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ARTICLE

The reliability and heritability of cortical folds and
their genetic correlations across hemispheres
Fabrizio Pizzagalli 1✉, Guillaume Auzias 2, Qifan Yang1, Samuel R. Mathias3,4, Joshua Faskowitz 1,

Joshua D. Boyd 1, Armand Amini 1, Denis Rivière 5,6, Katie L. McMahon 7, Greig I. de Zubicaray 8,

Nicholas G. Martin 9, Jean-François Mangin5,6, David C. Glahn3,4, John Blangero 10,

Margaret J. Wright 11,12, Paul M. Thompson1, Peter Kochunov13 & Neda Jahanshad 1✉

Cortical folds help drive the parcellation of the human cortex into functionally specific

regions. Variations in the length, depth, width, and surface area of these sulcal landmarks

have been associated with disease, and may be genetically mediated. Before estimating the

heritability of sulcal variation, the extent to which these metrics can be reliably extracted

from in-vivo MRI must be established. Using four independent test-retest datasets, we found

high reliability across the brain (intraclass correlation interquartile range: 0.65–0.85). Her-

itability estimates were derived for three family-based cohorts using variance components

analysis and pooled (total N > 3000); the overall sulcal heritability pattern was correlated to

that derived for a large population cohort (N > 9000) calculated using genomic complex trait

analysis. Overall, sulcal width was the most heritable metric, and earlier forming sulci showed

higher heritability. The inter-hemispheric genetic correlations were high, yet select sulci

showed incomplete pleiotropy, suggesting hemisphere-specific genetic influences.
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Genetic drivers of brain structural and functional differ-
ences are important to identify as potential risk factors for
heritable brain diseases, and targets for their treatment.

Large-scale neuroimaging consortia, including the ENIGMA1

consortium, have identified common genetic variants that have
small but significant associations with variations in brain mor-
phology2. Studies have even identified genetic correlations
between human brain structure and risk for disease3,4.

Enriched in neuronal cell bodies, the cortical gray matter plays
an important role in human cognitive functions and behavior,
including sensory perception and motor control5. Macroscale
anatomical features of the human cortex can be reliably extracted
from structural magnetic resonance imaging (MRI) scans, and
among the most common are regional thickness and surface area
measures. These MRI-based features show robust alterations in
several neurological, neurodevelopmental, and psychiatric dis-
orders6, and are influenced by both environmental and genetic
variation7.

Gyrification of the cortical surface occurs in an orchestrated
pattern8 during fetal life and into adolescence9, forming sulci
(fissures) and gyri (ridges) in the cortical gray matter. The
mechanisms of brain folding are not fully understood10,11, but the
process is largely preserved among humans and nonhuman pri-
mates. The brain sulci delimit cortical areas with specific func-
tionalities and are generally consistent across subjects12–15. The
complexity and intersubject variability of brain gyrification are
influenced by developmental, aging, and pathological processes,
all of which are genetically and environmentally influenced16,17.

Large-scale neuroimaging studies have begun to discover
common and rare genetic variants that contribute to brain
variability as estimated using in vivo brain scans, such as MRI18;
genome-wide association studies (GWAS) find that, as with other
complex traits, individual common variants typically explain <1%
of the population variance in MRI derived measures; still, com-
mon genetic factors account for a large fraction of the variance in
aggregate2,19–21. Successful efforts to discover common variants
that affect cortical structure require tens of thousands of scans, as
well as independent samples for replication and generalization.
Large-scale biobanks have amassed tens of thousands of MRI
scans22. Even so, to replicate effects and ensure the general-
izability of findings to other scanned populations, we must first
assess that the brain measures are reliably extracted across a
variety of possible MRI scanning paradigms. This reliability is the
basis for pooling statistical effects across individual studies in
multisite consortia such as ENIGMA1 and CHARGE23.

Sulcal-based morphometry provides in-depth analyses of the
cortical fissures, or folds, as seen on MRI. Measures of sulcal
morphometry—including length, depth, width, and surface
area—among others—have been associated with brain maturation
in adolescents24, neurodegenerative changes in the elderly24,25,
and neuropsychiatric disorders such as schizophrenia26,27, bipolar
disorder28, and autism spectrum disorder29; altered fissuration is
also found in several genetic disorders, such as Williams
syndrome30,31. Effects on sulcal patterns have been reported as

being partially independent of those on cortical thickness or
surface area24,32.

