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Abstract

Neuroimaging has been extensively used to study brain structure and function in indi-

viduals with attention deficit/hyperactivity disorder (ADHD) and autism spectrum

disorder (ASD) over the past decades. Two of the main shortcomings of the
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neuroimaging literature of these disorders are the small sample sizes employed and

the heterogeneity of methods used. In 2013 and 2014, the ENIGMA-ADHD and

ENIGMA-ASD working groups were respectively, founded with a common goal to

address these limitations. Here, we provide a narrative review of the thus far com-

pleted and still ongoing projects of these working groups. Due to an implicitly hierar-

chical psychiatric diagnostic classification system, the fields of ADHD and ASD have

developed largely in isolation, despite the considerable overlap in the occurrence of

the disorders. The collaboration between the ENIGMA-ADHD and -ASD working

groups seeks to bring the neuroimaging efforts of the two disorders closer together.

The outcomes of case–control studies of subcortical and cortical structures showed

that subcortical volumes are similarly affected in ASD and ADHD, albeit with small

effect sizes. Cortical analyses identified unique differences in each disorder, but also

considerable overlap between the two, specifically in cortical thickness. Ongoing

work is examining alternative research questions, such as brain laterality, prediction

of case–control status, and anatomical heterogeneity. In brief, great strides have been

made toward fulfilling the aims of the ENIGMA collaborations, while new ideas and

follow-up analyses continue that include more imaging modalities (diffusion MRI and

resting-state functional MRI), collaborations with other large databases, and samples

with dual diagnoses.

K E YWORD S

ADHD, ASD, cortex, ENIGMA, neuroimaging, subcortical volumes

1 | INTRODUCTION

Two of the most frequently diagnosed neurodevelopmental disorders

are attention deficit/hyperactivity disorder (ADHD) and autism spec-

trum disorder (ASD), which occur in 5–7% and 1–2.8% of children,

respectively (Baird et al., 2006; Faraone et al., 2015; Thomas, Sanders,

Doust, Beller, & Glasziou, 2015; Xu et al., 2018). Both disorders may

persist across the lifespan (Nylander, Holmqvist, Gustafson, &

Gillberg, 2013). ADHD is characterized by age-inappropriate,

impairing and persisting levels of inattention and/or hyperactivity/

impulsivity (American Psychiatric Association, 2013), while ASD is

characterized by impaired communication, social interaction skills, and

repetitive and restricted behavior (American Psychiatric Associa-

tion, 2013). Up until 2013, when the fifth edition of the Diagnostic

and Statistical Manual for Mental Disorders (DSM-5) was published,

the presence of an ASD diagnosis excluded a diagnosis of ADHD.

Hence, dual diagnosis of both disorders did not officially exist. The

research fields for both disorders therefore developed largely in isola-

tion. However, the current diagnostic guidelines of the DSM-5 allow

for their dual diagnosis, which has led to the rise of a new field of

research studying the overlap between ADHD and ASD. Research in

recent years has shown that ADHD is the most common comorbidity

in children with ASD (Joshi et al., 2017); 40–70% of children with

ASD have comorbid ADHD (Joshi et al., 2017; Kaat, Gadow, &

Lecavalier, 2013; Salazar et al., 2015). Of children with ADHD, 15–

25% show clinically relevant ASD symptoms (Cooper, Martin, Langley,

Hamshere, & Thapar, 2014; Kotte et al., 2013), and 12% meet criteria

for an ASD diagnosis (Jensen & Steinhausen, 2015). A large-scale twin

study also demonstrated that patients with ASD have a much higher

chance of having ADHD than the general population (OR = 22.33)

(Ronald, Simonoff, Kuntsi, Asherson, & Plomin, 2008). Another twin

study indicated that children diagnosed with one of the two disorders

often show features of the other, even in the absence of a full comor-

bid diagnosis (Ghirardi et al., 2018).

In addition to the frequent co-occurrence of both disorders in the

population, ADHD and ASD partly overlap in their pathophysiology

and phenomenology in socialization and communication domains (e.g.,

[Antshel, Zhang-James, & Faraone, 2013]). Latent class analyses of

both clinical and community-based samples dissociated four distinct

patient groups—ADHD, ADHD + ASD, ASD + ADHD, and ASD—with

the middle two patient groups showing symptoms of both disorders,

with either one dominating the clinical picture (van der Meer

et al., 2012). These findings gave rise to the hypothesis that ADHD

and ASD may be viewed as different manifestations of the same over-

arching disorder, with each diagnosis representing the extreme end of

a complex multivariate trait and with most clinical cases presenting

various combinations of ADHD and ASD symptoms (Antshel, Zhang-

James, Wagner, Ledesma, & Faraone, 2016). Even without hypothe-

sizing about a single, overarching disorder, it is well accepted that core

features of both ADHD and ASD—in particular inattention and social
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deficits—overlap, and that partly, but not fully, overlapping patterns

are found in cognitive and behavioral traits associated with ADHD

and ASD traits (Rommelse, Geurts, Franke, Buitelaar, & Har-

tman, 2011; Truedsson, Bohlin, & Wåhlstedt, 2015; van der Meer

et al., 2017). Such hypothesis would lead to the abandonment of

viewing ADHD and ASD as opposing phenotypes (e.g., Mayes, Cal-

houn, Mayes, & Molitoris, 2012).

Given the common background between these two disorders, the

work done in the ENIGMA ADHD and ASD working groups may be

used to further our understanding of both the unique and common

neurobiological aspects of both disorders.

1.1 | The genetic background of ADHD and ASD

Further evidence for commonalities between ADHD and ASD comes

from genetic research. Genetically, ADHD and ASD are both complex

disorders, influenced by environmental and genetic susceptibility fac-

tors. Results from family, twin and adoption studies converge to sug-

gest that both ADHD and ASD have a high heritability (75 and 90%,

respectively; Faraone & Larsson, 2019; Freitag, 2007). Both common

and rare genetic variants contribute to this heritability (Satterstrom

et al., 2019), and part of this heritability is shared by the two disorders

(Faraone & Larsson, 2019; Rommelse, Franke, Geurts, Hartman, &

Buitelaar, 2010; Ronald & Hoekstra, 2011). Considering common

genetic variants, large-scale genome-wide association studies (GWAS)

meta-analyses confirmed that ADHD and ASD are significantly geneti-

cally correlated (37%; Lee et al., 2019). Similarly, in the general popu-

lation, the genetic backgrounds of ADHD and ASD were also found to

be partly shared throughout childhood and adolescence (Stergiakouli

et al., 2017). Rare variants with strong effect sizes directly explain

ASD or ADHD in a relatively small number of people only, though

many such variants are known to contribute to each disorder or both

(e.g., Satterstrom et al., 2019). Many of the genes hit by such rare risk

variants are also likely to converge on biological processes

(Bourgeron, 2015) that are shared by ASD and ADHD (and other neu-

rodevelopmental disorders; Cristino et al., 2014; Schork et al., 2019).

