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M Check for updates

Paternal and maternal epigenomes undergo marked changes after fertilization'. Recent
epigenomic studies have revealed the unusual chromatin landscapes that are presentin

oocytes, spermand early preimplantation embryos, including atypical patterns of
histone modifications®* and differences in chromosome organization and accessibility,
bothin gametes®® and after fertilization®®'°. However, these studies have led to very
different conclusions: the global absence of local topological-associated domains
(TADs) in gametes and their appearance in the embryo®® versus the pre-existence of
TADs and loops in the zygote®". The questions of whether parental structures can be
inherited in the newly formed embryo and how these structures might relate to allele-
specific gene regulation remain open. Here we map genomic interactions for each
parental genome (including the X chromosome), using an optimized single-cell high-
throughput chromosome conformation capture (HiC) protocol?, during
preimplantation in the mouse. We integrate chromosome organization with allelic
expression states and chromatin marks, and reveal that higher-order chromatin
structure after fertilization coincides with an allele-specific enrichment of methylation
of histone H3 atlysine 27. These early parental-specific domains correlate with gene
repression and participate in parentally biased gene expression—includingin recently
described, transiently imprinted loci**. We also find TADs that arise in a non-parental-
specific manner during asecond wave of genome assembly. These de novo domains are
associated with active chromatin. Finally, we obtain insights into the relationship
between TADs and gene expression by investigating structural changes to the paternal
X chromosome before and during X chromosome inactivation in preimplantation
female embryos®. We find that TADs are lost as genes become silenced on the paternal
X chromosome but linger in regions that escape X chromosome inactivation. These
findings demonstrate the complex dynamics of three-dimensional genome
organization and gene expression during early development.

We performed allele-specific single-cell HiC, modified from previous
studies™, onsingle blastomeres (at the 1-, 2-,4-, 8- and 64-cell stages, as
well as oocytes) from highly polymorphicF, hybrid embryos that were
obtained by crossing female Mus musculus domesticus (C57Bl/6)) with
male Mus musculus castaneus CAST/Ei)) (Fig.1a, b). After excluding cells
with poor data quality (Methods, Extended Data Fig. 1a), we used the
relative coverage of the two X chromosomes to investigate sex-specific
differences beyond autosomes (Extended Data Fig. 1b). Finally, we
used cell cycle phasing® to remove cells in the pre-M and M phases,
in which chromosomes lose their organization into compartments
and/or domains®™'® (Extended Data Fig. 1c—€). Looking first at the total

contacts (thatis, not splitbetween alleles), we detected the formation
of TAD-like domains, with clear boundaries that appeared at specific
stages of development (Extended DataFig. 1f). This was confirmed by
DNA fluorescence in situ hybridization (FISH) on three-dimensional
(3D) preserved embryos using intra- or interdomain-specific probes
(Extended Data Fig. 2).

Asymmetric chromosome architecture

Previous studies have investigated the dynamics of TADs in mouse
embryos on the basis of TAD atlases defined in embryonic stem cells,
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Fig.1|Single-cell HiC approach to studying chromosome organizationin
preimplantation embryos in the mouse. a, Scheme of the single-cell HiC
method onmouse F,embryos. b, Timeline of embryo collection at selected
stages. The numbers of blastomeres after quality-filtering and sex assignment
areindicated (crefersto cell stage). EGA, embryonic genome activation; XCI, X
chromosome inactivation. ¢, Number of domains at different stages, onthe
maternal (red) or paternal genome (blue).d, Clustering of domain dynamics
(rows) through stages (columns). Colour scale indicates contact enrichments

and have not attempted to identify any alternative, embryo-specific
domains®®™, Our allelic data revealed that parental genomes display
anotably asymmetric structural organization before the eight-cell
stage; the maternal genome displays most of the domains called at the
one-and two-cell stages (Fig.1c). We detected two independent gains
indomain number—the first at the two-cell stage, and the second at the
eight-cell stage. The second round of domain formation at the eight-cell
stage correlated with a previously reported progressive acquisition
of TADs®? (Extended Data Fig. 3a). To better capture the dynamics of
allelic domain organization, we quantified the contact enrichment
inside domains (Methods) for both parental genomes at each stage and
performed anunsupervised clustering (Fig.1d, Extended Data Fig. 3a,
b). We found that domains fallinto three main categories. The first cat-
egory (clusters1-3) comprises parentally biased preformed domains,
which are present as early as the one-cell stage and show a bias for the
maternal (Fig. 1e, left) or paternal genome (Fig. 1e, middle). Most of
these domains (thosein clusters1and 3) disappear by the 4-cell stage,
but a subset of maternally preformed domains (cluster 2) becomes
balanced by the blastocyst stage (64-cell stage). A second category
(clusters4 and 5) of domain exhibits amore-transient bias for one allele,
and generally has a weaker structure. In the third set (clusters 6-9),
domains are acquired symmetrically on the two parental genomes at
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different stages after embryonic genome activation (Fig. 1e, right), as
previously described®’ (Extended Data Fig. 3¢).

We also assessed whether these dynamics were discernible insingle
cells, and were not an effect of the evaluation on pseudo-bulk data.
Notably, the quantification of domain contactsin single cells was suf-
ficient to capture the developmental trajectories of early embryos
(Fig. 1f, Extended Data Fig. 3d-i), as well as capturing the dynamics of
the clustersthat weidentified in the pseudo-bulk data (Fig.1g, Extended
DataFig. 3d-i).

In conclusion, our results identify parent-of-origin-specific levels of
chromosome organization as early as the 1-cell stage that are mostly
resolved as the 2 genomes mature towards the 64-cell stage, except
for cluster 2. These data reconcile those of previous studies*®®, and
provide insights into the early differential organization of the two
parental genomes.

Parental domains and histone modification

To evaluate whether this unusual parental asymmetry in structure
might be linked to specific chromatin states, we integrated our data
with chromatin immunoprecipitation and sequencing (ChIP-seq)
data for histone modifications from early embryos'”®, Notably,
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parental-specific early domains (clusters 1-3) coincide with large
accumulations of the Polycomb-associated mark, trimethylation of
histone H3 at Lys27 (H3K27me3); the strongest enrichment of this mark
isassociated with the maternal genome, whereas the de novo-formed
domains (clusters 6-9) are depleted for this mark (Fig. 2a, b, Extended
Data Fig. 4a-e). Whereas H3K27me3 domains are maintained up to
the eight-cell stage and diminish thereafter (Fig. 2c), the structural
domains arelost or transformed by the four-cell stage—concomitantly
with a transient gain in the H3K4me3 mark (Fig. 2c, Extended Data
Fig. 4f). We note that the enrichment of H3K27me3 occurs during
oogenesis (Extended Data Fig. 4g) and that the domains of cluster 2
appear as early as postnatal day 5, but not in sperm (Extended Data
Fig.4h).

