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Löıc Berger†‡, Johannes Emmerling†§ and Massimo Tavoni†¶

Abstract

We propose a robust risk management approach to deal with the problem of catas-

trophic climate change which incorporates both risk and model uncertainty. Using

an analytical model of abatement, we show how aversion to model uncertainty influ-

ences the optimal level of mitigation. We disentangle the role of preferences from the

structure of model uncertainty, which we define by means of a simple measure of dis-

agreement across models. With data from an expert elicitation about climate change

catastrophes, we quantify the relative importance of these two effects and calibrate a

numerical integrated assessment model of climate change. The results indicate that

the structure of model uncertainty, and specifically how model disagreement varies

in abatement, is the key driver of optimal abatement, and that model uncertainty

warrants a higher level of climate change mitigation.
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1 Introduction

This paper applies recently developed tools from decision theory and expert assessment

data to discuss abatement strategies in the case of climate change under deep uncertainty.

We distinguish the notion of risk –which characterizes situations in which probabilities of

a random event are perfectly known– from the broader notion of (Knightian) uncertainty

(also called ambiguity) –which characterizes situations in which some events do not have

an obvious, unanimously agreed probability assignment (Ghirardato et al., 2004).1 More

specifically, we focus on the notion of model uncertainty that corresponds to situations

in which different data-generating mechanisms or models are considered as possible or

plausible by the decision maker (DM). Throughout the paper, we consider the notion of

model taken in its statistical sense, meaning that it is defined as a probability distribution

over a sequence (or here over states of the world). Different models may exist for example

because too little information is available, because different predictions exist (depending on

different datasets, different techniques, etc.), or because the decision is based on the advice

of experts who provide different assessments of probabilities for a given event (as will be

the case in our application). We present the risk management problem as an intertemporal

problem of optimal abatement under the possibility of a catastrophic climate event. As

it is the case with a vast range of economic problems, the climate change case illustrates

particularly well a situation in which the probabilistic model is neither explicitly given,

nor can be perfectly approximated or inferred with the available data and current scientific

methods. Choosing among different climate policies in this situation is therefore essentially

an exercise in risk management that has to be performed in a situation of deep uncertainty

(Kunreuther et al., 2013). Therefore, it requires a robust decision making approach that is

less sensitive to initial assumptions, is valid for a wide range of futures, and keeps options

open (Lempert and Collins, 2007), rather than a formal approach that maximizes the

expected utility mechanically.

More than ever before, it is now widely believed that our entire planet is undergoing

climate change, and that this change is largely due to human activities (IPCC, 2013).

What is less clear is how this process, which is taking place over a very long time horizon,

will unfold. Based on the available observations and on the current state of knowledge,

scientific experts have constructed models in order to simulate and quantify the impact

of human activity on the climate system and vice versa. However, a large degree of un-

certainty surrounds these models. These uncertainties arise from both the underlying

climate science (and the extreme complexity of the climatic system) and our inability to

perfectly capture the way our socioeconomic system would respond and adapt to climate

change (Heal and Millner, 2014). This is particularly the case when we consider situations

with potential catastrophic consequences, such as the collapse of the Atlantic thermoha-

1This definition comprises the definition of deep uncertainty given by Lempert et al. (2006). In this
paper, we use the terms Knightian uncertainty, ambiguity and deep uncertainty interchangeably.
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line circulation or the melting of the Antarctic ice sheet. Such catastrophic events have

never been encountered in recent history,2 and their likelihood of occurrence is therefore

extremely difficult to assess. From a decision maker’s perspective, becoming aware of such

occurrences leads to the expansion of the set of admissible states of the world. Therefore,

the state space and the associated probabilities need to be adjusted for making decisions

when considering such “unforeseen events” (Karni and Viero, 2013). In recent years, a

few studies have been undertaken to estimate these probabilities, consisting generally of

experts’ assessments.3 Since climate science is currently unable to determine which of

these estimates is the best or what the best combination of them is, and since these un-

certainties are expected to persist even when better scientific models become available,4

a decision maker confronted with this situation would find himself in a situation of model

uncertainty rather than risk.

In view of this disagreement among experts or models, how should a rational policy

decision maker proceed? If he follows the traditional Bayesian/subjective expected utility

approach, he will simply aggregate the models by averaging them into a single repre-

sentative one, and then use the (subjective) expected utility framework (Newbold and

Daigneault, 2009). The problem with this approach is that the decision maker considers

the resulting aggregated model in exactly the same way as he would consider an equivalent

objective model representing a specific risk, and model uncertainty has therefore no impact

on the decision making process. This approach has however been seriously challenged in

situations of deep uncertainty. The most famous example is that of Ellsberg (1961), who

showed through different experiments that the choices of individuals cannot be rational-

ized under the traditional Bayesian expected utility paradigm, and that individuals usually

manifest aversion towards situations in which probabilities are not perfectly known. In

applied economic models, some recent contributions have started applying non-expected

utility frameworks (i.e. alternative models of risk preferences and beliefs, most of which

replace the expected utility formulation with alternative criteria) to the problem of climate

change. In particular, these include applications of the smooth ambiguity model by Lange

and Treich (2008), who provide comparative statics results of the role played by ambiguity

in a simple two-period parametric model, Millner et al. (2013), and Lemoine and Traeger

(2014), both of whom propose numerical models under ambiguity aversion. Other con-

tributions include applications of the macroeconomic technique of robust control (Hansen

2These phenomena have been referred to as “tipping elements” because they imply abrupt climate
change occurring “when the climate system is forced to cross some threshold, triggering a transition to a
new state” (Lenton et al., 2008). Their corresponding critical point at which the future state of the system
is qualitatively altered is called a “tipping point”.

3Remark that these experts’ assessments may be the result of using different climatic models, different
physical parameters, different methodologies, or different databases.

4Even if climate scientists have recently made great deal of progress in understanding and describing the
physical mechanisms involved in the climate change phenomenon, many uncertainties still remain. Some
of them will eventually be resolved with future scientific progress, while others may be in the realm of
“unknowable” (Pindyck, 2013a) or “unquantifiable” (Heal and Millner, 2014).
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and Sargent, 2008) by Athanassoglou and Xepapadeas (2012), who consider an analytical

pollution control problem, and by Rudik (2015), who applies the concept in an integrated

assessment model including learning.5 Finally, a different approach is taken by Drouet

et al. (2015) who use the results of the most recent assessment of the IPCC to numer-

ically disentangle model uncertainty and risks about mitigation costs, climate dynamics

and (continuous) climate damages. For what concerns the inclusion of catastrophic dam-

ages into integrated assessment models, our paper also extends the work of, among others,

Gjerde et al. (1999), who show that taking into account a risk of catastrophe provides a

rationale for current emission control, and Keller et al. (2004) and Lontzek et al. (2012)

who model a collapse in ocean circulation as a permanent shock to the production func-

tion, and show that the optimal policy should be associated with immediate limitations

on emissions.

In this paper, we take a step further in the direction of understanding the theoretical

mechanisms underlying the results obtained in this literature, by applying the most recent

robust tools developed in decision theory (Cerreia-Vioglio et al., 2013b; Marinacci, 2015).

We consider an alternative to expected utility models which allows to incorporate both

risk and model uncertainty. More specifically, we study the impact of model uncertainty

aversion on optimal abatement policy. Our contribution is severalfold. We develop a two-

period model of emission abatement with an endogenous probability of catastrophic climate

change, which allows us to disentangle the contribution of preferences and the structure of

model uncertainty on the level of first-period abatement. We show that a simple measure

of the disagreement across models or experts is a sufficient statistic for determining the

structure of model uncertainty that matters for abatement. We apply our theoretical

results using an actual assessment of a major catastrophic climatic event with data from a

recent experts’ elicitation. Finally, we extend a widely used integrated assessment model

(IAM) of climate change (DICE, Nordhaus (1993)) to include a tipping element in the

climate response, in a framework where well-defined probabilities are unknown. This allows

us to quantify the impact of deep uncertainty on the optimal level of emission abatement,

addressing one of the criticisms of IAMs which have been recently highlighted by Stern

(2013), Pindyck (2013a,b, 2015), and Kunreuther et al. (2013). Our broader finding is that

in most situations, a robust climate strategy implies stronger mitigation policies. In that

sense, we show that deep uncertainty cannot be taken as an excuse for inaction, making

a clear link to the precautionary principle.6 We show that both preferences over model

uncertainty –measured by ambiguity prudence– and the structure of the model uncertainty

–measured by the decrease of the degree of model disagreement in abatement– determine

5Note that the preferences used by Hansen and Sargent (2008) can be seen as a special case of the
smooth ambiguity preferences. In their case, the ambiguity function is of the exponential or constant
absolute ambiguity aversion type (Cerreia-Vioglio et al., 2011; Marinacci, 2015).