Effects on sulcal patterns have been reported being partially
independent of those on cortical thickness or surface area24,32.
Previous studies have investigated the genetics of cortical folds,
but not across the full brain, and without ensuring the reliability
of the measures themselves, or the heritability estimates.
Kochunov et al.33 analyzed the effects of age on sulcal shape
descriptors in a subset of 14 sulci finding wider sulci with older
age in the adult human brain. The central sulcus has been the
focus of many earlier publications34–37. Its depth has been
reported to be highly heritable, with the degree of heritability
varying along its profile37. In recent works, La Guen et al.38

studied the heritability of sulcal pits in the Human Connectome
Project (HCP) and the genetic correlation of sulcal width across
ten sulci in the UK Biobank39. The heritability of the depth,
length, and surface area of primary sulci has been studied in
baboons40. It has been suggested that deeper, earlier forming,
sulci have higher heritability41, although this hypothesis has not
been confirmed. The reliability of the findings across populations,
and the extent to which heritability depends on the reliability of
the measures, has not been investigated.

Here we: (a) estimate the reliability of four shape descriptors
extracted from sulci across the whole brain; (b) evaluate herit-
ability of these measures across four independent cohorts (three
family-based cohorts and one cohort of unrelated participants);
(c) determine the extent to which the heritability estimates
depend on reliability; and (d) provide insights into the relation-
ship between early forming sulci and higher heritability as well as
cortical lateralization.

We performed an extensive reliability (N= 110) and herit-
ability (N= 13,113) analysis. Reliability was estimated from four
cohorts, totaling 110 participants (19–61 years of age, 47%
females) who underwent two T1-weighted brain MRI scans
across different brain imaging sessions. We included data sets for
which we would expect minimal or no structural changes between
scans, so we limited the analysis to healthy individuals aged
18–65, with an inter-scan interval < 90 days. See Table 1 for more
details.

We analyzed heritability in four independent cohorts, three
with a family-based design and one using single-nucleotide
polymorphism (SNP)-based heritability estimates. The cohorts
included two twin-based samples (Queensland Twin Imaging
study (QTIM) and HCP), one cohort of extended pedigrees (the
Genetics of Brain Structure and Function; GOBS), and another of
over 9000 largely unrelated individuals (the UK Biobank)
(Table 2). Heritability estimates are population specific, but here
our aim was to understand the heritability pattern across popu-
lations and estimate the degree to which genetic effects are con-
sistently observed. We pooled information from all twim
and family-based cohorts to estimate the generalized heritability
values using meta- and mega-analytic methods42,43.

We estimated reliability and heritability for measures of each
sulcus in the left and right hemispheres, separately. As there is

Table 1 Cohorts analyzed for the test–retest study.

Cohorts Age range (mean) No. of subjects (%F) Inter-scan interval (days) Field strength [T] Voxel size [mm]3

KKI 22–61 (31.8) 21 (48%) 14 3 [1 × 1 × 1.2]
HCP 24–35 (30.1) 35 (44%) 90 3 [0.7 × 0.7 × 0.7]
OASIS 19–34 (23.3) 20 (60%) 90 1.5 [1.0 × 1.0 × 1.25]
QTIM 21–28 (23.2) 34 (37%) 90 4 [0.94 × 0.90 × 0.94]

HCP and QTIM were used for the reproducibility analysis as they were representative of subjects examined in the genetic analysis. Among publicly available data sets we selected KKI and OASIS, as in
ref. 52, based on age (18 < age < 65) and inter-scan interval (<90 days).
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limited evidence for genetic lateralization across most of the
human brain44–46, we also evaluated the heritability estimates of
the measures for each sulcus averaged across the two hemi-
spheres. This may lead to more stable measurements and, if the
bilateral measures are influenced by similar genetic factors, then
more stable measures could lead to better powered genetic stu-
dies. We also assessed the genetic correlation between the mea-
sures across hemispheres. Sulci with limited genetic correlations
between hemispheres may reveal novel insight into the brain’s
lateralization and identify key biomarkers for relating lateralized
traits, such as language and handedness, to brain structure47.