These processes include those involved in chromatin remodeling and

transcription, protein synthesis and degradation, synaptic receptors

and cell adhesion molecules, and scaffolding proteins (Luo, Zhang,

Jiang, & Brouwer, 2018).

1.2 | Neuroimaging across the lifespan in ADHD
and ASD before the founding of ENIGMA-ADHD and
ENIGMA-ASD

In the past decades, many neuroimaging studies have investigated the

structure and function of the brains of individuals with ADHD and

ASD. Within the ADHD literature, most studies showed structural

case–control differences across a wide variety of brain regions, in chil-

dren but also in adults with ADHD (Faraone et al., 2015; Franke

et al., 2018). Further, ADHD symptom ratings in the population were

found to be negatively associated with, for example, thickness of the

cortex (Mous et al., 2014; Shaw et al., 2011). A total of five meta-ana-

lyses based on case–control studies have tried to identify common

differences in brain structure associated with ADHD, based on case–

control studies (Ellison-Wright, Ellison-Wright, & Bullmore, 2008;

Frodl & Skokauskas, 2012; Nakao, Radua, Rubia, & Mataix-Cols, 2011;

Norman et al., 2016; Valera, Faraone, Murray, & Seidman, 2007). The

most consistent results across those meta-analyses were reduced vol-

umes of (parts of) the striatum in patients compared to controls. Two

of those five studies reported that striatal structural differences

between individuals with ADHD and controls decreased with increas-

ing age, and that stimulant treatment was associated with normalizing

effects on the brain volume differences (Frodl & Skokauskas, 2012;

Nakao et al., 2011). This work highlighted the role of the striatum in

the ADHD pathology. Limitations of these meta-analyses included the

limited ability to investigate the role of individual variables on the

identified brain differences, such as comorbidities, medication use, but

also age, and the inability to look at lifespan trajectories. Such lifespan

trajectories are of interest in ADHD because longitudinal studies of

brain volume suggest a delay of brain maturation for individuals with

ADHD, but of yet unknown significance for remittance and persis-

tence of ADHD into adulthood (Shaw et al., 2007, 2011).

Much of the research done on ASD has focused on the role of

subcortical brain abnormalities (Amaral, Schumann, & Nordahl, 2008).

Both larger (Turner, Greenspan, & van Erp, 2016) and smaller

(Sussman et al., 2015) volumes of striatal structures have been

reported, while higher average intracranial volume, total gray matter,

and cortical thickness have also previously been found in ASD

(Fombonne, Rogé, Claverie, Courty, & Frémolle, 1999; Haar, Berman,

Behrmann, & Dinstein, 2016), with more specific cortical effects in

the frontal and temporal lobes (Foster et al., 2015; Zielinski

et al., 2014). Altered frontal and striatal volumes and disrupted

fronto-striatal connectivity are key components in the executive func-

tion deficit theory of ASD (Di Martino et al., 2011; Langen et al., 2012).

On the other hand, abnormal amygdala volumes, specifically in child-

hood, may be related to the social theories of ASD (Baron-Cohen

et al., 2000). However, the neuroimaging literature is not consistent

as far as the direction and effect size of these morphometric brain dif-

ferences go (Nickl-Jockschat et al., 2012; Stanfield et al., 2008). The

introduction of the ABIDE consortium—a publicly available data set of

MRI data from 13 existing cohorts—has not managed to reduce much

of the pre-existing heterogeneity, as analyses (Haar et al., 2016)

showed only very small local associations of ASD with brain mor-

phometry, perhaps questioning the presence of structural differences

in ASD altogether.

Several small scale studies have examined differences and overlap

in brain structure between ADHD and ASD, reporting overlapping

structural brain alterations in the temporal and parietal areas (Brieber

et al., 2007), inferior frontal cortex (Geurts, Ridderinkhof, &

Scholte, 2013), cerebellum, corpus callosum (Dougherty, Evans,

Myers, Moore, & Michael, 2016), as well as white matter (Ameis

et al., 2016). A study of white matter organization in children with

ADHD, ASD, and controls observed transdiagnostic associations
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between continuous measures of ASD symptoms and inattention (but

not total ADHD symptoms) and indexes of white matter organization,

particularly in the corpus callosum (Aoki et al., 2017). An analysis of

intrinsic connectivity in cases with ADHD, ASD, and controls found

evidence for both shared and distinct underlying mechanisms at the

large-scale network level. Shared connectivity alterations were found

in the precuneus, whereas ADHD-specific increases in degree central-

ity were assessed in right striatum/pallidum, and ASD-related

increases in degree centrality in bilateral temporolimbic areas (Di

Martino et al., 2013). Overall, there is a distinct lack of well-powered

cross-disorder studies that include both cases with ADHD and ASD

(Rommelse, Buitelaar, & Hartman, 2017). Furthermore, the few exis-

ting studies focused solely on children, leaving the overlap between

ADHD and ASD over the lifespan almost completely unknown.