6The precautionary principle states that: “When an activity raises threats of harm to human health or
the environment, precautionary measures should be taken even if some cause-and-effect relationships are
not fully established scientifically” (1998 Wingspread Statement on the Precautionary Principle).
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the optimal abatement level. The data we use from expert elicitations indicate that it is the

latter effect which is by far the most important, given that the disagreement across models

or experts increases in global mean temperature.7 Finally, the reformulated integrated

assessment model allows to generate quantitative estimates of the impact of risk and

model uncertainty aversion on optimal emission reductions. Compared to the commonly

used expected utility framework, model uncertainty raises abatement significantly. Our

broader policy result corroborates the findings of the recent strand of research which has

emphasized the importance of deep uncertainty and tipping points in quantitative climate

policy making (Lemoine and Traeger, 2014; Lontzek et al., 2012; Gjerde et al., 1999;

Weitzman, 2012, 2009; van der Ploeg and de Zeeuw, 2014; Lempert and Collins, 2007;

Drouet et al., 2015).

Our results can be read in both positive or normative terms. While we recognize the

existence of a debate about the normative status of non-expected utility models, and the

predominance of the expected utility theory paradigm for normative purposes in decision

making, we here follow the claim that there is nothing irrational about violating Savage’s

(1954) axioms in situations of deep uncertainty (Gilboa et al., 2008, 2009, 2012; Gilboa

and Marinacci, 2013).8 The non-Bayesian framework we adopt is thus compatible with a

normative assessment of optimal policies.

2 A simple model of optimal abatement under model un-

certainty

To investigate the effects of different types of uncertainty on emission abatement deci-

sions, we construct a simple economic model of optimal abatement with two periods: today

and the future. During the first period, the decision maker chooses a level of abatement

a that is undertaken at cost c(a). This abatement reduces available disposable income in

such a way that consumption in period 1 is given by C1 = w1− c(a), where w1 is the level

of income of the first period. In the future, there are two possible categories of states of

the world. One is catastrophic: the environment is severely affected so that the consump-

tion in the second period C2 is given by w2−Ls, where w2 is the deterministic exogenous

income, and Ls is the damage (loss) that occurs with probability πs, conditionally on the

fact that a catastrophe occurred (i.e. ∀s ∈ S, where S represents those catastrophic, or

unfavorable states). The other is one in which no catastrophe occurs, so that consumption

is w2 (favorable state). The probability p(a) that such a catastrophic event will occur is

7Climate data allow to predict low level of future warming with more confidence than high level of
warming: “once the world has warmed by 4 ◦C, conditions will be so different from anything we can
observe today that it is inherently hard to say when the warming will stop” (Allen and Frame, 2007).

8In situations where information is scarce, alternative decision-theory models may on the contrary
perform better in the sense that they have better explanatory power or are able to provide better predictions
and guidelines.
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endogenous and depends on the level of abatement chosen in the first period.9 Consump-

tion in the second period can therefore take |S| + 1 different values, and the abatement

effort in the first period is the only choice variable in this model. It is conceptualized as

an investment to reduce the risk of a catastrophic event that is difficult to compensate by

ordinary savings (rather than an instrument used to optimally smooth consumption over

time). As in most environmental economic models under uncertainty, intertemporal utility

is assumed to be time-separable, and future utility is discounted by a factor β ∈ (0, 1].

Model uncertainty is introduced by relaxing the assumption that all the elements of

the maximization program are objectively known or commonly agreed upon, so that the

probability model over future consumption is no longer unique. We assume that a true

climatic process is in place and generates observations, but that this true process –and the

probability model representing it– is unknown to the decision maker. The observations

generated by this model are however available and used by experts (scientists, climatolo-

gists, physicists, etc.) to construct predictive models that belong to a class M . The true

process is assumed to belong to this class of models, and elements of M are interpreted

by the DM as possible alternative models that could be selected by nature to generate

observations. These possible models have a Waldean interpretation in the sense that the

class M is regarded as a datum of the decision problem (Wald, 1950). This implies that

the models have to be consistent with objectively available information (note however

that the information must be incomplete, otherwise M would be a singleton). This set

therefore contains all the information the DM considers as “credible” in the sense that

“states that are not given any weights by any of the relevant probability distributions

are simply irrelevant” (Gajdos et al., 2008). We assume there are n different models (or

experts). These different models Pθ are indexed by a parameter θ ∈ {1, 2, ..., n}, so that

M = {Pθ}θ∈{1,...,n}. Each Pθ describes a possible distribution (i.e. a possible risk) on

second-period consumption: C̃2(a, θ) (in what follows, only the probability of catastrophe

will depend on θ). We also assume that the decision maker has a prior probability measure

over the set of possible models, that is, θ̃ has a probability distribution q = (q1, q2, ..., qn),

so that θ̃ takes value θ with probability qθ. This second order distribution θ̃ reflects model

uncertainty in the sense that the DM does not know which of the models Pθ is the true or

the most accurate one, and associates a subjective weight qθ with each of them.10

In what follows, we consider different criteria for decision making under climate model

9This type of model with endogenous probability to model mitigation is referred to as self-protection
models in the risk literature. An alternative is to consider the case of adaptation or self-insurance in which
the loss in the second period depends on the abatement level. Given the limited scope for adaptation in
reducing catastrophic impacts, we decided not to consider this latter case in this paper. It can however
be shown that our main results hold and would even be reinforced by the presence of adaptation to the
catastrophe or standard continuous damages in our framework (Berger, 2015).

10As mentioned earlier, a parallelism can be made between the uncertainty that follows this decompo-
sition into model (or epistemic) uncertainty and risk (also called aleatory or physical uncertainty) and
what is generally referred to in the decision theory literature as ambiguity (i.e. situations in which “a
decision maker does not have sufficient information to quantify through a single probability distribution
the stochastic nature of the problem he is facing” (Cerreia-Vioglio et al., 2013a)).
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uncertainty, and compare them in terms of optimal abatement. In the Appendix B, we

discuss the case of uncertainty about the economic impacts of a climate catastrophe (i.e.

the size of Ls), showing that our results carry over (and are even strengthened) in this

case. While different existing models of ambiguity aversion could have been adapted to

the presence of objective information (Marinacci, 2015), we focus on the smooth model of

model uncertainty aversion for its ability to characterize the notion of ambiguity neutrality,

its mathematical convenience, and because it encompasses many of the alternative criteria

as special or limit cases. Nonetheless, we explore alternative criteria, such as maxmin, in

the online Supplemental Material, showing that they entail qualitatively similar results.

The traditional approach for addressing a problem in which the true distribution is

unknown is to consider that agents use their probabilistic beliefs over the source of un-

certainty in an expected utility maximization framework. Cerreia-Vioglio et al. (2013b)

are the first to provide a decision theoretic derivation of this type of deep uncertainty

presented in two layers. In particular, they enrich the standard Savage framework in the

presence of objective information, and show that preferences satisfying Savage’s axioms

may be represented, in the context of our abatement model, by:

WSEU = v(w1 − c(a)) + βEθEv(C̃2(a, θ̃)). (1)

In this expression, v is the per-period von Neumann-Morgenstern (vNM) utility function

reflecting both the decision maker’s attitude towards risk and his desire to smooth con-

sumption over time,11 Eθ is the expectation operator taken over prior distribution θ̃, that

is, EθX(θ̃) =
∑n

i=1 qiX(i), and E is the expectation operator over second period consump-

tion in the different states of the world, conditional on model θ. This representation is

called Classical Subjective Expected Utility (SEU) because it incorporates key objective

pieces of information in Savage’s subjective framework. In the context of this paper, the

second-period expected utility for a given model θ may be written as:

Ev(C̃2(a, θ)) ≡ p(a, θ)
∑
s∈S

πsv(w2 − Ls) + (1− p(a, θ))v(w2). (2)

where we denote by p(a, θ) the probability of catastrophe as a function of abatement for

model θ. For each prior distribution q, there exists an equivalent predictive distribution

C̃2(a, θ̄) such that EθEv(C̃2(a, θ̃)) = Ev(C̃2(a, θ̄)), and it is therefore clear that the reduced

form of representation (1) is nothing but the original Savagian subjective expected utility.

