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Effective quantum inertia of charge carriers in a macroscopic conductor

A. Delgard!, B. Chenaud', U. Gennser?, D. Mailly2, P. Degiovanni® and C. Chaubet!
Y Université Montpellier 2, Laboratoire Charles Coulomb UMRS5221, F-34095, Montpellier, France
CNRS, Laboratoire Charles Coulomb UMRS5221, F-34095, Montpellier, France
2 Centre de Nanosciences et de Nanotechnologies (C2N), CNRS,
Université Paris-Sud, Université Paris-Saclay, 91120 Palaiseau, France and
3 Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1,
CNRS, Laboratoire de Physique, F-69342 Lyon, anceﬂ

We study the low frequency admittance of a quantum Hall bar of size much larger than the
electronic coherence length. We find that this macroscopic conductor behaves as an ideal quantum
conductor with vanishing longitudinal resistance and purely inductive behavior up to f < 1 MHz.
Using several measurement configurations, we study the dependence of this inductance on the length
of the edge channel and on the integer quantum Hall filling fraction. The experimental data are well
described by a scattering model for edge magnetoplasmons taking into account effective long range
Coulomb interactions within the sample. This demonstrates that the inductance’s dependence on
the filling fraction arises from the effective quantum inertia of charge carriers induced by Coulomb
interactions within an ungated macroscopic quantum Hall bar.

PACS numbers: 72.10.-d, 73.23.-b,73.43.-f, 73.43.F}j

By demonstrating that macroscopic conductors could
exhibit robust d.c. transport properties of quantum ori-
gin, the integer quantum Hall effect (IQHE) [IH5] has
been a major surprise. The importance of this break-
through for metrology has been acknowledged immedi-
ately [I] and has lead to the redefinition of the Ohm
at the CPEMS88 conference [6]. The finite frequency
response of quantum Hall conductors has been a sub-
ject of intense work by metrologists: the use of an a.c.
bridge at finite frequency f revealed departure of the
Hall resistance Ry (f) at v = 2 from the expected value
Ry /2 = h/2¢e? [THII]. Tt was then attributed to “in-
trinsic inductances and capacitances” [12), [13]. Later,
Schurr et al proposed a double shielded sample allow-
ing for a frequency-independent resistance standard [14],
but these works left open the question of the origin of
these capacitances and inductances.

On the other hand, the finite frequency transport prop-
erties of quantum coherent conductors, of size smaller
than the electron coherence length, are expected to be
dominated by quantum effects. For low-dimensional con-
ductors such as carbon nanotubes [I5], or graphene [16],
the inductance is of purely kinetic origin. Small super-
conducting inductors [I7], 18] which are now used in space
industry [I9] are based on the inertia of Cooper pairs.
For a quantum coherent conductor, the quantum trans-
port theory developped by Biittiker and his collabora-
tors [20H22] relates the associated R/L or RC times to
the Wigner-Smith time delay for charge carriers scatter-
ing across the conductor. These remarkable predictions
have been confirmed by the measurement of the finite
frequency admittance of quantum Hall R-C [23] and R-
L [24) 25] circuits of pm-size in the GHz range at cryo-
genic temperatures.

* Corresponding Author : christophe.chaubet@umontpellier.fr

In this letter, we demonstrate that, in the a.c. regime,
a mm long ungated macroscopic quantum Hall bar, of
size much larger than the electronic coherence length,
exhibits a finite inductance as well as a vanishing lon-
gitudinal resistance. Such a purely inductive longitudi-
nal response is expected for quantum conductors with
zero backscattering: a kinetic energy cost proportional
to the square of the current arises from both the Pauli
principle and the linear dispersion relation for electrons
close to the Fermi level. This effective inertia of carri-
ers causes the current response to lag the applied electric
field. Here, we identify an inductance of the order of
tens of pHmm™' and connect it to an effective veloc-
ity vy of charges along the quantum Hall bar’s edges.
Contrary to gated samples, in which this velocity is in-
dependant of the filling fraction [24], we show that, be-
cause of Coulomb interactions between opposite edges of
the sample, it does depend on v in our samples. Using
the edge-magnetoplasmon scattering approach combined
with a discrete element approach a la Biittiker, we show
that, for a sample of width W

Yo _ g Yomat {W/EH}
UD ™ 1%

(1)

where vp = E, /B, is the drift velocity of non-interacting
electrons at the edge, which plays the role of a Fermi
velocity in their 1D linear dispersion relation along the
edge [26] and aat denotes the fine structure constant
((tgea in the vacuum) within the material: amay =
(agea/er) X (¢/vp). The length £y is an effective renor-
malized width of a single edge channel of the order of the
width of incompressible edge channels Ay = ii/m*vp [27]
where m* = 0.067 m, is the effective mass of electrons.
Our experimental data leads to estimates for vp and £y
consistent with previous works in similar samples.

Our work demonstrates that the purely inductive re-
sponse of the macroscopic ungated quantum Hall bar
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FIG. 1. a) The Device Under Test (DUT) is measured
using four coaxial cables and the impedance-meter Agilent
HP4294A, which measures the current I at L., the poten-
tial V at Hpot, and gives G = I/V, for details see Ref. [30} 31].
Note that the potentials of Hpot, Lpot, Heur and Leur are the
potentials of the four connectors of the impedance-meter. b)
Scheme of the multi-terminal Hall bar with only three ohmic
contacts wire-bonded onto the sample holder. In this geome-
try, the impedance is Z{3% (w) = —(8V3/012)(w) for Va = 0.

reflects the effective quantum inertia of charge carriers
renormalized by Coulomb interactions within the sam-
ple. Therefore, although electron transport across such
a conductor is not coherent, its d.c. and a.c. transport
properties are of quantum origin, a fact that ultimately
relies on the coherence of edge magnetoplasmon (EMP)
modes propagating along chiral edge channels. EMP co-
herence has enabled the demonstration of single and dou-
ble EMP Fabry-Pérot interferometers [28] as well as of a
Mach-Zehnder plasmonic interferometer [29].

Our samples are processed on an AlGaAs/GaAs
heterojunction with the two dimensional electron gas
(2DEG) located at the hetero-interface with carrier den-
sity Ny = 5.1 x 10 em~2 and mobility g = 30m?/Vs.
We have processed a 400 pym wide ungated Hall bar whose
large size was necessary in order to exhibit a sufficiently
large kinetic inductance. The sample is placed at the cen-
ter of a high magnetic field at the temperature of pumped
He4 (15 K)

A measurement setup of impedance is depicted on Fig.
[[}a.: the current is injected using He.y, and measured
using Leyr. The potential of Hpo; is measured while V =
0 and I = 0 are imposed at Lyo;. All measurements were
performed using an impedance-meter Agilent 4294A (30}
31] in the nominal conditions for accurate measurements.
The amplitude of the voltage applied across the sample
was 5mV. In the IQHE regime, this induces a current
intensity below 0.5pA at v = 2, a value far below the
breakdown current and even far below current densities
used in metrology [4}[7]. For each values of magnetic field,
the resistance and the reactance have been measured for

300 values of the frequency f in the range 40 Hz-100 kHz.

