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A comprehensive constitutive theory for the thermo–
mechanical behaviour of generalized continua is
established within the framework of continuum
thermodynamics of irreversible processes. It represents
an extension of the class of generalized standard
materials to higher order and higher grade continuum
theories. It reconciles most existing frameworks and
proposes some new extensions for micromorphic and
strain gradient media. The special case of strain
gradient plasticity is also included as a contribution
to the current debate on the consideration of
energetic and dissipative mechanisms. Finally, the
stress gradient continuum theory emerges as a new
research field for which an elastic-viscoplastic theory
at finite deformations is provided for the first time.

1. Introduction
The objective of the present work is to provide a
comprehensive thermodynamical framework for the
development of nonlinear constitutive laws for general
continua including micromorphic, strain gradient and
recently developed stress gradient material theories.
Nonlinear means here finite deformations, on the
one hand, and nonlinear elastic-viscoplastic material
response, on the other hand. The work presents
extensions of existing frameworks as proposed in [6,26,
28] that rely on continuum thermodynamical concepts
introduced by Germain for the development of material
theory in engineering [30], see also [45,46].

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.&domain=pdf&date_stamp=
mailto:samuel.forest@mines-paristech.fr
mailto:samuel.forest@mines-paristech.fr


2

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

The need for a thermodynamically consistent formulation of generalized continuum
thermomechanics originates from the many couplings arising between classical thermomechanical
terms, new degrees of freedom, internal variables and their gradients. The recent controversy
on strain gradient plasticity theories [35] pleads for a more systematic consideration of
thermodynamic principles in the elaboration of higher order constitutive laws.

The mechanics of generalized continua is the subject of growing interest in the structural and
materials mechanics community, even though first theories go back to Cauchy, Piola, the Cosserat
brothers, Mindlin and Eringen. The reason is that the combination of advanced strain field
measurements techniques and computational tools makes if possible to handle such sophisticated
models involving large numbers of degrees of freedom and many material parameters including
characteristic lengths to be calibrated. The most promising physical and engineering applications
deal with size effects in the mechanical behaviour of metals and composites [68], on the one hand,
and strain and damage localization in materials and structures, on the other hand. In the latter
case, many generalized continua exhibit a regularization power restoring the well-posedness of
instability and bifurcation problems [20].

Micromorphic and strain gradient models are generally developed by distinct groups in the
mechanics community so that it is useful to show them together for a comparison of their
respective capabilities. It is often hard to recognize general guidelines in the wealth of existing
constitutive models for both approaches although it is claimed in the present work that a unifying
treatment exists leaving as many possibilities as material classes for specific constitutive laws. In
contrast, stress gradient models have been addressed only very recently [9,24,59] and arouse a lot
of confusion on the actual status of a stress gradient continuum. It is shown in the present work
that the emerging stress gradient continuum fundamentally differs from the strain gradient model
as advocated in [24]. An elastic-plastic stress gradient continuum theory at finite deformations is
proposed in the present work for the first time and illustrated in the case of tensile loading with
unusual boundary conditions.

The concepts of internal variables and internal degrees of freedom play an essential rôle in
the presented theories in particular w.r.t. reversible and irreversible mechanisms, containing,
or not, gradient contributions in the free energy or dissipation potentials [47]. Several aspects
could be treated using the concept of dual internal variables introduced in [65]. In particular,
strain gradient plasticity modelling has developed as a quasi-independent field of research in
engineering [68]. It is presented here as a special case of micromorphic model with internal
constraint so as to accommodate the effect of gradient of internal variables.

Notations

Throughout this work boldface letters denote tensors of various orders as indicated in the text.
The reference and current configurations of the body, B0 and B, are respectively equipped with
material (Lagrange) and spatial (Euler) coordinates of the form

X =XIEI , x= xiei (1.1)

assumed to form Cartesian orthonormal coordinate systems. Simple, double and triple
contractions are denoted by:

a · b= aibi, σ :D= σijDij , m
...k=mijkkijk (1.2)

The nabla operators with respect to Lagrange and Euler coordinates are respectively denoted
by ∇0 := ∂/∂X and ∇ := ∂/∂x. The deformation gradient is related to the gradient of the
displacement field and denoted by:

F := 1 + u⊗∇0 = (δiJ + ui,J ) ei ⊗EJ (1.3)



3

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

The Jacobian of the transformation is

J := detF > 0 (1.4)

The divergence of first, second and third order tensors is written in that way:

b ·∇ = bi,i, σ ·∇ = σij,j ei, Φ ·∇ =Φijk,k ei ⊗ ej (1.5)

General thermodynamic setting

The proposed theories comply with the general continuum thermomechanical setting of [30],
i.e. a local formulation of the thermodynamics of irreversible processes including the first or
higher order gradients of degrees of freedom together with internal variables driven by o.d.e.
evolution laws. They represent extensions of the class of generalized standard materials well–
established in continuum thermodynamics [37,50,56]. The main features are presented in this
introduction because they are common to all micromorphic, strain and stress gradient discussed
in the work.

It starts with the general form of the energy balance in its local Eulerian form:

ė= p(i) −∇ · q + r (1.6)

where e is the volume density of internal energy, q is the heat flux and r represents possible
external source terms. The actual form of the power of internal forces p(i) is central to the
formulation of each theory.

The general form of the local dissipation rate inequality is written in its Eulerian format as

d= η̇ + ∇ ·
( q
T

)
− r

T
≥ 0 (1.7)

where η is the current volume density of entropy, r some external heat source and T is the absolute
temperature. Combination of the first and second principles leads to the Clausius–Duhem
inequality

d= p(i) − ė+ T η̇ − q · ∇T

T
= p(i) − (ψ̇ + Ṫ η)− q · ∇T

T
≥ 0 (1.8)

the latter form involving the volume Helmholtz free energy density ψ= e− Tη. The fulfilment
of the entropy imbalance is assumed for all processes satisfying the energy balance (1.6). Other
thermodynamic frameworks restrict its application to processes also fulfilling the mechanical
and other balance laws like in the Liu procedure [57,66] introducing additional constraints and
associated Lagrange multipliers.