The decision problem under uncertainty is then reduced to a simple decision problem

under risk where the beliefs are subjective. On the other hand, when M is a singleton (i.e.

when there is only one model everyone agrees on), there is no longer model uncertainty, so

11The two features could easily be disentangled using Kreps and Porteus (1978)/Selden (1978) pref-
erences. For the sake of expositional clarity and simplicity, we only consider this specification in the
quantification part of the paper (see Section 4).
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that the risky second period consumption is C̃2(a) and we are back to the classical vNM

expected utility model. These different representations of the problem are observationally

equivalent to someone who is not aware of the presence of objective information deriving

from different experts’ models.

In what follows, we consider the subjective expected utility representation as a bench-

mark. The economic problem of finding the level of abatement a∗SEU that maximizes

program (1) is easy to solve.12 This level is implicitly given by equalizing the marginal

cost and benefit of abatement:

v′(w1 − c(a∗SEU ))c′(a∗SEU ) = −β
∂EθEv(C̃2(a

∗
SEU , θ̃))

∂a
. (3)

While the classical subjective expected utility framework has the advantage of being

easily tractable, it is unable to take into account different attitudes towards different types

of uncertainty that surround the economics of climate change. We now introduce different

attitudes towards different types of uncertainty. In order to investigate the relationship

between risk aversion and model uncertainty aversion, we consider a criterion in which the

functional representing the agent’s preferences towards model uncertainty is smooth and

hence everywhere differentiable. Breaking the equal treatment of different uncertainties

and letting v represents attitude towards risk, and h attitude towards model uncertainty,

we can write the smooth criterion (Marinacci, 2015) to be maximized as:

WSmooth = v(w1 − c(a)) + β(v ◦ h−1)
(

Eθ(h ◦ v−1)
(

Ev
(
C̃2(a, θ̃)

)))
. (4)

This expression can be written equivalently as

WSmooth = v(w1 − c(a)) + βv
(
CE

(
ce(a, θ̃)

))
, (5)

where ce and CE represent both a certainty equivalent:

ce(a, θ) ≡ v−1
(

Ev(C̃2(a, θ)
)

and CE(ce(a, θ̃)) ≡ h−1
(

Eθh(ce(a, θ̃)
)
. (6)

The first, ce(a, θ), corresponds to the certainty equivalent of wealth in the second period, if

the abatement level is a and the expert’s model considered is Pθ. Under model uncertainty,

θ itself takes on different values, and so does the certainty equivalent ce(a, θ), which is

computed conditionally on θ. A second-order certainty equivalent of these first-order

certainty equivalents is then defined as CE by combining all models θ ∈ {1, 2, ..., n}. The

SEU reprensetation (1) is then obtained in the special case in which the two certainty

equivalents are evaluated using the same function v, so that the attitudes towards risk and

12The maximization programs we consider in this paper are assumed to be convex. Sufficient conditions
for concavity of (1) are that the cost function is increasing (c′(a) > 0) and convex (c′′(a) > 0) in the level
of abatement, and that the probability function is decreasing and convex (p′(a) < 0, p′′(a) > 0). More
generally, sufficient conditions for concavity of (4) may be found in Proposition 3 in Berger (2015).
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model uncertainty are exactly the same.

The smooth model uncertainty criterion is mathematically equivalent to the two-period

version of the ambiguity model developed by Klibanoff et al. (2009). The significant dif-

ference is that their model, as the vast decision theoretic literature dealing with ambiguity

(see Gilboa and Marinacci (2013) for an excellent survey), has been developed in a purely

subjective setup, and therefore does not explicitly incorporate objective information à

la Wald (1950). In particular, their representation is recovered by letting φ ≡ h ◦ v−1

represent the ambiguity attitude. Klibanoff et al. (2005) associate φ being a concave func-

tion to ambiguity aversion, and call the ratio −φ′′(x)
φ(x) the coefficient of absolute ambiguity

aversion at x, a given level of expected utility. From representation (4), ambiguity aver-

sion would correspond to h being more concave than v, or equivalently model uncertainty

aversion being stronger than risk aversion. Unsurprisingly, in the special case in which

the DM manifests the same attitude towards risk and model uncertainty, the problem is

reduced to the one considered by a classical subjective expected utility maximizer defined

by representation (1). In this case, the decision problem may be reduced to a problem

under risk.13 The great flexibility of this decision rule, which is based on the smoothness

of function h, implies different conditions in the comparative statics analysis of optimal

abatement. In particular, one condition needed to sign the direction of the change re-

sulting from higher aversion towards model uncertainty than towards risk is the notion of

ambiguity prudence (Gierlinger and Gollier, 2008; Berger, 2014). This concept, which is

closely related to the notion of risk prudence introduced by Kimball (1990), corresponds

to a condition under which the individual is willing to save more because of the presence

of ambiguity.14 Equivalently, it expresses the sensitivity of the optimal choice to the com-

bination of model uncertainty and risk. The notion of ambiguity prudence in this context

corresponds to decreasing absolute ambiguity aversion, which is the analogue of the widely

accepted notion of decreasing absolute risk aversion (DARA). Formally, the notions of

constant, decreasing and increasing absolute ambiguity aversion are defined depending

on the monotonicity properties of the ratio −φ′′(x)
φ(x) . In what follows, we respectively use

the abbreviations CAAA, DAAA, and IAAA to denote these cases.15 Equipped with the

ambiguity prudence property, which we investigate further in the next section, we now

compare the optimal level of abatement chosen by a decision maker under the smooth

criterion with the one chosen under classical subjective expected utility. Firstly, let us

13Note also that the maxmin criterion presented in the online Supplemental Material is recovered from
this formulation in the special case of infinite model uncertainty aversion.

14Formally, an agent is said to be ambiguity prudent if the introduction of ambiguity through a mean-
preserving spread in the space of conditional second period expected utility raises his optimal level of saving
(Berger, 2014).

15Note that DAAA encompasses the most widely used functional forms of power and exponential φ (the
former is usually referred to ‘constant relative ambiguity aversion’ (CRAA) and the latter corresponds to
CAAA). It is stronger than requiring φ′′′ > 0, but this should not be surprising, given that future utility
in program (4) is represented by the φ-certainty equivalent of the expected utilities rather than by its
expected φ-valuation.
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recall the definition of comonotonic variables before summarizing the result in Lemma 1,

which is reminiscent of Alary et al. (2013) and Berger (2015):16

Definition 1. Consider two random variables X and Y that are strictly monotonic trans-

formations of a single random variable θ, that is, (X,Y ) = (f(θ), g(θ)). The random

variables X and Y are anticomonotonic if f is increasing and g is decreasing in θ, and

comonotonic if f and g are both increasing or decreasing in θ.

Lemma 1. Assume that model uncertainty aversion is higher than risk aversion. In the

optimal abatement model characterized by the maximization of program (4), DAAA (resp.

IAAA) is sufficient to raise (resp. decrease) the optimal abatement if Ev(C̃2(a
∗
SEU , θ)) and

∂Ev(C̃2(a
∗
SEU , θ))/∂a are anticomonotonic (resp. comonotonic).