Taken together, the pre-existing literature on brain imaging in

ADHD and ASD still shows considerable gaps as well as opportunities

for improvement. Two of the main shortcomings remain to be the

small sample sizes and the wide heterogeneity in the methodology

used, both of which have likely contributed to the difficulty in repli-

cating imaging findings. Opportunities to remedy at least some of

these shortcomings are facilitated by the ENIGMA consortium. Over

the past decade, this consortium has provided a platform for combin-

ing genetic and brain imaging datasets (Adams et al., 2016; Hibar

et al., 2015, 2017; Stein et al., 2012), while using unified

preprocessing and analysis pipelines to substantially increase sample

sizes and decrease methodological heterogeneity as well as allow

direct comparison between different disorders such as ADHD and

ASD. Working groups for ADHD and ASD research were founded

under ENIGMA's umbrella in 2013 and 2014, respectively, with the

following aims: (a) reduce methodological heterogeneity in neuroimag-

ing studies that might cause differences in findings across studies; (b)

increase power to identify (new) characteristics of individuals with

ADHD and ASD; (c) cross-sectionally map the lifespan trajectory of

brain characteristics of ADHD and ASD; and (d) combine expertise

and join forces from around the world on brain research for ADHD

and ASD to boost our understanding of the brain in ADHD and ASD.

Both working groups' initial projects focused on subcortical brain vol-

ume and cortical thickness and surface area analyses.

2 | KEY FINDINGS FROM THE ENIGMA-
ADHD AND ENIGMA-ASD STUDIES:
SUBCORTICAL AND CORTICAL MEASURES

In the ENIGMA-ADHD's first project, the volumes of subcortical

structures including nucleus accumbens, amygdala, caudate nucleus,

globus pallidus, hippocampus, thalamus, putamen, and also the total

intracranial volume (ICV) were compared between cases with ADHD

and controls. These regional brain volumes were segmented based on

protocols provided by ENIGMA using FreeSurfer software. All partici-

pating sites segmented their raw data and quality checked of these

segmentations locally using protocols provided by ENIGMA. Detailed

instructions for analysis and quality control are found on the ENIGMA

website (http://enigma.ini.usc.edu/protocols/imaging-protocols/). The

resulting outputs were sent by each site to the coordinator of

ENIGMA-ADHD. Analyses were performed on data collected at 23

sites, that included a total of 1,713 cases with ADHD and 1,529 con-

trols, with an age range of 4–63 years of age. A cross-sectional mega-

analysis examined case–control differences within the whole sample,

and also separately in children (<15 years), adolescents (15–21 years),

and adults (>21 years). A linear mixed model was run with age, sex,

and ICV as fixed variables and site as a random variable. Results for

the total sample showed significant but small differences in the total

volume of nucleus accumbens (Cohen's d = −0.15), amygdala (d =

−0.19), caudate nucleus (d = −0.11), hippocampus (d = −0.11), puta-

men (d = −0.14), and ICV (d = −0.10), where the subjects with ADHD

had smaller volumes as compared to controls (Hoogman et al., 2017).

A follow-up meta-analysis confirmed the mega-analysis results. When

age groups were considered, case–control differences were only sig-

nificant in children. No effects of psychostimulant use or of present

comorbidities were found, nor were there any detectable effects of

ADHD severity (symptom counts). However, the statistical power for

these latter analyses was lower as the availability of these variables in

the varied at 25–50% of the total sample.

The second main analysis of the working group covered the

cortex, where cortical thickness and surface area were calculated

on 34 region segmentations from the Desikan-Killiany atlas

(Desikan et al., 2006; Hoogman et al., 2019). Since completion of

its subcortical project, ENIGMA-ADHD had grown to 36 sites

including 4,180 individuals—2,246 with ADHD and 1,934 control

subjects which were included in the cortical project. Results

showed, on average, lower surface area in frontal, cingulate, and

temporal regions in the analysis of children with ADHD versus con-

trols, with the largest case–control effect sizes in the youngest

group of children. The largest effect was found for total surface

area (d = −0.21). Lower cortical thickness values were found for

the fusiform gyrus and temporal pole in children with ADHD com-

pared to controls. Neither surface area nor thickness differences

were found in the adolescent and adult groups. In collaboration

with the Generation-R study (White et al., 2018), a pediatric popu-

lation study in Rotterdam, The Netherlands, ENIGMA-ADHD

found that symptoms of inattention were negatively associated

with total surface area, and the surface area of two regions that

had shown significant case–control differences in the initial

ENIGMA-ADHD analyses. In other words, case–control effects in

the caudal middle frontal gyrus and middle temporal gyrus were

also detected in a nonclinical population sample of children

10 years of age. Similar trends were seen for other regions, such as

in one of the ENIGMA-ADHD samples (n = 506), called

NeuroIMAGE (von Rhein et al., 2015), significant regions from the

ENIGMA-ADHD analysis were compared between cases, their

unaffected siblings and unrelated typically developing controls to

investigate familial effects. Compared to controls, the unaffected

siblings had lower on average surface area values for caudal middle

frontal gyrus, lateral orbital frontal gyrus, superior frontal gyrus,

and total surface area. However, mean values did not differ
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significantly from their affected siblings (Hoogman et al., 2019).

Since siblings share 50% of their genes, these data suggest that

familial factors, genes and/or shared environment, may play a role

in the cortical differences observed in ADHD.

In the ENIGMA-ASD working group, findings from the subcor-

tical volume and cortical thickness/surface area analyses were pub-

lished in a joint manuscript (van Rooij et al., 2018). The

preprocessing and analysis pipelines followed were identical to

those used in the ADHD working group analyses. A total of 52 sites

were included in this primary analysis, with a total of 1,571 cases

with ASD and 1,651 controls. The cross-sectional ASD mega-analy-

sis was performed over the entire age range. Small but significant

deficits were found in the subcortical volumes of the pallidum (d =

−0.08), putamen (d = −0.10), amygdala (d = −0.08), and nucleus

accumbens (d = −0.13). Cortical analysis showed no detectable dif-

ferences in regional and total surface areas. However, cases with

ASD showed greater cortical thickness in frontal brain areas, and

lower cortical thickness in temporal/occipital brain areas (d = −0.21

to d = 0.2). The effects of age were uniform over all subcortical and

cortical findings as all showed a distinct peak difference between

cases with ASD and controls around adolescence, but a normaliza-

tion in adults.

