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Abstract: A statistical analysis of 295 cloud samples collected at the Puy de Dôme station in France 

(PUY), covering the period 2001–2018, was conducted using principal component analysis (PCA), 

agglomerative hierarchical clustering (AHC), and partial least squares (PLS) regression. Our model 

classified the cloud water samples on the basis of their chemical concentrations and of the 

dynamical history of their air masses estimated with back-trajectory calculations. The statistical 

analysis split our dataset into two sets, i.e., the first set characterized by westerly air masses and 

marine characteristics, with high concentrations of sea salts and the second set having air masses 

originating from the northeastern sector and the “continental” zone, with high concentrations of 

potentially anthropogenic ions. It appears from our dataset that the influence of cloud 

microphysics remains minor at PUY as compared with the impact of the air mass history, i.e., 

physicochemical processes, such as multiphase reactivity. 

Keywords: Puy de Dôme station (PUY); cloud chemistry and physics; air mass history; oceanic vs. 

continental influences; partial least squares (PLS) regression 

 

1. Introduction 

The chemical composition of cloud water has revealed the high complexity of this medium [1], 

resulting from the cloud scavenging of soluble gases, the dissolution of the soluble fraction of the 

aerosol acting as cloud condensation nuclei (CCN), and from aqueous phase reactions [2]. 

Additionally, recent studies have shown that microbial activity altered the cloud water chemical 

composition [3–5]. Therefore, cloud water is composed of a mixture of complex inorganic and 

organic compounds with strong oxidants which have been shown to drive aqueous phase 

transformations in the presence of solar radiation [6,7]. 

Studies devoted to the analysis of the chemical composition and to its variability have aimed to 

better understand several atmospheric physicochemical processes such as droplet activation and 

growth, production and consumption of chemical compounds, as well as transport and deposition 
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by precipitation of pollutants. Many field studies have reported in cloud production of low-volatility 

low-volatility products [8,9]. The production of strong acids such as sulfates has been highlighted in 

the cloud aqueous phase leading to acidification, a process that controls both the phase partitioning 

and chemical reaction rates [10] and is responsible for the widely known phenomenon of acid rain 

[11,12]. Oxidative cloud processing was suggested to form secondary organic aerosol (aqSOA) 

through functionalization of dissolved organic compounds [13]. These aqueous phase 

transformations alter particle properties in terms of mass, chemical composition, hygroscopicity, 

and oxidation state [14], also affecting their CCN ability. Variability of solute concentrations together 

together with drop size distribution have been observed in many field studies, revealing variations 

of the CCN composition with particle size and the dependency of some processes (dissolution of 

soluble gases and condensational growth) on drop size [15–17]. In cloud scavenging efficiencies have 

have also been investigated by simultaneously measuring cloud water concentrations and interstitial 

interstitial particulate or gaseous concentrations [18–20]. Deviations, up to a few orders of 

magnitude from Henry’s law equilibrium, have been reported for carbonyl compounds with low 

effective water solubilities [21,22] which suggested a more efficient scavenging of organic 

compounds by cloud water than expected. Deposition through precipitation of the scavenged 

chemical compounds removes large amounts of organic and inorganic pollutants from the 

atmosphere providing a significant contribution of nutrients (positive inputs) and pollutants 

(negative inputs) in various ecosystems [23,24]. 

Cloud water studies have been conducted over various continents [1] including Europe [25–28], 

Asia [7,29–31], North and South America [1,32–34], as well as in contrasted environments (polluted, 

marine, and remote). Significant developments have been implemented to enhance the collection 

efficiency of cloud collectors [35–37] and to better characterize the molecular composition by 

targeted or non-targeted methods, often using mass spectrometry [3,20,38]. Those studies mostly 

investigated the temporal variability of cloud chemical composition, as well as the transport of air 

masses and the physicochemical processes [30,33]. However, most of these field campaigns were 

performed over short-term periods due, in part, to the inherent difficulty of collecting clouds. A few 

sites have continuously collected cloud water over long-term periods such as the Puy de Dôme 

station in France (PUY) [39], Mt. Brocken in Germany [40], Whiteface Mountain in USA [32], and Mt. 

Oyama [41] and Mt. Tai in China [31]. These mountain sites offer facilities to sample clouds under 

optimal conditions and to conserve quality homogeneity of chemical analysis on a long-term basis. 

These stations have a relatively high altitude, i.e., hundreds of meters above the surrounding plains, 

where cloud formation occurs, optimizing collection efficiency and sampling air masses from varied 

origins, throughout the year. 

The present study aims at analyzing a long-term dataset of the chemical composition of cloud 

water samples at PUY. This remote site is influenced by long-range transport [42,43] and the proposed 

study has the objective to provide information on the physicochemical variability of air masses on a 

regional scale. For this, cloud water chemical composition is used to constrain a multivariate statistical 

analysis and propose a chemical classification of the sampled clouds. Then, this classification is 

combined to a numerical analysis using the CAT model (computing advection-interpolation of 

atmospheric parameters and trajectory tool) [39,44]. This model simulates the atmospheric transport of 

air masses and provides zone and sector matrices. Thereby, in regards to the basic back-trajectory 

methods [45], the CAT model brings additional information, and completes more robust statistical 

analyses, such as partial least squares (PLS) regressions between chemical and air mass history 

matrices. A specific point is addressed by the comparison of a previous cloud classification at PUY [46] 

and the identification of PUY’s specificities, with similar studies [33,45,47–49]. Monitoring over 18 

years also reveals some trends, both in terms of chemical concentrations and history of air masses that 

are discussed in this paper. Such a long-term monitoring avoids numerous statistical biases 

encountered in short-time field campaigns. The statistical information on the variability of chemical 

composition as a function of environmental factors (i.e., source regions) is also helpful for evaluating 

the extent of oceanic vs. continental influences and to define environmental contrasted scenarios for 
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modeling purposes. Finally, the effect of cloud physics or air mass history on the chemical composition 

of clouds sampled at PUY is estimated. 