Due to chirality of the quantum Hall transport, an
ohmic contact wire-bonded to the sample holder and so to
a coaxial cable, generates a leakage current through the
cable capacitance if the potential does not vanish [32] [33].
This results in a faulty measurement [34] B5]. For this
reason, all results presented here have been carried out
at integer filling factors, where the longitudinal resis-
tance Ry, (w) vanishes[36]. Furthermore, only a few of
the ohmic contacts processed on the sample were wire-
bonded onto the sample holder as shown on Fig. [[]b.
In order to measure the zero resistance state, a third
contact is inserted along the edge connected to the ref-
erence potential (contact 2 on Fig. [Ilb). In d.c., one
would measure a potential Vy_,, = 0. In a.c., Vi, # 0
and we measure the frequency dependent impedance
ZégXp) (w) = — 9V3/0la|y,_o (w). Different configura-
tions can be obtained, by changing the location of the
third contact and the sample side. In this case, the mag-
netic field orientation also has to be changed. In order to
access the dependence on the lengths of the edge chan-
nels, we have investigated several configurations, which
entailed shifting the ohmic contacts on the holder. Some-
times, we have also wire-bonded a fourth ohmic contact
on the same side of the sample to connect Lo to access
another edge channel length.

Figure [2| presents unfiltered and non-averaged raw
data for the frequency dependent reactance X(f) =
Im(ZéZXp )(27r f)) in a given sample configuration for in-
teger filling factors v = 2,4,6,8. The positive linear de-
pendence of X (f) is the signature of an inductive behav-
ior. The corresponding inductance decreases with filling
factor. These data are completely reproducible in the
regions of magnetic fields as long as R;, = 0. This is a
key point of our work: for all filling factors, the real part

R(f) = Re(Z{2™ (27 f)) of the measured impedance is
close to zero with values between +0.5 Q2 at low frequency
as shown in the inset of Fig. [2| These results extend the
work of Gabelli et al [24] in which the sample resistance
was Ry = Rk /v, to the case of a zero resistance macro-
scopic device. At higher frequencies, a small real part of
the measured response function R(f) appears. This ef-
fect is discussed in the Supplementary Material (Sec. 2)
and is correlated to the deviation of the reactance X(f)
from linearity seen on Fig.

Let us now explain how this inductive behavior arises
from the quantum inertia of carriers renormalized by
Coulomb interactions within the quantum Hall bar. In
the presence of an a.c. drive, the propagation of electric
charges is described by the dynamics of charge density
waves (plasmons) whose velocity in 1D or 2D systems
is modified by Coulomb interactions. The idea is that
the ac drive applied to the reservoir injects a classical
plasmon wave into the conductor. Knowing how this in-
coming wave is scattered by the conductor enables us to
compute the corresponding outgoing currents and con-
sequently, the electrical current flowing across all leads
and gates connected to the conductor. This general idea
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FIG. 2. The reactance X (f) as a function of the frequency
f for different filling factors and B<p, in the measurement
configuration shown here. Inset: the longitudinal resistance
R(f) vanishes quadratically for integer filling factors at low
frequency.

was first applied to 1D gated quantum wires by 1. Safi
who has related its finite frequency admittance matrix
to the scattering matrix of plamons propagating within
the wire [37, [38]. It has lead to remarkable predictions
on fractionalization of charge pulses [39] observed only a
decade ago [40]. Fractionalization has also been studied
in an artificial Tomonaga-Luttinger liquid obtained from
two capacitively coupled counter-propagating edge chan-
nels in AlGaAs/GaAs heterostructures [41] as well as in
graphene [42]. More recently, time of flight measurements
have probed the dynamics of plasmon modes in quasi-1D
wires made from a tailored 2DEG at zero magnetic field
and confirmed the role of Coulomb interactions in this
system [43].

In the context of the quantum Hall effect, the rele-
vant degrees of freedom are EMP modes which have been
studied since the 80s [44H46). The edge-magnetoplasmon
scattering approach has been used to describe the high
frequency linear response of circuits built from quantum
Hall edge channels [47]. It has also been used for dis-
cussing energy relaxation in a v = 2 edge channel system
[48, [49] and it is the key ingredient for predicting single
electron decoherence in quantum Hall edge systems [50].

We have developped an analytical model for edge-
magnetoplasmon scattering in the spirit of Ref. [2§]
for a quantum Hall bar taking into acccount long range
Coulomb interactions between edge channels of the same
chirality as well as between counter-propagating edge
channels. This effective edge-magnetoplasmon scatter-
ing model, analytically solved in the Supplementary Ma-
terial (Sec. 3), describes the finite frequency transport
in the linear regime beyond the GHz, the limit being
the cyclotron frequency which is 4THz at 1 T. Above
it, inter-Landau level transitions may be excited and the
bulk contribution cannot be neglected. To account for

the long-range interactions in our ungated quantum Hall
bars, this model assumes that all the edge channels of
the same chirality have the same velocity vp and are so
strongly coupled that they see the same time indepen-
dant potentiel as in Ref. [25]. The two counterpropagat-
ing groups of edge channels are capacitively coupled by a
geometric capacitance Cy. Finally, dissipation of EMP
modes have been neglected, an hypothesis a posteriori
satisfied in our samples.

In the geometry of the sample depicted on Fig. [T} the
low frequency expansion of the measured reactance is of
the form (see Supplementary Material, Sec. 2):

Im (zégxp) (w)) = iLw + O(w?) 2)

where L denotes the total inductance for the quantum
Hall bar delimited by a dashed red box on Fig. [I}b. Be-
cause the magnetic inductance L,, is much smaller than
the kinetic inductance Ly, in our sample (see Supple-
mentary Material, Sec. 1), L = Ly, + Lyin =~ Lkin can
be obtained from the edge magnetoplasmon scattering
model as

L= (Rg/v)x(l/2v) (3a)
Vg = VUp X <1+ 222) . (3b)

where [ is the length of the Hall bar (see Fig. b),
C, = ve?l/hvp is the quantum capacitance of v edge
channels and the geometric capacitance C'y describes the
effect of Coulomb interactions between counter propagat-
ing edge channels. This is different from the quantum
RL-circuit where, because of the gating, the capacitance
Cy has to be replaced by the capacitance with the nearby
gates leading to a renormalization of vp by 1+ Cy/Ch
for right and left moving charge density waves [24]. Here,
by contrast, the renormalization corresponds to the ra-
tio of a C'y capacitance with the series addition Cy/2 of
the quantum capacitances of counterpropagating edges.
Eq. suggests that the inductance can be interpreted
as a kinetic inductance associated with an effective time
of flight [/vg. As discussed in the Supplementary Ma-
terial (Sec. 3), vg is neither the drift velocity for non-
interacting electrons nor even a renormalized electron’s
velocity within chiral edge channels but an effective veloc-
ity arising from the combination of their quantum inertia
and Coulomb interactions within the quantum Hall bar.
This inertia is of quantum origin, reflecting the minimal
energy associated with an electrical current due to Fermi
statistics of electrons, augmented here by the effects of
Coulomb interactions.