Proof. See Appendix A.1

Lemma 1 tells us that the total effect on abatement not only depends on the ambiguity

prudence condition, but also on a second factor that concerns the way the second period

expected utility and the marginal benefit of abatement interact when different experts or

models are considered. The question of whether the comonotonicity condition of Lemma 1

holds in practice is not trivial. However, the intuition is relatively simple. Consider the case

of two models with different probability curves p(a, θ) that do not cross. When the more

pessimistic one (e.g. the one with lower Ev(C̃2(a
∗
SEU , θ)) ) believes that the probability

of catastrophe decreases faster in abatement (e.g. a higher ∂Ev(C̃2(a
∗
SEU , θ))/∂a ), then

the anticomonicity condition holds, and the condition of ambiguity prudence –stating that

the DM is more willing to invest for the future when this future becomes more uncertain–

is sufficient. In this case, it is equivalent to saying that the disagreement across models

falls in abatement. For example, this would be the case if experts agreed that a high

level of climate protection would give us good chances of avoiding a climate catastrophe,

but disagreed on the probabilities in the case of limited mitigation and thus higher global

warming. In order to gain more intuition, we now disentangle the role of preferences from

the structure of model uncertainty, and study the two effects separately.

2.1 The ambiguity prudence effect

In terms of attitudes towards risk and model uncertainty, the ambiguity prudence

condition turns out to be non-trivial, as summarized in the following proposition.

16In a recent contribution Millner et al. (2013) also proposed a model of abatement with an endogenous
probability in a one-period framework similar to Alary et al. (2013). When two periods are considered,
however, the comonotonicity condition only concerns the second period, and general conclusions may be
drawn for the more realistic cases in which the effort exerted in the first period also reduces the ambiguity.
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Proposition 1. A decision maker exhibits DAAA if and only if his preferences towards

risk, captured by function u, and model uncertainty, captured by function h, are such that:

h′′′

h′
− v′′′

v′
≥
(
−h
′′

h′
+
v′′

v′

)(
−h
′′

h′
− 2

v′′

v′

)
. (7)

Similarly, a decision maker exhibits CAAA if inequality (7) holds with an equality, and

IAAA if inequality (7) is reversed.

Proof. See Appendix A.2

Intuitively, Proposition 1 tells us that a necessary and sufficient condition for DAAA is

that the difference in downside model uncertainty and risk aversion (the left-hand side of

(7)) is sufficiently high. To gain further insight about this condition, consider the following

examples.

Example 1. When the isoelastic CRRA-CRMUA17 specifications with relative risk aver-

sion parameter ρ and relative model uncertainty aversion parameter µ ≥ ρ (so that the

DM is ambiguity averse) are considered, the ambiguity aversion function is given by

φ(U) = 1
1−µ [(1 − ρ)U ]

1−µ
1−ρ , the coefficient of absolute ambiguity aversion is µ−ρ

(1−ρ)U , and

the DM exhibits DAAA when ρ < 1, CAAA when ρ = 1, and IAAA when ρ > 1.

Example 2. When the CARA-CAMUA18 specifications are used with absolute coeffi-

cients of risk aversion and model uncertainty aversion respectively ρ and µ, the ambiguity

function is φ(U) = −(−U)
µ
ρ , so that the DM always exhibits IAAA.

2.2 The convergence of agreement effect

In order to study the structure of model uncertainty, let us simplify the notation in

expression (2) above, and let w2−L with L > 0, be the certainty equivalent consumption

in the second period when the economy is hit by a catastrophe.19 Remember that in this

case, each model Pθ describes a possible risk on second period consumption, which is fully

characterized by C̃2(a, θ) ∼ [w2 − L, p(a, θ);w2, 1 − p(a, θ)]. An illustration of possible

different models is depicted in the first row of Figure 1.

To further characterize the change in the optimal abatement decision, we now define

the notion of degree of model disagreement. It is a measure of the variability across models

(or, equivalently, of the disagreement among experts).

17A utility function has the CRRA (constant relative risk aversion) property if it takes the form v(x) =
x1−ρ

1−ρ , where ρ is the coefficient of relative risk aversion (note that when ρ = 1, it collapses to v(x) = lnx).
CRMUA (constant relative model uncertainty aversion) is defined similarly for function h, in the sense

that h(x) = x1−µ

1−µ , where µ represents the coefficient of relative model uncertainty aversion.
18A utility function exhibits CARA (constant absolute risk aversion) if it has the form v(x) = −e−ρx,

where ρ is the coefficient of absolute risk aversion. CAMUA (constant absolute model uncertainty aversion)
is defined analogously, so that h(x) = −e−µx, where µ is the coefficient of absolute model uncertainty
aversion.

19More precisely, this certainty equivalent is implicitly defined by:
∑
s∈S πsv(w2 − Ls) = v(w2 − L).
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a
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a

Figure 1: Different models or experts p(a, θ) as functions of the abatement level a, under constant
(column A), increasing (column B), or decreasing (column C) degree of model uncertainty in
abatement.

Definition 2. For any set of probability functions {p(a, θ)}θ∈{1,...,n} characterizing models

{Pθ}θ∈{1,...,n}, the degree of model disagreement is given by:

σ2(a) := Varθ[p(a, θ)], for any given level of abatement a.

The degree of model disagreement is illustrated in the second row of Figure 1. As can

be seen, it can be (but is not limited to) constant (column A), increasing (column B), or

decreasing (column C) in the level of abatement. In what follows, we will focus on the case

where the degree of model disagreement is a monotonic function of abatement.20 We will

refer to convergence of agreement a situation in which the degree of model disagreement

is decreasing. Using this simple metric, we can now relate the results of Lemma 1 to the

structure of model uncertainty. First, note that conditional on the true model being Pθ,

we can write:

Ev(C̃2(a
∗
SEU , θ)) = v(w2)− p(a, θ)

[
v(w2)− v(w2 − L)

]
(8)

∂Ev(C̃2(a
∗
SEU , θ))

∂a
= −pa(a, θ)

[
v(w2)− v(w2 − L)

]
, (9)

where pa ≡ ∂p
∂a . Lemma 1 therefore tells us that a DM exhibiting DAAA will always choose

to abate more if p(a, θ) and pa(a, θ) are anticomonotonic in θ, as it is for example the case

in column C of Figure 1. In this case, the degree of model uncertainty will intuitively be

decreasing in abatement since abatement decreases the probability of catastrophe more

20Remark that this assumption is less restrictive than the one requiring the set of models {Pθ} to be
monotonic in θ for all levels of abatement equivalent to the one used in Alary et al. (2013) and Berger
(2015). In particular, our assumption does not require probability curves not to cross each other.
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strongly in more pessimistic models. The sufficient condition of Lemma 1 is however

very restrictive, and Proposition 2 below tells us that the comonotonicity property does

not necessarily have to hold for all the models considered. Instead, a simple and weaker

condition on the degree of model disagreement can be used to determine the direction of

the change induced by ambiguity aversion:

Proposition 2. The degree of model disagreement σ2(a) is decreasing (resp. increasing)

in abatement if and only if Covθ

(
p(a, θ); pa(a, θ)

)
≤ (resp. ≥) 0.

Proof. See Appendix A.3

With this intuition in mind, we can now introduce our main result, which does not

require the relatively strong condition of comonotonicity.

Proposition 3. In the optimal abatement problem under model uncertainty,

(i) a decision maker exhibiting CAAA always chooses to abate more (resp. less) than

an SEU maximizer if the degree of model disagreement decreases (resp. increases) with

abatement.

(ii) a decision maker exhibiting strict DAAA (resp. IAAA) always chooses to abate

strictly more (resp. less) than an SEU maximizer if the degree of model disagreement

decreases (resp. increases) or is constant in abatement.

This proposition tells us that if higher abatement leads to a reduction in the degree

of model disagreement, a positive incentive is generated to abate more in the first period.

Intuitively, the degree of model disagreement will be decreasing in abatement if abatement

on average decreases the probability of a catastrophe more strongly in pessimistic models.

This structural effect has however to be added to the ambiguity prudence effect to deter-

mine the direction of the total change in the abatement level. Ultimately, whether experts’

disagreement decreases in abatement, and the extent to which the model structure effect

interplays with ambiguity prudence in determining the optimal level of mitigation can be

answered only numerically. In the next section we bring the model to the data and analyze

the direction and magnitude of both effects.