2. Experiments 

2.1. Cloud Sampling 

Sampling was performed at PUY (45.7722° N, 2.9648° E), which belongs to several international 

networks as follows: EMEP (the European Monitoring and Evaluation Programme), GAW (Global 

Atmosphere Watch), and ACTRIS (Aerosols, Clouds, and Trace Gases Research Infrastructure). The 

observatory chalet is on top of a monogenetic volcano rising above the surrounding area with a 

height of 1465 m. PUY is part of the Chaîne des Puys, a north–south oriented chain of extinct 

volcanoes in the Massif Central (France), and to the west, an agricultural plain to the ocean (300 km 

apart). The urban area of Clermont-Ferrand and its surrounding suburbs (285,000 inhabitants) is 

situated 16 km east and 1000 m lower than the station. PUY is able to characterize air masses from 

various histories, coming from the boundary layer or in the free troposphere, varying as a function 

of the seasons and time of the day. The top of the mountain is frequently in cloudy conditions, on 

average 30% of the time per year, with higher occurrences during winter and autumn [50]. This 

makes PUY a reference site to study and sample cloud properties.  

The cloud sampling dataset used in this study covered the period 2001–2018, with an average 

sampling time of 3 h and an average sampling volume of 75 mL. Non-precipitating cloud droplets 

were sampled using cloud collectors, as described previously for PUY cloud studies [46]. Cloud 

droplets, larger than 7 μm (cut-off diameter) [51], were collected by impaction onto a rectangular 

aluminum plate. Most of the time, droplets were collected directly as a liquid, and more rarely, they 

froze upon impaction (supercooled conditions). The water was transferred at room temperature, 

either directly or after a short melting period into glass vials. The aluminum collectors were cleaned 

and sterilized by autoclaving. Samples were collected in sterilized bottles and cloud water was 

filtered (0.20 μm nylon filter to eliminate microorganisms and particles). The majority of the 

sampled clouds resulted from frontal systems that mainly occurred during autumn, spring, and 

winter; these meteorological conditions enabled sampling clouds over long-time durations. 

2.2. PuyCloud Database 

The PuyCloud observation system deals with the monitoring of the biological, microphysical, 

and chemical properties of clouds. Biological and chemical analyses are performed in collaboration 

with the ICCF (Institute of chemistry of Clermont-Ferrand). It is part of the French CO-PDD 

(Cézeaux-Aulnat-Opme-Puy De Dôme) multisite platform fully described by Baray et al. [39] in 

terms of instrumentations and data availability and widely employed [22,25,52–55]. 

The meteorological parameters that are monitored at PUY include the following: wind speed 

and direction, temperature, pressure, and relative humidity. Cloud microphysical properties, i.e., 

liquid water content (LWC) and effective droplets radius (re), are measured with a Gerber particle 

volume monitor, model 100 (PVM-100).  

Physicochemical parameters are measured immediately after sampling (pH, conductivity, and 

redox potential). The concentrations of the major organic and inorganic ions (acetic, formic, 

succinic, malonic and oxalic acids, Ca2+, K+, Mg2+, Na+, NH4+, Cl−, SO42−, and NO3−) are measured by 

ion chromatography, using a DIONEX DX-320. The H2O2 and iron content, which are important 

parameters in the evaluation of the cloud oxidative capacity, are also determined. The 

spectrofluorimetric method based on the reactivity of p-hydroxyphenilacetic acid with horseradish 

peroxidase [53] was used to measure the concentration of hydrogen peroxide in cloud water. The 

Fe(II) concentration was measured by UV-visible spectroscopy at 562 nm, using the method 

developed by Stookey [56] based on the rapid complexation of iron with ferrozine. A detailed 

description of the physicochemical parameters and chemical analysis has been provided in Bianco 

et al. [6]. 
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Between 2001 and 2018, 141 cloud events have been sampled at PUY, representing 295 

individual samples (896 h of sampling), including 72 samples in spring, 21 samples in summer, 75 

samples in fall, and 127 samples in winter. Table S1 indicates the physicochemical analysis 

performed for each cloud event. This cloud water chemical characterization was systematically 

performed for the last 20 years. Additional cloud water chemical and biological analysis have been 

developed during this last decade using targeted or global methods [3,22,25,52,54,57–61]. 

2.3. Dynamical Analysis 

The trajectory approach is commonly used to identify source areas of air pollutants, based on 

conditional probability fields including back trajectory calculations, land cover, and meteorological 

data [62,63]. In the present work a dynamical analysis using the CAT model is performed to identify 

source areas of chemical compounds detected in cloud samples. 

The CAT model is the recent evolution of the Lagrangian model LACYTRAJ [44]. CAT is a 

three-dimensional (3D) forward/backward kinematic trajectory code using initialization wind fields 

from the recent reanalysis ECMWF ERA-5 [64]. A cluster of starting back trajectory points is defined 

by the user and advected by the model using a bilinear interpolation for horizontal wind fields and 

time and a log-linear interpolation for vertical wind fields. The CAT model has already been used to 

determine the air masses arriving in PUY on the basis of calculations of two sets of 24 h back 

trajectories per day over a two-year period (2015–2016) [39]. 