Results
Measurement reliability and its relationship to heritability.
Supplementary Data 1 reports the sulcal nomenclature, including
the abbreviation and full name for each sulcus. Reliability esti-
mates may be found in Supplementary Data 2–4 for intraclass
correlation (ICC) and Supplementary Data 5–8 for the bias eva-
luation; heritability estimates are reported in Supplementary
Data 9–20 for the univariate analysis and Supplementary Data 21–
24 for the bivariate analysis. We summarize the results below.

Intraclass correlation (ICC). The ICC meta-analysis resulted in
an ICC interquartile range of 0.59–0.82 Sulcal mean depth, width,
and surface area showed similar reliability estimates, while the
length showed lowest ICC (Table 3 and Fig. 1). For all descriptors
other than mean depth, a higher fraction of sulci had “good”
reliability, defined as ICC > 0.7548, after averaging metrics across
corresponding left and right hemispheres, for all the descriptors
(Fig. 1b) The fraction of sulci reaching ICC > 0.75 went from 24
(before averaging) to 39% (after averaging) for sulcal length, from
37 to 48% for the width, and from 48 to 59% for the surface area;
mean depth remained consistant at 57%.

The meta-analysis of ICC captures the consensus in the
reliability across cohorts for each sulcus. Reliability measures
depend to some extent on the cohort examined, or the scanning
acquisition parameters. For example, for QTIM, which was
collected at 4 T, the ICC is classified as “good” (ICC > 0.75) for

the left sulcal surface area of the collateral sulcus (F.Coll.), but
“poor or moderate” (ICC < 0.75) in OASIS for the same trait.
Figure 1a shows the meta-analysis of ICC across the four cohorts,
and highlights patterns for “good” and “excellent” (ICC > 0.9)
reliability.

For a detailed breakdown of the ICC for measures of sulci
morphometry per cohort, please see Supplementary Fig. 1 for the
left hemisphere, Supplementary Fig. 2 for the right, and
Supplementary Fig. 3 for bilaterally averaged measures.

For the complete meta-analyzed ICC results, please see
Supplementary Figs. 4–7 for length, depth, width, and surface area
respectively, all of which are tabulated in Supplementary Data 4.

For each sulcus, we averaged the reliability estimates across all
four sulcal descriptors to find the most reliable sulci overall. The
central sulcus (S.C.) gave the most reliable sulcal measures,
followed by the median frontal sulcus (S.F.median), the
intraparietal sulcus (F.I.P.), the occipito-temporal lateral sulcus
(S.O.T.lat.ant.), the Sylvian sulcus (S.C.Sylvian), the sub-parietal
sulcus (S.s.P.), the occipital lobe, and the superior temporal sulcus
(S.T.s.) (Supplementary Fig. 8).

Bias (b). We explored test–retest (TRT) consistency in terms of
the “bias” (b, Eq. (4)), with Bland–Altman analyses. As in ref. 49,
the generally low bias values showed high TRT consistency of
sulcal shape measures (Supplementary Data 5). Bias values ≥ 0.1
are considered high, and were noted mainly for length estimates
—e.g., for the length of the left and right anterior/posterior sub-
central ramus of the lateral fissure (F.C.L.r.sc.ant./post.), and the
length of the left and right insula (See Supplementary Data 6–8
for bias estimates across the left, right and bilaterally averaged
sulcal metrics). Paralleling the higher ICC in bilaterally averaged
measures, lower “bias” estimates were obtained with individual
sulcal measures averaged across the left and right hemispheres
(Supplementary Data 8).

ICC and bias (b) of bilaterally averaged sulcal metrics were
significantly negatively correlated for all metrics except for length,
in particular rlength=−0.11 [pval= 0.07], rmean-depth=−0.14
[pval= 0.02], rwidth=−0.25 [pval= 4.6 × 10−5], rsurface-area=
−0.25 [pval= 1.2 × 10−5], suggesting, as expected, that a lower

Table 2 Genetic analysis: demographics for the four cohorts analyzed in this study.

