u(x) = v′

0(x). Differentiating (4.1),
we get

D1u
′′ + su′ + a1(x)u + b1(x) = 0, (4.6)

where

a1(x) = k(1 − 2v0(x)) − c0(x), b1(x) = −c′
0(x)v0(x).

Since u(x) ≥ 0 for x ≥ x1, u(x2) = u′(x2) = 0, b1(x) ≥ 0, then from the
maximum principle it follows that u(x) ≡ 0. This conclusion contradicts the
assumption that u(x1) > 0.

Assume now that c′
0(x2) = 0 for some x2 > x1 and set w(x) = c′

0(x).
Since c′′

0(x2) = 0, then from Eq. (4.2) we obtain the equality

φ(v0(x2))c0(x2)(1 − c0(x2)) − ψ(v0(x2))c0(x2) = 0.

Since c0(x2) �= 0, then from the previous equality it follows that

1 − c0(x2) =
ψ(v0(x2))

φ(v0(x2))
. (4.7)
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Differentiating (4.2), we get

D2w
′′ + sw′ + a2(x)w + b2(x) = 0, (4.8)

where

a2(x) = φ(v0(x))(1 − 2c0(x)) − ψ(v0(x)), b2(x)

= (φ′(v0)c0(1 − c0) − ψ′(v0)c0)v
′
0(x).

Taking into account (4.7), we have

b2(x2) =

(

φ′(v0(x2))
ψ(v0(x2))

φ(v0(x2))
− ψ′(v0(x2))

)

c0(x2)v
′
0(x2)

= f ′(v0(x2))φ(v0(x2))c0(x2)v
′
0(x2).

Since φ(v0(x2)) > 0, c0(x2) > 0, v′
0(x2) > 0, and f ′(v0(x2)) < 0, then

b2(x2) < 0. Furthermore, by virtue of the equalities w(x2) = w′(x2) = 0
and Eq. (4.8) we conclude that c′′′

0 (x2) = w′′(x2) > 0. Hence, c′
0(x) > 0 in

some neighborhood of x = x2. We obtain a contradiction with the assumption
of the lemma. �

Proposition 4.4. Consider a sequence of solutions (vn(x), cn(x)) ∈ K of prob-
lem (4.1)–(4.3) (with possibly different values of τ = τn and s = sn),
and suppose that (vn(x), cn(x)) → (v0(x), c0(x)) strongly in C1(R), where
(v0(x), c0(x)) is a solution of problem (4.1)–(4.3) with τ = τ0, s = s0. Then
(v0(x), c0(x)) ∈ K.

Proof. By virtue of Lemma 4.2, it is sufficient to verify the properties of the
function c0(x). We begin with the case where c′

n(x) < 0, x ∈ R for all n
sufficiently large. Then c′

0(x) ≤ 0, x ∈ R. We will check that this inequality
is strict. Suppose that this is not the case and c′

0(x0) = 0 for some x0. Then
c′′
0(x0) = 0, and it follows from Eq. (4.2) that c0(x0) = fτ0

(v0(x0)). We will
consider three different cases depending on the value of τ0.
• τ0 < 1/2. In this case, the function fτ0

(v) has a single maximum at
v = vm, f ′(v) > 0 for 0 ≤ v < vm, f ′(v) < 0 for vm < v ≤ vm (subscript τ0 is
omitted). Since c0(x0) ≤ c0(−∞) = f(0), then f ′(v0(x0)) < 0. Differentiating
Eq. (4.2), we get

D2c
′′′
0 (x0) = −c0(x0)(φ

′(v0(x0))(1 − c0(x0)) − ψ′(v0(x0)))v
′
0(x0)

= −c0(x0)v
′
0(x0)

(

φ′(v0(x0))
ψ(v0(x0))

φ(v0(x0))
− ψ′(v0(x0))

)

= −c0(x0)v
′
0(x0)f

′(v0(x0))φ(v0(x0)) > 0. (4.9)