In this study, sets of 45 back trajectories were calculated every hour during the cloud sampling 

in volume +/− 0.1° in latitude and longitude. The vertical starting altitude of the back trajectories was 

deduced from the pressure measured at the Puy de Dôme summit considering the hydrostatic 

equilibrium. Trajectories were calculated between the summit and 50 m below (corresponding to 4 

hPa) to take into account the ascent from the slopes of PUY of the air masses arriving below the 

observatory. The temporal resolution was 15 min and the total duration was 72 h. 

The CAT model was initialized with ECMWF ERA-5 wind fields of any temporal and spatial 

resolution. For this work, wind fields were extracted every 3 h with a spatial resolution of 0.5° in 

latitude (55 km) and longitude (40 km), on 23 vertical pressure levels between 200 and 1000 hPa. 

CAT integrated a topography matrix at a resolution of around 10 km [65].  

In addition to the wind parameters, the boundary layer height was also extracted from the 

ECMWF ERA-5 reanalysis in the same horizontal resolution, and spatially and temporally 

interpolated on all the trajectory points.  

The trajectory calculation phase was followed by a dynamical characterization analysis phase. 

This phase consisted of flagging the cloud samples on the base of the results of the trajectories 

calculations.  

The history of air masses was modeled by counting the number of trajectory points in each of 

the following nine geographic areas: north-northeast (NNE), east-northeast (ENE), east-southeast 

(ESE), south-southeast (SSE), south-southwest (SSW), west-southwest (WSW), west-northwest 

(WNW) and north-northwest (NNW), named “sector” hereafter, and one nearby area. The latter was 

defined because it was not possible to determine the origin for the closest points to PUY, in a radius 

of 0.5°, because of the spatial resolution of the wind fields. The percentage of points located over the 

sea and the continental surfaces was, then, determined using the topography file. If the altitude of 

the topography interpolated on each trajectory point is 0, this point is considered to be above the sea, 

and therefore corresponds to the “sea surface” zone. Otherwise it is the “continental surface” zone. 

Finally, we separated the continental and sea zones vertically, using the altitude of the atmospheric 

boundary layer height (ABLH) interpolated on the trajectory points (data summarized in Table S1, 

blue columns). 

All of these characteristics were, then, compiled for each cloud sampling, providing a so-called 

“zone matrix” and a so-called “sector matrix”. Thus, the matrices indicated, for each cloud sample, 

the distribution of the sectors or the zones crossed by their 72-hour backward trajectory. The 

relationship between the air mass history and the cloud composition was the subject of a statistical 

analysis, as described in Section 2.4. 
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2.4. Statistical Analysis 

A principal component analysis (PCA) was performed using the concentrations of both organic 

and inorganic ions (Ca2+, K+, Mg2+, Na+, NH4+, Cl−, NO3−, SO42−, acetate, formate, malonate, oxalate, 

and succinate). The aim was to determine the most relevant variables to establish chemical 

categories (categories which would, then, be put in parallel with microphysical parameters or air 

mass history matrices). However, some chemical analyses were lacking and some samples presented 

missing values. Missing values were not replaced by the mean values to fully represent the 

variability of the dataset and to avoid overfitting [66]. Thus, samples, that were not fully 

characterized, were not considered in the statistical analysis. 

Then, we performed numerous PCAs, and the maximum of information, gathered on the first 

two factors, was obtained with three ions with predominant marine sources (Cl−, Mg2+, and Na+) and 

three ions with major sources from the continental surface (mostly anthropogenic ones) (NH4+, SO42−, 

and NO3−). Hence, by keeping six inorganic ions, as similar studies [33,46,47], we fulfilled the best 

balance between samples and variables (i.e., increasing the number of variables means decreasing 

the number of samples). 

The PCA type that was used during the computations was the Spearman’s correlations (more 

appropriate when running the PCA on variables with different distributions).  

Then, we performed agglomerative hierarchical clustering (AHC), an iterative classification 

method, the aim of which was to make up homogeneous groups of objects (categories) on the basis 

of their description by a set of variables (chemical variables, herein) describing the dissimilarity 

between the objects (cloud events, herein). The AHC produced a dendrogram which showed the 

progressive grouping of the data. To calculate the dissimilarity between samples, we applied the 

common Ward’s agglomeration method (which minimized the within-group inertia) using 

Euclidean distance. The data were centered-reduced, to avoid variables with strong variance which 

unduly weighed on the results. The truncation level was automatically defined on the base of the 

entropy, and therefore the number of categories to retain.  

Then, a PLS regression was performed to establish the correlations between the chemical 

parameters and the air masses history parameters. The Mann–Whitney and Kruskal–Wallis 

nonparametric tests were carried out to validate significant differences between two and among 

several data groups, respectively. Two air mass categories were declared to be different when the 

probability for the groups to have identical data distribution was lower than 5% (p-value < 0.05). 

These tests were chosen because the population from which the sample was extracted did not follow 

a normal distribution, according to the Shapiro–Wilk normality test.  

This statistical analysis was performed using Excel XLSTAT software [67]. 

3. Results and Discussion 

The multivariate statistical analysis was performed on 295 cloud samples collected at PUY, 

starting with PCA and AHC, in order to classify them according to their chemical composition. 

Then, these results were compared to the previous PUY study [46]. Then, we investigated, by using 

PLS regression, the relationships among these chemical data and the matrices provided by the CAT 

model, both on the zones (“sea and continental surfaces”) and on the cardinal sectors crossed by the 

air masses. Finally, we compared the respective influences of the air mass history and microphysics 

on the chemical composition of clouds. 