Cohort N (%F) Race/Ethnicity/Ancestry Age in years (mean ±
stdev [range])

Relatedness

QTIM 1008 (37%) European ancestry 22.7 ± 2.7 [18–30] 376 DZ
528 MZ
104 siblings

HCP 816 (44%) US population with multiple racial and
ethnic groups represented

29.1 ± 3.5 [22–36] 205 DZ
199 MZ and triples
412 siblings

GOBS 1205 (64%) Mexican-American ancestry 47.1 ± 14.2 [18–97] 71 families/pedigrees
UK Biobank 10,083 (47%) British White 62.4 ± 7.3 [45–79] Unrelated

Table 3 Meta-analysis of ICC estimated from four independent cohorts for sulcal length, mean depth, width, and surface area.

Meta-analysis Length Mean depth Width Surface area

Left 0.67 ± 0.12 [0.62–0.74] 0.74 ± 0.15 [0.68–0.84] 0.71 ± 0.12 [0.62–0.81] 0.73 ± 0.12 [0.67–0.82]
Right 0.66 ± 0.12 [0.59–0.74] 0.73 ± 0.14 [0.66–0.82] 0.73 ± 0.11 [0.64–0.81] 0.73 ± 0.13 [0.67–0.81]
Average 0.71 ± 0.14 [0.59–0.74] 0.78 ± 0.11 [0.66–0.82] 0.76 ± 0.12 [0.67–0.82] 0.78 ± 0.11 [0.65–0.83]

Left and right hemisphere and bilaterally averaged mean ± standard deviation (SD) are reported with ICC interquartile range [25–75%] across sulci.
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bias between test and retest measurements relates to higher
reproducibility as estimated by ICC.

Heritability estimates for the cortical folding patterns. Across
descriptors and sulci, heritability estimates (h2) showed a similar
pattern across the three family-based cohorts, QTIM, HCP,
GOBS (Supplementary Figs. 9–11); the GOBS cohort shows lower
heritability, (h2= 0.3 ± 0.1), compared to QTIM (h2= 0.4 ± 0.1)
and HCP (h2= 0.4 ± 0.1); GOBS is a cohort with an extended
pedigree design and a wide age range (18–85 years of age), while
both HCP and QTIM are twin-based cohorts of young adults
aged 25–35 years and 20–30 years, respectively.

The generalized heritability profile of cortical folding was
obtained by meta-analyzing the estimates across these three
independent family-design cohorts, and is highlighted in Fig. 2a.
Aggregate heritability estimates were also calculated in a mega-
analytic manner, where 3030 subjects from the family-based
cohorts (QTIM, HCP, and GOBS) were pooled (after adjusting
for covariates within cohort and normalizing across cohorts)
before computing heritability estimates as in prior work42,43. As
expected, we found similarities between meta- and mega-analysis
derived heritability estimates as indicated by a significant
Pearson’s correlation between these two approaches (r∼ 0.84,
p= 10−3–10−7; see Supplementary Fig. 13 for more details).
Individual heritability estimates, standard errors (SE), and
p values for bilaterally averaged sulcal length, mean depth, width,
and surface area are tabulated in Supplementary Data 9–18 for
each cohort, and in Supplementary Data 19–20 for the meta- and
mega-analyses.

For many sulcal features in the UK Biobank, the SNP-based
heritability estimates were ~25% of the estimates derived from the
family-based studies (h2= 0.2 ± 0.1; Fig. 2b). The heritability
estimates for the UK Biobank are reported in Supplementary
Data 18.