3 | OVERLAP AND DIFFERENCES
BETWEEN THE CASE–CONTROL STUDIES OF
ADHD AND ASD FOR SUBCORTICAL AND
CORTICAL MEASURES

When examining the main results from the cortical and subcortical

analyses of the ENIGMA-ADHD and ASD working groups, we can

readily observe several common and distinct patterns (Hoogman

et al., 2017; Hoogman et al., 2019; van Rooij et al., 2018). The two

cohorts were strikingly similar in the subcortical volume analysis, as

both disorders show comparable decreases in putamen, amygdala and

nucleus accumbens volumes when compared to controls (see Figure 1

and Table 1). Cortical thickness measures also showed some

comparable effects between the ADHD and ASD publications as both

disorders were associated with lower thickness in the temporal lobes,

yet only ASD showed increased cortical thickness, specifically in the

frontal lobe (see Figure 2). The strongest observed effect from the

cortical analyses in ADHD was in surface area, as cases showed a sig-

nificant overall smaller surface area, compared to controls (Hoogman

et al., 2019). This is in stark contrast to the ASD results, where no sur-

face area affects were observed. The limitation of these analyses is

the lack of full ASD symptomatology/diagnosis coverage in the ADHD

cohorts and vice versa.

Based on these patterns of overlapping and unique effects in

the separate analyses of the ADHD and ASD working groups, the

next logical step was to repeat these analyses on the combined data

from the two working groups. One of the main advantages of a

mega-analytic approach based on common analysis pipelines in the

different ENIGMA working groups is the comparability of the data.

In a recent cross-disorder analysis, we combined structural brain

data from the ENIGMA-ADHD, ENIGMA obsessive compulsive dis-

orders (OCD), and ENIGMA-ASD working groups in order to investi-

gate shared and unique effects among the three disorders (Boedhoe

et al., 2019). The analysis included 2,271 subjects with ADHD,

1,771 with ASD, 2,323 with OCD, and 5,827 controls, and was sub-

divided by age into children (<12 years), adolescents (12–17 years),

and adults (18 years and older). Findings showed strongest overlap

between ASD and ADHD effects in childhood, where both cases

with ADHD and ASD showed overall lower volumes in subcortical

areas, as well as lower cortical thickness in precentral and temporal

lobes. However, effect sizes were small, and most did not survive

correction for multiple comparisons. When comparing cases among

ADHD, ASD and OCD, we saw the largest difference in total ICV:

children with ASD showed a higher average ICV, compared both to

controls and with cases with ADHD or OCD. Hippocampal volumes

were smaller in children with ADHD as compared with children with

OCD, and smaller in adults with OCD and ASD as compared with

controls, although neither this difference survived multiple compari-

son correction. As for cortical thickness, adults with ADHD had

lower cortical thickness in orbitofrontal, inferior frontal and

F IGURE 1 Cohen's d effect sizes for the subcortical volumes and total intracranial volume (ICV) for both ADHD and ASD cohorts as
compared to controls. Figures taken and adapted from Hoogman et al. (2017) and van Rooij et al. (2018)
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cingulate areas, compared with adults with ASD, OCD and healthy

controls. Taken together, these analyses indicated that there are

unique cortical features in each disorder, but also considerable over-

lap between the two disorders, specifically when considering corti-

cal thickness. Subcortical volumes were similarly affected in both

ASD and ADHD, although the effects sizes over all age bins

remained quite small.

4 | SECONDARY PROJECTS WITHIN
ENIGMA-ADHD AND ENIGMA-ASD

In the spirit of ENIGMA, researchers within the collaboration are

encouraged to perform additional analyses on the collected data

aiming to address alternative research questions, or to use the net-

work to test new analytic strategies and methods. For ENIGMA-

TABLE 1 Summary of findings of the (sub)cortical analyses in ENIGMA-ADHD and ENIGMA-ASD

Working

group Results of subcortical analyses

Results of cortical thickness

analyses

Results of cortical surface area

analyses Additional findings

ENIGMA-

ADHD

-smaller accumbens, amygdala,

caudate nucleus,

hippocampus, putamen and

intracranial volume in all

samples combined and when

stratified only significant in

children with ADHD.

-with the exception of a

significant smaller

hippocampus volume in

adolescents with ADHD

-thinner fusiform gyrus and

temporal pole in all samples

combined and when

stratified into age groups,

only significant in children

with ADHD.

-no differences in adolescents

and adults with ADHD

-smaller surface areas for:

superior frontal gyrus, lateral

orbitofrontal cortex,

posterior cingulate cortex,

caudal middle frontal gyrus,

middle temporal gyrus, and

total surface area in children

with ADHD.

-no differences in adolescents

and adults with ADHD

-siblings of individuals with

ADHD showed smaller

surface area for caudal

middle frontal gyrus,

superior frontal gyrus and

total surface area.

- children in the general

population also showed

higher rates of symptoms of

inattention to correlate with

surface area of the caudal

middle frontal gyrus, the

middle temporal gyrus and

total surface area

ENIGMA-

ASD

Cases with ASD showed

smaller volume of the

nucleus accumbens,

amygdala, pallidum, and

putamen and a bigger

intracranial volume.

Cases with ASD showed

greater cortical thickness in

frontal brain areas (including

the frontal pole), and lower

cortical thickness in

temporal/occipital brain

areas (including the fusiform

gyrus).

Cortical analysis showed no

detectable differences in

regional and total surface

areas.

The effects of age were

uniform over all subcortical

and cortical findings—all

showed a distinct peak

difference between cases

with ASD and controls

around adolescence, and

normalization in adults.

Note: Results that are underlined are overlapping results with the same direction of the effect for both disorders. Results in italic indicate overlapping

regions affected for both disorders but with opposite effects.

F IGURE 2 Cohen's d effect sizes for the cortical measures for both ADHD and ASD cohorts as compared to their controls. Figures taken and
adapted from Hoogman et al. (2019) and van Rooij et al. (2018). Only the Freesurfer segmentations which showed a significant effect in either
group are depicted, this means that only results of the thickness analyses are depicted here, as none of the surface area results were significant in
the ASD analyses
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ADHD and ENIGMA-ASD, there are four projects with overlapping

objectives. These are projects on laterality, machine learning, stratifi-

cation, and virtual histology. Within ENIGMA-ADHD, an additional

project focused on the cerebellum was also conducted. These projects

are at various stages, and have been either published after peer

review, posted as preprint without peer review on bioRxiv and

awaiting peer review results, or are still in the process of being ana-

lyzed and written up. Table 2 outlines an overview each projects.