At fixed vp, the main v-dependence of vy arises from
the linear increase of C, with v in but we expect a
sublinear v-dependence coming from the dependence of
the geometric capacitance C'y on the structure and ge-
ometry of the quantum Hall edge channels. In the Sup-
plementary Material (Sec. 4), we show that the main
subdominant contribution induced by the geometric ca-
pacitance dependence on v, which arises from the linear



dependence on v of the width of the edge channels, is
logarithmic:

merEpl

T e

(4)

where W denotes the sample width and £ is a length
proportional to the width Wy of a single quantum
Hall edge channel. Following Ref. [27], Wy = (1 +
2 amat)h/myvp, which is of the order of a few tens of
nm for AlGaAs/GaAs quantum Hall systems. The di-
mensionless factor £y /Wy depends on the specific mi-
croscopic model used to describe the edge channel geom-
etry [27, BI]. Eq. can therefore be considered as a
universal scaling formula leading to the v-dependence of
v for ungated samples given by Eq. .

L (H)

FIG. 3. (Color online) For three measurement configurations
with B > 0 depicted on the figure, the inductance increases
with 1/v as expected by Eq. (3a)). Dashed lines correspond to
our theory for (red data) [ = 600 pm with vp = 8 x 10°ms™?,
(black data) I = 1000 pm with vp = 0.16 x 10°ms™" and
(blue data) [ = 1600 pm with vp = 0.2 x 10° ms™'. Inset:
reactance X (f) as a function of the frequency for different
filling factors and B > 0.

Let us now compare this prediction to the experimental
data. Fig. [3| contains the first main quantitative result
of this work, i.e. the quantum inductance as function of
1/v for configurations B > 0. Values have been obtained
from the reactance data depicted on Fig. [2] and on the
inset of Fig. |3| using the slope at low frequency of f +—
X(f) datasets. Three configurations in which L. and
Hpot are plugged to different contacts (see Fig. |3) have
been studied. The main result is the dependence of the
inductance on 1/v which is increasing but with a slight
non-linearity according to Eq. and .

To verify this sub-dominant behavior, we have ex-
tracted the velocity vy using Eq. from each value
of the inductance. These values are reported in Fig. [4 as
a function of v. This is the second main quantitative ex-
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FIG. 4. Low frequency charge carrying edge-magnetoplasmon
velocity vo as a function of filling factor v. Dashed curves
correspond to Eq. for the values, from bottom to top,
vp = (0.15;0.8;4;12;30) x 10° ms™'.

perimental result of this work. Each family of points cor-
responds to a specific sample configuration for which the
sample has been heated up, re-bonded and cooled down
again. These manipulations affect the electrostatic ar-
rangement of charges at the edge, thereby modifying vp
from one experiment to the other. Fig. [] thus presents
predictions for vo(v) from Eq. for different values of
vp. Using five different values of vp as a single fit pa-
rameter in Eq. for five different sets of experimental
data gives the dashed lines on Fig. [l This demonstrates
a good agreement between the experimental results for
vo as a function of v deduced from admittance measure-
ments using Eqs. and predictions from Eq. . The
highest values of vp obtained here are comparable to the
ones obtained on ungated samples (as ours) in Ref. [52]
but five times higher than those in Refs. [24], 53] obtained
on samples with side gates. This is expected since gat-
ing leads to a higher geometric capacitance which brings
down the velocity vy much closer to vp. Last but not
least, because of the variabilty of the electrostatic envi-
ronment in ungated samples, the spread of values for vp
found here is not surprising because the datasets depicted
on Fig. [4| correspond to different experiments performed
on both sides of the sample. Additional results obtained
on samples from different wafers are presented in Sec.
5 of the Supplementary Information provide additional
evidence of the robustness of our analysis.

To summarize, we have shown that, at low frequencies,
a macroscopic quantum Hall bar is a perfect 1D conduc-
tor exhibiting a vanishing longitudinal resistance and a
finite inductance. By fitting its dependence on the fill-
ing fraction and on the sample geometry using a simple
long range effective Coulomb interaction model, we have
shown that it reflects the effective quantum inertia of
charge carriers within the edges of the quantum Hall bar.
Contrary to the case of superconductors where carrier in-



ertia arises from the effective mass of the Cooper pairs,
here it reflects how Coulomb interactions alter the prop-
agation of low-frequency massless edge-magnetoplasmon
modes. A quantum Hall bar of size much larger than the
electron’s coherence length thus appears as a quantum
conductor not only in the d.c. regime but also at low fre-
quencies in the a.c. regime. Although the low frequency
response is not universal, its dependence on the filling
fraction and sample geometry can be understood using
a simple model which is formally similar to the one used
for gated nano-fabricated samples [47]. Therefore macro-
scopic samples can provide a rescaled test-bed for study-
ing the scattering properties of edge-magnetoplasmons
in pm-sized quantum coherent samples. Studying a.c.
transport properties of macroscopic samples up to radio-
frequencies could thus open the way to realizing con-
trolled quantum linear components for quantum nano-
electronics in 1D edge channels, with possible applica-
tions to electron [54] and micro-wave quantum optics in
ballistic quantum conductors [55].
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Supplementary Information

In this Supplementary Information, we discuss a simple
evaluation of the kinetic inductance of a quantum Hall bar
at filling fraction v, compare it to its geometric inductance.
We then move directly towards a more realistic evaluation
of experimental relevant quantities. First, we connect these
quantities to the way a quantum Hall bar scatters ac cur-
rents. To compute this scattering properties, we use the edge
magnetoplasmon scattering method which takes into account
Coulomb interactions between the opposite channels of the
quantum Hall bar. Moreover, we connect these scattering
properties to the finite frequency admittance of the quantum
Hall bar.

Appendix A: Kinetic and magnetic inductance

In this section, we compare the kinetic inductance of
a quantum Hall bar at filling fraction v to its geometric
inductance.

1. Kinetic inductance

Let us first consider non-interacting chiral charge car-
riers with propagation velocity vp (see Fig. . A net
current flow corresponds to a chemical potential between

chiral edge channels of opposite chirality. The corre-
sponding kinetic energy is then obtained by adding to-
gether the energy of all quantum states which have been
occupied when biasing chiral edge states with different
chemical potential Ay = —eV:

Eepir = Zs(k) =v x g(e)l x (eV)?/2,
k

(A1)

where g(e) = 1/hvp is the density of states (DOS) per
unit length for a 1D-channel, v the number of chan-
nels, [ the edge-state length. The voltage drop across
the sample is V = Rgl,, where Ry = Ry /v = h/e’v
denotes the quantum Hall resistance at filling fraction v
and I, the current. The resulting kinetic energy is then
quadratic in the current, as expected for a linear induc-
tor:

ve?. I (RxL\° b 1 _I?
Echir(IV):}wDX2X< I;V> :§XEX§V~
(A2)
For a quantum Hall bar, we have two counter-
propagating groups of v chiral edge channels. Assuming
that the two chiralities carry equal charge of the total
current I, = +1/2, this leads to a total kinetic energy
2(1/2)?

h l
X

Ex(I) =2Emu(1/2) = = X (A3)

vup 2
Using Ex(I) = LI?/2, we obtain the following formula
for the inductance L of the quantum Hall bar:

Rk l
= — X

Lk = (A4)

v 2Up
Note the appearance of the half of the time of flight I /vp
of the electrons across the quantum Hall bar which is ul-
timately due to the existence of two counter-propagating
groups of copropagating edge channels.
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FIG. 5.  Dispersion relations for non-interacting electrons
propagating along a right-moving chiral edge channel R and a
left moving one L with propagation velocity vp. In the pres-
ence of a d.c. voltage bias V', a chemical potential imbalance
—eV appears between the two chiral edge channels. At filling
fraction v, such a bias generates a net current I = (e*v/h)x V.