Parentally preformed domains also exhibit interactions between
domains similar to the patterns of Aand B compartments (Fig. 2d). We
found that the parentally preformed domains form allele-specific B-like
compartments at the two-cell stage (Fig. 2e, Extended Data Fig. 4i, j).
These domains also display stronger interactions between domains at
the 2-cell stage than do the de novo domains at the 64-cell stage (Fig. 2f,
Extended DataFig. 4k). Parentally preformed domains are depleted for
CTCF motifs flanking their borders (Extended Data Fig. 4i), which points
towards anindependency for this factor (as has previously been shown
for compartments'). Altogether, these results suggest that parental-
specific domains might form local compartments associated with the
Polycomb-repressive mark after fertilization, which later dissolve into
the classical A and B compartments (Fig. 2g).

Parental domains and transientimprint

To evaluate how the allele-specific dynamics of chromosome organi-
zation relate to gene expression, we examined previously published
RNA-sequencing data*® obtained from equivalent F, hybrid preim-
plantationembryos. We found that parentally preformed domains are
associated with generally lower gene expression (Fig. 3a, top, Extended
Data Fig. 5a) and an average lower expression on the structured allele
(Fig.3a, bottom), as well as a higher frequency of strongly biased genes
(Extended DataFig.5b). Gene ontology analysis revealed that silenced
genes within early preformed clusters are significantly enriched for
terms associated with tissue morphogenesis, such as neurogenesis
or osteogenesis (Extended Data Fig. 5¢), the expression of which is
required only at late developmental stages. Conversely, symmetric
denovo clusters were predominantly enriched ingenes that drive the
patterning of the embryo at preimplantation (such as cell cycle, lineage
specification, metabolism and gene regulation).

Maternally preformed domains encompass most genes that have pre-
viously been described as transiently maternally imprinted*? (19 out
of 27 genes), such as the X inactivation centre locus (Fig. 3b, Extended
DataFig. 6a, b).Indeed, at the two-cell stage Xistis encompassedina
maternal-specific domain, the left border of which coincides with the
Xist TAD that has previously been described in embryonic stem cells?;
the right border of this maternal-specific domain is slightly shifted
withrespect to the previously described Xist TAD, and excludes the
Xist transactivator Rlim (Extended Data Fig. 6¢). Accordingly, Xist is
maternally repressed, whereas the adjacent Rlim is kept expressed
on the maternal allele and becomes silenced upon X chromosome
inactivation® (Fig. 3c). We noticed a similar pattern of shifting from
maternal imprinted domains at the two-cell stage to TADs at the blas-
tocyst stages for other transiently imprinted genes, such as Tle3, Encl
and Mbn[2 (Extended Data Fig. 6d-h).

To investigate the importance of such domains for imprinted gene
regulation, we focused on the maternal 3D domain spanning the Xist
locus and engineered genetic deletions around the /px and Ftxloci,
within aregion that has previously been proposed to be sufficient
for imprinted X chromosome inactivation? (Fig. 3d). Jpx is a putative
regulator of Xist**. We found that mice with a deletion encompassing
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Jpx are viable, and that normal expression of Xist occurs in these mice
(Fig.3e, Extended DataFig. 6i,j). Whereas Ftx deletion alone is dispen-
sable for imprinted X chromosome inactivation in preimplantation
embryos?, the maternal transmission of the deletion containing Jpx
and Ftx strongly compromised female viability (5 4/px -Ftx/wild-type

Xistlocus (female cells only were pooled; n=43 at the 2-cell stage, n=83 at the
64-cellstage). c, Allele-specific expression of Rlim and Xist from the 2-cell stage
tothe 64-cell stage.d, Scheme of the Xinactivation centre and of the CRISPR
deletions that we engineered. ESC, embryonicstemcell. e, Genotype
distribution after maternal transmission of Jpx deletion (n=85 pups). WT, wild
type.f, Genotype distribution after maternal transmission of Jpx and Ftx
deletion (4) (n=46 pups).

female mice out of 46 pupsreceived the deleted allele, corresponding
to 11% transmission) and no viable male could be obtained (0% trans-
mission) (Fig. 3f). Taken together, our analysis identifies a minimal
control region for imprinting in proximity to Xist, and opens up new
possibilities for testing other transient imprint regions.
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Features of imprinted X inactivation

Indifferentiated female cells, the inactive X chromosome is organized
into two megadomains rather than into A and B compartments, and
displays amarked weakening of TADs?*%; however, little isknown of the
dynamics of this organization during development. Pooling only female
cells, we found that the paternal X chromosome displays a strong deficit
in domains compared to its maternal counterpart (Fig. 4a). Whereas
preformed maternal domains are lost, domains that are formed de novo
become weaker on the paternal genome by the blastocyst stage, with
the exception of a small subset of domains (Extended Data Fig. 7a).
Comparing the dynamics of structural domains with those of gene
expression, we found that early silenced loci on the paternal X chromo-
some show a marked loss of domain strength only after the eight-cell
stage (thatis, after silencinginitiation), and domains that contain late-
silenced genes display little structural change (although imprinted
Xchromosomeinactivationis largely complete) (Fig.4b, c). Although
we cannot formally exclude that this might be due to differences in
sensitivity between RNA sequencing and single-cell HiC, these results
suggest that the loss of TAD structure on the paternal X chromosome
would follow or accompany, rather than precede, gene silencing.
Using 3D modelling of chromosomes, we also found that early
silenced genes are localized more at the centre of the paternal X chro-
mosome whereas escapeestend tobelocated atits periphery (Extended
DataFig.7b), similar to differentiated cells®®. However, megadomains
donotappearonthe paternal X chromosome (Fig. 4d) despite a higher
colocalization of intradomain probes by DNA FISH (Fig. 4e), which
suggestsaglobal compaction of the inactive paternal X chromosome.
Three-dimensional modelling confirmed that the paternal X chro-
mosome was substantially smaller (by approximately a third) than
its maternal homologue at the 64-cell stage (Fig. 4f) and adopted a
more globular shape (whereas the maternal X chromosome is more
elongated) (Fig. 4g), as has previously been reported in somatic cells®.

Conclusions

Here we show that higher-order chromatin structure matures from
parental-specific and early repressive compartments towards a progres-
sive establishment of TADs in early development in the mouse (Fig. 2g).
This developmental switch might illustrate the autonomous mecha-
nisms at play—cohesin-dependent and -independent—that have previ-
ously been observed for the 3D organization of the genome? and that
mightalsoreflect the unusual chromatinlandscape and nuclear organi-
zation of the early embryo, compared to later developmental stages"*°.
Early compartments are Polycomb-marked and are accompanied by
contrastingallelicgene-expression states. These parentally preformed
repressive domains may be important in counterbalancing genome-
wide embryonic genome activation for transiently imprinted genes such
as Tle3 (the dose of which affects the pluripotency programs™) or Xist
(whichis central to the process of gene dose compensationin females®).
Our study also illustrates that, after embryonic genome activation,
structures tend to be TAD-like and their appearanceis generally linked to
active chromatin states. In the case of the paternal X chromosome, the
loss of TAD structure during X chromosomeinactivationis alate event
thatseemsto follow—rather than precede—genesilencing. Furthermore,
we find that thereis progressive compaction of the paternal X chromo-
some, but no megadomain formation, by the blastocyst stage. Local
domains are maintained only across escapeeloci, suggesting thatlocal
structure might require an active chromatin state and/or transcription.