The various generalized continuum approaches developed in the following differ by the
number and nature of state variables identified as the arguments of the free energy density
function, and by the explicit form of the internal power where the classical Cauchy stress tensor
will be complemented by higher order contributions.

2. Thermo-elastoviscoplasticity of micromorphic media
The kinematics and statics of micromorphic media are recalled briefly following Eringen’s
original work in notations from [49]. The main purpose is then to develop the nonlinear
constitutive theory for such media.

(a) Kinematics and statics
The material pointX is endowed with translational degrees of freedom, namely the displacement
vector u, and with rotation and stretch of a triad of directors1 represented by the generally
incompatible microdeformation second rank tensor χ(X, t). The micromorphic theory by
Eringen and Mindlin [15,52] also incorporates the effect of the gradient of these variables.
1Three independent lattice vectors represent directors for a crystalline solid.
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The power of internal forces is a linear form with respect to the gradient of the velocity and
microdeformation fields:

p(i) =σ : Ḟ · F−1 + s : (Ḟ · F−1 − χ̇ · χ−1) +m
... (χ̇ · χ−1)⊗∇ (2.1)

The simple stress tensor σ is symmetric in contrast to the relative stress s expanding work
with the difference between the macro and microdeformation rates. The third rank stress tensor
m is conjugate to the microdeformation rate gradient. The stress tensors fulfil the following
balance equations for the momentum and the generalized moment of momentum in the current
configuration:

(σ + s) ·∇ = 0, m ·∇ + s= 0, ∀x∈B (2.2)

given here in the absence of volume or inertia forces for the sake of conciseness2. The derivation
of these balance laws based on the method of virtual power can be found in [49]. The associated
Neumann boundary conditions on the body surface with normal n read

t= (σ + s) · n, mn =m · n, ∀x∈ ∂B (2.3)

where surface densities of simple (vector t) and double (second order tensor mn) contact forces
are introduced. Recent approaches consider the curl of the microdeformation tensor instead of the
full gradient. The microcurl model in [11] makes the link between the dislocation density tensor
in plasticity and the curl of the microdeformation. This model is also called relaxed micromorphic
model in [54].

(b) Constitutive equations
The Lagrangian strain measures selected in this presentation of the constitutive micromorphic
theory are the classical right Cauchy–Green tensorC, the second rank relative deformation tensor
Υ and the third rank microdeformation gradient tensor defined as:

C :=F T · F , Υ =χ−1 · F , K :=χ−1 · (χ⊗∇0) (2.4)

The latter tensor satisfies the following remarkable relation written in intrinsic and index
notations:

(χ̇ · χ−1)⊗∇ =χ · K̇ : (χ−1 � F−1), (χ̇iLχ
−1
Lj ),k = χiP K̇PQRχ

−1
QjF

−1
Rk (2.5)

The power of internal forces (2.1) then takes the following Lagrangian form:

Jp(i) =Π :
Ċ

2
+ S : Υ̇ +M

... K̇ (2.6)

with the following definitions of the generalized Piola stress tensors:

Π = JF−1 · σ · F−T , S = J χT · s · F−T , M = J χT ·M : (χ−T � F−T ) (2.7)

The decomposition of the three strain measures into elastic and plastic parts is now discussed
based on the concept of local intermediate isoclinic configuration of the material point [26,44]
or, equivalently, of elastic isomorphy [3] extended to gradient media [4]. The latter approach
starts with the consideration of arbitrary change of reference configuration P transforming the
deformation gradient into F →F · P . In the case of micromorphic media, a distinct change
of microstructure local configuration, Pχ, is possible: χ−→χPχ. This leads to the following

2The analysis is limited to the static case for the sake of brevity. This is not a restriction of the apporach and it is not a necessary
assumption for the considerations that follow. There are interesting and important issues related to higher order inertia terms
in micromorphic, strain gradient and stress gradient media. The reader is referred to the discussion in the reference [25].
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transformation rules for the three previous Lagrangian strain measures:

C→P T ·C · P , Υ →P−1χ · Υ · P , K→P−1χ ·K : (Pχ � P ) + P−1χ · (Pχ ⊗∇0) · P
(2.8)

According to the hypothesis of isomorphic elastic ranges [4], it is postulated that the strain
potential,Wp with respect to any reference configuration can be computed from a single reference
potential, W0, by means of appropriate plastic transformations P ,Pχ and the third rank tensor
Kp:

Wp(C,Υ ,K) =W0(P T ·C · P ,P−1χ · Υ · P ,P−1χ ·K : (Pχ � P )−Kp) (2.9)

Introducing the notations

F p :=P−1, F e :=F · P , χp :=P−1χ , χe :=χ · Pχ, Ke :=P−1χ ·K : (Pχ � P )

the following elastic-plastic decompositions are derived:

F =F e · F p, χ=χe · χp, K =χp−1 ·Ke : (χp � F p) +Kp (2.10)

as initially proposed in [26,27]. The contributions F e andχe in the multiplicative decompositions
of the deformation gradient and of the microdeformation are interpreted as their thermo-elastic
parts. Alternative decompositions for the microdeformation gradient tensor are possible, see for
instance [63].