We obtain a contradiction with the assertion that c0(x) is a non-increasing
function.
• τ0 > 1/2. In this case, f ′(v) < 0 for all 0 ≤ v ≤ v+. Therefore, f ′(v0(x0)) <
0, and this case is similar to the previous one.
• τ0 = 1/2. In this case, f(v) ≡ f(vm) for 0 ≤ v ≤ vm and f ′(v) < 0 for
vm < v < v+. If v0(x0) > vm, then f ′(v0(x0)) < 0, and this case is similar
to the previous ones. Suppose that v0(x0) ≤ vm. Since c0(−∞) = f(0) and
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c0(x0) = f(v0(x0)) = f(0), then c0(x) ≡ c0(x0) for x ≤ x0. Set z(x) =
−c′

0(x). Differentiating Eq. (4.2), we get

D2z
′′ + sz′ + a(x)z + b(x) = 0, (4.10)

where

a(x) = φ(v0(x))(1 − 2c0(x)) − ψ(v0(x)), b(x) = −c0(x)v′

0
(x)f ′(v0(x))φ(v0(x)).

Since z(x) ≥ 0, z(x) ≡ 0 for x ≤ x0, z(x) �≡ 0 in R, and b(x) ≥ 0, we obtain
a contradiction with the maximum principle.

In the remaining part of the proof, we consider the case where the func-
tions cn(x) have single maxima for all n sufficiently large. Hence, the corre-
sponding functions gn(v) also have single maxima at some v = vn. Without
loss of generality we can assume that vn → v0 for some v0 ∈ [0, v∗] (see
Lemma 4.1), and the limiting function g0(v) has a maximum at v = v0. We
will verify that g′

0(v) > 0 for 0 < v < v0 and g′
0(v) < 0 for v0 < v < v+.

• τ0 > 1/2. Due to the monotonicity of the function f(v), f(0) > f(v0).
Similar to Lemma 4.1, we conclude that f(v0) ≥ g0(v0). On the other hand,
f(0) = c0(−∞) ≤ maxx∈R c(x) = g0(v0). This contradiction shows that the
function c0(x) cannot have a maximum.
• τ0 = 1/2. If v0 ≤ vm, then this case is similar to the case τ0 = 1//2
considered above. If v0 > vm, then g0(v0) ≥ g0(0) = f(0) > f(v0). Therefore,
v = v0 cannot be a point of maximum of the function g0(v) (cf. Lemma 4.1).
• τ0 < 1/2. Let x0 be such that c0(x0) = maxx∈R c(x). Then c′

0(x) ≥ 0 for
x ≤ x0 and c′

0(x) ≤ 0 for x ≥ x0. We will prove the following two assertions.
• • Let us prove that c′

0(x) > 0 for x < x0. Suppose that this is not the
case and c′

0(x1) = 0 for some x1 < x0. Then c′′
0(x1) = 0, and from equation

(4.2) we conclude that c0(x1) = f(v0(x1)). Suppose, first, that v0(x1) < vm,
where vm is the point of maximum of the function f(v). Then f ′(v0(x1)) > 0.
Similar to (4.9), we get:

D2c
′′′
0 (x1) = −c0(x1)v

′
0(x1)f

′(v0(x1))φ(v0(x1)) < 0.

We obtain a contradiction with the assumption that the function c0(x) is non-
decreasing for x ≤ x0. Assume, next, that v0(x1) ≥ vm. Then g0(v0(x0)) ≥
g0(v0(x1)) = f(v0(x1)) > f(v0(x0)). Similar to Lemma 4.1 we can verify that
x = x0 cannot be the point of maximum of the function c0(x).
• • Let us now verify that c′

0(x) < 0 for x > x0. Suppose that this is not the
case and c′

0(x2) = 0 for some x2 > x0. Then c′′
0(x2) = 0, and from equation

(4.2) we conclude that c0(x2) = f(v0(x2)). Suppose, first, that v0(x2) > vm,
where vm is the point of maximum of the function f(v). Then f ′(v0(x2)) < 0,
and

D2c
′′′
0 (x2) = −c0(x2)v

′
0(x2)f

′(v0(x2))φ(v0(x2)) > 0.