2. Magnetic inductance

A quantum Hall bar can be viewed as a conductor built
from two linear wires of length [, and of diameter or width



Wy separated by a distance W which is the width of
the quantum Hall bar. The magnetic inductance of the
resulting dipole can be computed from Biot-Savart’s law
[56]. Note that the wire’s diameter Wy (v) usually scales
as v (see Ref. [27] and Sec. [D]). In the quantum Hall bar
geometry, the total current I flowing across the quantum
Hall bar corresponds to +1/2 along each of the two long
counter-propagating edges. Consequently, in the limit
I,W > Wpg(v), the geometric inductance of the quantum
Hall bar is approximately equal to

=2 (W) !

where p = o is the magnetic permeability of the ma-
terial expressed as the product of its relative permeability
- by the vacuum permittivity po = 1/g9c?. For a non-
magnetic material such as AlGaAs/GaAs, u, = 1 and
therefore p = pg.

Using this expression and Eq. , the ratio of the
magnetic to the kinetic inductance is given by:

Lm UD 2W
— =4dovged — 1 — | -1 A
T Olged ; XVX[D<WH(V)> ] (A6)

where ageq is the fine structure constant. The magnetic
character of this ratio appears through the multiplica-
tion factor vp/c <« 1. Together with the smallness of
0ged and the logarithmic dependance in the aspect ratio
W/ Wy (v) ~ W/vWg (1), this explains why the magnetic
inductance is always much smaller than the kinetic one
for v < 100.

(A5)

Appendix B: Experimental signals

In this section, we discuss how the quantities that are
measured in the experiment are related to the a.c. re-
sponse of a quantum Hall bar even in the presence of
experimental imperfections such as cable capacitances.

1. Finite frequency transport in quantum Hall
edge channels

In his pioneering work on finite frequency charge trans-
port in mesoscopic conductors [20], Biittiker stressed the
importance of interactions: time dependent drives ap-
plied to reservoirs lead to charge pumping in the conduc-
tor which, in return, alter the electrical potential within
the conductor. As a result, its transport properties can
no longer be derived by using the d.c. response at zero
bias. Biittiker then developed a self consistent mean-field
approach to this problem, taking into account how the
time dependent charge density within the conductor gen-
erates a time-dependent potential and thereby alters the
transport [22]. In the linear regime, the a.c. response of
the conductor is described by the admittance matrix

_ OLy(w)

Gosle) = 7
V=0

(B1)

giving the average current entering the conductor from
lead o when a voltage drive at the same frequency w/2m
is applied to the reservoir 8. Charge conservation and
gauge invariance imply that the finite frequency admit-
tance matrix satisfy the general sum rules

ZGag(w) =0
> Gaplw) =0
B

(B2a)

(B2b)

which is ensured by total screening of effective Coulomb
interactions.

At low frequency, this admittance matrix is expanded
in w, the zero-th order term being its d.c. conductance

Gédc). The first order term is related to the emittances
introduced by Biittiker et al. :
dc .

Gap(w) = Gl —iwEas + Ow?). (B3)

For quantum Hall edge channels, Christen and Blttiker

[57] fully exploited the chirality of charge transport to

compute the dc conductances Gf}dc) as well as the emit-
tances E,p using a discrete element description of the
circuit.

Here we will show how to describe the finite frequency
transport using the building blocks of a discrete ele-
ment description of quantum Hall bars and the finite
frequency admittance properties obtained from the edge-
magnetoplasmon (EMP) scattering approach. The latter
has been first pioneered in the context of quantum wires
[37,[38] before being used for quantum Hall edge channels
[48] where it is instrumental for computing single electron
decoherence [50] [58]. The details of how the admittances
are obtained from the EMP scattering approach will be
described later in Sec.

Depending on the sign of the diagonal emittances, the
quantum conductor under consideration exhibits a ca-
pacitive (Eoq > 0) or inductive (Eno < 0) behavior.
Basic examples of these behaviors, involving two differ-
ent two-contact devices, have been given by Christen and
Biittiker [57]. A two-contact Hall bar is predicted to act
as an inductance while a ring shaped sample (the so-
called Corbino geometry) acts as a capacitance. Hence
both geometries exhibit opposite diagonal emittances,
which can be understood in terms of reaction of the cir-
cuit to an injected charge. Indeed, as shown on Fig. 1 of
[57] a charge injected by contact 1 into a Hall bar is trans-
mitted to contact 2, while the charge induced by inter-
edge Coulomb interactions created at contact 2 is trans-
mitted to contact 1. On the contrary, in a Corbino sam-
ple, the injected charge returns to the contact it comes
from, as does the image charge. It was experimentally
shown by Delgard et al. [59] that Corbino emittances will
exhibit this predicted capacitive behavior. Here, we will
highlight the inductive behavior of quantum Hall bars in
a multi-contact geometry that ensures vanishing longitu-
dinal resistance.



We shall now discuss how, for two different sample con-
figurations, the measured response function relates to the
finite frequency admittance of the quantum Hall bar de-
picted as a red dashed rectangle in the two forthcoming
figures, taking into account capacitive leaks at the con-
tacts.

2. Three contact geometry

Let us first consider the three contact geometry de-
picted on Fig. [} Contacts 1 and 2 are directly connected
to reservoirs whereas contact 3 is not but we take into
account the cable capacitance Cy of the cable. In this
section, we shall compute the experimentally measured
finite frequency impedance

W)
8[2 (w) Va=0
up to second order in w and show how it relates to the

properties of the quantum Hall bar B and to the cable
capacitance Cy (see Fig. @

Z35P (w) = (B4)
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FIG. 6. The device under test when three Ohmic contacts

are wire-bonded onto the sample holder. The quantum Hall
bar B, which is the dipole under test, is shown as a dashed red
box. The quantum Hall bar A is shown as a dotted blue box.
The capacitance of the coaxial cable connected to contact 3
is denoted by Cy. In this experimental setup, Vo = 0 whereas
the drive Vi is non zero and the experimentally measured

impedance is Zé;Xp) = —0V3/0Is.

a. Obtaining ZZE;“")

In this approach, the quantum Hall bars A and B de-
limited on Fig. [0] are characterized by their frequency-
dependent EMP scattering matrix. For the quantum
Hall bar A, the EMP scattering matrix, which we denote
here by A(w) relates the ingoing and outgoing currents
through [60]

J (W) = Aw)i™ (@) (B5)

in which the edges of the Hall bar are labeled by their
chirality. In the same way, the EMP scattering matrix of

the quantum Hall bar B will be denoted by B(w). These
matrices are computed in Sec. [C]but for the moment, we
won’t need their explicit form.