The total Helmholtz free energy density is taken as a function of the elastic strain measures,
temperature and internal variables α accounting for work-hardening phenomena or other
physical processes:

ψ0(Ce,Υ e,Ke, T, α)

where Υ e :=χe−1 · F e is the elastic relative deformation tensor.
The local entropy inequality (1.8) in its Lagrange form reads:

(
Πe

2
− ∂ψ0

∂Ce
) : Ċ

e
+ (Se − ∂ψ0

∂Υ e
) : Υ̇

e
+ (Me − ∂ψ0

∂Ke )
... K̇

e − (
∂ψ0

∂T
+ Jη)Ṫ +Dres ≥ 0 (2.11)

where Dres denotes the residual dissipation containing all contributions to the plastic power,
evolution of internal variables and thermal power. The lefthand side of the entropy inequality
(2.11) contains a linear form with respect to the rates Ċe, Υ̇

e
, K̇

e
, Ṫ . Assuming that the

corresponding cofactors and the residual dissipation Dres do not depend on these rates, the
positivity of dissipation rate for all evolutions of these variables requires the vanishing of
these cofactors [10]. Generalized Piola stresses are defined with respect to the intermediate
configuration3 that must therefore satisfy the following hyperelastic state laws:

Πe := JF e−1 · σ · F e−T = 2
∂ψ0

∂Ce
, Se := J χeT · s · F e−T =

∂ψ0

∂Υ e
, (2.12)

Me := JχeT ·m : (χe−T � F e−T ) =
∂ψ0

∂Ke (2.13)

X =
∂ψ0

∂α
, Jη=−∂ψ0

∂T
(2.14)

The attention is now drawn on the residual dissipation cast in the form

Dres =ΠM : (Ḟ
p · F p−1) + SM : (χ̇p · χp−1) +M

... K̇
p −Xα̇−Q · ∇0T

T
≥ 0 (2.15)

where generalized Mandel stress tensors are defined as the driving forces for plastic flow:

ΠM = JF eT · (σ + s) · F e−T , SM =−χeT · s · χe−T (2.16)

A convenient framework for the expression of the plastic flow rule and the evolution equations
for hardening variables is the introduction of a viscoplastic potential function of the previous
3When using the free energy potential Jpψ0 (Jp = detF p) instead ofψ0, the Jacobian J should be replaced by Je = detF e

in the definitions.



6

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

driving forces: Ω(ΠM ,SM ,M , X,∇0T ) such that

Ḟ
p · F p−1 =

∂Ω

∂ΠM
, χ̇p · χp−1 =

∂Ω

∂SM
, K̇

p
=

∂Ω

∂M
, α̇=− ∂Ω

∂X
,

Q

T
=− ∂Ω

∂∇0T
(2.17)

If the potential is a convex function of its arguments ΠM ,SM ,M ,−X,−∇0T , the positivity of
the dissipation rate is ensured at any instant for all processes4.

(c) General micromorphic approach
The micromorphic approach proposed in [19,20] is a generalization of the previous micromorphic
medium to strain-like additional degrees of freedom distinct from Eringen’s microdeformation
tensor, for example related to plasticity or damage variables. A single example, taken from [20], is
provided here in the case of a scalar microplastic variable χ as it will be useful for the connection
to strain gradient plasticity in the next section. The following specific form of the (isothermal)
free energy potential was chosen in [20] (see eq. (7.12) there) to extend classical finite plasticity
models:

ψ0(Ce, p, χ,∇0χ) =ψe0(Ce) + ψp0(p) +
1

2
Hχ(p− χ)2 +

1

2
∇0χ ·A ·∇0χ (2.18)

where ψe0 denotes any hyperelastic potential of the reader’s choice, p is a hardening variable
with corresponding stored energy function ψp0 and A is the second order tensor of higher order
moduli penalizing the gradient of microplastic variable χ. The choice of a quadratic potential
w.r.t. the Lagrangian gradient of χ is sufficient for regularization purposes in softening plasticity
for instance. A penalty modulus Hχ is introduced to force χ to remain close to p, and therefore
their respective gradients will also remain close. It should be noted that the internal variable
field p is generally not continuous whereas the differentiable field χ necessarily is. This explains
the smoothing (regularizing) rôle played by the micromorphic variable with respect to the initial
classical theory. The higher order stresses are derived from this potential:

s=
∂ψ0

∂χ
=−Hχ(p− χ), M =

∂ψ0

∂∇0χ
=A ·∇0χ (2.19)

The model provides an enhancement of the hardening law in the form:

X =
∂ψ0

∂p
=
∂ψp0
∂p

+Hχ(p− χ) (2.20)

The first term represents any choice of hardening function and the second one is the micromorphic
enhanced contribution to hardening. The model is now illustrated for two choices of the
hardening variable p. In the first case, a classical plasticity flow rule in the form

Ḟ
p · F p−1 = λ

∂f

∂ΠM
(2.21)

is adopted, where f(ΠM , X) is the yield function for the Mandel stress tensor and λ is the plastic
multiplier. The yield function is linear w.r.t. an equivalent stress measure ΠM

eq . The hardening
variable is taken as the cumulative plastic strain

p≡ pcum with ṗcum = λ (2.22)

Plastic deformation is not in general a proper state variable since it depends on the choice of
the reference configuration. However it is often used as such in engineering applications for

4 If the dissipation potential is not convex (softening behaviour for instance) or if the evolution equations for internal variables
do not derive from a potential (the existence of a dissipation potential is not required in contrast to the existence of the
internal energy potential), it must be checked that the proposed evolution laws are such that the dissipation inequality holds.
In this cannot be proved analytically for all processes, it must be checked pointwise during the simulation all along the
thermodynamic process.
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simplicity in order to avoid more sophisticated physical quantities like dislocation densities
[33,42]. In that case the isothermal residual dissipation rate reads

Dp :=ΠM : Ḟ
p · F p−1 −Xṗcum = (ΠM :

∂f

∂ΠM
−X)ṗcum = (ΠM

eq −X)ṗcum ≥ 0 (2.23)

since the yield function f is taken as a homogeneous function of order 1. It suggests to take the
yield function as f(ΠM ) =ΠM

eq −X and to consider X as the yield stress. Within a viscoplastic
theory, f is positive when ṗcum is non-zero. As a consequence the first term in Eq. (2.20) is an
isotropic hardening function in the sense of Lemaitre and Chaboche [42]. This isotropic hardening
law is enhanced by the micromorphic contribution in Eq. (2.20).