We obtain a contradiction with the assumption that the function c0(x) is non-
increasing for x ≥ x0. Assume, next, that v0(x2) ≤ vm. Then g0(v0(x0)) ≥
g0(v0(x2)) = f(v0(x2)) > f(v0(x0)). Similar to Lemma 4.1, we can verify
that x = x0 cannot be the point of maximum of the function c0(x). This
contradiction completes the proof of the proposition. �
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4.2. The Set K is Separated from Other Solutions

In this section, we will prove the following property of the set K. If there is
a sequence of solutions (vn(x), cn(x)) of problem (4.1)–(4.3) (with possibly
different values of τ and s = sn), and (vn(x), cn(x)) → (v0(x), c0(x)) ∈ K
strongly in C1(R), then (vn(x), cn(x)) ∈ K for all n sufficiently large. This
property is crucial for a priori estimates of solutions. It shows that solutions
from the set K are separated from other solutions. For this purpose, we will
prove the following properties of solutions.

• P1. There exists x0 such that v′
n(x) > 0 for all x ≤ x0 and n sufficiently

large (Lemma 4.5).
• P2 There exists x1 such that v′

n(x) > 0, c′
n(x) < 0 for all x ≥ x1 and n

sufficiently large (Lemma 4.8).
• P3 Since vn(x) → v0(x) in C1(R) and v′

0(x) > 0 for x0 ≤ x ≤ x1, then
v′

n(x) > 0 for x0 ≤ x ≤ x1 and all n sufficiently large. Thus, v′
n(x) > 0 for all

x.
• P4 The functions cn(x) are monotonically decreasing for x ≤ x1 or they
have a single maximum (Lemma 4.9).

Lemma 4.5. Suppose that (vn(x), cn(x)) are solutions of system (4.1), (4.2)
with s = sn, τ = τn and limits (4.3) at infinities. Suppose, next, that these
functions converge strongly in C1(R) to a solution (v0(x), c0(x)) ∈ K of sys-
tem (4.1), (4.2) with s = s0, τ = τ0 as n → ∞, and sn → s0, τn → τ0. If x0

is such that c0(x) > k + ǫ for x ≤ x0 and some ǫ > 0, then v′
n(x) > 0 for

x ≤ x0 and all n sufficiently large.

Proof. The proof of the lemma does not depend on the value of τ ∈ [0, 1].
This subscript in the notation fτ will be omitted.

By virtue of the inequality f(0) > k, we can choose such ǫ > 0, that
f(0) − ǫ > k. Taking into account that c0(x) → f(0) as x → −∞, we can
choose such x0 that c0(x) ≥ f(0) − ǫ/2 for all x ≤ x0. Hence, c0(x) > k ≥
k(1 − v0(x)) for x ≤ x0. This inequality can be written as g0(v) > k(1 − v)
for 0 ≤ v ≤ v0, where the function g0(v) is such that c0(x) = g0(v0(x)) and
v0 = v0(x0). Since the curve (vn(x), cn(x)) on the plane (v, c) converges to
the curve (v, g0(v)) as n → ∞, then

cn(x) > k(1 − vn(x)), x ≤ x0 (4.11)

for all n sufficiently large.
Since v′

0(x0) > 0, then v′
n(x0) > 0 for all n sufficiently large. Further-

more, vn(x) → 0 as x → −∞. Suppose that the assertion of the lemma does
not hold. Then v′

n(x1) = 0 for some x1 < x0. From (4.1), we get

D1v
′′
n(x1) = −vn(x1)(k(1 − vn(x1)) − cn(x1)).

If vn(x1) > 0, then from (4.11) it follows that v′′
n(x1) > 0, and vn(x) does

not converge to 0 at −∞. Similarly, if vn(x1) < 0, then v′′
n(x1) < 0, and we

obtain a similar contradiction. Finally, if vn(x1) = 0, then vn(x) ≡ 0, and we
obtain a contradiction with the inequality v′

n(x0) > 0. �

We will use some auxiliary results to prove the property P2.
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Lemma 4.6. Consider the system

Du′′ + su′ + b(x)u = 0, (4.12)

where D is a diagonal matrix with positive diagonal elements, s is a constant,
b(x) is a square matrix with continuous elements bij(x), bij(x) ≥ 0 for i �= j,
b(x) → b0 as x → ∞ and the principal eigenvalue of the matrix b0 is negative.