4.1 | Laterality analysis in ENIGMA-ADHD and
ENIGMA-ASD

The laterality projects in the ADHD and ASD working groups aim to

identify changes of left–right structural brain asymmetry in the

affected populations. In contrast to previous findings in ADHD liter-

ature, the ENIGMA-ADHD laterality study showed no evidence for

asymmetry in the caudate nucleus. All the other brain asymmetry

analyses for case–control differences in children, adolescents and

adults, showed no significant results that survived multiple compari-

son correction (Postema, Hoogman, et al., 2020). Alterations in the

degree of cortical thickness asymmetry in frontal, cingulate, and

inferior temporal areas were observed in the ENIGMA-ASD

laterality study (Postema, van Rooij, et al., 2019), with subjects with

ASD showing reduced asymmetry in all areas. The only exception to

this was leftward putamen asymmetry, which was significantly

increased in ASD.

4.2 | Machine learning results in ENIGMA-ADHD
and ENIGMA-ASD

Both subcortical and cortical data were used to predict case–control

status through machine learning within ENIGMA-ADHD (Zhang-

James et al., 2019). Using support vector machine, random forests, K-

Nearest Neighbors, and gradient boosting classifiers, the model was

estimated in 85% of the sample while the remaining 15% of the sam-

ple was used to test the model's accuracy. Results showed a statisti-

cally significant discrimination between ADHD and control subjects.

However, prediction accuracies were relatively low at 67% for adults

and 66% for children. The most informative structures unsurprisingly

overlapped with those structures that showed significant case–control

differences in the main analysis of the ENIGMA-ADHD data: ICV, sur-

face area, and some subcortical volumes (Hoogman et al., 2017;

Hoogman et al., 2019). It is encouraging to see that by combining all

brain data in the machine learning analysis, instead of examining iso-

lated case–control differences, the adult group did show significant

case–control differences. A model based on child data significantly

predicted ADHD status in the adult sample and vice-versa, suggesting

that the structural MRI differences detected by the machine learning

algorithm were similar in children and adults. In order to increase the

prediction, larger sample sizes or the addition of other data modalities

(e.g., diffusion MRI, resting state functional MRI) might be required.

Alternatively, this may also be achieved by integrating machine learn-

ing results with other cohorts, like ASD.

The same machine learning strategy has been applied in an ongo-

ing study within the ASD working group. The analyses gave mostly

similar results in terms of predictive accuracy, with a preliminary low

accuracy of around 60%. However, a striking result occurred when

merging the ENIGMA-ADHD and ASD cohorts in the training set. Pre-

liminary results indicate that the predictive accuracy on the diagnosis

of ASD in the prediction set was significantly higher when the training

set includes also the ENIGMA-ADHD data. This may be partly due to

the fact that in this case, the number of controls is doubled, however,

it may also be due to the fact that learning examples of a third diag-

nostic category (in this case ADHD) may help the algorithm dissociate

more clearly between the other two (ASD and controls). These prelim-

inary findings demonstrate that, even though the effect sizes of brain

differences on a group level are small, there is still much information

in these morphometric features that advanced algorithms can use to

dissociate cases from controls. Additionally, it highlights the impor-

tance of collaboration between scientists working on different disor-

ders in neurodevelopmental research in general, and within the

ENIGMA consortium in particular.

4.3 | Stratification analyses in ENIGMA-ADHD and
ENIGMA-ASD

An important observation from the primary structural brain analyses

published by both the ENIGMA-ADHD and -ASD working groups

(Hoogman et al., 2017; Hoogman et al., 2019; van Rooij et al., 2018)

was the high within-group variance in any given brain metric, which

makes it hard to detect between-group differences. We hypothesize

that, on a population level, different neuroanatomical profiles may

exist, which would correspond to more homogeneous neuroanatomi-

cal subgroups. An important secondary goal of ENIGMA-ADHD and

ENIGMA-ASD is therefore to stratify the structural brain data into

subgroups, and investigate how this influences case–control compari-

sons and whether these subgroups have a unique neurobiological

profile.

In order to investigate potential stratifications in the subcortical

volumes, we employed a two-step analysis. First, the subcortical vol-

umes for all subjects were entered in an exploratory factor analysis

(EFA), which is used to summarize the nine subcortical volumes into a

couple of underlying factors. Next, these factors were used in a Com-

munity Detection clustering analysis, to see if there were specific sub-

groups within the patient and control populations that differ in their

subcortical brain profile (Li et al., 2019). In an ongoing study, similar

analyses are being carried out for both the ENIGMA-ADHD and ASD

datasets.

The EFA results showed that variations in subcortical volumes

can be reduced to three main factors, in males aligning with the

striatum, limbic system, and thalamus. This factor structure was

based on both cases and controls, and was stable between the

ADHD and ASD cohorts. There were some differences between
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TABLE 2 Overview of the published and ongoing work by the ENIGMA-ADHD and ASD working groups

Reference Title Working group Status Doi

Hoogman

et al. (2017)

Subcortical brain volume

differences in participants with

attention deficit hyperactivity

disorder in children and adults: a

cross-sectional mega-analysis.

ADHD Peer reviewed and published https://doi.org/10.1016/

S2215-0366(17)30049-4

van Rooij

et al. (2018)

Cortical and subcortical brain

morphometry differences

between patients with autism

spectrum disorder and healthy

individuals across the lifespan:

Results from the ENIGMA ASD

Working Group.

ASD Peer reviewed and published https://doi.org/10.1176/

appi.ajp.2017.17010100

Shaw

et al. (2018)

A multicohort, longitudinal study

of cerebellar development in

attention deficit hyperactivity

disorder.

ADHD Peer reviewed and published https://doi.org/10.1111/

jcpp.12920

Hoogman

et al. (2019)

Brain imaging of the cortex in

ADHD: A coordinated analysis

of large-scale clinical and

population-based samples.

ADHD Peer reviewed and published https://doi.org/10.1176/

appi.ajp.2019.18091033

Postema, van

Rooij,

et al. (2019)

Altered structural brain

asymmetry in autism spectrum

disorder in a study of 54

datasets.

ASD Peer reviewed and published https://doi.org/10.1038/

s41467-019-13005-8

Zhang-James

et al. (2019)

Machine learning classification of

attention-deficit/hyperactivity

disorder using structural MRI

data.