At contact 3, the incoming and outgoing currents prop-
agating within the edge channels are also related by an
input/output relation that reflects the time delay associ-
ated with the Ry Cy relaxation time of the contact:

Z.3,in(W)

=S B
1-— iRHCOUJ ( 6)

Z'3,out (w)
Eliminating the edge channel currents internal to the
sample directly leads to the finite frequency admittances
connecting the currents I, entering from the reservoirs
to the drive voltage V;:

~ AgrrBgr
1 —ApTBLr

in which the matrix elements of the Hall bar’s current
scattering matrices A and B are involved as well as
T(w) =1/(1 — iRy Cyw), the edge current transmission
of the Ohmic contact with cable capacitance Cy. For
simplicity, the w dependence of Vi, Iy and of the scatter-
ing matrix elements of the A and B quantum Hall bars
as well as of 7 have been omitted. The potential of the
contact 3 can also be computed as

(T —1)BrrARR

Ryl = Vi (B7)

—iwCyRy Vs = Vi B8
WwColtyg V3 1_ ARLTBLR 1 ( )
which finally leads to
Zégxp)(w) _ 1 BLR(UJ) (BQ)
RH 1-— iRHC()w BRR((.L)) '

Note that, at low frequency (wWRyCo < 1), the result
only depends on the finite frequency properties of the
B quantum Hall bar i.e. the dipole under test in this
setting.

b. Effect of the finite frequency deviation of Re(Zyy(w))

from Ry on Zégxp)

It is then useful to relate Zéeg ?) to the impedance of the

Hall bar B, which we know has a real part ~ Ry, with
a small deviation for w # 0, as observed by metrologists
studying the quantum Hall resistance a low frequencies
[15-17).

This is achieved using the relation [38| 48] between the
quantum Hall bar finite admittance matrix and its edge-
magnetoplasmon scattering matrix to obtain the follow-
ing expression, valid when the left and right moving edges
of the quantum Hall bar are in total mutual influence:

255 (W) _ zm(w) —1
RH 1-— iRHCOCU

(B10)

in which zg(w) denotes the dimensionless impedance of
the quantum Hall bar B in units of Ry. Note that within



the framework of the edge-magnetoplasmon scattering
model presented in Sec. zp(w) = 2Z(w)/Ry where
Z(w) is given in terms of the edge-magnetoplasmon scat-
tering matrix by Eq. . It thus predicts predicts

Re(zg(w)) =1 and therefoe Re (Z;?)Xp) (w)) =0.

However, we will now show that a non vanishing
r(w) = Re(zg(w)) — 1 is responsible for the non-linearity
of X(f) seen on Fig. 2 of the paper. Such a feature
has been observed for long time by metrologists studying
quantum Hall resistance at low frequencies [7, 10, 11]. In
the metrology community, this finite frequency deviation
r(w) from the dc quantum Hall value is commonly at-
tributed to parasitic effects such as self and resistance of
ohmic contacts and bond wires and thus depend on con-
figurations and samples. A quadratic dependence on the
frequency is usually found in the form r(w) = ag(w/27)?.
The ay parameter has been measured in many configu-
rations and samples and has been found to be positive
or negative but is always around (or below) 10~7 /kHz?
7, 10, 1]

To discuss the experimental results, which include both
the real and imaginary parts of ZégXp) (w), let us therefore
write

zp(w) =1+ r(w) + iwrg (w) (B11)

in which r(w) denotes the frequency-dependent devia-
tion to Ry (when non zero), and 7y (w) = Leg(w)/Ry
is the dimensionless frequency-dependent effective RL-
time of the quantum Hall bar (L = Leg(w = 0)). The
low frequency expansion of the experimentally measured

impedance Z{S%) (w)/Ry is then

(exp)
Z%TM ~ r(w) — wLeg(w)Co (B12a)
H
+ iw [L;f) + RHCOT(W):| +0(w?)
(B12b)

In our experiments, the reactance Im (Zég’(p) (w)) is ob-

viously dominated by the kinetic inductance L:

Im (Zgjij‘?) (w)) — wL, (B13)
but r(w) is seen through the deviations of the imaginary
part from linearity (see Fig. 2 of the paper). It is never-
theless small and therefore, the dominant contribution to

the real part Re (Z§§XP> (w)) is a negative quadratic one

directly proportional to the cable capacitance: —w?LCy,
as observed in the inset of Fig. 2 of the paper.

Both real and imaginary part of admittance seen in
Fig. 2 suggest a quadratic behavior for r(w). To second
order in wRgCp:

(exp) w
Re <Z2?}a,,()> = (RyCow)? {” B JL%Q%Z} .

where r(w) ~ 79 (WRrCo)?.

In our experiments, the cable capacitance is Cy =
218 pF. We deduce from Fig. 2 of the paper that, at
v =2 and w/27 = 100kHz, wr(w)R%,Co ~ 2.2Q. This
gives r(w) ~ 10~% at 100kHz thereby corresponding
to az = 4n?ry(RpCo)? ~ 1078 /kHz?, a value in total
agreement with the deviations reported in the litterature.
Consequently, the observed deviations from pure induc-
tive behavior can be explained by the combined effect of
the cable capacitance and of the deviations of Re(Zy (w))
from its dc value Rgy.

3. Four contact geometry (two on the same side)

______________________

pot

FIG. 7. The device under test has now four contacts con-
nected to sample holder, two of them being on same side.
The quantum Hall bar is divided into three parts, shown as
colored box, A (blue), B(red) and C(green). Hpot and Lpot
are connected respectively to contacts 4 and 3. In this con-
figuration, the low frequency impedance depends only on the
central Hall bar B.

Let us now turn to the case of a four contact sample de-
picted on Fig. [7} This geometry represent a four contact
measurement of the central part B of the device. Here,
the parts A and C' of the device play the role of the leads
that connect B to the current injection reservoirs which
are the Ohmic contacts 1 and 2. The Ohmic contacts 3
and 4 are used for measuring the voltage difference be-
tween the two port of the would-be dipole B.

In this section, the capacitances Cy of the cables will be
omitted for simplicity. This does not change the physics
of the problem but greatly simplifies the computations.
Nonetheless, we know from Eq. that the same pref-
actor (1 — iRyCow)~! will appear in the results when
capacitances are taken into account.