Suppose that the solution u(x) of this system is such that u(x1) > 0 and
u(x) → 0 as x → ∞. If x1 is sufficiently large, then u(x) > 0 for all x ≥ x1.

Proof. Since the matrix b0 has non-negative off-diagonal elements and its
principal eigenvalue (eigenvalue with the maximal real part) is negative, then
there exists a positive vector p such that b0p < 0. Hence, we can choose x1

sufficiently large such that b(x)p < 0 for all x ≥ x1.
Suppose that at least one of the component of the solution becomes

negative for some x2 > x1. Then we can choose such positive constant k that
the function w(x) = u(x)+ kp satisfies the following properties: w(x) ≥ 0 for
all x ≥ x1, w(x1) > 0 and wi(x1) = 0 for some component wi. Moreover, this
function satisfies the equation

Dw′′ + sw′ + b(x)w − kb(x)p = 0. (4.13)

We obtain a contradiction in signs in the ith equation of this system at
x = x2. Indeed, wi(x2) = w′

i(x2) = 0, w′′
i (x2) ≥ 0, bij(x2)wj(x2) ≥ 0 for

j �= i, and −kb(x)p > 0 for all x ≥ x1 according to the choice of x1. This
contradiction proves the lemma. �

Corollary 4.7. Consider the system

Dw′′ + sw′ + F (w) = 0, (4.14)

where D is a diagonal matrix with positive diagonal elements, s is a constant,
and

∂Fi

∂wj
> 0, i �= j. (4.15)

Let w(x) be a solution of this system defined for x ≥ x1 and such that
w′(x1) < 0, w(x) → 0 as x → ∞. If the principal eigenvalue of the matrix
F ′(0) is negative, and x1 is sufficiently large, then w′(x) < 0 for all x ≥ x1.

The proof of this assertion follows directly from the previous lemma if we set
u(x) = −w′(x).

Lemma 4.8. Suppose that (vn(x), cn(x)) are solutions of system (4.1), (4.2)
with s = sn, τ = τn and limits (4.3) at infinities. Suppose, next, that these
functions converge strongly in C1(R) to a solution (v0(x), c0(x)) ∈ K of sys-
tem (4.1), (4.2) with s = s0, τ = τ0 as n → ∞, and sn → s0, τn → τ0.
If v′

0(x) > 0, c′
0(x) < 0 for all x ≥ x1 and some x1, and f ′(v) < 0 for

v ≥ v0(x1), then v′
n(x) > 0, c′

n(x) < 0 for all x ≥ x1 and n sufficiently large.

Proof. Consider the functions

F (v, c) = kv(1 − v) − cv, G(v, c) = φ(v)c(1 − c) − ψ(v)c.
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For 0 < v < 1, 0 < c < 1 we have ∂F
∂c < 0 . If G(v, c) = 0, then c = f(v) and

∂G

∂v
= φ′(v)c(1 − c) − ψ′(v)c = c

(

φ′(v)
ψ(v)

φ(v)
− ψ′(v)

)

= f(v)φ(v)f ′(v) < 0

for v > vm, where vm is the point of maximum of f(v).
After the change of variables v → v+ −v the system becomes monotone

(cf. (4.15)) in the vicinity of the limiting value v+, c+. The assertion of the
lemma follows from the previous corollary. �

By virtue of property P3, vn(x) is an increasing function for all x. Hence,
we can introduce the function c = gn(v) such that cn(x) = gn(vn(x)).

Lemma 4.9. Under the conditions of the previous lemma, suppose that
c′
0(x1) < 0. Then for all n sufficiently large the functions gn(v) possess the

following properties: gn(0) = fτ (0), g′
n(v0) < 0, where v0 = v0(x1), and gn(v)

either is monotonically decreasing in the interval 0 < v < v0 or it has a single
maximum.