Overall, our study provides broad insights into the intricate inter-
play between chromosome folding and parental gene activity with the
developmental potential of the early embryo.

146 | Nature | Vol 580 | 2 April 2020

Online content

Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code
availability are available at https://doi.org/10.1038/s41586-020-2125-z.

1. Burton, A. & Torres-Padilla, M.-E. Chromatin dynamics in the regulation of cell fate
allocation during early embryogenesis. Nat. Rev. Mol. Cell Biol. 15, 723-735 (2014).

2. Wu, J. etal. The landscape of accessible chromatin in mammalian preimplantation
embryos. Nature 534, 652-657 (2016).

3. Dahl, J. A. etal. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-
to-zygotic transition. Nature 537, 548-552 (2016).

4.  Liu, X. et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-
implantation embryos. Nature 537, 558-562 (2016).

5. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at
oocyte-to-zygote transition. Nature 544, 110-114 (2017).

6.  Battulin, N. et al. Comparison of the three-dimensional organization of sperm and
fibroblast genomes using the Hi-C approach. Genome Biol. 16, 77 (2015).

7. Jung, Y. H. etal. Chromatin states in mouse sperm correlate with embryonic and adult
regulatory landscapes. Cell Rep. 18, 1366-1382 (2017).

8.  Ke, Y. etal. 3D chromatin structures of mature gametes and structural reprogramming
during mammalian embryogenesis. Cell 170, 367-381.e20 (2017).

9. Du, Z. etal. Allelic reprogramming of 3D chromatin architecture during early mammalian
development. Nature 547, 232-235 (2017).

10.  Wu, J. et al. Chromatin analysis in human early development reveals epigenetic transition
during ZGA. Nature 557, 256-260 (2018).

1.  Gassler, J. et al. A mechanism of cohesin-dependent loop extrusion organizes zygotic
genome architecture. EMBO J. 36, 3600-3618 (2017).

12.  Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure.
Nature 502, 59-64 (2013).

13.  Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell
resolution. Nature 547, 61-67 (2017).

14. Inoue, A., Jiang, L., Lu, F., Suzuki, T. & Zhang, Y. Maternal H3K27me3 controls DNA
methylation-independent imprinting. Nature 547, 419-424 (2017).

15.  Okamoto, I, Otte, A. P., Allis, C. D., Reinberg, D. & Heard, E. Epigenetic dynamics of
imprinted X inactivation during early mouse development. Science 303, 644-649
(2004).

16.  Naumova, N. et al. Organization of the mitotic chromosome. Science 342, 948-953
(2013).

17.  Zheng, H. et al. Resetting epigenetic memory by reprogramming of histone modifications
in mammals. Mol. Cell 63,1066-1079 (2016).

18. Zhang, B. et al. Allelic reprogramming of the histone modification H3K4me3 in early
mammalian development. Nature 537, 553-557 (2016).

19. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome
domains from genomic compartmentalization. Cell 169, 930-944.e22 (2017).

20. Borensztein, M. et al. Xist-dependent imprinted X inactivation and the early
developmental consequences of its failure. Nat. Struct. Mol. Biol. 24, 226-233 (2017).

21.  Inoue, A., Jiang, L., Lu, F. & Zhang, Y. Genomic imprinting of Xist by maternal H3K27me3.
Genes Dev. 31,1927-1932 (2017).

22. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation
centre. Nature 485, 381-385 (2012).

23. Okamoto, I. et al. Evidence for de novo imprinted X-chromosome inactivation
independent of meiotic inactivation in mice. Nature 438, 369-373 (2005).

24. Tian, D., Sun, S. & Lee, J. T. The long noncoding RNA, Jpx, is a molecular switch for X
chromosome inactivation. Cell 143, 390-403 (2010).

25. Soma, M., Fujihara, Y., Okabe, M., Ishino, F. & Kobayashi, S. Ftx is dispensable for imprinted
X-chromosome inactivation in preimplantation mouse embryos. Sci. Rep. 4, 5181(2014).

26. Giorgetti, L. et al. Structural organization of the inactive X chromosome in the mouse.
Nature 535, 575-579 (2016).

27. Deng, X. et al. Bipartite structure of the inactive mouse X chromosome. Genome Biol. 16,
152 (2015).

28. Chaumelil, J., Le Baccon, P., Wutz, A. & Heard, E. A novel role for Xist RNA in the formation
of a repressive nuclear compartment into which genes are recruited when silenced.
Genes Dev. 20, 2223-2237 (2006).

29. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by
cohesin removal. Nature 551, 51-56 (2017).

30. Borsos, M. et al. Genome-lamina interactions are established de novo in the early mouse
embryo. Nature 569, 729-733 (2019).

31. Laing, A.F., Lowell, S. & Brickman, J. M. Gro/TLE enables embryonic stem cell
differentiation by repressing pluripotent gene expression. Dev. Biol. 397, 56-66 (2015).

32. Galupa, R. & Heard, E. X-chromosome inactivation: a crossroads between chromosome
architecture and gene regulation. Annu. Rev. Genet. 52, 535-566 (2018).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020


https://doi.org/10.1038/s41586-020-2125-z

Methods

Datareporting

No statistical methods were used to predetermine sample size. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Mouse embryo collection, single-cell dissociation and
formaldehyde fixation

Five-week-old female C57BL/6) mice were purchased from Charles
River. Animal care and use for this study were performedinaccordance
with the recommendations of the European community (2010/63/
UE). All experimental protocols were approved by the ethics commit-
tee of the Institut Curie CEEA-IC118 under the number APAFIS#8812-
2017020611033784v2, given by national authority in compliance with
theinternational guidelines. When stated, intraperitoneal injection of
51U pregnant mare’s serumgonadotropin, followed 46 h later by injec-
tion of 51U human gonadotropin, were applied to induce ovulation
of female mice. DNA FISH was performed on embryos collected from
superovulated C57BL/6) (B6) female mice (except for the blastocyst
stage), mated with C57BL/6) (B6) male mice. The single-cell HiC pro-
tocol was applied to blastomeres of embryos collected from crosses
between C57BL/6) (B6) female mice and CAST/Ei) male mice. Inthe case
of the one-cell, two-cell and four-cell stages, some embryos were col-
lected after female superovulation. Embryos were collected from the
reproductive tracts in M2 medium at defined time periods according
to mating and/or hCG administration (given in this order): 14 h or 21
h for 1-cell stage (pronuclear stage 3 or 4), 37 h or 44 h for late 2-cell
stage, 48 h or 55 h for 4-cell stage, 55 h or 62 h for 8-cell stage and 80
h for blastocyst stages (approximately 60 to 64 cells) (64-cell stage).
B6 pure oocytes were collected 15 hafter hCGinjection. Embryos were
includedinthe analyses when they showed anormal morphology and
the correct number of blastomeres for their developmental stage. Zona
pellucidaand polar bodies were removed using acid Tyrode’s solution
and/or gentle pipetting (exceptin afew cases for the blastocyst stage).
Embryoswere incubated in Ca?*-and Mg?*-free M2 medium for 5to 30
mintoremove the polarbodyin zygotes or toisolate individual cells at
subsequent stages. For the blastocyst stage, incubation with Ca**-and
Mg?*-free M2 medium was replaced with a 5-min incubationin TrypLE
(Invitrogen). During the picking, the origin of the blastomere (inner
cell mass or trophectoderm) was not recorded). Blastomeres were
mechanically dissociated, rinsed three times in PBS/acetylated BSA
(Sigma) before being fixed for 10 min in a 2% formaldehyde solution
at room temperature. Fixation was stopped by transferring cells to a
127-mM glycine solution (5 min on ice). Blastomeres from different
embryos were pooled from this step onwards to performthe single-cell
HiC procedure post-fixation.