The second example considers the equivalent plastic strain measure

p≡ peq := (F p − 1) : (F p − 1) (2.24)

i.e. the square of the norm of the plastic deformation, as a hardening variable. In that case,

Dp := ΠM : Ḟ
p · F p−1 −Xṗeq =ΠM : Ḟ

p · F p−1 − 2XḞ
p

: (F p − 1)

= (ΠM · F p−T − 2X(F p − 1)) : Ḟ
p ≥ 0 (2.25)

This suggests to consider the tensor (ΠM · F p−T −X) as the argument of the viscoplastic
potential where X = 2X(F p − 1), with X given by the enhanced function (2.20), can be
interpreted as a kinematic hardening variable, also called back–stress.

These two examples show that the micromorphic approach can be applied to scalar
micromorphic variables, thus simplifying the original framework, and that the micromorphic
enhancement can affect isotropic (modification of the yield stress) or kinematic (evolution of the
yield surface centre) hardening laws from conventional plasticity. Limiting the micromorphic
approach to scalar plasticity variables instead of second order tensors is advantageous from
the point of view of computational analysis. It may however have some drawbacks in special
situations described in [58,69]. This kind of scalar microplastic variable has been used for instance
for the simulation of the propagation of Lüders-like shear bands characterising the deformation
of shape memory alloys in [36].

3. Thermo-elastoviscoplasticity of gradient media
The strain gradient continuum theory is a well–established model since Mindlin’s original
work for small strain elasticity [53], Germain’s hyperelastic formulation [29] up to the most
recent elastoplastic finite deformation setting [5,26]. The coupling with temperature with the
strain gradient raises the question of a possible dependence of the free energy potential on the
temperature gradient as recently discussed in [43,55]. It seems more appropriate to consider a
dependence of the internal energy function of the entropy gradient as proposed for fluids [32]
and solids [22,40,67].

(a) Strain gradient theory
The strain gradient continuum model is based on the following generalized form of the power of
internal forces:

p(i) =σ : Ḟ · F−1 +m
... (Ḟ · F−1)⊗∇ + aη̇ + b ·∇η̇ (3.1)

which is a linear form w.r.t. the Eulerian velocity first and second gradients and also w.r.t. entropy
rate and its gradient. The third rank tensor conjugate to the second gradient of the velocity field
is called the double stress or hyperstress tensor. Generalized stresses a and b are introduced
following [22,23] in order to accommodate entropy gradient contributions in the theoretical
framework. The method of virtual power has been used in [13,14,29] to derive the generalized
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balance laws:
(σ − m ·∇) ·∇ = 0, b ·∇− a= 0, ∀x∈B (3.2)

in the static case and in the absence of volume forces. The corresponding boundary conditions are
not reported for the sake of conciseness. Their complex structure and detailed derivations can be
found in the latter references and in [12] for a recent discussion. The complementing generalized
entropy balance law was postulated in [23].

The Lagrangian strain measures of the strain gradient continuum can be obtained from the
micromorphic theory by setting the internal constraint χ≡F in the relations (2.4) and (2.10), i.e.
coincidence of the macro and micro–deformations. The microdeformation gradient then coincides
with the second gradient of the displacement field. The generalised strain measures can be
decomposed into elastic and plastic parts as deduced from the micromorphic model:

F =F e · F p, K =F−1 · (F ⊗∇0) =F p−1 ·Ke : (F p � F p) +Kp (3.3)

The latter decomposition for finite strain second gradient theory was first proposed in [4,26]. The
constitutive theory for thermo-elastoviscoplastic materials is then based on the internal energy
state potential depending on the following Lagrangian arguments:

e0(Ce,Ke, α, η,∇0η) (3.4)

The local entropy inequality (1.8) in its Lagrange form then reads:

(
Πe

2
− ∂e0
∂Ce

) : Ċe + (Me − ∂e0
∂Ke )

... K̇
e − (

∂e0
∂η
− Ja− JT )η̇ − (

∂e0
∂∇0η

− Jb) : ∇0η̇ +Dres ≥ 0

(3.5)
where the residual dissipation Dres contains the plastic power, the contributions of internal
variables and the thermal power. The entropy inequality (3.5) contains a linear form with respect
to the rates Ċe, K̇

e
, η̇ and ∇0η̇. Assuming that the corresponding cofactors and the residual

dissipation Dres do not depend on these rates, the positivity of dissipation rate for all evolutions
of these variables requires the vanishing of the cofactors [10]. This leads to the following state
laws:

Πe = 2
∂e0
∂Ce

, Me := JF eT ·m : (F e−T � F e−T ) =
∂e0
∂Ke (3.6)

T = J−1
∂e0
∂η

+ a, b= J−1
∂e0
∂∇0η

(3.7)

The usual Gibbs relation for the temperature is therefore enhanced by the term a= ∇ · b. The
impact of this fundamental modification on the heat equation has been studied in [22,43].
The attention is drawn now to the residual dissipation5:

Dres =ΠM : (Ḟ
p
F p−1) +M

... K̇
p −Xα̇−Q · ∇0T

T
≥ 0 (3.8)

This suggests the introduction of a viscoplastic dissipation potential Ω(ΠM ,M , X,∇0T ) from
which the flow rules for plastic deformation and plastic strain gradient6, the evolution equations
for the internal variables and generalization of the Fourier law can be derived in the spirit of Eq.
(2.17).