Proof. The boundary condition gn(0) = fτ (0) is obviously satisfied. Since
c′
n(x) = g′

n(v)v′
n(x), then g′

n(v0) < 0. Let us verify that the functions gn(v)
are monotonically decreasing in the interval 0 ≤ v ≤ v0 or they have a single
maximum. The proof does not depend on the value of τ ∈ [0, 1], and this
subscript will be omitted.

To prove that the function gn(v) possesses the required property, we
will show that it cannot have a minimum. Suppose that a function gn(v)
has a minimum at some point v = v1, 0 < v1 < v0. Then gn(v1) ≥ f(v1).
Indeed, any extremum of the function gn(v)(= cn(x)) for which gn(v) < fn(v)
is a maximum (cf. Lemma 4.1). We will show that the assumption about
the existence of a minimum leads to a contradiction. Let v1 ≤ vm, where
vm is the point of maximum of the function f(v). Then we will show that
the function gn(v) cannot satisfy the boundary condition gn(0) = f(0). If
v1 ≤ vm is a minimum of the function g(v) (the subscript n is omitted),
then g(v1) ≥ f(v1) > f(0). To satisfy the equality g(0) = f(0), the function
g(v) should have a maximum at some v = v2 < v1. However, in this case,
g(v2) > g(v1) ≥ f(v1) > f(v2). Hence, v2 cannot be a point of maximum (cf.
Lemma 4.1).

Similarly, if v1 ≥ vm, then the condition g′(v0) < 0 cannot be satisfied.
Thus, the functions gn(v) cannot have minima in the interval 0 < v ≤ v0

for n sufficiently large. Therefore, they are monotonically decreasing, or they
have single maxima. �

We proved the following theorem.

Theorem 4.10. Suppose that (vn(x), cn(x)) are solutions of system (4.1), (4.2)
with τ = τn, s = sn and limits (4.3) at infinities. Suppose, next, that these
functions converge strongly in C1(R) to a solution (v0(x), c0(x)) ∈ K of sys-
tem (4.1), (4.2) with s = s0, τ = τ0 as n → ∞, and sn → s0, τn → τ0. Then
(vn(x), cn(x)) ∈ K for all n sufficiently large.

Let us note that the assumption on the function f(v) that it has a single
maximum is used in Lemma 4.9.
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5. A Priori Estimates

We will obtain a priori estimates of solutions from the set K in the weighted
Hölder space. Let us note first of all that they are bounded in the uniform
norm. Indeed, the component v(x) of the solution is an increasing function
with the limits (3.4). The component c(x) of the solution can be also mono-
tone or it has a single maximum. In the latter case, it admits an estimate
from above (Lemma 4.1). Similar to [9] (Chapter 3, Lemma 2.1) we can con-
clude that the solutions are uniformly bounded in C3(R). We continue with
the estimate of the wave speed.

Lemma 5.1. The speed s for which problem (3.2)–(3.4) has a solution in the
class K is bounded independently of τ .

Proof. Consider a solution (V (x), C(x)) ∈ K of problem (3.2)–(3.4). Since
V (x) is a monotonically increasing function, we can introduce a function
g(v) such that C(x) = g(V (x)). Substituting it into Eq. (3.2), we get the
equation

D1V
′′ + sV ′ + kV (1 − V − g(V )/k) = 0 , V (−∞) = 0, V (∞) = v+.

(5.1)

The wave speed for this equation is estimated from below by the minimal
(negative) wave speed s0 = −2

√
kD1 for the equation

D1V
′′ + sV ′ + kV (1 − V ) = 0.

To estimate the value of s from above, let us note that the function
G(v) = kv(1 − v − g(v)/k) is positive in some left half-neighborhood of the
point v+. Since G(v) is negative in a right half-neighborhood of v = 0, its
positiveness in the vicinity of v+ provides bistability of the equation. It also
follows from the fact that the solution of system (3.2), (3.3) converges to its
limiting value at infinity along the principal eigenvector (cf. [9], Chapter 3,
Theorem 2.1).