We assume that A, B and C can be modeled
as quantum Hall bars characterized by their edge-
magnetoplasmon scattering matrices. Exactly as before,
this amounts to neglecting Coulomb interactions outside
the Hall bars themselves, an hypothesis consistent with
the total screening hypothesis stated in Sec. Let us
denote by M and N the points on edge channel 1, which
respectively face contacts 4 and 3. Introducing the EMP
scattering matrices A, B and C respectively associated
with the three quantum Hall bars A, B and C repre-
sented on Fig. [7] the dynamics of the three quantum



Hall bars is described by:

M) g (i Bl15a
14 14
,out ,in
<.ZN > =B (?M) (B15b)
13,0ut 23,in

(’.Lout) =C (.ZN ) (B15c)
12 out 12,in

in which, for compactness, the w dependence is not re-
called. In the experimental configuration depicted in Fig.
m V3 = 0 and we measure V;. We calculate I, and VJ,
in order to find Z\3) = V,/I,. The lead potentials fix
the incoming currents injected by the reservoirs. More-
over, because of the high impedance of the voltmeter con-
nected to Hpo, and Lpot, we neglect the currents leaking
into these Ohmic contacts. We thus have:

i1in =GrV1, i2m =GHV2 (B16a)
i3in =0, %4in =GHVa (B16b)
13,in = 92,0uts  4,in = 23,0ut (B16c)
IQ = i2,in — il,out- (B16d)
From Eqs. (B15a) and (BI5b)), we obtain :
GuVa =14in = 13,0ut
3,00t = BLr(ArRrRGHeVI + ARLGHV4) (B17)
or, equivalently:
BrrARR
Vi=—-—"F———7"7"V;. B18
* T 1-BrrApp (B18)

On the other hand, calculating Is:
I, = GpVa —igous = GuVa(l — Crr) — Crrin, (B19)

using now Eq. (B15d), this becomes a current division
relation I = Cix where

_ —CrrCrr — Crr + CLrCRL
Crr '

Egs. (Bl1b5a) to (B15b|) then shows that iy = Brrin.
(B15a

c (B20)

We now use Eq. 15a)) to express i3; in terms of GgVy
and GgVy. Using Eq. (B18)), we obtain :

iy = < BrrARR
1 - BrrARL

This gives us the total current entering lead 2 in terms
of the applied voltage V; at the right Ohmic contact:

> GuWi. (B21)

BrrARR
ILh=C——————GgrV; B22
2 1= BipAp CHV (B22)
Using one last time the voltage division relation (B18]),
the dimensionless impedance zyqy = ZQ(ZXP) /Ry =
GyVy/1s is thus finally given by:
B
224 LE (B23)

:BRRXC.

As in the three contact case, the fraction Brr/Bgrr ap-
pears in the results showing that the four point measure-
ment does gives us information on the B quantum Hall
bar. However, the matrix C is involved via the quantity
C. Nevertheless. it is possible to show that, to the low-
est order frequency expansion, zo4 does not depend on
the physical relevant information contained within the C
matrix. For this we once again use the low frequency
expansion of the C' scattering matrix (see Eq. (C12)):

—iwlc .
C1r=Crr vp(2+rvay) wre (B25)

where [c is the length of Hall bar C, and 7« =
m is the transit time across the Hall bar C.

These formulas allow the calculation of quantity C from
its definition by Eq. (B20]) at the first order in wre:

C = —1+ 2iwre + o ((wre)?) -

Finally, using Eq. (B23]),

—iwTp
1-— Z'WTB)(f]. + 21&)7‘(7)

(B26)

~ iwtp + o ((wrc)?)
(B27)
showing that the measured inductance corresponds to the

transit time in Hall bar B. Thus, the length involved in
the determination of velocities is [ = [g.

224:(

Appendix C: Discrete element description from
edge-magnetoplasmon scattering

In this Section, we present the computation of the
EMP scattering matrix for an ungated quantum Hall bar
and derive the corresponding description in terms of dis-
crete elements valid at low frequency.

1. The model

We consider a quantum Hall bar of length [ in the
integer quantum Hall regime with filling fraction v > 1
as depicted on Fig. We denote by R (resp. L) the
upper (resp. lower) edge channels which are right (resp.

left) movers as depicted on Fig. [8f We denote by j,(lm) the
incoming current entering the Hall bar on side « = R, L
and j&om) the outcoming one. Our goal is to relate the
outcoming currents to the incoming ones in the presence
of Coulomb interactions.

Here vp denotes the bare drift velocity, which for sim-
plicity we take identical for all edge channels. Coulomb
interactions are described by assuming a discrete element
model ¢ la Christen-Biittiker [57] in which all the elec-
trons within channels of the same chirality see the same
time dependent potential Ug(t) (for right movers) and
UpL(t) (for left movers). These potentials are related to
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FIG. 8. A simple quantum Hall bar at filling fraction v =
3 connecting the G lead to the D lead. Along the R edge
channels, electrons are right movers flowing from lead G to
lead D whereas for edge channels L, they are left movers.

the total charge stored within the L and R edge channels
by a capacitance matrix

Q=CU (C1)
in which
Qr Ur
= U= C2
Q (QL ’ UL (C2)
and C denotes the capacitance matrix
Cy  —nCy
C =
(_n poac ) , (c3)

where 0 < 1 < 1 depending on the screening of Coulomb
interaction between channels of opposite chiralities by
nearby gates and other on-chip conductors. Eq.
plays the role of a solution of the Poisson equation re-
lating the electrical potential to the charge density. In
this work, unless otherwise stated, we assume that the
left and right chiral edge channels are in total influence
and therefore that n = 1. The capacitance C'y can then
be computed as the geometric capacitance of a stripline
capacitor (see Sec. [DJ).

The charges within the edge channels are directly re-
lated to the incoming and outcoming currents through
charge conservation which, in the Fourier domain and in
vector notation, is written as

§0 (W) = ") (w) = —wQ(w) . (C4)

The last equation we need is the equation of motion for
the charge or current density within the Hall bar [50]:

Q) + Gyt U(w) = 1 (2] §0w), (C5)
in which f(z) = (¢! — 1) /iz, and
1/62 w
Cyftvie) = ot () (co)

h’UD VD

represents the effective quantum capacitance at fre-
quency w/2m for the edge channels of length [ and filling
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fraction v. Eq. (C5|) expresses that the charge stored
within each edge channels comes from what is injected
by the reservoirs and from the shift of the bottom of the
electronic bands by the electric potential seen by all elec-
trons.

2. Edge magnetoplasmon scattering

Using Egs. (C1)) and (C4]) to eliminate Q(w) and U(w)
from Eq. (C5]) leads to

(Cq(l,v;w) + C) j©") (w) =
(Calt, i) +e1/e0€) j(w). (1)

Solving this equation leads to the scattering matrix S(w)
relating incoming to outgoing electrical currents at w.
From the bosonization point of view, this is the scat-
tering matrix for the bosonic counter-propagating edge-
magnetoplasmon modes carrying the total charges of the
v right and v left moving edge channels.