3 Empirical evidence and expert judgments

The question of whether the degree of model disagreement is increasing or decreasing in

the level of abatement is essentially an empirical one. In this section, we use the results of

a recently published study to assess whether the conditions obtained from our theoretical

model are met in practice. In particular, we study separately the two effects of ambiguity

prudence and convergence of agreement we described in the previous section.

We use the data of Zickfeld et al. (2007). Their study presents the results from in-

terviews with 12 leading climate scientists about the risk of a collapse of the Atlantic

13



Meridional Overturning Circulation (AMOC, also called Thermohaline Circulation ) due

to global climate change.21 Specifically, the authors elicited the experts’ probabilities22

that a collapse of the AMOC will occur or will be irreversibly triggered as a function of

global mean temperature (GMT) increase realized by the year 2100. These probabilities

are reproduced and approximated in a least-squares sense using a power function of the

type P (T ) = k1T
k2 , where T represents the change in global mean temperature, and k1

and k2 are the best fit coefficients, in the above part of Figure 2. Note that for T = 0,

the probability of catastrophe P (T ) is set to zero for all experts. As it can be seen, eight
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experts23 assessed a non-zero probability of this catastrophic event. For an increase of 2

degrees Celsius in 2100 relative to 2000, four experts assessed a probability of a collapse

≥ 5%, while for a warming of 4◦C, three experts assigned a probability ≥ 40%. Finally, if

21The AMOC is a major current in the Atlantic Ocean that transports heat energy from the tropics
and Southern Hemisphere towards the North Atlantic. Changes in this ocean circulation could have an
important impact on many aspects of the global climate system, including changes in the carbon-cycle.
A collapse of the AMOC is defined in Zickfeld et al. (2007) as a “reduction in AMOC strength by more
than 90% relative to present-day”. Such an event may potentially have catastrophic consequences such
as changes in sea level in the Atlantic area north up to 1 meter (Zickfeld et al. (2007) Fig.7), reductions
in crop production or water availability with consequent impacts (Table 12.4, IPCC (2007)). The list of
scientists selected for this study can be found in Zickfeld et al. (2007). It includes experts with different
scientific backgrounds (observationalists, palaeoclimatologists, modelers), geographic origins and schools
of thought. These experts were selected based on different criteria (authors’ knowledge of the field, review
of recent publications, advice from scientists in the field).

22Expert elicitations is a tool for systematically gathering and projecting scientific information in com-
plex policy problems that is “increasingly recognized to play a valuable role for informing climate policy
decisions” (Kriegler et al., 2009).

23Note that expert 5 did not answer the question.
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the increase in global warming reaches 6◦C, the probability is 90% for two experts, ≥ 50%

for four, and ≥ 10% for six experts. These curves represent the different probability func-

tions p(a, θ) we introduced in Section 2, given that the abatement of GHG emissions lowers

expected global mean temperature. Although the link between cumulative emissions and

temperature increase has been shown to be robustly described by a linear relationship

(Matthews et al., 2009; IPCC, 2013), the magnitude of the so-called carbon-climate re-

sponse describing this relationship remains uncertain. In our framework, we have so far

neglected this additional source of uncertainty. In the Supplemental Material provided

online, we allow for different values of carbon-climate response and show that our results

are robust to this alternative source of uncertainty.

In Figure 3, we provide the distorted probability functions for different values of model

uncertainty aversion. Formally, this notion is defined as follows.

Definition 3. The distorted probability p̂(a) is the probability that would be equivalently

considered under expected utility, and that is defined as:

p̂(a)v(w2−L)+(1−p̂(a))v(w2) = (v◦h−1)
{

Eθ(h◦v−1)
{
p(a, θ̃)v(w2−L)+(1−p(a, θ̃))v(w2)

}}
.

(10)

Note that for an individual exhibiting an equal attitude towards risk and model uncer-

tainty, the distorted probability corresponds to the predictive probability of catastrophe:

p̄(a) ≡ Eθp(a, θ̃). On the contrary, under the smooth model uncertainty aversion criterion,

the DM aggregates the different models depending on his degree of model uncertainty

aversion relative to his risk aversion, and acts as if he were an expected utility maximizer

considering only the distorted probability p̂(a). In particular, if aversion to model uncer-

tainty is stronger than that to risk, it must be that p̂(a) ≥ p̄(a) ∀a, leading any ambiguity

averse DM to overweight more pessimistic models. Since estimates of the potential loss L

are hard to obtain, we follow van der Ploeg and de Zeeuw (2014) in assuming a 20% loss of

GDP. This order of magnitude is rather speculative and is used essentially for illustrative

purposes in the context of climate change, but it is based on the findings of Barro (2013),

who shows that historically, catastrophes –defined as losses of at least 10% of GDP– aver-

aged about 20% of GDP. Finally, regarding the weights of different experts, we consider a

uniform prior distribution, given that we do not have any information about the “qualifi-

cation” of the different experts.24 We can now study separately the effect resulting from

the degree of model disagreement (convergence of agreement effect) and the one resulting

from the attitude towards model uncertainty (ambiguity prudence effect).

24This view is supported by Zickfeld et al. (2007), who write “the process of choosing experts for inclusion
in this study is fundamentally different from the process of sampling to estimate some uncertain value such
as a physical quantity, or polling the public to predict the results of an election. The route to scientific
truth is not a matter of voting. One of the outliers among the respondents may be correct, and those who
appear to be in close agreement may all be wrong”.
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Let us begin with the former. The lower panel of Figure 2 tells us that the degree of

model disagreement for the AMOC collapse is decreasing in the level of abatement. To

compute the distorted probabilities in Figure 3, we use a utility function v of the type

CRRA with a parameter of relative risk aversion ρ = 1 (i.e., log utility), and a function h

of the CRMUA form, with a model uncertainty aversion parameter µ. From the properties

of the CRRA-CRMUA functions discussed above, the DM exhibits CAAA, so that there

is no ambiguity prudence effect. The total effect on abatement can therefore be entirely

attributed to the decrease in the degree of model disagreement. For µ = 1, the individual

is ambiguity neutral and maximizes his expected utility by considering only the probability

depicted in blue. When µ = 0, the DM is ambiguity loving and acts as if he considered more

optimistic experts, while when µ increases, more weight is attached to more pessimistic

experts, and the probability of catastrophe increases for any fixed level of abatement.

What Figure 3 indicates is that not only is the distorted probability of catastrophe higher

when µ > 1, but so is the slope of the distorted probability functions, therefore making

abatement marginally more desirable. This change in the marginal benefit of abatement

induces the DM to opt for a higher abatement level.

In order to isolate the ambiguity prudence effect, we artificially construct three differ-

ent probability laws representing experts’ assessments of the AMOC collapse (above part

of Figure 4). The probability laws are constructed in such a way that, by considering a

uniform prior over experts, an EU maximizer chooses exactly the same amount of abate-

ment as in the case where he considers the data from Zickfeld et al.’s (2007) probabilities

presented in Figure 2. Since these probability laws are perfectly parallel, the degree of

model disagreement σ2(a) is constant in abatement (below part of Figure 4 ). The effect

of higher aversion towards model uncertainty than towards risk on optimal abatement in

this case therefore depends exclusively on the DM’s ambiguity prudence attitude. In par-

ticular, from our model we know that the DM abates less if he exhibits IAAA, exactly the

same amount if he exhibits CAAA, or chooses to abate more if he manifests DAAA. To

quantify the importance of this effect, we present the distorted probabilities with differ-

ent specifications of the functions v and h in Figure 5. We consider the CRRA-CRMUA

specification described above, spanning rather extreme values of relative risk aversion η

and model uncertainty aversion µ. As before, when ρ = µ the DM acts as an expected

utility maximizer and considers the average probability of catastrophe depicted in blue.