(b) Strain gradient plasticity models
Strain gradient plasticity as reviewed for instance in [33,68] is a very active field of research to
address size effects in the mechanical behaviour of generally metallic materials. These models are
different from the previous strain gradient continua since they do not rely on the consideration of
the strain gradient but, instead, on the gradient of plastic deformation only. This subtle difference
amounts to neglecting the effect of the gradient of elastic deformation. It can be seen as an
5The Piola hyperstress tensor is defined as in (2.7), M = J FT ·m : (F−T � F−T ).
6Note that the presented theory is such that the plastic part of the strain gradient generally differs from the gradient of the
plastic deformation as done and discussed in [17,26,31].
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approximation of the full strain gradient model. However the strain gradient plasticity models
are generally closer to micromorphic models than the genuine strain gradient theory, especially
regarding the resulting type of boundary conditions, because the field variables are not limited to
the displacement but also include the plastic deformation itself regarded as a degree of freedom
of the theory. The objective of this section is not to review those numerous models but to propose
a unifying formulation of the many often contradictory constitutive equations found in the
literature. For the sake of conciseness, the presentation is given at small strains, in the isothermal
case, and limited to the effect of the gradient of the cumulative plastic strain, p≡ pcum, a simple
fruitful theory initiated by Aifantis [1]. It starts, as usual, from the linear form of the power of
internal forces for such a class of media:

p(i) =σ : ε̇+ sṗ+m ·∇ṗ (3.9)

where s and m are scalar and vector generalized stresses conjugate to plastic strain rate and its
gradient, p being treated as an internal degree of freedom. The application of the method of virtual
power for displacement and plastic degrees of freedom considered as independent leads to the
static mechanical balance laws:

σ ·∇ = 0, m ·∇− s= 0 (3.10)

in the absence of volume forces. The second equation is called microforce balance by Gurtin [34].
After splitting the infinitesimal strain into elastic, εe, and plastic part, εp, it continues with the
following state laws:

σ=
∂ψ

∂εe
, η=−∂ψ

∂T
, X =

∂ψ

∂p
, m=

∂ψ

∂∇p
(3.11)

The latter equation assumes that the whole energy due to plastic strain gradient is stored in
the Helmholtz potential. This simple assumption leads to the following form of the residual
dissipation rate:

Dres =σ : ε̇p + sṗ−Xṗ= (σeq −X + s)ṗ≥ 0 (3.12)

where σeq is an equivalent stress measure. This prompts us to introduce a yield function of the
shape:

f(σ, s,X) = σeq −X + s (3.13)

where X(p) is the usual yield radius enhanced here by the new generalized stress s= ∇ ·m.
If an isotropic quadratic potential is chosen w.r.t. to ∇p, s will be proportional to the Laplacian
of the plastic field distribution. In that way, the celebrated Aifantis model is recovered from a
solid thermodynamic formulation [19]. Following Gurtin’s notations [2], the contribution X − s
is denoted by the so–called microstress π= πNR + πdis where πNR =X is called the energetic
nonrecoverable generalized stress. We prefer to interpret the latter as the thermodynamic force
associated with the internal variable p, as usual in engineering continuum thermodynamics [42].
The quantity πdis =−s is called dissipative (micro)stress in [2]. The presented strain gradient
plasticity model can be viewed as a micromorphic model (2.18) combined with the internal
constraint χ≡ p, the penalty term Hχ(p− χ) being replaced by a Lagrange multiplier. Strain
gradient plasticity models can be implemented efficiently in that way in finite element programs
[70].

A recent debate in the literature deals with the consideration of a dissipative part associated
with the plastic strain gradient which requires a modification of the last state law in Eq. (3.11).
This has been done along two main lines which are presented here together for the first time,
groups of authors using either one or the other.
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(i) Model in parallel

Like in a Kelvin–Voigt rheological model (parallel branches), the authors following [2] decompose
the higher order stress into elastic (recoverable/stored) and plastic (dissipative) parts:

m=me +mp, with me =
∂ψ

∂∇p
(3.14)

As a result, the residual dissipation (3.12) is modified into

Dres =σ : ε̇p + sṗ−Xṗ+mp ·∇ṗ ≥ 0 (3.15)

The last term is analogous to a viscous contribution in a fluid or to a generalized plastic power.
This suggests the writing of constitutive laws based on a dissipation potentialΩ(σ, s,X,mp), for
instance through a yield function f = σeq −X + s.

(ii) Model in series

According to rheological models in series like Maxwell or Saint-Venant assemblies, it is proposed
instead to split all strain measures into elastic (reversible) and plastic (irreversible) parts. This has
been done already for the classical strain tensor ε and remains to be done for the plastic strain
gradient in the following way

k := ∇p= ke + kp (3.16)

which leads to the following modified state law and residual dissipation:

m=
∂ψ

∂ke
, Dres =σ : ε̇p + sṗ−Xṗ+m · k̇p ≥ 0 (3.17)

This prompts us to propose a yield function of the form:

f(σ,m, s,X) = σeq(σ,m)−X + s (3.18)

where σeq(σ,m) is an equivalent stress measure combining the two stress tensors. For instance,
a generalization of the von Mises criterion could be based on the following equivalent stress
measure:

σeq =

(
3

2
σdev :σdev + `−2p m ·m

) 1
2

(3.19)

where σdev is the deviatoric part of the stress tensor and `p a material characteristic length.
Assuming a generalized normality rule, the flow rules are obtained as

ε̇p = λ
∂f

∂σ
=

3

2
λ
σdev

σeq
, k̇

p
= λ

∂f

∂m
= λ`−2p

m

σeq
(3.20)

The plastic multiplier λ can then be computed from the consistency condition ḟ = 0 in the rate–
independent case or from an appropriate viscoplastic potential otherwise.