This scattering matrix depends on a dimensionless cou-
pling constant «,, characterizing the strength of Coulomb
interactions within each edge channel by the way of the
ratio of the bare quantum capacitance of a single edge
channel with drift velocity vp to the geometric capaci-
tance [61]:

o, = Cy(l,v;w=0) :eQZ/th. (C8)
The higher this number, the higher is Coulomb’s energy
e?/Cg (1) with respect to the kinetic energy scale hvp/I.
The geometric capacitance can be evaluated using stan-
dard electrostatics as explained in Sec. The result
comes under the form

Cu(l) = eoerl foar(W, Wg (v)) (C9)

in which ¢, is the relative permittivity of the material
and foar (W, Wi (v)) is a geometrical factor that depends
on the width W of the quantum Hall bar and on Wy (v),
the width of the system of v copropagating edge channels
at the edge of the quantum Hall bar. The latter is pro-
portional to the filling fraction v and, in the Wg (v) < W
limit, the geometric factor fp, depends logarithmically
on the aspect ratio W/Wpy (v) as shown in Sec. [D} The
dimensionless coupling constant

_ 2 Omat
B fbar(Wy WH(V))

is therefore proportional to the effective fine structure

constant within the material
2
e Oged C
Omat = = .
dme,eohvp € UD

(C10)

ay

(C11)

up to a subdominant logarithmic dependance in v arising
from classical electrostatics (see Sec. @ The w depen-
dence is an X = wl/vp dependence involving the free



electron time of flight [/vp along the edges of the quan-
tum Hall bar. Solving Eq. (C7)) leads to the edge mag-
netoplasmon scattering amplitudes

Spi(w) = Spa(w) = m (C12a)
SRR(W) :SLL(OJ) = ].—SRL(UJ). (C12b)

Note that the relation between diagonal and off diag-
onal S matrix elements given by Eq. is only
valid for total screening (n = 1). One should also note
that because of the symmetric setup considered here, the
edge magnetoplasmon scattering matrix is determined by
its diagonal coefficient Sq(w) = Sgrr(w) = Srr(w) and
its off-diagonal coefficient Soq(w) = Spr(w) = Sgrr(w).
They satisfy the unitarity conditions

[Sa(w)[ + [ Soa(w)? = 1
Re(Sa(w)Soa(w)*) = 0.

(C13a)
(C13b)

which ensure energy conservation within the quantum
Hall bar.

3. Finite frequency impedances

In the spirit of Biittiker, let us derive a discrete el-
ement circuit description of the quantum Hall bar. In
full generality, this description involves a three termi-
nal circuit in order to take into account the electrostatic
coupling to external gates which are assumed to be at
the ground here (see Fig. E[) In our experimental, un-
gated samples, this coupling is expected to be small as we
shall see. Note that the symmetry of the Hall bar under
magnetic field reversal justifies considering two identical
impedances Z(w) on both sides of the central node A
on Fig. [0 For this tri-terminal circuit, one can com-
bine the relation between the potentials Viz, Vp, V4 and
Vo = 0 (by gauge invariance) and the current sum rule
Ig+1Ip+ 1o =0 torelate Ig and Ip to Vg and Vp:

Z 4+ Zy Zo Ic\ (V&
Zo Z4+2Zy) \Ip)  \Vp)~
On the other hand, the finite frequency admittance of
the quantum Hall bar can be obtained from the edge
magnetoplasmon scattering matrix which, in the present
case is symmetric. We can then infer expressions for

the impedances Z(w) and Zp(w) in terms of the EMP
scattering matrix of the quantum Hall bar:

Sd(w)
(1= Sod(w))? — Sa(w)?’
— RH
14 Sa(w) — Sea(w)

(C14)

Zy(w) = Ry (C15a)

Z(w) (C15b)

Note that Egs. (Cl5a) and (C15b|) have been obtained
without any explicit assumption of total screening. In the
case of n = 1, Zj is expected to be infinite and is indeed
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found to be infinite since, in this case, Sq(w)+Sq(w) =1
(see Eq. (CI2H)).

To obtain the simplest effective circuit description, we
just derive the dominant terms of the low frequency ex-
pansion of Z(w) and 1/Zp(w) by expanding the edge-
magnetoplasmon scattering matrix in powers of w. This
leads to 1/Zp(w) = 0 (total screening) and

Z(w) = B (1 iwl/vp ) (C16)

2 _2+Vozl,

which shows that the impedance Z(w) can be viewed as
the series addition of a resistance Ry /2 (v parallel single
channel contact resistances Ry /2) and an inductance Ly
such that
2LZ . l/2 UD
Ry 1+4va,/2°

(C17)

The quantum Hall bar is then a dipole with impedance
2Z(w) which then behaves as an inductance in series with
the quantum Hall resistance Ry at low frequency. Since
2L 7 is the total inductance L of the quantum Hall bar, it
follows that the electronic time of flight {/vp appearing
in Eq. is renormalized by Coulomb interactions.
The corresponding renormalized velocity

Vo = Up (1 + Vau)

2

can, in a sense, be interpreted as an effective charge ve-
locity.

To understand this more precisely, let us imagine that
the quantum Hall bar could be viewed as an ideal coax-
ial cable with v channels with plasmonic velocity vp.
This would lead to a diagonal plasmon scattering matrix:
Soda(w) = 0 and Sg(w) = e“!/vF. The corresponding ad-
mittance Z(w) would then be given by

Bg 1
2 1+ eiwl/vp

(C18)

Zy(w) = (C19)
where the index tl emphasizes the transmission line de-
scription considered here. Its low frequency expansion

would correspond to the series addition of the contact
(1)

resistance Ry /2 with an inductance L3, given by
IR
= —". C20
RH 2 vp ( )

Consequently, we also recover the analogue of Eq.
with vp playing the role of vp. However, in this trans-
mission line model, the admittance 1/Z; would not van-
ish, thereby showing that such a transmission line model
cannot describe the totally screened situation. The edge
magnetoplasmon scattering matrix derived in Sec.
shows that, in the totally screened case, Ry /Zy vanishes.

Appendix D: Geometric capacitance

In this section, we compute the geometric capacitance
of the quantum Hall bar using a model a capacitor



FIG. 9. The lumped element circuit equivalent to simple
quantum Hall bar depicted on Fig. [B] The 0 lead corresponds
to metallic gates and conductors to which the edge channels
are capacitively coupled in the case of partial mutual capac-
itive coupling between the R and L channels (n < 1). We
expect Re(Z(w)) = Ru/2 and Im(Z(w)) to be inductive at
low frequency whereas Re(Zp(w)) = 0 and Zy(w) is expected
to be capacitive in general, and to be infinite in the totally
screened case (n = 1).

built from two coplanar strips corresponding to the two
counter-propagating edge channel systems.

1. Width of edge channels

The model of Ref. [27] by Schklovskii et al. describes
the structure of quantum Hall edge channels when tak-
ing into account the effect of Coulomb interactions. It
predicts the width Ay (denoted by a, in Ref. [27]) of
the incompressible channels in term of the density gra-
dient at the edge as well as the width b, of compressible
channels as a function of Ag.

The width of incompressible stripes is obtained by
identifying the Landau gap with the energy variation of
an electron in the confining potential U (see Figure :

eB

a, x eVU = h—, (D1)
m

where VU denotes the gradient of U at the edge of the

sample. This leads to:

h
)
m*vp

(D2)

A, =

where we have defined vp = E, /B, as the drift velocity
along the edge. Note that this expression is formally
the Compton wavelength associated with a relativistic
particle of mass m* and effective speed of light vp. This
explains why we denote it by Ay in the following. This
result is not surprising, the width of the incompressible
stripe is the minimal one for closing the cyclotron gap for
an electronic excitation in the confinement potential, as
shown in Ref. [27].
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FIG. 10. Edge channel structure arising from Coulomb in-
teraction effects in a mean field theory approach [27]: incom-
pressible stripes alternate with compressible stripes in which
electrons are located right at the Fermi energy.