3.1. Clusterization of Cloud Waters at PUY 

Data relative to Cl−, Mg2+, Na+, NH4+, NO3−, and SO42−, presented in Table S1, were analyzed by 

AHC and PCA to obtain categories based on ion concentration dissimilarities. 

3.1.1. Chemical Categories 

AHC was used to categorize cloud samples based on the long-term monitoring of their chemical 

composition. The AHC algorithm successfully grouped all the observations with a satisfactory 



Atmosphere 2020, 11, x FOR PEER REVIEW 6 of 24 

 

cophenetic correlation (correlation coefficient between the dissimilarity and the Euclidean distance 

matrices) of 0.619 (Figure 1). Indeed, the closer the correlation to 1, the better the quality of the 

clustering. The dotted line in Figure 1 represents the degree of truncation (dissimilarity = 91.16) of the 

dendrogram used for creating categories and was automatically chosen based on the entropy level. 

Given the small difference in dissimilarity (Figure 1) between the light blue category (dissimilarity = 

88.91) and the aggregate of the yellow and red categories (dissimilarity = 93.41), the AHC could be 

almost as robust with three or five categories. Nevertheless, these four AHC categories are consistent 

with our previous study [46]. Categories 1, 2, 3, and 4 consist of 113, 31, 55 and 9 clouds, respectively. 

The ACH profile plot (Figure 2), represents the four categories determined from the six main 

inorganic ions (Cl−, Mg2+, Na+, NH4+, NO3−, and SO42−). The light blue category with low ion 

concentrations is named “Marine” according to its air mass history (i.e., the time spent by this air 

mass above the “sea surface”, detailed in Section 3.2). This category is the most homogeneous. This 

is confirmed by its significantly lower within-class variance (179.86), as shown in Figure 1. The 

“marine” category is also the main category (113 objects), which is consistent with the remoteness of 

the PUY. The dark blue category is characterized by high concentrations of Na+, Cl−, and Mg2+ and 

its air mass history, and thus called “highly marine”. PUY is located more than 300 km from the 

Atlantic shore. Nevertheless, at a synoptic scale, the air masses are mainly transported from the 

Ocean to PUY with no relief between (as confirmed hereafter by the CAT model). Hence, this 

category, with 31 objects, would appear to be counterintuitively modest. This suggests that some 

western clouds (which could have been classified as “highly marine”) have either precipitated or 

become diluted (increase in liquid water content), thereby decreasing concentration. Then, these 

western clouds are classified “marine”, hence, the importance of this category (i.e., a category with 

a marine history, but without salt). 

 

Figure 1. Dendrogram representing the agglomerative hierarchical clustering (AHC) based on 

dissimilarities using the Ward’s method on 6 inorganic ion concentrations. The 208 cloud samples 

(without chemical missing values) were assigned to one of four automatically established categories 

(dissimilarities values displayed in bold). The six ions are the same as those used for principal 

component analysis (PCA). 
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Figure 2. Profile plot established by the AHC from the six main inorganic ions (Na+, Cl−, Mg2+, SO42−, 

NH4+, and NO3−). The Y axis displays the normalized (([Cl−] − [Cl−]min)⁄([Cl−]max − [Cl−]min)) ion 

concentrations of the category centroids. 

In red, the smallest category (nine objects), referred to as “polluted” in Figure 1 displays peak 

concentrations for SO42−, NH4+, and NO3−, suggesting the air mass passed over an urbanized area. 

Below these maxima, in yellow, the “continental” category with 55 objects stands out. It should be 

noted, with only nine objects, the polluted category is statistically less robust, and could have been 

merged with the “continental” category (see dissimilarities in Figure 1), and regarded as the 

extreme SO42−, NH4+, and NO3− values of the category. Conversely, the “highly marine” category 

could have been split (see dissimilarities in Figure 1), according to their SO42− concentration (not 

shown). 

Because the computed p-value in the Kruskal–Wallis test (Figure 3) is lower than the 

significance level alpha = 0.05, the distribution of ions (Cl−, Mg2+, Na+, NH4+, NO3−, and SO42−) 

concentration can be accepted as significantly different between each category. The samples do not 

come from the same population. We observe, in particular, high sea salts concentrations (Cl−, Mg2+, 

and Na+) for both “marine” and “highly marine” categories, and high concentrations of potentially 

anthropogenic ions (NH4+, NO3−, and SO42−) [68–72] for both “polluted” and “continental” categories 

(Table S2). 
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Figure 3. Distribution of inorganic ions (Cl−, Mg2+, Na+, NH4+, NO3, and SO42−) of the cloud waters 

sampled at PUY for each air mass category (marine, highly marine, continental, and polluted). The 

number of analyzed samples is 208 (samples with missing data were removed). One box plot per 

category is displayed for each ion. The mean values are displayed as red crosses. The central 

horizontal bars are the medians. The lower and upper limits of the box are the first and third 

quartiles, respectively. The ends of whiskers are 10th and 90th percentiles. Black diamonds are 

minimum and maximum for each species. The box plot’s horizontal width has no statistical meaning. 

Statistical differences (Kruskal–Wallis test; p value < 0.05) between groups are indicated above box 

plots. 
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3.1.2. Variable Validation 

A PCA was computed on a Spearman correlation matrix using the concentrations of the ions (Cl−, 

Mg2+, Na+, NH4+, NO3−, and SO42−). The PCA correlation circle (Figure 4a) provides evidence that Cl−, 

Mg2+, and Na+ are strongly correlated (see correlation matrix in Table S3, r(Na+, Cl-) = 0.82, r(Mg2+, Cl−) = 

0.77, and r(Na+, Mg2+) = 0.77); as well as NH4+, NO3−, and SO42− (r(NO3−, NH4+) = 0.77; r(NO3−, SO42−) = 

0.75; and r(NH4−, SO42− = 0.78); while these two sets are practically uncorrelated, except Cl− and SO42− 

(r(Cl−, SO42−) = 0.49), suggesting the presence of anthropogenic chlorine and sea salt sulphate. 