Single-cell HiC procedure

The procedure forembryo blastomeres was optimized from a previous
study®. Care was taken at every step to reduce putative contamination
between solutions. In brief, following fixation, and rapid rinses in 1x
PBS solution 1% acetylated BSA (Sigma), blastomeres were permea-
bilized for 30 min onice in 10 mM Tris-HCI (pH 8), 10 mM NacCl, 0.2%
IGEPAL CA-630 containing complete EDTA-free protease inhibitor
cocktail (Roche). Cells were transferred to a protein low binding tube
(Sigma) containing 0.3% SDS diluted with 1.24x NEBuffer3 for 60 min
at37 °Cwith constant agitation. Triton X-100 was added to 2% final and
incubation was extended for 60 min, before addition of 625 U of Mbol
(New England Biolabs) and overnight incubation. To label the digested
DNA ends, amix containing 28.4 uM final of dCTP, dGTPand dTTP and
biotin-14 dATP were added with 25 U DNA polymerasel, large (Klenow)
fragment (New England Biolabs) for 60 min with constant agitation.
After spinning, blastomeres were treated with 10 U of T4 DNA ligase
(Thermo Fisher) in presence of 1x reaction buffer with1x BSA (both by

New England Biolabs) at 16 °C for at least 4 h. After spinning, blasto-
mereswere resuspended with PBS1x and BSA1mg/mlto dispatchthem
individually into PCR tubes (in strips; one per tube) before storage at
-80 °C until further processing.

Library preparation and sequencing

To prepare single-cell HiC libraries from single nuclei in PCR strips, 5
plof PBSwas added to each well and crosslinks reversed by incubating
at 65 °C overnight. HiC concatemer DNA was fragmented and linked
with sequencing adapters using the Nextera XT DNA library prepara-
tion kit (Illumina), by adding 10 pl of Tagment DNA buffer and 5 pl of
Amplicon Tagment mix, incubating at 55 °C for 20 min, then cooling
downto10 °C, followed by addition 5 pl of Neutralize Tagment buffer
and incubation for 5 min at room temperature. HiC ligation junctions
were then captured by Dynabeads M-280 streptavidinbeads (Thermo
Fisher) (20 pl of original suspension per single-cell sample). Beads were
prepared by washing with 1x BW buffer (5SmM Tris-Cl pH 7.5, 0.5 mM
EDTA,1MNaCl), resuspended in 4x BW buffer (20 mM Tris-ClpH 7.5,2
mM EDTA, 4 M NacCl; 8 pl per sample), and then mixed with the 25-pl
sample andincubated at room temperature overnight with gentle agita-
tion. The beads were then washed 4 times with 200 pl of 1x BW buffer,
twice with 200 pl of 10 mM Tris-Cl pH 7.5 at room temperature, and
resuspended in 25 pl of 10 mM Tris-Cl pH 7.5. Single-cell HiC libraries
were amplified from the beads by adding 15 pl of Nextera PCR master
mix, Splofi7 Index primer of choice and 5pl of i5 Index primer of choice.
Samples were thenincubated at 72 °C for 3min, 95 °C for 30 s followed
by the thermal cycling at 95°C for 10 s, 55 °C for 30 s and 72 °C for 30
sfor18cycles, and thenincubated at 72 °C for 5 min. The supernatant
was separated from the beads and purified one by one with AMPure
XP beads (Beckman Coulter; 0.6 times volume of the supernatant)
according tomanufacturer’sinstructions and eluted with 30 pl each of
10 mM Tris-Cl pH 8.5. The eluate was purified once more with AMPure
XP beads (equal volume to the previous eluate) and eluted with 11 pl
of 10 mM Tris-Cl pH 8.5.

Before sequencing, the libraries were quantified by quantitative PCR
(KapaBiosystems) and the size distribution was assessed with Agilent
2100 Bioanalyzer (Agilent Technologies). The libraries were sequenced
by 2 x150-bp paired-end run using either aHiSeq 1500, HiSeq 2500 or
NextSeq 500 (Illumina).

Bioinformatics analysis

All data were mapped to the mouse genome mm10, using the C57BL-
6J/CAST-EiJ single nucleotide polymorphisms (SNPs) from the mouse
genome project (v.5 SNP142), and the gene annotation from ensembl
(v.92). Analyses were performedin R (v.3.4.2) and Bioconductor (v.3.6).
Gene ontology was performed using the package ClusterProfiler
(v.3.10.1).

HiC data processing

Data were processed with HiC-Pro® (v.2.11.0) in allele-specific mode.
Thefollowing parameters were used: - For mapping:-very-sensitive -L
30-score-minL,-0.6,-0.2-end-to-end-reorder. No minimal fragment
size, insert size or contact distance were defined. - For processing:
GET_ALL_INTERACTION_CLASSES =0 GET_PROCESS_SAM =0 RM_SIN-
GLETON=1RM_MULTI=1RM_DUP=1.-foricedscaling: MAX_ITER=100
FILTER_LOW_COUNT_PERC = 0.02 FILTER_HIGH_COUNT_PERC =0
EPS =0.1. Only pairs with both reads having MAPQ > 30 were kept.

Cellcycle phasing

Cellcycle phasing was done by plotting the proportion of short-range
contacts (between25kb and 2 Mb) versus long-range contacts (between
2Mband 12 Mb) insingle cells. An ellipsoid was fitted to the single-cell
points, asina previous publication*. The reference in polar coordinates
was set to the segment going from the centre of the ellipsoid to the
pointof coordinates[0.15, 0.35], which corresponds to the beginning
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oftheleft-ascending part of the single-cell trajectory. Cellsin the G1,S
and G2 phases were defined as those in the angle between 0 and —0.351t
(65°anticlockwise). For each stage, contacts fromall cells phasedin G
and Swere pooled (all contacts or genome-specific contacts indepen-
dently) and matrices at 10- and 40-kb resolution were created using
cooler (v.0.7.9, parameter:-balance). Data were visualized in HiGlass®.