When model uncertainty aversion is higher than risk aversion (µ > ρ), he either considers

the red (DAAA), the blue dotted (CAAA) or the brown (IAAA) distorted probability

(see insets). The lower part of Figure 5 shows that the difference between the distorted

probabilities and the simple average, ∆(a) := p̂(a)− p̄(a), is respectively constant, decreas-

ing or increasing in abatement when CAAA, DAAA or IAAA is considered. This gives

an ambiguity averse individual manifesting DAAA an incentive to abate more in order

to prevent the realization of the bad state in the future, since the absolute slope of the
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probability curve (and hence the marginal benefit of abatement) is always higher in this

situation than under expected utility or under CAAA. However, although the direction

of the effect is the same as predicted by our model, its magnitude appears to be small,

with discernible difference only for very high values of model uncertainty aversion.25 This

provides an empirically grounded assessment of the relative importance of the structure

versus the attitude toward model uncertainty, showing that the former effect –namely

the convergence of model agreement– has a bigger impact on the optimal climate policy

decision. In order to provide a quantitative assessment of the combined effects of model

uncertainty on optimal abatement, we now apply our framework to a general equilibrium

model of climate change economics.

4 Quantification using an integrated assessment model

In order to quantify the theoretical predictions, we implement the model developed in

this paper using the data of Section 3 in the most widely used integrated assessment model

for the analysis of climate change, the DICE model (Nordhaus, 1993). DICE (Dynamic

Integrated Climate and Economy) is a numerical optimal growth model à la Ramsey,

25It may be shown that this result of almost no ambiguity prudence effect is robust to a reasonable range
of GDP losses.
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which integrates emissions and their mitigation in the production function, and which

provides climate change feedback on the economy through climate and impact modules.26

We extend the DICE model by reformulating it as a stochastic control problem, and by

implementing the endogenous possibility of a climate catastrophe based on the estimated

experts’ probability functions. Section 2 in the online Supplemental Material provides a

more detailed description of the model. Following Zickfeld et al.’s (2007) expert elicitation,

we consider the case where the uncertainty is resolved at one single point in time, in the

year 2100. That is, after the year 2100, either the catastrophe has hit the economy, leading

to the crossing of a tipping point, or not. In the catastrophic state, an irreversible damage

occurs in that an additional 20% of baseline GDP is lost for the remaining time horizon.

This means that we extend the DICE damage function that expresses the economic impacts

of climate change D in percent of GDP as the following random variable:

D̃θ(T ) ∼
[
κ1T + κ2T

κ3 + L, pθ(T );κ1T + κ2T
κ3 , (1− pθ(T ))

]
, (11)

where T is the change in global mean temperature relative to the preindustrial level, and

pθ is the probability of suffering an additional catastrophic loss L, as given by expert θ.27

The term κ1T + κ2T
κ3 on the right-hand side of expression (11) represents the standard

DICE damage function. The default calibration of κ1 = 0, κ2 = 0.00267, and κ3 = 2

for example yields a standard damage estimate of 5.4% of GDP for a 4.5◦C temperature

increase. The loss due to a catastrophic event (L = 20%) adds onto the standard damage

function and occurs with a probability that depends on the temperature increase attained

in the year 2100. Finally, while so far we assumed that the elasticity of intertemporal

substitution was equal to the inverse of the degree of relative risk aversion (an assumption

that is maintained throughout the literature, see Klibanoff et al. (2009)), we disentangle

these two very different normative characteristics of the decision maker to obtain a more

realistic representation of preferences. To do so, we modify DICE’s utility function and

adapt the generalized model of Hayashi and Miao (2011) to disentangle the three concepts

of risk aversion, intertemporal elasticity of substitution and model uncertainty aversion.

As before, we represent risk aversion by the function v and model uncertainty aversion by

h. The agent’s intertemporal welfare at time t is represented by the following recursive

form:

Wt = u−1
[
(1− β)u (ct) + βu

(
Rt

(
W̃t+1

˜(θ)
))]

, (12)

26See Nordhaus and Sztorc (2013); Nordhaus (2014) for a description of all assumptions, equations and
data used for the latest version DICE2013R of the model.

27An adjustment factor of 0.7◦C degrees, representing the global mean increase in temperature between
years 1900 and 2000 (Hansen et al., 2006), is used since the DICE standard damage function considers
1900 as a reference for temperatures.
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where u characterizes the attitude towards consumption smoothing over time,28 β is the

discount factor, Ct is the consumption at time t, and Rt(W̃t+1(θ̃)) represents the double

certainty equivalent defined as follows:

Rt(W̃t+1(θ̃)) := h−1
(

Et,θ(h ◦ v−1)
(

Etv(W̃t+1(θ̃))
))

. (13)

In this expression, Et,θ is the expectation operator taken at time t over models, and Et is

the expectation operator taken at time t over future consumption, conditional on θ. For

the implementation, we use a threefold isoelastic specification of the different functions: η

is the inverse of the elasticity of intertemporal substitution, ρ is the constant relative risk

aversion (CRRA) parameter, and µ is the degree of constant relative model uncertainty

aversion (CRMUA). The main purpose of the threefold disentanglement is to allow varying

risk preferences while keeping the certainty equivalent discount rate, as defined by the

Ramsey rule, constant.

The enhanced DICE model allows us to quantify the impact of model uncertainty

aversion on abatement in the light of the insights of the theoretical model proposed in

Section 2. In particular, it shows how the combined effects of ambiguity prudence and

the convergence of agreement effect impact the optimal abatement decisions. In order

to do so, we compute the level of additional abatement, i.e. the extra reduction of cu-

mulative emissions, under the possibility of a climate catastrophe, relative to that in the

standard version of DICE without catastrophic climate change.29 Figure 6 illustrates the

results in terms of additional abatement realized during the period 2010-2100 for differ-

ent parametrizations. For ρ = µ = 0, that is for a risk and model uncertainty neutral

policy maker, the only difference with respect to the standard DICE is the presence of

catastrophe, which is evaluated as its expected future consumption loss. In this case, op-

timal abatement increases by 13.5% in the sense that the cumulative emissions are further

reduced from 3813 to 3301 GtCO2, as reported in Table 1 below.

The additional abatement rises to 15%, 23%, and 42% when both risk and model

uncertainty aversions are increased simultaneously (ρ = µ) to 1, 4 and 10 respectively

(black crosses on Figure 6). This situation of ambiguity neutrality corresponds to the

Epstein-Zin-Weil version of the model. Allowing to differentiate the coefficients of risk

aversion and model uncertainty aversion enables us to see that the additional abatement

28Similarly as what is proposed by Epstein and Zin (1989) and Weil (1990), we consider the particular
case in which uis isoelastic, with a parameter η representing the inverse of the elasticity of intertemporal
substitution.

29Unless stated explicitly otherwise, we keep the standard specifications of the latest version of the DICE
model (see Nordhaus and Sztorc (2013); Nordhaus (2014)) unaltered. This for example means that the
inverse of the elasticity of intertemporal substitution is fixed to η = 1.45 and that the pure rate of time
preference equals 1.5% per year. In the standard scenario without the possibility of a catastrophe, the
global temperature increase by 2100 is about C, and the global cumulative CO2 emissions –also called the
cumulative carbon budget– amount to 3813 gigatonnes of carbon dioxide (GtCO2) for the period 2010-2100
(see the last row of Table 1 hereafter). We will refer to additional abatement the further relative reductions
of this carbon budget.
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Figure 6: Additional abatement based on the modified version of DICE with the possibility
of AMOC collapse for different values of relative risk aversion (ρ) and relative model
uncertainty aversion (µ).

level is increasing in the risk aversion parameter ρ, though at a decreasing rate (left panel of

Figure 6). For what concerns the model uncertainty aversion parameter µ, the additional

abatement level monotonically increases. In terms of magnitude, the results suggest that

the effect of model uncertainty aversion is about one fourth to about half of the effect of

risk aversion (as can also be inferred from Figure 6): starting from the case of ρ = η = 1

with additional abatement of 15% of emissions, increasing ρ to 10 roughly doubles the

effort to 32%, whereas increasing µ to 10 increases abatement to 19%. Moreover, the

results of the enhanced DICE model confirm what we observed in the previous section

concerning the relative importance of preferences and structure of model disagreement:

since the experts’ disagreement decreases in abatement, abatement always increases in the

degree of model uncertainty aversion, even whenever ρ ≥ 1.