 
 

(a) (b) 

Figure 4. Principal component analysis (PCA) on a Spearman correlation chemical matrix. (a) 

Correlation circle and projection of the 6 ion concentrations; (b) Two-dimensional map of the colored 

observations according to the AHC category. The XLstat software automatically displayed 

confidence ellipses (interval 95%) around AHC categories, and resized points with squared cosines 

of the observations (i.e., the larger the point, the more it is related to a factor, F1 or F2). 

In this PCA (Figure 4), the first two factors represent 85.57% of the initial variability of the 

data; the PCA is robust, with no information hidden in the next four factors (see squared cosines of 

the variables in Table S4). The horizontal axis (F1) is linked to the total ion concentration and 

represents 58.16% of the information, while the vertical axis (F2: 27.4%) is linked to the 

concentrations of NH4+, NO3−, and SO42− in positive, and Cl−, Mg2+, and Na+ in negative. The PCA is 

consistent with the AHC. Coherently, in Figure 4b, the AHC “marine” category stands out on the 

left (F1 < 0) of the chart, the “highly marine” category at the bottom right (F1 > 0 and F2 < 0), the 

“continental” and the “polluted” categories at the top right (F1 > 0 and F2 > 0). 

3.1.3. Evolution Since the 2001–2011 Study [46] 

In this study, the statistical analysis evolves as compared to our previous work. First, the AHC 

is performed with a larger number of samples (208 versus 134) and variables considered for the 

statistical analysis are different, i.e., pH is not taken into account and Mg2+ is added to the variables, 

as explained above. We removed cloud events with missing values. The ACP Spearman’s 

correlations replaced Pearson’s. However, the distribution of categories is fairly unchanged; among 

the 208 cloud events used in the AHC, 164 (78.8%) were clustered in a category similarly named in 

the 2001–2011 study [46] (see Table S1). 

The samples with high Cl−, Mg2+, and Na+ concentrations are still gathered in the so-called 

“highly marine” (HM) category. However, the present HM category is an expanded version of the 

former “highly marine” (HM_01–11) category, with lower mean concentrations of Cl− and Na+ 

([Na+]HM = 192 µM vs. [Na+]HM_01–11 = 311 µM and [Cl−]HM = 163 µM vs. [Cl−]HM_01–11 = 232 µM). The 

average ratio Cl−/Na+ of this updated “HM” category is higher 1.22 vs. 1.06. Among the 31 cloud 

events in HM, only 10 were clustered in “HM_01–11”. 
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The “marine” category is barely larger in percentage than the former one (marine_01–11), with 

lower Na+, Cl-, and SO42− concentrations ([Na+]Marine = 23.3 µM vs. [Na+]Marine_01–11 = 32 µM, [Cl−]Marine = 

20.5 µM vs. [Cl−] Marine_01–11 =30 µM, and [SO42−] Marine = 12.8 µM vs. [SO42−] Marine_01–11 = 28 µM). NH4+ and 

NO3− are equivalent. Among the 113 cloud events in “marine”, 111 are clustered in “marine_01–11“. 

Conversely, the “continental” category, is slightly smaller in percentage than the former one 

(continental_01–11), 26% of the samples vs. 34%, although the mean SO42− concentration increases 

([SO42−]Continental = 46.6 µM vs. [SO42−]Continental_01–11 = 94 µM). The other concentrations remain almost 

unchanged. Among the 35 cloud events in “continental”, 35 were clustered in “continental_01–11”. 

In both studies, 4% of cloud samples are in the “polluted” category, while the mean ion 

concentrations are markedly lower. Among the nine cloud events in “polluted”, eight are clustered 

in “polluted_01–11“. 

In summary, the “marine” category slightly increases in percentage, as the mean ion 

concentration of the “continental” and “polluted” categories dwindle, in particular for the 

anthropogenic ions. “Highly marine” is the category that has expanded the most. This trend is not 

fully explained by the minor statistical processing adjustments (see Section 2.4). We compared (not 

shown) the two methods on the first 2001–2011 dataset, without observing any significant 

difference. 

We performed a Mann–Whitney test (Figure 5) on the clouds sampled from 2001 to 2011 

(period covered by our previous work [46]) and since then. It appears that NH4+, NO3−, and SO42− 

concentrations are significantly lower on this second period (2012–2018), i.e., ([NH4+]01–11 = 96 µM vs. 

[NH4+]12–18 = 78 µM, [NO3−]01–11 = 76 µM vs. [NO3−]12–18 = 44 µM, and [SO42−]01–11 = 31 µM vs. [SO42−]12–18 

= 27 µM (p-values are 0.027, 0.0009, and 0.009, respectively). The concentration of sea salts does not 

evolve significantly, but the changes on anthropogenic classes (mentioned above) drive the changes 

observed in the “marine” and “highly marine” categories. Category terminology will receive 

additional justifications in Section 3.2. 

 

Figure 5. Mann–Whitney nonparametric tests on 154 clouds sampled from 2001 to 2011, the period 

covered by the previous study [46], and 88 clouds sampled from 2012 to 2018. We compare, for both 

periods, NH4+, NO3−, and SO42−concentrations. The p-values of all pairwise comparisons are 

significant at level alpha = 0.05. 