Once the width of an incompressible stripe is known,
the width of a compressible stripe is
T A2
, =4 (D3)
4 ap
where ap = h?c/m*e? denotes the effective Bohr radius
in the material.

2. Capacitance computation

The quantum Hall edge channel system has a width

vh

Wal) = eon

(14 moumat) (D4)
which is of the order of 90nm per edge channel in Al-
GaAs/GaAs systems. In the transverse direction, the
electrons are confined within a triangular potential well.
The typical extension of the electron’s wavefunction in
the transverse direction is of the order of 5nm [62], there-
fore suggesting a rather flat shape of the edge channel.

A first estimate of the geometric capacitance of the
edge channel system can thus be obtained by computing
the geometric capacitance per unit of length of an infinite
pair of coplanar strips of width w separated by a distance
d [63]:

Cu(l)
l

K(v1—z?)
K(z)

(D5)

= €0&r

in which K(z) denotes the elliptic integral of the first
kind [64] evaluated at © = d/(d + 2w) where, in our



case w = Wy (v) and d + 2w = W is the total width of
the quantum Hall bar. Using known asymptotics for the
elliptic integral, we find the geometrical capacitance for
the quantum Hall bar of width W and length [ at filling
fraction v

megerl
- .
In |:8WH(I/):|
On the other hand, using a more precise self-consistant
solution of the electrical potential within quantum Hall
edge channel arising from the repartition of quantum
electrons, Hirai and Komiyama [51] have shown that the

capacitance can be obtained as the geometric capacitance
of two parallel wires:

Cyv,l) ~ (D6)

megerl .
In (WW())

Expressions and @ are not identical, but both
are considered in the regime where W >> Wy (v), that is,
when they lead to similar estimates for the capacitance.
Both expressions are of the form

(1) = (D7)

megel
w7
In (WH(V))
where v is a factor that depends on the specific model
used to describe the charge repartition within the edge
channels. Here v = e/2 in Harai et al.’s estimate and

~v = 1/8 for the coplanar strip capacitance model. Using
Eq. (D§)), the effective coupling constant is then

Cuw,l,vy) = (DS8)

20
oy = Qmat 1y YW/ Au . (D9)
™ (1 + Wzamat)y
Using this expression into Eq. (C18)) leads to
vo VQmag YW/ Au
= =1 1 D10
vp + T " ((1+7r2amat)z/> ( )

for the ratio of vy to the drift velocity within a chiral
edge channel. This expression can then be rewritten in
terms of the effective single edge channel width £y =
(1 + m2amat) Aer /7

Ufo -1 + VQmat ln (W/SH)
VD s 14

(D11)

Appendix E: Supplementary results

In this Section, we show further experimental results
obtained on sample A (the sample discussed in the pa-
per) and on three other samples manufactured from three
different AlGaAs/GaAs heterojunctions. Their wafer
characteristics (electron density and mobility of the two-
dimensional electron gas) are reported in table I. Sam-
ples have been processed on these heterojunctions using
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the same design and dimensions as for sample A. Ex-
eperimental results obtained on these samples have been
obtained using exactly the same protocols and they are
completely similar to the results presented in the paper.

We first present complementary results on sample A,
then we present results obtained on the other samples,
which concern influence of filling factor v and influence
of edge channel length.

[Wafer [[ Ns(cm ) [p(m®/Vs) [ B (for v = 2)[Width (um) ]

A 5.1 30 10.5T 400
B 3.3 50 6.8T 1600
C 4.5 55 9.27T 400
D 4.3 42 9T 800

TABLE I. Sample characteristics: carrier density, mobility,
magnetic field at v = 2 and width of Hall bars.

1. Complementary results on sample A

12 T T T T T T T T T T
104 Ho o8 i
HC%II:Z//%
8- . -
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:l/x // //
4 L et LT I T
2
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FIG. 11. Kinetic Inductance as a function of the inverse of fill-
ing factor for a negative orientation of magnetic field . Dashed
line represents the theoretical model (Eq.(1) of the paper)
with following parameters : vp = 8 x 10°ms™? for the larger
configuration, vp = 11 x 10°ms™' for the intermediate one,
vp = 22 x 10°ms ™! for the short one. Length of edge states
are still the same (see Fig. 3 of the paper).

Fig. 3 of the paper shows, for a positive orientation of
magnetic field, the dependence of the quantum inertia on
the inverse of the filling factor. In Fig. [L1] of this Supple-
mentary Material, these results have been obtained for
a negative orientation of magnetic field. Dashed curves
are obtained using Eq. (1) of the paper, using a proper
velocity vp for each configuration (see caption).



2. Influence of filling factor for other samples

For sample A we have shown that reactance increases
linearly with frequency and that the slope depends
strongly on the filling factor. Here, we observe the same
behavior on other samples (see Figs. [12]to[L5)): the slope
decreases while the filling factor increases.

2 ' samplle B
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\C:/ 0 frequency(kHz)
x s

11 Al ]

I.Ph-- .t
P e
. ."_a'°".' : . ”-ﬂ"“." V=4
o dapd .7}-"‘“' e
0 B~ : . .
0 20 40 60 80 100

frequency(kHz)

FIG. 12. Reactance as a function of frequency, for sample B
and v = 4 and 4. Configuration is shown in inset.

2 samble C

0 20 40 60 80 100

frequency(kHz)
FIG. 13. Reactance as a function of frequency, for sample

C and v = 2 to 10 by steps of 2. Configuration is shown in
inset.

For all samples and configurations the inductance de-
creases with density of states. Quantum inertia appears
then to be a robust effect against variability of exper-
imental conditions, even in macroscopic samples. Still,
the dependence of the inductance on the filling factor is
not fully linear. These results corroborates the conclu-
sions obtained from sample A : the velocity vy depends
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on the filling factor.
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FIG. 14. Reactance as a function of frequency, for sample D
and v = 2 and 4. Configuration is shown in inset.
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FIG. 15. Reactance as a function of frequency, for sample D
at v = 2 and 4 and configuration shown in inset.

3. Influence of configurations for other samples

Figs. [I6] to [I9] depict the reactance as a function of
frequency for three samples at different filling factors. For
each sample at a given filling factor, we observe how the
configuration (shown as an inset for each curve) modifies
the slope of the reactance. Each configuration has its
proper length and the larger the edge states the higher
the quantum inertia. The length concerned here is the
distance between potentials L, and H,,.

Meanwhile, differences in velocity vp for distinct con-
figurations imply that the ratio between quantum inertia
and length of edge states not a constant. Configurations
are obtained after wire-bonding the samples. This en-
tails heating the samples and cool them down again af-
terwards, and this causes the velocity vy to change a bit
from one configuration to another.
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FIG. 16. Reactance as a function of frequency, for sample A
at v = 6 and for the three configurations.
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FIG. 17. Reactance as a function of frequency, for sample C
at v = 4 and for the three configurations.
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FIG. 18. Reactance as a function of frequency for sample D
at v = 2 for two configurations.
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0 20 40 60 80 100
frequency(kHz)

FIG. 19. Reactance as a function of frequency for sample D
at v = 4 for two configurations. Note the smaller values for
X () compared to the other curves which may explain the
more noisy dataset for the four-terminal geometry.
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