Domain calling

Domains were first identified on the 40-kb matrices, independently
for each stage, on both the maternal and paternal genomes, using
3dNetMod?¢ (v.1.0.10.06.17), with parameters favouring sensitivity
over specificity: - PRE_PROCESSING: region_size 150, overlap 100,
logged True, gnorm False. - GPS: badregionfilter True, scale genome
wide, plateau 8, chaos filter True, chaos_pct 0.85, diagonal_density
0.65, consecutive_diagonal_zero 20. - MMCP: num_part 20, plots
False, pctile_threshold O, pct_value O.- HSVM: size_threshold 7, size_s1
600000, size_s21200000, size_s33000000, size_s4 6000000, size_s5
12000000, var_thresh10, var_thresh2 50, var_thresh3100, var_thresh4
100, var_thresh5100, boundary_buffer 80000. For the analysis of the
X chromosome in female cells, domains were called from the female
pseudo-bulk HiC maps.

Domain average enrichment

We converted the HiC matrices to Z-score matrices, in which the scores
are normalized to the distribution of scores for the same contact dis-
tance, as in a previous publication®. In brief, for any two lociiand,jon
chromosome ¢, separated by a distance n and with a balanced count
of contacts C;, the corresponding Z-scoreis Z; ;= (C;;— u,)/0,, inwhich
U, and g, are the mean and standard deviation of the distribution of
contact counts for any pair of loci distant by n. Z-score matrices were
calculated on the 40-kb matrices with HicExplorer® (v.2.1.1) using the
HicFindTads function (parameters:-correctForMultipleTesting None-
minDepth 60000000-maxDepth 200000000-step 60000000-
thresholdComparisons1-delta0). For analysis of the X chromosome,
contacts from female cells only were pooled and matrices obtained in
the same way.

The average contact enrichment of domains was computed by aver-
agingthe Z-score over the domain upper triangle, excluding the diago-
nal. Foradomain D, ;spanningbinsitoj, the upper triangle Tin matrix
Misthe submatrix Ta,b]withae{i,...,j—1}andbefi+1,...,j}andb>a.
This was calculated using the custom function hicSummarizePerRegion
for hicExplorer, available from the E.H. laboratory GitHub version of
HiCExplorer at https://github.com/heard-lab/HiCExplorer, branch
SummarizePerRegion, or directly from https://github.com/heard-lab/
HiCExplorer/blob/SummarizePerRegion/hicexplorer/hicSummarizeS-
corePerRegion.py. We kept only domains with an average Z-score > 0.5.

Overlapping domain filtering

As largely overlapping domains with very similar boundaries can be
called within or between different time points, we further filtered
redundancy using a custom script (available on GitHub, from https://
github.com/heard-lab/HicTools/blob/master/FilterRegions_MinMutu-
alOverlap_maxScore.r). In brief, starting from a set of domains D, = 0
equal tothe set of alldomains D,, and the empty sets D yyeiap aNd Dpighess
the following steps were used: (1) From D,, all pairs of overlapping
domains are compared two by two. (2) If their overlap represents more
than 70% of each other’s lengths, they are added to the set D,y (3)
For each pair of overlapping domains (>70%), only the domain with the
highestscoreiskeptandadded to the set Dygpey.. (4) D,.., is assigned the
union of Dy and all domains from D, that were not in Dy, The
procedureisrepeated fromstep1tostep 4 until D,.;=D,. The reinjec-
tioninstep (4) of all domains from D, that were not in D,, allows
us to keep isolated domains, as well as avoiding chains between pairs
of domains. For stage-specific analysis (Figs. 1c, 4a) this procedure
was applied to the domains called at each stage and on each genome

individually. For the dynamic analysis across stages, sets of all domains
calledindividually at each stage and on each genome (after this redun-
dancy filtering) were pooled together as one set and filtered with the
same procedure, resulting in one common set of domains.

Clustering

Domain dynamics clustering was performed using the R package Mfuzz
(2.26.0)*, using as input the average Z-score per domain (row) ineach
stage from the 1-cell stage to the 64-cell stage, on the maternal and
paternal genomes (columns). Fuzzification parameter m was estimated
using the mestimate() function. The number of clusters was defined as
nine, on the basis of the minimal distance between cluster centroids.

Single-cell analysis

The sum of contacts per domain for each genome per single cell was
computed using the function hicSummarizePerRegion (as described
in‘Domain average enrichment’), excluding the diagonal. The matrix
of counts (domains on rows, single-cell maternal genome and single-
cell paternal genome on columns) was used as input for monocle3¥.
Datawere processed using the preprocess_cds function using the first
75 components of the principal components analysis (parameters:
num_dim =75, method ="PCA”, norm_method ="log”). Dimension
reduction was performed using UMAP with the reduce_dimension
function (max_components = 2) and graph for pseudotime inferred
using learn_graph (parameters: use_partition=FALSE, learn_graph_con-
trol = list(minimal_branch_len = 3). For cluster average score, counts
per domains were converted to CPKM by dividing the counts by the
total number of contacts in domains per allele (divided by 10°), and
by the domainlengthinkb.

Compartments and domain interactions

Compartments were called using HiTC (v.1.26.0)*°. An aggregate plot
ofinteraction between pairs of domains was performed using a custom
function hicAggregateContact for HicExplorer (available on GitHub,
from https://github.com/deeptools/HiCExplorer, branch aggregat-
eGenome; parameters:-range 1000000:999000000-numberOfBins
200-avgType mean-genome-regionReferencePosotion centre), which
also output the list of pairs of domains with respect to the distance
threshold (thatis, distance of more than 1Mb). Only domains that did
not contain another domain were used to avoid redundancy between
domains that contained one another. The normalized contact counts
of the intersection between pairs of domains was calculated using
a custom function hicSsummarizeScorePerRegion for HicExplorer
(available on GitHub, from https://github.com/heard-lab/HiCExplorer,
branch SummarizePerRegion, or directly from https://github.com/
heard-lab/HiCExplorer/blob/SummarizePerRegion/hicexplorer/hic-
SummarizeScorePerRegion.py; parameter:-summarizeType sum).

Chromosome 3D modelling

Three-dimensional models of chromosomes (allele-specific) was per-
formed using the programs Dip-C and Hickit*. We performed 3 rounds
of 3D reconstruction at 100-kb resolution with 3D haplotype imputa-
tion (parameters: -temps 20 -s 842 0.4 0.2 0.1), and then 2 rounds of
3D reconstruction at 20-kb resolution with 3D haplotype imputation
(parameter “-temps 20 -s 842 0.4 0.2 0.1 0.04 0.02). Chromosome
volumes were calculated using the alpha-convex hull algorithms from
the R package alphashape3d (a=0.6).