3.2. Influence of Air Mass History at PUY 

This section is devoted to the correlation between the concentration of the inorganic ions and the 

air mass history. During their atmospheric transports, the air masses received chemical species under 

various forms (gases and particles) from various sources. This strongly depended on the altitude of 

the air masses. During the transport, chemicals could also undergo multiphasic chemical 

transformations, as well as dry or wet deposition. The objective, here, is to evaluate the effect of the 

history of air masses on the chemical composition of clouds. To this end, PLS regressions are 

performed and the results are validated with nonparametric tests (Kruskal–Wallis and 

Mann–Whitney tests). 
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Figure 6. (a) Natural logarithm of the number of CAT (computing advection-interpolation of 

atmospheric parameters and trajectory tool) back trajectories points arriving at the summit of the 

PUY station per square of 0.8° size for “highly marine” (top left), “marine” (bottom left), “polluted” 

(top right), and “continental” (bottom right) categories. The black lines separate the different sectors. 

Distributions of the parameters evaluated by the CAT model for all the 295 cloud events; (b) 

Percentage of the time spent over the “sea surface” (blue) and “continental surface” (brown), in pale 

blue and pale brown below the atmospheric boundary layer height (<ABLH) and dark above in the 

free troposphere (>ABLH); (c) Percentage of the time spent in the 8 forty-five degrees sectors (NNE, 

ENE, ESE, SSE, SSW, WSW, WNW and NNW). One box plot per zone/sector is displayed. The black 

crosses correspond to the means. The central horizontal bars are the medians. The lower and upper 

limits of the box are the first and third quartiles, respectively. The ends of whiskers are 10th and 

90th percentiles. Black diamonds are minimum and maximum for each species. 

As described in Section 2.4, the CAT model provides two matrices. The “zone matrix” contains 

information about the time spent by air masses over “continental surface” or “sea surface”, in the 

atmospheric boundary layer (<ABLH) or in the free troposphere (>ABLH). The “sector matrix” 

contains information about the time spent by air masses in the eight forty-five degrees sectors 

(NNE, ENE, ESE, SSE, SSW, WSW, WNW and NNW; see Figure S1c). Figure 6a represents the 

distribution of these parameters for all the cloud events. Despite the distance from the coast (300 
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Km), the strong maritime influence at PUY is obvious (Figure 6a). Over a 72-hour backward 

trajectory, on average, an air mass spends almost two days over the “sea surface”. Coherently, PUY 

is characterized by prevailing strong west and north winds (WSW, WNW, NNW, and NNE), with 

average percentages of time spent over these four main sectors of 23, 44, 14, and 12%, respectively 

(Figure 6b). 

To perform the PLS analysis (Figure 7), the matrix of the explanatory variables (the “Xs”) is 

composed of the “sector matrix” and the “zone matrix”. The matrix of the dependent variables (the 

“Ys”) is the chemical matrix. As explained in Section 2.3, we restricted our statistical analysis to the 

concentration of six chemical compounds to avoid excessive loss of information and overfitting in 

the statistical analyses. 

 

Figure 7. Partial least squares (PLS) chart with t component on axes t1 and t2. The correlations map 

superimposes the “Xs”, the “Ys” and the cloud events. The dependent variables from the chemical 

matrix are symbolized by a black “Y”; the explanatory variables from the “sector matrix” by a black 

“X”; and from the “zone matrix” by a blue, brown, light or dark “X”. The 208 cloud events are 

gathered by AHC category (red circle, “marine”; dark blue diamond, “highly marine”; yellow 

square, “continental”; and red triangle, “polluted”). 

The index of the predictive quality of the models is quite low (Q2 = 0.1, ideally it should be 

close to 1) suggesting weak correlations. It is well known that cloud composition depends on many 

other parameters than the chosen explanatory variables, related to the air mass history calculated by 

the model. Indeed, cloud chemical composition depends foremost on local microphysics [17,37,73], 
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proximity to sources [33,48,74,75], biological activity [4,5,61], seasonal cycles [30,76–78], and diurnal 

cycles [79]. 

Figure 7 displays numerous intricacies between chemical parameters and the air mass history. 

First, some zone variables are weakly correlated to some sector variables (cf. PLS correlation matrix 

in Table S5), “sea surface” (>ABLH) with WNW), “sea surface” (<ABLH) with WSW), “continental 

surface” (>ABLH) with ENE (too few observations to be interpretable on the graph) and more 

robustly, “continental surface” (>ABLH) with ENE (R = 0.7).  

The “polluted” category in red (Figure 7) and, to a lesser extent, the “continental” category in 

yellow are on the left of the display, toward the NNE sector and the “continental surface” (>ABLH) 

zone. The “highly marine” category in dark blue and, to a lesser extent, the “marine” category in 

light blue are drawn toward the WNW/WSW sectors and the “sea surface” (>ABLH) zone. 

We performed an AHC on the “sector matrix” and obtained three clusters. Then, we reran the 

previous PLS. The simplified correlation matrix (Table 1) highlights the link between “sea surface” 

zones west sector and “continental surface” zones and northeast sector. We do not keep this 

clusterization in the main PLS to avoid a loss of information. 

Table 1. PLS correlation matrix between clustered sector variables and zone variables. Highest 

correlation displayed in red and highest anticorrelation in blue. 