This class of strain gradient plasticity models based on a kinematic decomposition of the
gradient like (3.16) was proposed in [19,26]. It generalizes similar decompositions for Cosserat [7],
micromorphic [60] and strain gradient media [17,31]. The particular case of a purely dissipative
contribution of ∇ṗ (i.e. ke = 0) was put forward by Fleck and Willis [18].

4. Stress gradient plasticity
The stress gradient continuum theory was first introduced in the reference [24] and later in [59]. It
fundamentally differs from the strain gradient model because it requires the introduction of new
kinematic degrees of freedom Φ, a third rank tensor, in addition to the usual displacement u of
the material point. The stress gradient elasticity theory was developed and discussed in [24,62,64]
in the small deformation case. The objective of the present section is to propose an extension to
plasticity.
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(a) Kinematics, balance of momentum and boundary conditions
The symmetric stress tensor σ and its gradient fulfil the following field equations

σ ·∇ + f = 0, σ ⊗∇−R+ F = 0 (4.1)

where f (unit N m−3) and F (unit N m−4) are given volume simple and triple forces. The
second equation defines the third rank tensor R as the difference between the stress gradient
and prescribed triple forces. Note that its trace with respect to the last two indices is not free but
prescribed by external forces

Rijj = fi − Fijj (4.2)

as a consequence of the first balance law (4.1). In this subsection, all involved third order tensors
are taken symmetric w.r.t. the first two indices. The weak form is obtained by multiplying the first
equation by the virtual displacement vector u and the second one by the third rank tensor7 Φ,
and summing up yields∫
B

(
σ : (ε+Φ · ∇) +R

...Φ

)
dv=

∫
B

(f · u + F
...Φ) dv +

∫
∂B
σ : (u

s
⊗n+Φ · n) da (4.3)

after integration by parts, where
s
⊗ denotes the symmetrized tensor product.

Conversely the theory can be built upon the following form of the virtual work of internal
forces

p(i)(u̇, Φ̇) =σ : e(u̇, Φ̇) +R
... Φ̇ (4.4)

with the generalized strain measure

e := ε+Φ · ∇ with ε=u
s
⊗∇ (4.5)

The previous field equations together with the following boundary conditions

• 6 Dirichlet boundary conditions: u
s
⊗n+Φ · n given at a part of the boundary ∂B

• or 6 Neumann conditions: The full tensor σ given at the complementing part of the
boundary

provide a well-posed boundary value problem as proved mathematically by [62] in the case
of linear elasticity. Alternative mixed b.c. were also considered in the latter reference. It is
remarkable that, in contrast to Cauchy’s classical theory, all the components of the stress tensor
can be prescribed at the outer boundary and not only the usual traction vector σ · n. This is
a stunning feature of the stress gradient model. Note that new kinematic degrees of freedom
Φijk are symmetric with respect to the first two indices. They have the physical dimension
of length and are called microdisplacements in [24]. The micromechanical interpretation of these
microdisplacements is still an open question. Two tentative interpretations can be mentioned. The
first one stems from the composite plate theory, more precisely the bending gradient plate theory
designed by [61] and justified by an asymptotic homogenization method. In this theory there is a
similar microdisplacement variable which is defined as a suitable weighted average of the local
discplacement in a periodic unit cell of the composite plate. The second interpretation makes
use of Eringen’s averaging procedure from the microcontinuum to the macrocontinuum. In [38]
an explicit relation is derived between the Φ and the weighted strain average in the material
representative volume element.

7It is sufficient to consider fieldsΦwith vanishing right-hand trace, Φijj = 0.
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(b) Elasto–plasticity of stress gradient media
A possible extension of classical plasticity to stress gradient media can be based on the additive
decomposition of the generalized strain measures into elastic and plastic parts, in the form:

e= ee + ep, Φ=Φe +Φp (4.6)

In contrast to the usual displacement vector which cannot be uniquely split into elastic and plastic
parts due to the absence of translation invariance, the microdisplacements are assumed to be
objective quantities which allows for such a decomposition. The generalized strain tensor e is
decomposed as a whole8. The Helmholtz free energy density function is taken as a function

ψ(ee,Φe, T, α)

where α denotes generic internal (hardening) variables. The Clausius–Duhem inequality (1.8)
now takes the form:

d=σ : ė+R
... Φ̇− ψ̇ − Ṫ η − q · ∇T

T
≥ 0 (4.7)

(σ − ∂ψ

∂ee
) : ėe + (R− ∂ψ

∂Φe
) : Φ̇

e − (η +
∂ψ

∂T
)Ṫ + σ : ėp +R

... Φ̇
p − ∂ψ

∂α
α̇− q · ∇T

T
≥ 0 (4.8)

The following state laws are then adopted:

σ=
∂ψ

∂ee
, R=

∂ψ

∂Φe
, η=−∂ψ

∂T
, X =

∂ψ

∂α
(4.9)

This leads to the following form of the residual dissipation

σ : ėp +R
... Φ̇

p −Xα̇≥ 0 (4.10)

A yield potential f(σ,R, X) depending on the stress and stress gradient tensors can now be
introduced as an extension of the traditional plasticity yield function, from which the flow rules
are derived as:

ėp = λ
∂f

∂σ
, Φ̇

p
= λ

∂f

∂R
(4.11)

These relations involve a (visco)plastic multiplier λ which is determined from a consistency
condition in the case of rate-independent plasticity, and by an explicit evolution equation in
the viscoplastic case. Within the class of generalized standard materials according to [30], the
evolution rules for internal variables should also follow from the derivation of the yield potential:

α̇=−λ ∂f
∂X

(4.12)

(c) Example: Simple tension of a stress gradient material
The previous framework is applied to the case of an isotropic yield function of the form:

f(σ,R) = J2(σ) + `p‖R‖ − σY with J2(σ) =

√
3

2
σdev :σdev and ‖R‖=

√
RijkRijk (4.13)

The yield function represents one possible extension of classical J2–plasticity. Quadratic forms
could also be used, as done for example by [26] in the case of strain gradient plasticity.