Table 1 provides additional details of the scenario runs. In the third column, we report

the social cost of carbon in 2015.30 It is estimated to be $17.7 per ton of CO2 in the

standard version of DICE without catastrophe and increases to $20.4 when the possibility

of a catastrophe is taken into account in a risk and model uncertainty neutral environment.

It further increases to $27 when the relative risk and model uncertainty aversion parameters

µ = ρ = 10 are considered. Additional results concerning the temperature increase reached

in 2100 are presented in the fourth column of Table 1. As can be seen, the introduction

of a potential catastrophic climate change event reduces the admitted global temperature

increase in 2100 (compared to the preindustrial level) from 3.1°C in the standard version

of DICE, to 2.5°C (when µ = ρ = 10). Both the risk and model uncertainty aversion

parameters lead to a reduction of the optimal temperature increase.31 Finally, the two

30Put simply, this important concept measures the market price of emissions of GHGs. More formally,
the social cost of carbon at time t is defined as the ratio of the marginal impact of emissions on welfare
over the marginal welfare value of a unit of aggregate consumption (see Nordhaus (2014) for more details).

31Additional graphs concerning the social cost of carbon and the stochastic evolution of global temper-
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Cum. emissions
in 2010-2100

(GtCO2)

Additional
optimal
abatement

Social cost of
carbon in 2015

($/tCO2)

Temperature
increase in 2100

(°C)

Average prob
of catastrophe

p̄(T ∗)

Distorted prob
of catastrophe

p̂(T ∗)

µ = 0

ρ = 0 3301 13.4 % 20.4 $ 2.91 6.6 % 6.6 %
ρ = 1 3244 14.9 % 20.7 $ 2.89 6.5 % 6.4 %
ρ = 4 3045 20.1 % 21.8 $ 2.82 6.2 % 5.7 %
ρ = 10 2634 30.9 % 24.1 $ 2.67 5.5 % 3.9 %

µ = 1

ρ = 0 3290 13.7 % 20.5 $ 2.91 6.5 % 6.6 %
ρ = 1 3230 15.3 % 20.8 $ 2.89 6.4 % 6.4 %
ρ = 4 3022 20.7 % 21.9 $ 2.81 6.1 % 5.7 %
ρ = 10 2585 32.2 % 24.4 $ 2.65 5.4 % 4.0 %

µ = 10

ρ = 0 3179 16.6 % 21.1 $ 2.87 6.4 % 7.3 %
ρ = 1 3096 18.8 % 21.5 $ 2.84 6.2 % 7.2 %
ρ = 4 2799 26.6 % 23.2 $ 2.73 5.8 % 6.5 %
ρ = 10 2195 42.4 % 27.0 $ 2.50 4.8 % 4.8 %

Standard optimal
3813 0 % 17.7 $ 3.1 0% 0%

version of DICE

Table 1: Global cumulative emissions for the period 2010-2100, social cost of carbon in 2015,

temperature increases (with respect to preindustrial level), average and distorted probabilities of

catastrophe obtained with the modified version of DICE under the possibility of AMOC collapse.

last columns of Table 1 present the average p̄(T ∗) and distorted p̂(T ∗) probabilities of

the AMOC collapse that is ultimately admitted by the DM. These values are computed

at the optimal temperature endogenously calculated by the model. As expected, these

probabilities are decreasing in both µ and ρ since the temperature is decreasing in both

parameters. We also remark that p̄(T ∗) < p̂(T ∗) as long as µ > ρ, so that the DM

always overestimates the probability of catastrophe when his model uncertainty aversion

is stronger than his risk aversion (and vice-versa). Overall, these results from the stochastic

IAM confirm that model uncertainty plays an important role in quantitative terms when

the convergence of agreement effect is important. Depending on the parametrization of

preferences, the possibility of a catastrophe, risk and model uncertainty aversion lead to

additional mitigation effort of the cumulative emissions in the baseline scenario in the

range of 13 to 49%.

In order to analyze the robustness of our results, we perform an extensive sensitivity

analysis with respect to the most relevant model parameters and specifications. In par-

ticular, we take into account a different timing of the catastrophic event, different values

for the equilibrium climate sensitivity, different utility discount rates, and different values

of the economic losses of the catastrophe. While the full set of results is available in the

Supplemental Material provided online, a summary of the results can be found in Table 2.

We focus on the effect of model uncertainty aversion, while maintaining an intermediate

value of ρ = 4 for the parameter of risk aversion.

Overall, the results show that the qualitative effect of model uncertainty aversion is

robust throughout the specifications considered. For a lower value of the economic loss

from the catastrophe (10% of GDP), a very low value of the climate sensitivity, or a

ature can be found in the online Supplemental Material.
32For these cases, cumulative emissions and temperature are reported for/until the year 2075.
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Increased abatement
for µ = 0→ 10

Cum. emissions (µ = 10)
during 2010-2100 (GtCO2)

Social Cost of Carbon
(µ = 10) in 2015 ($/tCO2)

Temperature increase
(µ = 10) in 2100 (◦C)

Impact L
L = 10 % 1.3 % 3442 19.6 $ 2.96
L = 30 % 19.8 % 1953 30.0 $ 2.37

Climate
sensitivity

ECS = 1.5 2.4 % 4820 8.5 $ 1.96
ECS = 4.5 9.6 % 1540 42.5 $ 3.16

Discount
rate

prstp= 0.001 10.3 % 922 83.0 $ 1.86
prstp= 0.03 3.3 % 4306 9.1 $ 3.20

Time of
resolution32

2075 8.5 % 2091 26.8 $ 2.32
2100 5.4 % 2410 23.2 $ 2.41
2125 3.5 % 2616 21.1 $ 2.46

Standard version
8.1 % 2799 23.2 $ 2.73

(ρ = 4, µ = 10)

Table 2: Sensitivity Analysis. Differences in relative abatement are given in percentage point

comparing the model run with µ = 10 to µ = 0, keeping ρ = 4 and everything else constant.

Cumulative emissions, social cost of carbon and temperature increases are reported for the high

model uncertainty aversion case (µ = 10).

comparable high utility discount rate of 3%, the effect of model uncertainty is attenuated

but still leads to a notable increase in optimal abatement. If, on the other hand, the

values are set to the other side of the spectrum, model uncertainty raises precautionary

mitigation effort significantly, and more than proportionally. For example, an impact L

of 30% as opposed to 20% raises the social cost of carbon by about 7$/tCO2. Finally,

regarding the timing of learning and the potential occurrence of the catastrophic event, we

find that the increase in abatement is higher for earlier occurrences and that it diminishes

over time.

5 Conclusion

This paper aims at understanding and quantifying the impact of model uncertainty

aversion on optimal abatement decisions, for the policy relevant case of catastrophic cli-

mate change. This attempt stems from the recognition that, although it is now fully

recognized that the presence of these uncertainties represents an essential datum of the

climate change issue, the way they are treated and integrated in the models used to make

predictions or to design public policies remains unsatisfactory. By evaluating the optimal

strategy for responding to an uncertain threat, the model we present in this paper has the

advantage of treating policy analysis as that of a robust risk management problem.

In particular, we consider situations in which the actions we take today (such as choos-

ing the level of abatement) affect the probability of incurring a high damage event (of

catastrophic nature) in the future. The selection of optimal policies in this sense is es-

sentially an exercise in risk management. However, the particularity of this exercise is

that it is carried out under partial ignorance: the decision maker we study admits he does

not know the exact relationship between her action and the probability of catastrophe.

Rather, what the decision maker has available to help her making a choice is a collection

of models or expert’s estimates of this relationship. In contrast with purely risky situa-
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tions in which the probabilities are known, the situations we study are therefore deeply

uncertain or ambiguous. The ambiguity results precisely from the combination of risk and

model uncertainty, and the decision maker’s attitude towards ambiguity naturally results

from the composition of attitudes towards these two distinct sources of uncertainty.