Let us choose some values v1 and v2 independent of τ and such that
v1 < v2 < v+. Denote by x1 and x2 such values that V (x1) = v1, V (x2) = v2.
Integrating Eq. (5.1) from x1 to x2, we get:

D1(V
′(x2) − V ′(x1)) + s(v2 − v1) < 0.

Since V ′(x2) > 0, then s < D1V
′(x1)/(v2 − v1). Taking into account that V ′

is bounded independently of s and of τ , we conclude that the wave speed is
bounded from above. �

We will now prove that the solutions are uniformly bounded in the
weighted space E1

µ. By virtue of the estimates of the derivatives of solutions,
it is sufficient to verify that the norm Cµ(R) is uniformly bounded. Let us
recall that solution w = (V,C) of problem (3.2)–(3.4) is represented in the
form w = u + η (Sect. 3).

Lemma 5.2. The estimate

sup
x∈R

|u(x)μ(x)| ≤ M, τ ∈ [0, 1] (5.2)
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holds for all solutions w = u+η of problem (3.2)–(3.4) from the class K. Here
μ(x) is the weight function, the constant M does not depend on solution and
on τ .

Proof. Set

Fτ (w) =

{

kV (1 − V ) − CV
φτ (V )C(1 − C) − ψτ (V )C

,

w = (V,C). Since all eigenvalues of the matrices F′
τ (w±) are located in the

half-plane Re λ ≤ −ǫ for some ǫ > 0, then solutions decay exponentially at
infinity. Moreover, there exist positive constants K, δ, σ independent of τ and
of solution such that

|w(x) − w+| ≤ Ke−δx , if |w(x) − w+| ≤ σ, (5.3)

|w(x) − w−| ≤ Keδx , if |w(x) − w−| ≤ σ. (5.4)

These inequalities mean that there are uniform exponential estimates of solu-
tions in the vicinity of their limiting values at infinity.

Denote by N+
τ (resp., N−

τ ) such values of x that the estimate (5.3)
(resp., (5.4)) holds for x ≥ N+

τ (resp., x ≤ N−
τ ) They can depend on the

value of τ . From (5.3), (5.4) we easily obtain the estimates

|u(x)μ(x)| ≤ M , x ≥ N+
τ , x ≤ N−

τ (5.5)

with some constant M independent of τ and of solution.
Suppose that |N+

τ | and |N−
τ | are bounded independently of τ ,

|N±
τ | ≤ K, τ ∈ [0, 1] (5.6)

for some positive constant K. Then, clearly, the required estimate holds for
all x:

|u(x)μ(x)| ≤ M , x ∈ R. (5.7)

Therefore, it remains to prove estimate (5.6). Suppose that it does not
hold, and at least one of these numbers tends to infinity as τ → τ0 ∈ [0, 1].
Consider, first, the case where the difference |N+

τ − N−
τ | remains bounded.

Since solutions w(x) = (V (x), C(x)) of problem (3.2)–(3.4) are invariant with
respect to translation in space, then the function wh(x) = w(x − h) is also a
solution for any real h. Set wτ (x) = w(x + N+

τ ). Then we have the following
estimates:

|wτ (x) − w+| ≤ Ke−δx , x ≥ 0 ; |wτ (x) − w−| ≤ Keδx ,

x ≤ N−
τ − N+

τ . (5.8)

Since |N+
τ − N−

τ | is uniformly bounded, then estimate (5.7) holds with a
constant M independent of τ .

Introducing functionalization of parameter, we consider the given func-
tional s∗(u) instead of the unknown wave speed sτ which depends on τ . The
value of the functional s∗(u(· + h)) depends on the shift h. Therefore, we
choose a single value of h such that

s∗(u(· + h)) = sτ (5.9)
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and, consequently, remove the invariance of solution with respect to transla-
tion. By virtue of a priori estimates of the wave speed, solution h of equation
(5.9) is uniformly bounded for all τ . Indeed, s∗(u(·+h)) → ±∞ as h → ±∞.
Hence, solutions w(x + h) and w(x + N+

τ ) differ by a final value of shift.
Consequently, estimate (5.7) for the latter implies a similar estimate for the
former.