The case of simple tension is particularly straightforward and illustrative of the main features
of the new model. In the idealized two-dimensional case of a bar (width 2H) in tension along
the Cartesian direction 1, the single non vanishing component of the stress tensor is σ11(x2)

taken as a function of the transverse coordinate x2 along direction 2. The stress tensor cannot
be homogeneous since it must vanish at the free lateral surface according to the generalized
Neumann boundary conditions introduced in section (a). It follows that the single non vanishing
stress gradient component is R112 = σ11,2. In that case, the stress gradient tensor fulfils the
8An alternative formulation is to split the strain tensor ε as usual and to define ee = εe +Φe ·∇. It is essentially equivalent
in the small strain setting.
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condition Rijj = 0 as required by the balance of momentum equation.
The axial strain ε11 = ε̄= u1,1 is homogeneous and prescribed as ε̄.

(i) Solution in the elastic case

The following simplified linear elastic law is assumed in the following:

Φ=E`2eR (4.14)

where E the Young modulus and `e is an intrinsic length arising in the stress gradient elasticity
model. In the investigated tensile case, this gives

Φ112 =E`2eR112 =E`2eσ11,2 (4.15)

The generalized strain measure (4.5) writes

e11 = ε̄+ Φ112,2 = σ11/E (4.16)

The last equation results from the application of the isotropic elasticity relation between the
stress tensor and the generalized strain measure. The combination of the latter equation and the
generalized Hooke law (4.14) leads to the following differential equation

σ11 − E`2eσ11,22 =Eε̄ (4.17)

to be solved for the stress σ11. Its solution is of the form

σ11 =Eε̄+A cosh
x2
`e

+B sinh
x2
`e

(4.18)

The integration constants A and B are determined from the following boundary conditions:

σ11(x2 =±H) = 0 (4.19)

Finally, we obtain:

σ11 =Eε̄

(
1− cosh(x2/`e)

cosh(H/`e)

)
(4.20)

The corresponding stress profile in a special case (E = 200 GPa, ε̄= 2.10−4) is represented by the
bottom curve of Fig. 1(a).

(ii) Solution in the elastic-plastic case with `p = 0

The yield criterion (4.13) is considered first in the case `p = 0. The stress component reaches the
yield stress σY at the middle of the sample x2 = 0 for the prescribed strain value:

ε̄=
σY
E

(
1− 1

cosh(H/`e)

)−1
(4.21)

For higher values of the prescribed strain, a plastic zone of size 2a expands in the sample.
In the elastic domain |x2| ≥ a, the stress distribution still has the form (4.18).
In the plastic domain |x2| ≤ a, the stress is uniform

σ11 = σY , R112 = 0, Φ112 =E`2eR112 = 0 (4.22)

The problem therefore has 3 unknowns a,A,B which are determined from 3 appropriate
boundary and interface conditions:

• Vanishing stress at x2 =±H (here written at x2 =H):

Eε̄+A cosh
H

`e
+B sinh

H

`e
= 0 (4.23)

• Stress continuity at x2 =±a (here written at x2 = a):

Eε̄+A cosh
a

`e
+B sinh

a

`e
= σY (4.24)
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• Microdisplacement continuity at x2 =±a (here written at x2 = a):

Φ112(a) = 0 =⇒ sinh
a

`e
+B cosh

a

`e
= 0 (4.25)

The corresponding stress profile in a special case (E = 200 GPa, ε̄= 5.10−4, σY = 100 MPa) is
represented by the top curve of Fig. 1(a). The plastic zone is growing when increasing the
prescribed strain value as shown in Fig. 1(b). According to this model in the special case `p = 0,
it is found that an elastic boundary layer always remains close to the free boundary with a very
strong stress gradient.
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Figure 1. Tensile test in stress gradient elastoplasticity: (a) elastic (bottom curve) and elastic-plastic (top curve) stress

profiles, (b) extension of the plastic zone with increasing applied uniaxial strain. The width of the bar and of the plastic

zone respectively are 2H and 2a.

(iii) Solution in the fully plastic case

Fully plastic solutions can be worked out when the plastic intrinsic length in 4.13 has a finite
value. In that case, the yield condition is met everywhere in the sample:

|σ11|+ `p|σ11,2|= σY (4.26)

The tensile stress is expected to take larger values in the centre than at the free boundary. In the
region x2 ≥ 0, we have therefore:

σ11 − `pσ11,2 = σY (4.27)

which can be solved by an exponential function. The boundary condition σ11(±H) = 0 is used to
fix the constants. Finally, the stress profile is given by:

σ11(x2) = σY

(
1− exp

(
|x2| −H

`p

))
(4.28)

which exhibits a cusp in the middle of the section. In this case no elastic layer remains at the free
boundaries.