ADHD Under review, published on

bioRxiv

https://doi.org/10.1101/

546671

Boedhoe

et al. (2019)

Subcortical brain volume, regional

cortical thickness and cortical

surface area across attention-

deficit/hyperactivity disorder

(ADHD), autism spectrum

disorder (ASD), and obsessive–
compulsive disorder (OCD).

ADHD & ASD (and

OCD)

Accepted for publication at AM.

J.Psy, published on bioRxiv

https://doi.org/10.1101/

673012

Li et al. (2019) Characterizing neuroanatomic

heterogeneity in people with

and without ADHD based on

subcortical brain volumes.

ADHD Under review, published on

bioRxiv

https://doi.org/10.1101/

868414

Postema et al.

(2020)

An ENIGMA consortium analysis

of structural brain asymmetries

in attention-deficit/

hyperactivity disorder in 39

datasets.

ADHD Under review, published on

bioRxiv

https://doi.org/10.1101/

2020.03.03.974758

Patel et al.

(2020)

Virtual histology of cortical

thickness reveals shared

neurobiology underlying six

psychiatric disorders: A meta-

analysis of 148 cohorts from the

ENIGMA Consortium.

ADHD & ASD (and

other working

groups)

Not peer reviewed, submitted NA

Zhang-James

et al. (2020)

Improved classification

performance with autoencoder-

based feature extraction using

cross-disorder datasets.

ADHD and ASD In preparation NA

Li et al. (2020) Dissecting the heterogeneous

subcortical brain volume of

autism spectrum disorder (ASD)

using community detection.

ASD In preparation NA

Abbreviation: NA, not available.
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males and females, and among female children, adolescents, and

adults. Community detection analysis indicated that the cohorts

can subsequently be stratified into four separate profiles, each

corresponding to a unique loading pattern on the striatum, limbic

system, and thalamus factors. Once more, these observed commu-

nities were stable between the ADHD and ASD analyses, and the

distribution between the communities was comparable between

cases and controls. This allowed us to then look at case–control

differences within each of the four communities. The effect sizes

of the case–control comparisons for both ADHD and ASD were

significantly higher within the four distinct communities than they

were over the entire cohort. This study also indicated that the

community structure may change over the lifespan, with one com-

munity disappearing in adulthood. This shift suggests that neuroan-

atomical diversity may decrease with age. As of now, both the

ADHD and ASD cohorts had too few females to conduct suffi-

ciently powered community detection analyses accounting for sex,

as sex differences in neuroanatomical organization are a highly

important topic within ADHD and ASD research. We hope that

with further growth of the ENIGMA cohorts, these analyses may

soon become feasible.

Although all the findings discussed here are still preliminary at the

time of writing, all results support our main hypothesis, which is that

it is likely that there are relatively more homogeneous subgroups

within the population based on brain structure, and that taking into

account these subgroups can significantly increase the effect sizes of

our case–control analyses.

4.4 | Virtual histology analyses for ENIGMA-
ADHD and ENIGMA-ASD and four other disease
working groups

Neuroimaging studies have observed robust differences in cerebral

cortical morphology (thickness and surface area) within patients

across different psychiatric disorders (Thompson et al., 2020).

However, the neurobiological changes underlying these macro-

scopic structural differences in the cerebral cortex are not well

understood. To gain further insights into the profiles of group dif-

ferences in the ENIGMA-ADHD and ENIGMA-ASD cohorts, we

employed a virtual histology approach (Patel et al., 2018; Shin

et al., 2018). This entails relating inter-regional profiles of gene

expression from the Allen Human Brain Atlas with inter-regional

profiles in differences of cortical thickness across the 34 regions of

the Desikan-Killiany atlas (Desikan et al., 2006; Hawrylycz

et al., 2012). Virtual histology may allow us to make inferences

about which cell types (e.g., pyramidal, interneuron, astrocytes,

microglia, and oligodendrocyte) are enriched in regions that show

large group differences in cortical thickness. The aim for virtual his-

tology projects is to employ this approach in six psychiatric disor-

ders (ADHD, ASD, bipolar disorder, OCD, major depressive

disorder, and schizophrenia) in order to characterize shared and/or

unique neurobiology of group differences in cortical thickness

across these disorders; a total of 12,006 cases and 14,842 controls

are contributing to this project, which is currently ongoing.

4.5 | Cerebellum analysis in ENIGMA-ADHD

One additional project in ENIGMA-ADHD aimed to investigate the

specific neuroanatomy of the cerebellum in ADHD. A collaborative

initiative of four cohorts from the working group (Shaw et al., 2018)

segmented various regions in the cerebellum to identify growth tra-

jectories in these regions for cases and controls. In a sample of 1,656

subjects (patients and controls), diagnostic differences in growth in

the corpus medullare (cerebellar white matter) emerged. Specifically,

cases with ADHD showed slower growth in early childhood compared

to the typically developing group and a reversed effect in late

childhood.

5 | STRENGTHS, CHALLENGES, AND
LIMITATIONS OF ENIGMA-ADHD AND
ENIGMA-ASD

The main strength of the ENIGMA consortium in the field of ADHD

and ASD brain imaging has been the sharing of existing data, which

consequently further unifies the experience and expertise of the field.

By going beyond meta-analyses and really sharing individual test sta-

tistics, we were able to run more sophisticated analyses than would

have otherwise been possible.

The ENIGMA working groups have clear data management,

writing, and publication guidelines described in a memorandum of

understanding which is signed by all participating members. This

ensures transparency among all working group members in both the

process and the outcome of all new analyses. The open nature of

the working groups has a positive snowballing effect of new sites

and PI's joining regularly, thus resulting in a larger body of data for

each new analysis. The ENIGMA policy on secondary proposals

dictates that all working group members can submit secondary pro-

posals, which has led to many interesting and important contribu-

tions which were spearheaded by different members of the

ENIGMA-ADHD and ASD working groups. As highlighted previ-

ously, another strength is the sharing of open access protocols for

imaging analyses, developed by dedicated methods working groups

within the ENIGMA consortium (http://enigma.ini.usc.edu/

protocols/imaging-protocols/). These detailed protocols include

brain segmentation into defined anatomical regions using

FreeSurfer 5.3 and quality control procedures, and help remove var-

iance that would come from using different methods. In general, the

statistical models that are used to calculate case–control differences

are also similar among working groups. Mixed linear models using

the nlme package in R are implemented with age, sex and case–con-

trol status as fixed variables and “site” as a random factor. Varying

among working groups, interactions of the fixed factors are some-

times added to the model to acquire a better model fit. This varies
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among the working groups. Depending on the brain measures ana-

lyzed, additional covariates accounting for global head size are

added. In subcortical volume projects intra cranial volume was

added as covariate, and in cortical surface area projects, analyses

were performed with and without total surface area as covariate.