Variables 
“Sea Surface”  

(<ABLH) 

“Sea Surface” 

(>ABLH) 

“Continental Surface” 

(<ABLH) 

“Continental Surface” 

(>ABLH) 

WSW_WNW 0.35 0.38 −0.27 −0.72 

NNW_NNE_ENE −0.33 −0.44 0.31 0.76 

ESE_SSE_SSW −0.03 −0.02 −0.04 0.07 

The simplified correlation matrix (Table 2) displays weak correlations. However, the link 

between sea salts (Cl−, Mg2+, and Na+) and both the “sea surface” (>ABLH) zone and the 

WSW/WNW clustered sectors is noticeable. The same applies to ions of potentially anthropogenic 

origin (NH4+, NO3−, and SO42−) and both the “continental surface” (>ABLH) zone and the 

NNW/NNE/ENE sector. For both marine and continental ions, the correlations are higher above the 

atmospheric boundary layer height (>ABLH), confirming PUY is surely influenced by long-range 

transport [42,43]. 

Table 2. PLS correlation matrix between chemical variables and both zone and clustered sector 

variables. Highest correlation displayed in dark red and highest anticorrelation in dark blue. 

Variables 

“Sea 

Surface”  

(<ABLH) 

“Sea 

Surface” 

(>ABLH) 

“Continental 

Surface” 

(<ABLH) 

“Continental 

Surface” 

(>ABLH) 

WSW 

WNW 

NNW 

NNE 

ENE 

ESE 

SSE 

SSW 

Cl− 0.03 0.14 −0.12 −0.16 0.16 −0.13 −0.10 

Mg2+ 0.06 0.14 −0.13 −0.19 0.18 −0.15 −0.10 

Na+ −0.09 0.25 −0.16 −0.16 0.20 −0.18 −0.08 

NH4+ −0.28 −0.03 0.03 0.31 −0.30 0.30 0.01 

NO3− −0.25 −0.26 0.15 0.51 −0.46 0.51 −0.04 

SO42− −0.18 −0.06 0.12 0.21 −0.35 0.30 0.09 

In order to statistically validate these observations, we performed the Kruskal–Wallis test and 

compared the category distribution within each zone (Figure S1a) and main sectors (Figure S1b). As 

the computed p-values are lower than the significance level alpha = 0.05, we accept that the main 

sectors (WSW, WNW, NNW, NNE, and ENE) and the zones (“sea surface” (>ABLH), “sea surface” 

(<ABLH), and “continental surface” (>ABLH)) are significantly different for each category. The 

samples do not come from the same population. Only the p-value of “continental surface” (>ABLH) is 

greater than the significance level alpha = 0.05 (p-value = 0.062). The difference between the categories 

according to the sector distribution can also be observed on the map (Figure S1c) provided by the CAT 

model. The history of air masses significantly influences the chemical composition of clouds.  



Atmosphere 2020, 11, x FOR PEER REVIEW 14 of 24 

 

3.3. Influence of Cloud Microphysics at PUY 

The air mass history can influence solute concentration by scavenging aerosol particles and 

gaseous species (as discussed in Section 3.2). This strongly depends on the CCN concentration 

related to the physicochemical properties of aerosol particles (size distribution and chemical 

composition) and on the gas phase chemical composition and corresponding phase equilibria. 

Microphysical cloud conditions such as liquid water content (LWC) and effective droplets radius (re) 

can also perturb solution concentration variability, as well as chemical reactions occurring within 

cloud waters. This section is devoted to the possible relationships between LWC and chemical 

variables. 

For this, a PLS analysis was performed with the LWC and the re, as the matrix of the 

explanatory variables (the “Xs”), and the chemical matrix (the “Ys”). The PLS chart is presented in 

Figure 8, and Table S6 reports the correlation matrix between these variables. There are weak 

correlations between LWC and ion concentrations. The strongest anticorrelation is between NH4+ 

and re, i.e., r(NH4+, re) = −0.37. This analysis clearly demonstrates that at PUY, microphysical 

properties of the sampled clouds are almost not correlated with their chemical composition. This 

could be explained by the type of clouds that are collected; the majority are frontal clouds which 

were formed well before their arrival at the top of the mountain and which present a low variability 

in their microphysical properties.  

 

Figure 8. Chemistry/Microphysics PLS chart of cloud samples with t component on axes t1 and t2. 

Correlations map allows superimposing the “Xs” and the “Ys” (observations are removed for 

clarity). PLS performed on 73 cloud events. The dependent variables from the chemical matrix are 

displayed in blue, the explanatory variables from the microphysics matrix in red. 

A supplementary analysis (PCA) has also been performed (Table S7), demonstrating that 

correlations between microphysical variables and air mass history parameters (Section 3.2) are 

negligible. Thus, the influence of air mass history on the chemical composition of clouds cannot be 

attributed to the variability of microphysical parameters. In other words, there is an influence of 

microphysics, but it is statistically identical, whatever the zones or the sectors crossed by the air 

mass. 

To remove any influence of LWC variation, cloud water loadings (CWLs) are commonly 

calculated to evaluate the solute content per volume of air. The statistical analysis, in this study, 

were conducted on solute concentrations in cloud water to get more robust results, because 

microphysical parameters are not always available, especially under winter conditions. However, 

LWC and re variations are not highly variable (Figure S2) at PUY, and CWL patterns resemble those 
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of solute concentrations in cloud waters (Figure S3). This suggests that for clouds sampled at PUY, 

the air mass history can better explain the variability of cloud water solute concentrations than LWC 

variations. 

A decrease of the solute concentrations from continental origin (NO3−, SO42−, and NH4+) was 

observed between the periods 2001–2011 and 2012–2018, as mentioned in Section 3.1.3. In addition, a 

low decrease of its mean value (from 0.31 to 0.27 g·m−3) suggests that the CWLs for these species also 

significantly decreased. This trend could be explained by the aerological evolution highlighted by 

the CAT model and requires further investigation. 