(d) Finite deformation stress gradient plasticity
The previous elastoplastic model for stress gradient media is now justified by proper linearisation
of the stress gradient theory at finite deformations. Such a general framework has been proposed
in the reference [25] and it is extended here to the elastoplastic case.
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The stress gradient continuum is endowed with displacement and microdisplacement degrees
of freedom. The latter are assumed to take the form

Φ=ΦiJKei ⊗EJ ⊗EK (4.29)

The microdisplacements Φ are assumed to transform in the following way by superimposing a
rigid body motion:Φ−→Q ·Φ, thus transforming like the deformation gradientF . The following
Lagrangian generalized strain measures emerge in the theory:

E :=
C

2
+ Υ ·∇0, C :=F T · F , Υ :=F T ·Φ (4.30)

The Lagrangian power of internal forces takes the form

Jp(i) =S : Ė + T
... Υ̇ (4.31)

where S is the usual Piola (Lagrangian) stress tensor and TIJK is the conjugate stress to the
pulled-back microdisplacement ΥIJK .
The method of virtual power was applied in [25] to derive the following balance equations:(

P + (Φ ·∇0) · S +Φ : T T
)
·∇0 = 0, F · T − P ⊗∇0 = 0 (4.32)

which is the finite version of Eq. (4.1). Volume and inertia forces were excluded for simplicity and
can be found in [25]. The usual Boussinesq stress tensor isP =F · S. Transposition of a third rank
tensor is taken as TTJKI = TIJK . It appears thatF · T is nothing but the gradient of the Boussinesq
stress tensor, hence the name stress gradient continuum. These field equations are complemented
by the following boundary conditions

t=
(

(F +Φ ·∇0) · S +Φ : T T
)
·N ,

3
t=P ⊗N (4.33)

where first and third order tractions are applied on the boundary. The latter amounts to the
unusual situation of prescribing the full Boussinesq stress tensor at the boundary.

The Lagrangian generalized strain measures can be split additively:

E =Ee +Ep, Υ =Υ e + Υ e (4.34)

in the spirit of Green and Naghdi’s celebrated decomposition of the Green-Lagrange strain
discussed in [41] and recently revisited for splitting other strain measures like the logarithmic
strain in [51]. The choice of free energy density function ψ(Ee,Φe, T, α) is associated with the
following state laws

S =
∂ψ

∂Ee
, T =

∂ψ

∂Υ e
, η=−∂ψ

∂T
(4.35)

and the following residual dissipation rate

S : Ė
p

+ T
... Φ̇

p −Xα̇≥ 0 (4.36)

This pleads for the introduction of a dissipation potential Ω(S,T , X) from which flow and
hardening rules are derived:

Ė
p

=
∂Ω

∂S
, Φ̇

p
=
∂Ω

∂T
, α̇=− ∂ψ

∂X
(4.37)

The linearisation technique of [25] has been applied in order to check that all the balance,
boundary and constitutive equations introduced in the previous section are retrieved in the small
deformation case.

The proposed formulation based on an additive decomposition of the symmetric tensor
E suffers from the same drawbacks as in classical finite strain elastoplasticity, namely the
choice of a privileged reference configuration for the additive decomposition, and the absence
of independent plastic spin for anisotropic media. An alternative would be to employ the
multiplicative decomposition of the deformation gradient and decomposition of the divergence
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of the microdisplacement in the spirit of relations (3.3). This will lead however to a necessary
reformulation of the stress gradient model by abandoning the use of the gradient of the
Boussinesq stress and using instead the gradient of another stress measure for instance the one
pulled-back to the intermediate configuration (Mandel or Piola forms). This is left open at this
stage of the stress gradient theory.

5. Conclusion
A unifying presentation of micromorphic, strain and stress gradient continuum theories has
been proposed reconciling many available and new constitutive frameworks under the umbrella
of continuum thermodynamics with internal variables and internal degrees of freedom. These
models accounting for size effects in the thermomechanical behaviour of materials and structures
share common features but also have clear distinct capabilities depending on the detailed
description of the underlying material microstructure. The novel aspects of the presented theories
are the following:

• A concise formulation of micromorphic and strain gradient media at large thermo-elasto-
viscoplastic deformations including temperature effects; Special attention has been given
to the consideration of entropy gradients in the constitutive theory of nonlinear strain
gradient media;
• A thorough discussion of so-called energetic and dissipative contributions to hardening

in strain gradient plasticity, encompassing most recent contributions from literature;
• A comparison of work-hardening types (isotropic vs. kinematic hardening) depending of

the choice of enhanced kinematic variables or gradient contribution;
• The first formulation of stress gradient plasticity theory, an extension of the recently

developed stress gradient continuum [24,59]. The proposed yield function depends on
the stress and stress gradient tensors. The finite deformation formulation was provided
together with its linearization. The example of simple tension shows that the stress
gradient model predicts a boundary layer close to free boundaries where all components
of the stress tensor are assumed to vanish in contrast to all other generalized continuum
theories.

Strain and stress gradient media were shown to fundamentally differ in their respective kinematic
degrees of freedom essentially. The existence of microtemperature or microentropy field variables
in the thermo–micromorphic model was not discussed in the present work, see [21,39] for such
investigations. Instead the entropy gradient effects were introduced in the strain gradient theories
as a necessary counterpart of the strain gradient term.

There exist a wealth of available and future possible applications of generalized continua to
many engineering materials and structures, especially regarding the consideration of combined
damage and plasticity [8,16]. Crystal plasticity also is a major realm of application of generalized
continuum mechanics in order to describe grain and inclusion size effects in metallic polycrystals
[17,48,68]. Gradient damage models, also called phase field models of fracture, and used for the
simulation of crack initiation and propagation, fall in the class of micromorphic or gradient of
internal variable theories and can be handled along the lines of this work [50]. Applications of the
stress gradient continuum remain to be found. First attempts deal with size effects in composites
and enhancement of homogenization theory [64].
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