ChIP-seq analysis

Reads were trimmed using Trimgalore (v.0.4.4), mapped using STAR*
(2.5.3a, parameters:-outFilterMultimapNmax 1-outFilterMismatchN-
max 999-outFilterMismatchNoverLmax 0.06-alignIntronMax 1-align-
MatesGapMax 2000-alignEndsType EndToEnd-outSAMattributes
NH HI NM MD), and removed when they mapped to the mitochon-
drial genome. The remaining reads were split by allele using SNPsplit
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(v.0.3.2). Allele-specific and unassigned .bam files were sorted, dupli-
cates removed using Picard (v.2.18.2, parameters: REMOVE_DUPLI-
CATES =true ASSUME_SORTED = true) and pooled as the total reads.
BigWig of coverage files were done using DeepTools** bamCoverage
(parameters:-extendReads-binSize 1, with-extendReads 200 for
single-end data). A scaling factor was calculated as 10%/total number
ofreads, and the same factor was given as the parameter ‘-scaleFac-
tor’ for both allelic signals. The heat map and average plots of signal
were performed using DeepTools computeMatrix scale-regions (with
parameters:-regionBodyLength1000000-beforeRegionStartLength
1000000-afterRegionStartLength1000000-binSize 50000) as well as
plotHeatmap and plotProfile. For quantification of ChIP-seqin domains,
reads were counted using the featureCounts function from Subread**
(v.1.28.1, parameters: -p -s 0). Data scaling was performed in R using
DESeq2 (v.1.18.1), calculating the sizeFactor on the count of total reads
and applying it to the allele-specific counts. Enrichment relative to
background was calculated as the ChIP-seq signal per domainin RPKM,
divided by the average RPKM on the genome calculated in 10-kb bins.

RNA-sequencing analysis

Single-cell RNA-sequencing datawere processed similarly to those from
ChIP-seq, except for the mapping, for which the following parameters
were used:-outFilterMultimapNmax 1-outFilterMismatchNmax 999-
outFilterMismatchNoverLmax 0.06-alignlntronMax 500000-align-
MatesGapMax 500000-alignEndsType EndToEnd-outSAMattributes
NH HINM MD. The quantification of expression was performed using
featureCounts (parameters:-p-s 0 -texon-ggene_id). Datawere then ana-
lysed inR using DESeq2* (v.1.18.1), calculating the sizeFactor on the count
of total reads and applying it to the allele-specific counts. Filtering was
performed similarly thatin a previous publication®. In single-cell data,
apseudo-RPKM score was calculated as the normalized count x1,000/
gene length in base pairs; as the previously used protocol® is 3’-biased
and does not recover more than the last 3 kb of the transcripts (longer
genes (>3 kb) were assigned alength of 3 kb). In single-cell data, genes
witha pseudo-RPKM value <5 (not allele-specific) and a count of reads
lowerthan10readsonbothalleles were assigned aslowly expressed. An
allelic D-score (expression,emai/ (EXPressioNaerna + €XPression;aeemal))
was calculated only for genes that were not lowly expressed, to avoid
artefactual strong bias due to noisy low-expressed genes. Single-cell
data were then pooled in pseudo-bulk by stage, and for each gene an
average D-score was calculated only when more than20% of single cells
had an allelic D-score calculated (that is, did not show too low expres-
sion on both alleles). Average pseudo-RPKM values were calculated by
averaging the pseudo-RPKM values of all single cells without filtering.

DNAFISH probes

Probes for DNA FISH on the X chromosome were obtained as previ-
ously described?, or using BAC DNA for chromosome 13 (purchased
from CHORI RP24-278M23; RP23-325G4; RP23-2B17; RP23-222A16;
RP24-389D15; RP23-302B3; RP23-359G6; RP23-326)5; RP23-307F19)
or were purchased from MYcroarray (fluorescent oligonucleotides,
average length 45 bp, 5-modified with Atto 448 or Atto 550, aver-
age density: one oligonucleotide every 3 kb). Oligonucleotides were
designed to tile the following consecutive 18-Mb regions: chromo-
some X: 35,000,000-53,000,000 (termed pool a) and chromosome
X:53,000,000-72,000,000 (termed pool b)*. To prepare the probe
mix for DNA FISH, 100 ng of labelled BAC DNA was used, along with 5
pg of Cot-1DNA and resuspended in formamide before adding equal
volume of hybridization buffer (2x,20% dextran sulfate; 4x SSC; 1mM
EDTA; 0.1% TritonX-100; 0.5 mg/ml BSA; 1mg/ml PVP). Oligonucleotide
probes were used in formamide at 10% final concentration

DNAFISH procedure on embryonic stem cells
FISH on cells from tissue culture was performed as previously
described®*¢. Feeder-free male mouse embryonic stem cells (E14;

GSM1366337) were cultured on gelatin-coated coverslips no. 1.5
(Imm) and fixed in 3% paraformaldehyde for 10 minat room tempera-
ture. Permeabilization was then performed on ice for 5 minin 1x PBS
containing 0.5% Triton X-100 and 2 mM vanadyl-ribonucleoside com-
plex (New England Biolabs). Coverslips were preserved in 70% EtOH
at—20 °C.Prior to FISH, samples were dehydrated through an ethanol
series (80%,95% and100%, twice) and air-dried quickly. DNA FISH was
preceded by sample denaturation in 50% formamide in 2x SSC at pH
7.2 at 80 °C for 40 min. After overnight hybridization at 42 °C, washes
were carried out at 45 °C, 3 times 5 min in 50% formamide in 2x SSC
atpH 7.2 and 3 times 5min in 2x SSC. DAPI at 0.2 mg/ml was used for
counterstaining and mounting medium consisting of 90% glycerol,
0.1x PBS, 0.1% p-phenylenediamine at pH 9 (Sigma).

Three-dimensional DNA FISH procedure on embryos and Xist

RNA FISH combined with DNA FISH using oligonucleotide probes
Collected embryos were prefixed for 1 minat roomtemperature in para-
formaldehyde (PFA) 1%1 mg/ml polyvinylpyrrolidone (PVP), pre-perme-
abilized for1 minatroomtemperaturein PFA 0.5% and TritonX-100 0.4%
and fixed for 10 min at room temperature in PFA4%. After abriefwashin
PBS 1xwith PVP1mg/mland TritonX-100 0.05% (PBS-TP), embryos were
permeabilized for1hat37 °Cin PBS1x with TritonX-100 0.5% (with RNase
A5 pl/mlincase of DNAFISH). After abriefrinse in PBS-TP,embryos were
transferredinto hybridizationbuffer 1x and equilibrated overnight with
1mg/ml Cot-1DNA mix at 37 °C. Embryos and probes were denatured
for10 min at 83 °C and put back for at least 3 h at 37 °C. After competi-
tionin Cot-1mix, embryos were moved into the probe mix overnight at
37 °C.Excess of probes was eliminated through 3 washes at 45 °CinSSC
2x solution and SSC 0.2x solution for 10 min each. Embryos were then
briefly washed in PBS 1x and mounted in a Vectashield drop contain-
ing DAPlunder oil on a glass-bottomed plate, coated with poly-lysine.

Microscopy and image analysis

Combined RNA and DNA FISH imaging was performed on an inverted
confocal microscope (Zeiss) LSM700 with aPlanapo DICII (numerical aper-
turel.4) 63xoil objective. Z-sections were takenevery 0.4 pm. Structured
illumination for DNA FISHwas performed usingan OMX system (Applied
Precision) as in a previous publication®. Signals from all channels were
realigned using fluorescentbeadsbefore each session ofimageacquisition.
For colocalization analysis, analysis was restricted to aregion of interest
of identical volume around the FISH signal. The respective intensities
of red and green channels were retrieved semi-automatically using the
JACOPImage]J plugin, and box plot distribution of the Pearson correlation
coefficient was compared using Wilcoxon’s rank-sum statistics with R.