Even with these efforts, several challenges and limitations remain.

One of the key difficulties that the working groups face is the nature

of the data itself. Legacy data, which refers to the pre-existing data

from previous studies and publications, inherently lacks harmonization

of data collection and phenotyping protocols, and is additionally less

accessible for follow up data acquisition than in new studies. It has at

times proven difficult to repeatedly organize new analyses which

require access to the locally stored raw imaging data, especially at

sites where the authors of the original publications have left and

moved to new positions. Similarly, demographic and phenotypic data

from the many different sites were acquired in different years across

several decades, using different tools and methods, with different

goals in mind. This led to considerable heterogeneity in, for instance,

the symptom ratings within cohorts, as well as inconsistent assess-

ment of comorbidities. In ENIGMA-ADHD, we currently have infor-

mation available for 55% of the patients on ADHD symptom rating

scales. For 58% of the patients there is information about com-

orbidities and for 44% and 66% of the patients we have data available

for lifetime stimulant use and current stimulant use, respectively. For

ENIGMA-ASD, the Autism Diagnostic Observation Scale (ADOS) is

available for 27% of the cohort, as well as 15% for comorbidity infor-

mation and 49% for current medication use. The historical focus of

existing publications on a categorical (case, control) rather than

dimensional phenotyping approach limits the depth of phenotype

associations available in ENIGMA-ADHD and ASD. Another example

of the difficulties that we face can be found in the change from DSM-

IV to DSM-5. Before DSM-5 was published, ADHD and ASD could

not be diagnosed simultaneously. This led many older samples to

forgo acquiring ADHD/ASD comorbidity data, as this was thought to

be superfluous at the time. Given that there likely was some comor-

bidity of ASD symptoms in the ADHD cohort and vice versa, this may

have increased the overlap in structural brain alterations between the

two cohorts. Re-contacting the original patients or even researchers

of these legacy samples is often not feasible, limiting depth and fidel-

ity of the available phenotypic data in the ENIGMA-ADHD and ASD

cohorts.

6 | FOLLOW-UP OF ENIGMA-ADHD AND
ENIGMA-ASD: RESULTS BEYOND THE
COLLABORATION

Work from the ENIGMA-ADHD and ENIGMA-ASD groups has

inspired various follow-up analyses. The ENIGMA-ADHD working

group discovered volume reductions in patients with ADHD in ICV

and volumes of subcortical regions. However, how such alterations

contribute to the disease phenotype remains largely unknown. As

both ADHD and brain volumes have a high heritability, it has been

suggested that genetic variants underlying ADHD pathophysiology

may also influence brain volume variation. A recent study investigated

the genetic covariance between ADHD risk and the brain volumes

implicated in ADHD. On a global, genome-wide level a significant neg-

ative genetic correlation between ADHD and ICV was found, meaning

that variants linked to smaller ICV were associated with increased

ADHD risk (Klein et al., 2019). This resembles the phenotypic obser-

vation that individuals with ADHD have smaller ICV relative to control

subjects. On the single variant and gene-wide levels, several signifi-

cant loci were associated with both ADHD risk and brain volume

(Klein et al., 2019). Similar genetic overlap analyses revealed that cor-

tical structure variation is genetically correlated with ADHD (Grasby

et al., 2020). More specifically, a significant negative genetic correla-

tion between ADHD and global surface area, a brain phenotype highly

correlated with ICV, was found (Grasby et al., 2020). This type of inte-

grated genome-wide analyses can help develop new hypotheses

about biological mechanisms by which brain structure alterations may

be involved in ADHD disease etiology. The genetic correlation

between ADHD and ICV showed some specificity to this disorder, as

it was not found in studies of other psychiatric disorders, such as

schizophrenia (Adams et al., 2016; Franke et al., 2016), major depres-

sive disorder (Wigmore et al., 2017), or ASD (Grove et al., 2019), using

similar methods. A related analysis by Radonijc et al. (this issue)

showed that, across several disorders investigated by ENIGMA work-

ing groups, those that showed greater case–control structural brain

differences also showed more similarities in their common genetic

variant architectures.

In analyses using the case–control standardized mean differences

for subcortical regions from the ADHD-ENIGMA analyses, Hess and

coworkers (Hess, Akutagava-Martins, Patak, Glatt, & Faraone, 2018)

reported that gene expression profiles (Allen Human Brain Atlas) for

three biological pathways were significantly correlated with ADHD-

associated volumetric reductions: apoptosis, oxidative stress, and

autophagy. These correlations were strong and significant in children

with ADHD, but not in adults. In a subsequent analysis that also

included cortical data from ENIGMA-ADHD, the same group found

that ADHD-associated volumetric reductions were associated with

apoptosis, autophagy, and neurodevelopment gene pathways and

with regional abundances of dopaminergic neurons, astrocytes, oligo-

dendrocytes, and neural progenitor cells (Hess, Radonji�c, Patak, Glatt,

& Faraone, 2019). These data suggest that the selective brain region

vulnerability seen in ADHD may be due to differences in the cellular

composition and constitutive gene expression between regions, which

do and do not show ADHD-associated volumetric changes.