Next, consider the case where

|N+
τ − N−

τ | → ∞ , τ → τ0. (5.10)

The functions wτ (x) = w(x+N+
τ ) satisfy the first estimate in (5.8). Due to the

definition of σ in (5.3), (5.4), |wτ (x)−w+| ≤ σ for x ≥ 0 and |wτ (x)−w−| ≤ σ
for x ≤ N−

τ − N+
τ . Assuming that σ is sufficiently small, we observe that the

sets |w − w+| ≤ σ and |w − w−| ≤ σ do not intersect. Therefore, there exists
a sequence xk such that xk → −∞ as k → ∞, and

|wτk
(xk) − w−| > σ. (5.11)

From the sequence wτk
we can choose a subsequence wτkn

locally con-
vergent to some limiting function w0(x). Clearly, it is a solution of problem
(3.2)–(3.4) with τ = τ0 and s = sτ0

. Moreover, w0(x) → w+ as x → ∞.
Since wτkn

∈ K, then w0 ∈ K. Hence, there exists a limit w∗ = w(−∞).
Furthermore, it follows from (5.11) that w∗ �= w−.

Let us recall that there are four zeros of the function Fτ (w): P0, P1, P2, P3.
If we exclude P1 = w− and P3 = w+, it remains P0 and P2. The former being
excluded by virtue of the monotonicity of solution (|w∗| ≥ |wτ0

(0)| = σ), we
get w∗ = P2.

Along with the functions wτ (x) = w(x + N+
τ ), we also consider the

functions ŵτ (x) = w(x + N−
τ ). Similar to the arguments above, we conclude

that there is a limiting solution ŵ0(x) of system (3.2), (3.3) for τ = τ0, s = sτ0
,

and this solution has the limits ŵ0(−∞) = w−, ŵ0(∞) = w∗ at infinity. Since
system (3.2), (3.3) can be reduced to a locally monotone system by a change
of variables for v∗ ≤ v ≤ v+, and the matrix F′(w∗) has a positive eigenvalue,
then the existence of the solution w0(x) implies that sτ0

> 0, while the
existence of the solution ŵ0 implies that sτ0

< 0 [9] (Chapter 3, Lemma 2.8).
This contradiction proves that (5.10) does not hold. Thus, estimate (5.7) is
proved. �

Theorem 5.3. The estimate

‖u‖E1
µ

≤ M , τ ∈ [0, 1], (5.12)

holds for all solutions w = u+η of problem (3.2)–(3.4) from the class K. Here
μ(x) is the weight function, the constant M does not depend on solution and
on τ .

The proof of the theorem follows from the previous lemma and from the
estimates of solutions in the norm C3(R).
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6. Existence of Solutions

6.1. Leray–Schauder Method

We consider the operator equation

Aτ (u) = 0, (6.1)

where the operator Aτ (u) : E1
µ → E2

µ is defined in Sect. 3. The homotopy
is constructed in such a way that A0(u) corresponds to the original problem
(1.3)–(1.5) and A1(u) to the model problem. To apply the Leray–Schauder
method, we need to verify two conditions: a priori estimates of solutions of
Eq. (6.1) in the space E1

µ and that the value of the topological degree for the
model operator is different from 0.

In the previous section, we obtained a priori estimates of solutions which
belong to the class K. However, we do not have estimates for other possible
solutions. Therefore, we need to modify the Leray–Schauder method in the
following way. Denote by B a ball in the space E1

µ which contains all solutions
from the class K. Since the operator Aτ (u) is proper with respect to both
variables u and τ [13], that is, the inverse image of the compact set is compact
in any bounded closed set, then the set of solutions S in B is compact.
Moreover, by virtue of the results of Sect. 4.1, the set S ∩ K is also compact.