Engineering mice

The mouse mutant lines were generated following apreviously described
strategy”’, with minor modifications. Single-guide (sg)RNAs were
designed using CRISPOR*®, For deleting the locus containing Jpx and Ftx,
we used sgRNAs no. 57 (GGTCACAATTATGCAACCTG), no. 58 (ATACTC-
CGGATTACATACTC), no. 61 (TGCCCAAGCAAAAAGCGTGA) and no. 62
(AAAGTATTGACACCTTACCC). For deleting the /Jpxlocus, we used sgR-
NAs no.57,no.58 and no.59 (TGCCCAAGCAAAAAGCGTGA) and no. 60
(AGTTAGATACCACACCAAGT). T7-sgRNA PCR products were used as
the template for in vitro transcription with the MEGAshortscript T7 kit
(Life Technologies) and the products were purified using the MEGAclear
kit (Life Technologies).sgRNAs were eluted in DEPC-treated RNase-free
water, and their quality was assessed by electrophoresis on anagarose gel
afterincubation at 95 °C for 3 min with denaturing agent provided with
theinvitrotranscriptionkits. Cas9mRNA (Tebu-bio, L-7206) and sgRNAs
wereinjected at 100 ng/pland 50 ng/pl, respectively, into the cytoplasm
of mouse B6D2F1 zygotes from eight-week-old superovulated B6D2F1
(C57BL/6) x DBA2) female mice mated to stud male mice of the same
background. Zygotes with well-recognized pronuclei were collected
in M2 medium (Sigma) at EQ.5. Injected embryos were cultured in M16
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medium (Sigma) at 37 °C under 5% CO,, until transfer at the one-cell stage
the same day or at the two-cell stage the following day to the infundibu-
lum of the oviduct of a pseudogestant CD1female at EQ.5 (25-30 embryos
were transferred per female). Allweaned mice (NO) were genotyped for
presence of deletion (locus covering/px and Ftx, primers RG140.1: TGC-
TACCGGTCACAGATATAAGT and RG145: TCTGGGATGCTTGTTCAACA; Jpx
locus, primers RG140.1and RG143: ACAAGGTGAGCGATGAGACA). Mice
carryingdeletionalleles were crossed to B6D2F1 mice and their progeny
screened again for the presence of the deletion allele; PCR products
were sequenced to determine the exactlocation of the deletions (locus
covering/pxand Ftx, chromosome X:100,683,288-100,801,657, mm9;
Jpx:100683306-100702361, mm9). The F, mice were considered the
‘founders’and bred to B6D2F1 mice; their progeny was then backcrossed
to B6D2F1 mice, to generate heterozygous mice and lines were kept
in heterozygosity. To establish mouse embryonic fibroblasts, single
embryos were recovered at day 13.5 of gestation after the confirmation of
vaginal plugs on 4/px/wild-type females bred with wild-type/Y or 4/px/Y
males. Head and internal organs were removed and the body cavity was
incubated for1hat37 °Cin TripLE (Invitrogen). After repetitive pipetting
up and down, the resulting chunks were putin culture for 24-48 h until
collected to prepare RNA with Trizol extraction for further examination
by quantitative PCR. The level of gene expression was normalized to the
geometric mean of the expressionlevel of Ppia and Gapdh housekeeping
genesaccording to geNorm method* to assess the relative expression of
Xist and Jpx. The following primers were used and are listed as forward
reverse and in 5’ to 3: Gapdh, ccccaacactgagcatctcc/attatgggggtctgg-
gatgg; Ppia, ttacccatcaaaccattccttctg/aacccaaagaacttcagtgagage; /px.
ataaaatggcggcgtccac/ggecagtttctccactctec; and Xist, ggttctctctccagaa-
gctaggaa/tggtagatggcattgtgtattatatgg

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

The HiC data generated and analysed are available in the GEO reposi-
tory under accession number GSE129029. Previously published data
were downloaded from GEO: H3K27me3 in early embryos (GSE76687);
H3K27me3 in day-5 post-natal oocytes (GSE93941); single-cell RNA
sequencing in early embryos (GSE80810); and HiC in gametes and
early embryos (GSE82185). Source Data for Figs. 3, 4 and Extended
DataFig.2, 6 are provided with the paper. Any other relevant data are
available from the corresponding authors upon reasonable request.

Code availability

The codedeveloped for thisstudyis available on the GitHub repository
of the laboratory of E.H. (https://github.com/heard-lab).
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Extended DataFig. 3| Dynamics of domainsinsingle cells. a, Distribution of
the minimal distance between cluster centroids (D,,;,) for a predefined number
of clusters (k) ranging from 2 to 40. Clustering was performed 100 times for
eachvalue of k. The optimal number of clustersis the highest value of k before
thevalueD,,,becomes stagnant. b, Heat maps representing the result of
clustering for different values of k. The same main categories are found for
k>8.The contactenrichment colourscale corresponds to the maternal (red)
and paternal (blue) heat maps; the differential contact enrichmentscale
corresponds to the differential (maternal - paternal) heat maps. ¢, Heat maps
showing domain enrichmentin the bulk HiC data from GSE82185, with the same
orderasour clusteringin Fig. 1d and showing similar dynamics. d, Single-cell

projection by UMAP from the quantification of domain contactsoneachallele,
using all cells and all chromosomes, coloured by stage (top) or by sex (bottom).
n=669singlecells. e, Asindbut excluding domains on the X chromosome. f, As
inebut coloured by cell cycle phasing.g, Cell cycle phasing based onshort-
range versus mitotic contacts, with the same colour scale asinf. h, Single-cell
projections after excluding oocytes, all cellsin pre-M and M phase and domains
onthe X chromosome, asinFig. 1f, coloured by sex (top) or by pseudotime
overlaid with the inferred trajectory (bottom). n=470single cells.i, Asinh,
coloured by mean count per kb per million (CPKM) on each allele, for the nine
clustersidentified in Fig. 1d.
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Extended DataFig. 4 | Chromatin changes and compartment formation over
preimplantation. a, Average profile of H3K27me3 ChIP-seqsignal at the
domains for each parental allele at the 2-cell and 64-cell stagesin clusters1to 9.
n=375,238,387,338,110, 327,287,194 and 141 for each cluster from1t0 9).