Previous field studies have investigated the dependency of cloud chemical composition with 

microphysical parameters [16,80–82]. It has been shown, for sites more exposed to anthropogenic 

emissions, that LWC could modulate solute concentrations. For example, clouds freshly formed by 

orography can have their chemical composition modulated by cloud microphysics [7,19,73]. 

Anthropic mean cloud water concentrations at PUY are notably low ([NH4+] = 91 µM, [NO3−] = 70 

µM, and [SO42−] = 27 µM, see Table S2) as compared with the literature data [19]. Polluted events are 

exceptionally observed at PUY and most likely originate from afar (northeast France, several 

hundred kilometers away). If we consider the synoptic scale, we should see higher concentrations 

of NH4+, NO3−, and SO42−; however, these ions are involved in chemical and photochemical reactions 

[83–86]. Hence, more information on the chemical aging of the air masses is needed (chemical 

characterization in progress). Moreover, such a long-term monitoring, with varied air masses, 

smooths the microphysics (LWC and re) influence (Figure S2). Cloud water is a complex matrix 

resulting from the interaction of many factors. Nevertheless, it appears that the air mass history, 

despite reduced correlations, remains the prevailing parameter, with either western and oceanic 

clouds or northeastern anthropogenic clouds. 

4. Conclusions 

In this study, statistical analyses (AHC and PCA) were carried out on 208 cloud samples 

collected at the Puy de Dôme station (France) between 2001 and 2018, which resulted in clustering 

the cloud samples according to their chemical properties (concentrations of inorganic ions from 

marine and continental origins) into four categories as follows: “highly marine”, “marine”, 

“continental”, and “polluted”. Despite an evolution of the statistical treatment to classify the clouds 

samples, this work confirms those established in a previous study by Deguillaume et al. [46] for 

clouds sampled between 2001 and 2011. A change between the relative proportions of categories is 

however noticed and attributed to a significant decrease in the NH4+, NO3−, and SO42− concentrations 

during the second period (2012–2018) of cloud sampling. 

CAT models the history of the air masses arriving at PUY, providing for each air mass the time 

spent above the eight cardinal sectors and above continental or sea surfaces. The CAT model 

specifies whether the air mass is in a free troposphere or in an atmospheric boundary layer. From 

these in silico zone and sector matrices and in situ chemical characteristics, PLS analysis highlights 

two main relationships between air mass origins and ion concentrations. A type of air mass comes 

predominantly from western sectors and from the “sea surface” (> ABLH) zone, with the highest 

concentrations of sea salts (Cl−, Mg2+, and Na+). A total of 31 cloud samples are gathered in the 

“highly marine” AHC category, which are characteristic of this air mass. Slightly linked to the 

latter, the “marine” AHC category, which is named for its air mass history and its low ion 

concentrations, is the most important (113 cloud samples) and the most “homogeneous”. The 

second main air mass type arrives from the northeast sector and from the “continental surface” (> 

ABLH) zone, with the highest concentrations of potentially anthropogenic ions (NH4+, NO3-, and 

SO42−). Only nine cloud samples are grouped in the “polluted” AHC category, characteristic of this 

air mass. With less extreme values and 55 cloud samples, the “continental” category represents the 

body of this set. 

Finally, the influence of cloud microphysical properties (LWC and re) on the cloud water 

composition is investigated using PLS analysis in a similar way. This indicates no robust statistical 

correlations between cloud microphysics and cloud water chemical composition. This suggests that 
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cloud chemical composition at PUY is influenced by air mass history which includes several 

physicochemical processes (CCN physical and chemical processes, mass transfer of soluble species, 

multiphase reactivity, etc.).  

Clearly, this study highlights parameters that could drive the chemical composition of clouds at 

PUY; this statement cannot be generalized to other observation sites presenting different 

environmental scenarios. However, in a remote site, it appears that without major and immediate 

urban or marine influence, an air mass coming from the ocean or from a polluted area would be 

observed more or less loaded, according to complex biophysicochemical processes. In addition, 

much of the oceanic influence (i.e., Cl−, Mg2+, and Na+ concentrations) seems to decrease quickly 

(78% of the clouds coming from the ocean appear “cleaned”), and much of the anthropic influence 

seems more persistent (NH4+, NO3 , and SO42− concentrations) which remain significant. 

The PUY site is a reference European station for the study of gases, aerosols, and clouds. 

International field campaigns have been conducted there in the past and future campaigns would 

especially target cloud biophysicochemical processes. Cloud waters collected at PUY for various air 

mass histories also serve for laboratory investigations that consider the following: (1) characterizing 

the complex chemical composition and its environmental variability by innovative analytical 

methods, and (2) quantifying photochemical and biological transformations occurring in this 

complex liquid medium. Cloud field investigations performed at PUY also help to build relevant 

chemical scenarios that help to better constrain cloud chemistry models [87]. For the dynamical 

frame, the CAT model makes it possible to give an overview of the air mass history; this helps to 

constrain cloud chemistry models but also makes it possible to compare the PUY station to other 

observatories where cloud studies are conducted. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/, Figure S1: Category 

distribution within each zone (a) and sector (b), Figure S2: LWC distribution at PUY, Figure S3: Comparison of 

normalized concentrations and normalized CWLs, Table S1: PuyCloud data (“TableS1.xlsm”), Table S2: Ion 

concentrations of the categories; Table S3: Spearman chemical correlation matrix of PCA, Table S4: Squared 

cosines of the variables, Table S5: Squared cosines of the variables (sectors, zones, and chemistry), Table S6: PLS 

correlation matrix between microphysics and chemistry, Table S7: PCA correlation matrix between 

microphysics and parameters related to air mass history. 
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