We compare this robust decision making approach with the standard expected utility

approach, and show that the latter is not capable of differentiating distinct attitudes

towards different types of uncertainty: it implicitly treats a situation in which experts have

different dogmatic beliefs exactly the same way as a situation of pure risk. Rather, if the

policy maker is ambiguity averse in the sense that he is more sensitive to model uncertainty

than to risk, we show that he will undertake more abatement effort if the combination of the

ambiguity prudence effect and the convergence of agreement effect is positive. The former

condition is directly related to a condition about the functions representing preferences,

while the latter is a characteristic of the available expert elicitation or model data. The

intuition behind this result is that the desirability of preventive efforts is measured not

only by the reduction in the expected damages, but also by the value of the associated

reduced uncertainties. A degree of model disagreement that is decreasing in abatement

effort is asking for a policy limiting global warming to relatively lower levels as it gives a

precautionary policy maker an extra incentive for a more stringent mitigation policy, in

the spirit of the precautionary principle. Finally, in contributing to answering the need

to integrate the treatment of deep uncertainties and of possible catastrophic events in

integrated assessment models, we apply our insights to the DICE model, and show that

robust precautionary climate policies require a significantly higher abatement level. While

the risk-neutral consideration of a catastrophic risk leads to a comparably low increase in

abatement effort, this increase is magnified for reasonable degrees of both risk and model

uncertainty aversion.

Although the proposed framework allows us to generate a set of original insights, many

limitations remain. For example, we abstracted from the possibility of learning. Although

it is unclear how much we can actually learn about these extreme climatic outcomes and

what the implications are of learning on optimal abatement (IPCC, 2014), several insightful

applications emphasizing the role of learning in integrated assessment models with tipping

elements have been recently proposed (Rudik, 2015; Lemoine and Traeger, 2014). Our

framework also requires calibrating parameters for which few estimates exist, such as

the model uncertainty aversion, potentially limiting its practical use. Nonetheless, we

believe that the flexibility of the model uncertainty decision framework, the results about

the importance of the structure of model uncertainty, and the simplicity of the proposed

metric of model disagreement, are widely applicable and can be fruitfully extended to

other policy objectives and data-generating processes such as additional tipping elements,

climate engineering, technological change, or even non climate-related policy issues.
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Appendix

A Proofs

A.1 Proof of Lemma 1

The proof directly follows from Proposition 4 in Berger (2015). The condition to

observe a higher (resp. lower) abatement due to ambiguity aversion may be written as

Eθ

[
φ′
(

Ev(C̃2(a, θ̃))
)∂Ev(C̃2(a, θ̃))

∂a

]
≥ (≤)φ′

(
φ−1

(
Eθφ

(
Ev(C̃2(a, θ̃))

)))
Eθ
∂Ev(C̃2(a, θ̃))

∂a
.

(A.1)

Analogously to the risk theory literature, it can moreover be shown that CAAA is equiva-

lent to: φ′
(
φ−1

(
Eφ
(
Ũ
)))

= Eφ′
(
Ũ
)
, strict DAAA to φ′

(
φ−1

(
Eφ
(
Ũ
)))

< Eφ′
(
Ũ
)
, and

strict IAAA to φ′
(
φ−1

(
Eφ
(
Ũ
)))

> Eφ′
(
Ũ
)
. By letting A ≡ Ev(C̃2(a, θ̃)) and B ≡

∂Ev(C̃2(a,θ̃))
∂a , we can rewrite condition (A.1) as Covθ

(
φ′(A);B

)
≥ (≤)0, or Covθ

(
A;B

)
≤

(≥)0, since φ′ is decreasing under ambiguity aversion. In the case of strict DAAA, we can

use the chain of inequalities

Eθ

[
φ′(A)B

]
≥ Eθφ

′(A)EθB > φ′
(
φ−1

(
Eθφ

(
A
)))

EθB, (A.2)
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so that the left-hand side (LHS) of (A.1) is greater than the right-hand (RHS) side if

Covθ
(
A;B

)
≤ 0, while in the case of strict IAAA, we can use the chain of inequalities

Eθ

[
φ′(A)B

]
≤ Eθφ

′(A)EθB < φ′
(
φ−1

(
Eθφ

(
A
)))

EθB, (A.3)

to show that the RHS of (A.1) is greater than the LHS if Covθ
(
A;B

)
≥ 0. From Kim-

ball (1951), it follows that this covariance is negative (resp. positive) if A and B are

anticomonotonic (resp. comonotonic).

A.2 Proof of Proposition 1

Considering the ambiguity aversion function φ(U) = (h ◦ v−1)(U), where U represents

the expected utility computed in the presence of risk (i.e. U ≡ Ev(x̃)), it is easy to

compute the index of absolute ambiguity aversion as follows:

−φ
′′(U)

φ′(U)
= −v

′h′′ − h′v′′

(v′)3
v′

h′
=

1

v′

[
−h
′′

h′
+
v′′

v′

]
, (A.4)

where in a slight abuse of notations, we let h ≡ h(v−1(U)) and v ≡ v(v−1(U)). As

expected, this ratio is positive if model uncertainty aversion is higher than risk aversion.

Analogously to risk theory literature, DAAA means that −φ′′′(U)
φ′′(U) ≥ −

φ′′(U)
φ′(U) , which is the

case if and only if

h′′′

h′
+ 2

(
−v′′

v′

)2

≥ v′′′

v′
+

(
−h′′

h′

)2

+

(
−h′′

h′

)(
−v′′

v′

)
. (A.5)

A.3 Proof of Proposition 2

The result is obtained by decomposing σ2(a) = Eθ[p(a, θ)
2] − p(a, θ̄)2, where p̄(a) ≡

Eθp(a, θ̃), and deriving this expression with respect to a: ∂σ2(a)
∂a = 2Eθ[p(a, θ)pa(a, θ)] −

2p(a, θ̄)pa(a, θ̄) = 2Covθ

(
p(a, θ); pa(a, θ)

)
.

B Economic impact uncertainty

Impact (or socioeconomic) uncertainty results from our “imperfect understanding of

the impacts of climate change on human societies and of how these societies will respond”

(Heal and Millner, 2014). In the context of our abatement model, imagine there is a

scientific consensus on the link between the probability of a catastrophic event and the

temperature increase (or abatement levels) given by a particular probability function p(a).

Even in this far from realistic situation of limited scientific uncertainty, there would how-

ever still be room for model uncertainty to play a significant role because of the remaining

uncertainty concerning the economic impacts of a climate catastrophe. What, for exam-

ple, would be the economic loss associated with a sea level rise of one meter? Would it

29



be possible to construct protection dikes to save the most vulnerable places, and if so, at

what cost? Or, what would be the cost associated with relocation and reconstruction?

All these costs correspond to what we have called the economic loss associated with the

catastrophic event, and are far from being perfectly known.33 Different experts or studies

may disagree on the total impact of a possible catastrophe, and this disagreement among

economic models may potentially affect the decision made by a policy maker.

In our simple optimal abatement problem under impact uncertainty about the economic

impacts Ls, the second period expected utility for a given model Pθ is now written as

Ev(C̃2(a, θ)) = p(a)
∑
s∈S

πs(θ)v(w2 − Ls) + (1− p(a))v(w2), (B.1)

where πs(θ) denotes the probability according to expert θ of the loss Ls. The expected

marginal benefit of abatement can be obtained as

∂Ev(C̃2(a, θ))

∂a
= −pa(a)

[
v(w2)−

∑
s∈S

πs(θ)v(w2 − Ls)
]
. (B.2)

Given that the probability of catastrophe is assumed to be decreasing in abatement, it is

clear that expressions (B.1) and (B.2) will always be anticomonotonic, which leads us to

the following result:

Proposition 4. In the optimal abatement problem under model uncertainty about impacts,

an agent considering the smooth criterion and exhibiting CAAA or DAAA always chooses

to abate more than an expected utility maximizer .

Proof. The result directly follows from Lemma 1.

On the contrary, if the DM exhibits IAAA, it is impossible to unambiguously sign the

final effect of model uncertainty aversion since it will depend on which of the two effects

(degree of model disagreement or ambiguity prudence) dominates.

33Stern (2007) for example estimates the total loss for a high climate change scenario with non-market
impacts and the risk of a catastrophe to be between 2.9% and 35.2% of GDP per capita in 2200 (see Figure
6.5 in Stern (2007) for more details).
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