For each solution u ∈ K, consider a ball br(u) of radius r and center u.
Set

Ωr = ∪u∈S∩Kbr(u).

If r is sufficiently small, then the set Ωr does not contain solutions u �∈ K.
Indeed, suppose that this is not true and there exists a sequence rn → 0
such that the corresponding sequence of solutions un belongs to the sets Ωrn

.
By virtue of compactness of the set of solution we conclude that there is a
subsequence of this sequence which converges in E1

µ to a solution from K.
This assertion contradicts Theorem 4.10.

Let us choose r small enough such that Ωr contains all solutions from
K and does not contain other solutions. Consider the topological degree
γ(Aτ ,Ωr). It is well defined since Aτ (u) �= 0 for u ∈ ∂Ωr. In the next sec-
tion we will show that the degree is different from 0 for the model problem,
γ(A1,Ωr) �= 0. Therefore, γ(A0,Ωr) �= 0, and equation A0(u) = 0 has a
solution in Ωr. Thus, Theorem 2.1 is proved.

6.2. Model Problem

We reduce the problem (1.3)–(1.5) to the problem (3.2)–(3.4) (τ = 1) for
which f1(v) is a monotonically decreasing function (Fig. 1, right), and equa-
tion

f1(v) = k(1 − v) (6.2)

has two solutions vu, v+ such that vu < v+.
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Theorem 6.1. Suppose that f ′
1(v) < 0 for v− ≤ v ≤ v+, f ′

1(v±) > k and
f ′
1(vu) < k. Then there exists a value of s for which system (1.3), (1.4) has a

solution (v(x), c(x)) with the limits

v(±∞) = v±, c(±∞) = f(v±). (6.3)

Moreover, the solution is monotone, v′(x) > 0, c′(x) < 0 for all x ∈ R, and
γ(A1,Ωr) = 1(see Sect. 6.1 for the definition of Ωr).

Proof. Since the function f1(v) is monotonically decreasing, then system
(3.2), (3.3) (τ = 1) can be reduced to a locally monotone system by the
change of variables v → 1 − v. The existence of monotone solutions for the
locally monotone systems is proved in [8,9] (Chapter 3, Theorem 1.1). More-
over, the value of the degree with respect to all monotone solutions equals 1.
Since for τ = 1 the class K contains only monotone solutions, we conclude
that γ(A1,Ωr) = 1. �

7. Discussion

We will discuss here some biological interpretations of the obtained results.
Let us recall that the ODE system (2.1), (2.2) corresponding to system
(1.1), (1.2) without diffusion has four stationary points: P0 = (0, 0), P1 =
(0, f(0)), P2 = (vu, f(vu)), P3 = (v+, f(v+)). Under the conditions consid-
ered above, the points P0 and P2 are unstable, the points P1 and P3 are
stable. The point P1 corresponds to a cured infection where immune cells are
present and infection (virus) is absent. The point P3 corresponds to a chronic
infection with a high level of virus and low level of immune cells.

Depending on the values of parameters, starting in the vicinity of the
point P0, solution of system (2.1), (2.2) can converge either to the cured state
P1 or to the chronic infection state P3. Once approaching one of these stable
equilibria, the solution stays there. Transition between points P1 and P3 in
system (2.1), (2.2) is not possible.

The main result of this work states that there exists a direct transition
between these two stable equilibria in the distributed (space dependent) sys-
tem. This transition is realized by means of a travelling wave solution. Thus,
an infected tissue can switch from a cured acute infection to a chronic infec-
tion or vice versa without passing through the P0 equilibrium (no infection,
no immune cells). Existence of such transition is not a priori clear, and it
required sophisticated mathematical methods to prove it.

The direction of this transition, that is, to a cured state or to a chronic
infection, is determined by the sign of the wave speed. It depends on the values
of parameters but it cannot be found analytically. Its analytical estimation
or approximation will require further investigations.

Another question for future analysis concerns the existence of transi-
tions between points P0 and P1, P0 and P3 in the space dependent system
(travelling waves). We can expect that they exist because they exist for the
ODE system, but their existence is not yet proved.
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