7 | THE FUTURE FOR COLLABORATIVE
NEUROIMAGING IN ADHD AND ASD

Great strides have been made toward fulfilling the aims of the

ENIGMA collaboration, especially for increasing the power of neuro-

imaging studies in ADHD and ASD. The published work of these col-

laborations includes by far the biggest sample sizes in the field of
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neuroimaging for the respective disorders. First, this has made it pos-

sible to identify robust case–control differences with stringent

methods (such as split half validation, Mackey et al., 2018). Second,

although we need to be aware of the limitations of cross-sectional

data, the wide age range of our samples (ADHD: 4–63 years, ASD: 2–

64 years) allows the examination of case–control differences across

the life-span. Together with the large sample sizes that facilitate pow-

erful age-group analysis, we can formulate more specific hypotheses

about the development of brain differences across the life-span. Third,

the additional projects derived from these collaborations are strong

examples that our aim of combining expertise to boost our under-

standing of ADHD and ASD in relation to the brain has been met and

is continuously replenished with new ideas. Not only within the col-

laborative group itself, but also other researchers have also been

inspired to come up with subsequent research questions to generate

even more knowledge about brain differences that are associated

with the disorders, coming from related fields (Hess et al., 2018; Klein

et al., 2019). While the first articles of additional analyses are now

being published, much work is still ongoing, and more cohorts are still

joining our working groups. We therefore expect more output from

these initiatives. Finally, we aimed to reduce methodological hetero-

geneity by making the preprocessing and analysis pipeline used in

ENIGMA-ADHD and ASD public, as well as many of the analysis

results per site. This gives unprecedented insights into the amount

and range of variance of outcomes between studies that for the first

time establishes a clear baseline against which new samples can easily

be compared.

7.1 | Collecting additional data within our working
groups

Our future work will be dedicated to performing new analyses and

including additional data. The ENIGMA-ADHD and -ASD groups are

currently working on the analysis of structural connectivity data from

diffusion tensor imaging (DTI). With the DTI projects we will perform

similar analyses as for brain volume but move beyond testing for iso-

lated brain regions. Here we can, again, make use of processing pipe-

lines provided by ENIGMA, which have already been successfully

used (Favre et al., 2019; van Velzen et al., 2019; Villalón-Reina

et al., 2019). Within the ENIGMA-ASD cohort, resting state fMRI data

are also being analyzed, pooled together with existing datasets such

as the EU-AIMS cohort, parcellated into standard functional regions

of interest, and used for a graph-theory analysis of the functional

brain (dis)connectivity. The addition of DTI and resting state fMRI

data to the existing structural brain data in the ENIGMA-ADHD and

ASD working groups is an important step toward true multimodal

imaging data integration, one of the most important long-term goals

of these ENIGMA working groups. All our current findings, as well as

the literature on ADHD and ASD, overwhelmingly indicate that neural

alterations are visible across all available imaging modalities. There

currently exist no large-scale dataset where structural, functional, and

connectivity data are combined, so it is largely unclear how findings

among these different modalities are interrelated. To move toward a

more complete neurobiological model of ADHD and ASD, multimodal

data integration will be key.

To learn more about the overlap and differences between ADHD

and ASD, we want to focus on samples that have allowed dual diagno-

sis of both disorders. As was discussed in the strengths, challenges

and limitations section, most of the current studies into ADHD/ASD

excluded the other disorder for data collection. Adding a third group

with a true combined diagnosis will strengthen the cross-disorder

analysis of ADHD and ASD immensely, and will aid the investigation

of how the genetic and neural correlates of ADHD and ASD interact,

and how this influences the development of the disease phenotype

over the lifespan.

7.2 | Collaborating with other consortia

As was mentioned in this article, ADHD and ASD may be seen as dif-

ferent manifestations of a broader phenotype. This view can be fur-

ther extended to include multiple neurodevelopmental disorders,

most notably OCD and Tourette's syndrome. A large overlap in

comorbidity between these disorders as well as in the cognitive and

neural alterations, lead to the hypothesis that the standard categorical

disease classification for neurodevelopmental disorders may need to

be revisited, and that ADHD, ASD, OCD, and Tourette's syndrome

might actually lie on an impulsivity-compulsivity continuum, sharing

overlapping etiologies that converge in dysfunctional brain circuitries

(Clark, Cuthbert, Lewis-Fernández, Narrow, & Reed, 2017; Huisman-

van Dijk, van de Schoot, Rijkeboer, Mathews, & Cath, 2016). A major

next step in the ENIGMA consortium is the aim to unite multimodal

imaging comparisons across the neurodevelopmental disorder work-

ing groups, not only for ADHD and ASD, but also including ENIGMA-

OCD and Tourette's syndrome.

Additionally, for both ADHD and ASD it would be of great inter-

est to combine brain data from longitudinal samples. The previously

reported delay of maturation in ADHD, the absence of case–control

differences in the adult sub-analysis in ENIGMA-ADHD, or the

changes restricted to adolescence in ASD and the changes in the pre-

sentation of the disorders all support looking more closely and with

better data at the life-span perspective of brain changes related to

ADHD. Early biomarkers associated with ASD's development and

treatment outcome would additionally be of tremendous value to the

clinical community. Currently, and to this end, medium scale multicen-

ter longitudinal data are being collected as part of the EU-AIMS pro-

ject (Murphy & Spooren, 2012), which may offer a potential

collaboration partner for ENIGMA-ASD to investigate both longitudi-

nal structural brain analysis, but also includes extensive behavioral

phenotyping as well as EEG and eye-tracking data, which offers new

opportunities to link the ENIGMA imaging findings to a wider set of

behavioral and biological metrics.

The behaviors which are associated with both ADHD and ASD

are not unique to just a patient population, but exist as continuous

traits within the general population (Asherson & Trzaskowski, 2015;

HOOGMAN ET AL. 13



Bralten et al., 2018). This means that both the genetic and neuroimag-

ing features which are linked to ADHD and ASD may also be found as

distributed traits in population samples. Combining the results of the

ENIGMA analysis and the analysis of population-based brain data

have been successful in the case of ADHD cortical analyses

(Hoogman et al., 2019). We want to expand these types of analyses

because it gives us a better picture of brain characteristics across the

whole spectrum of these psychiatric traits.

Lastly, to combine genetic and neuroimaging data within

ENIGMA-ADHD and ASD, ideally one would need genetic and

imaging data from the same subjects to investigate which genetic

factors contribute to the brain characteristics that have been

found. Unfortunately, the samples in ENIGMA-ADHD and ASD are

still too small to conduct such analyses. However, combining data

from multiple large-scale databases of other collaborations has

shown that this also delivers new information, for example the pro-

ject about the genetic overlap of ADHD risk and genetic factors

involved in ADHD related brain volumes (Klein et al., 2019). In the

future we aim to perform more of these types of analyses and

encourage and invite other researchers to come up with interesting

hypotheses.
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