b, Distributions of H3K27me3 domain enrichment per cluster, on the maternal
(red) and paternal (blue) genomes at the one-cell stage. Box plots represent
t1.5x interquartile range, 25th and 75th percentile and median value. nvalues
arethesameasina. c, Statistical comparison, two-by-two, between each
distributioninb. Pvaluesare calculated using a Wilcoxon test (two-sided, not
paired).nvaluesarethesameasina.d, e, Asinb, cfor H3K27me3 ChIP-seq data
fromepiblasts. f, Heat maps of H3K4me3 ChIP-seq signal at domains of each

cluster +1Mb, with parental origin. g, Heat maps of H3K27me3 ChIP-seq signal
atdomains of each cluster + IMbin oocytes (post-natal day 5 or day 14; or
ovulatory oocytes (MIl)). h, Snapshots of H3K27me3 ChIP-seq signal covering
6 Mb at transiently imprinted loci (Xist, Encl, Jadel and Mbn[2) for different
stages of oogenesis, or the maternal allele in the 2-celland 64-cell stages.

i, Compartment scores at domains of clusters1- 9,according to parental origin.
Jj,Dynamics of the compartment scores for each cluster. Lines represent the
mean, and shading represents the 95% confidence interval of the mean.
nvalues arethesameasina.k, Bar plot oflong-range interactions per stage,
corresponding to the average heat map in Fig. 2f.1, CTCF-motif enrichment
around domains.



a b
domains clusters

10.04 L z 3 g a 8 2 cluster 1 ‘ ‘ ‘ ' cluster 6 ‘ ‘

75

i WD DB

R

::: é] B% 1 cusiens , ‘ ‘ > cluster 8 ‘ ‘

B B
-

cluster 9

N NANRA 2322-B 320

\\/ \/ Fraction of maternal expression
Ny D ®® M T
oo

SHoN, (oIS
oo cooco

fraction of maternal
gene expression

0.3 2¢ 4c 8c 64c

S PTGl ST G A T AT T T

developmental stages (2c, 4c, 8¢, 16¢, 32c, 64c)

c Gene Ontology terms
c . 5 2 S’
-] F . 8 e 5
d . s g £ 5T E g2 s §‘3§ -
" 38 .z 8§ 2 £ EZE. c 2 %52 € Eg 5 < 3ogoE
3 S © ¢ B 8§ 5 § 8 o« 5 8 2 3 . £ § E 8 & 3 S € 2 g
2 2 2 53 o o s 6§ %8 g ¢ £ 38 88 ¢ $ % 2 8 £ 2 £ B
S 8 6 06§ @ [ & 2 & a S = L2 S =
s c &8 2 5 g g 8 , $ = 2 £ = 8 8 o % 2 § 5 3T 2 £ 2 5 g
g % 58582 8 s s 8 88 E 3 8 § 2§50 ¢ £ 22§ g £ 8 5

w N =
IS

H EEEw

clusters
[ |
[]
w

L

O | Ll
ENN EE
L HE EEE=N 1

late dev. cell cycle early dev. metabo. gene reg.

© ® N O
-log10(pValue)
N

Extended DataFig.5|Gene expressionand functional annotationofdomain 9, respectively) for genes present within domains of the different clusters.b,
clusters. a, Distribution of gene expression (top; n=797,353, 612, 621,268,699,  Piechartsfor allelic expressionbias from the 2-cell to the 64-cell stage for
562,278 and 193 genes for clusters1to 9) and fraction of maternal expression geneswithinclusters1to9.c, Pvalue (hypergeometric test) of Gene Ontology
(maternal/(maternal + paternal), bottom; n=232,249,256,502,258, 664,497, termenrichmentingenes within each domain cluster.

179 and 269 genes for which anallelic ratio could be calculated for clusters1to



Article

c . Xist
© maternal domain
]
a » 4
YT Y . N
S 3
=)
[~
L3 L2
I 17
Y [
¥ = 4
Sfmbt2 ©
3 5
i 8 o .
1 “ > o
12Mb —
@ o
P =) shift
X 10
[2]
i)
|5}
& 75
s
=
<]
o
o 5
9]
N
; T 25
k. : £
i ek £
chr2 9Mb 10Mb 11Mb 12Mb dMb 10Mb 11Mb 12Mb Z o
®  °
d e g
2c 64c
c 2c B64c
o .
H3 i ekl ud 2 ik, . B s
9’40 % : 7
S. N
xX= =
]shiﬂ X pa
o Encl V> maternal
Cn:5 A domain
.-|maternal O »
domain O / } ] shift
3 o
= 2c 4c 8c 64c 2

oMb 62Mb  60Mb 62Mb 97Mb  98Mb  95Mb

f -
g & ) ; -
H3K27me3 . \8_ maternal domain shift 3K
& 1.25
~ 1.00 )
]shiﬂ e T maternal
=) s ;
bé " I % 0.75. E+ domain
maternal 8 "
domain ﬁ 0.50 § |shift
Tle3 ag c 2
44 © 0.25 N 5
- E g
- v 5} E
2 : . A 0.00 50
chr9 60Mb 62Mb  60Mb 62Mb © g° .
h
2c 64c
; i
1 18
s
S 16
.
D M xise
2 § maternal and paternal
g 12 W px transmission
x
o x
)
2 os
0]
S} St oxIY
o
=
5
o
&) = =
wt/wt n=4 wt/Del n=6 Del/Del n=6 n=97

120Mb  115Mb

Extended DataFig. 6 | See next page for caption.



Extended DataFig. 6 | Structural tuning at maternal early domains during
preimplantation. a, Snapshots of HiC matrices and H3K27me3 ChiP-seq
signal, showing the parental differences between the 2-cell and 64-cell stages
for maternal (red) and paternal (blue) genomes at chromosome 2 (9-13.5Mb)
containing Sfmbt2.b, Asina, for chromosome 3 (40-43 Mb) containing Jadel.
¢, Quantification of contacts within the region presented in Fig.3b.d, Snapshot
of HiC matrices and H3K27me3 ChIP-seq signal, showing the parental
differences between the 2-celland 64-cell stages for maternal (red) and
paternal (blue) genomes at chromosome 9 (60-62.5Mb) containing Tle3.

e, Gene-expression dynamic for Tle3for maternal (red) and paternal (blue)
alleles. f, Quantification of contacts within the regionshownind. g, Snapshots
of HiC matrices and H3K27me3 ChIP-seq signal, showing the parental
differences between the 2-cell and 64-cell stages for maternal (red) and

paternal (blue) genomes at chromosome13 (96-100 Mb) containing Encl. h, As
ing, forchromosome 14 (115-122 Mb) containing Mbnl2.i, Relative gene
expression for Xist (inred) or Jpx (in yellow) in mouse embryonic fibroblasts
derived fromembryosissued from crossing A/px/wild-type female mice with
wild-type/Y or A/Jpx/Y male mice. The three genotypes analysed are indicated,
aswell asthe number ofindependently derived mouse embryonic fibroblast
cultures fromindependentsingle embryos (n=4, 6 and 6 for wild-type/wild-
type, wild-type/A/px and AJpx/AJpx genotypes, respectively). Bar plot
represents the mean of eachindependent expression value (for eachembryo),
errorbarsrepresentthes.d.and each dotrepresents anindividual

embryo value. j, Pie chart distribution of the genotypes obtained after mating
AJpx/wild-type female mice with A/px/Y male mice.n=104 pups.
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Extended DataFig. 7| Analysis of X-linked gene position within the

X chromosome as development progresses. a, Clustering of X chromosome
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