Across the cortex, the global sulcal descriptors were signifi-
cantly heritable for all cohorts. The patterns of heritability
estimates were largely coherent between the family-based and
large-scale population studies. The width was the most heritable

measurement, while the length was the least, showing significant
heritability estimates for only sparse regions of the cortex. The
heritability of sulcal length was more frequently significant when
not adjusting for ICV; we find minimal differences in the overall

Fig. 1 Intraclass correlation reliability estimates for sulcal length, depth, width and surface area. a Sulcal-based meta-analysis of intraclass correlation
(ICC) for bilaterally averaged sulcal measures (N= 110). Sulcal length showed generally “good” reproducibility, although no regions had ICC > 0.959. Mean
depth showed “excellent” reproducibility (ICC > 0.9) for: the inferior frontal sulcus (S.F.inf.) and the superior frontal sulcus (S.F.sup.); sulcal width showed
“excellent” reproducibility for: intraparietal sulcus (F.I.P.), superior postcentral intraparietal superior sulcus (F.I.P.Po.C.inf.), central sulcus (S.C.), superior
postcentral sulcus (S.Po.C.sup.). Surface area showed “excellent” reproducibility for the central sulcus (S.C.), subcallosal sulcus (S.Call.), and the anterior
occipito-temporal lateral sulcus (S.O.T.lat.ant.). b The intraclass correlation (ICC) for left, right, and bilaterally averaged sulcal length, mean depth, width,
and surface area across the whole brain is plotted for the four test–retest cohorts. KKI showed the highest ICC across sulci.

0.1

0.7

Family-based h2 meta-analysis SNP-based h2 in UK Biobank

Length

Mean Depth

Width

Surface Area

a b

Fig. 2 Heritability estimates. Heritability estimates (h2) are mapped, for
each bilaterally averaged sulcal descriptor. a The results of the inverse-
variance weighted meta-analysis of the heritability estimates across three
family-based cohorts QTIM, HCP, and GOBS highlight an overall heritability
profile across 3030 individuals. b Heritability estimates (h2) calculated
from sulcal features extracted from MRI scans of 10,083 unrelated
individuals scanned as part of the UK Biobank were calculated using the
genome-wide complex trait analysis (GCTA) package. The regional sulcal
metrics that were found to be significantly heritable in the large population
sample largely overlap with those found to be most highly heritable across
the family-based studies. We highlight only regions that had significant
heritability estimates in sulci that had an ICC > 0.75 (see Supplementary
Data 2–4 for sulcal-based values of ICC). Significant regions survived
Bonferroni correction for multiple comparisons across all bilateral traits and
regions (p < 0.05/(61 × 4)); darker red colors indicate higher heritability
estimates. The left hemisphere was used for visualization purposes.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01163-1

4 COMMUNICATIONS BIOLOGY |           (2020) 3:510 | https://doi.org/10.1038/s42003-020-01163-1 | www.nature.com/commsbio

www.nature.com/commsbio


h2 estimates for sulcal depth and width before and after covarying
for ICV (Supplementary Fig. 14).

The overall meta-analyzed reliability was significantly corre-
lated with the heritability estimates meta-analyzed across the
family-based cohorts: r= 0.36 (pval= 1 × 10−7) for sulcal length,
r= 0.31 (pval= 4.1 × 10−6) for mean depth, r= 0.26 (pval= 7 ×
10−5) for sulcal width, and r= 0.25 (pval= 1 × 10−4) for surface
area (Supplementary Fig. 15); the reliability estimates were
also correlated with heritability estimates in the UK Biobank for
mean depth (r= 0.43, pval= 2 × 10−3) and sulcal width (r=
0.38, pval= 4 × 10−3) (Supplementary Fig. 16).

A few bilaterally averaged sulcal regions and metrics with
“poor” reliability (ICC < 0.75) showed significant heritability
estimates. These included the length of the parieto-occipital
fissure (F.P.O.) [ICC= 0.66, h2= 0.18 (pval= 1 × 10−5)], the
mean depth of the ascending ramus of the lateral fissure (F.C.L.r.
asc.) [ICC= 0.74, h2= 0.2 (pval= 2.2 × 10−6)], the surface area
of the anterior inferior frontal sulcus (S.F.inf.ant.) [ICC= 0.65,
h2= 0.17 (pval= 4.7 × 10−6)], and the width of the calloso-
marginal ramus of the lateral fissure (F.C.M.ant.) [ICC= 0.63,
h2= 0.34 (pval= 1 × 10−16)] (Supplementary Data 4 and 19).
For UK Biobank, the length of S.T.pol. [ICC= 0.70, h2= 0.14
(pval= 6 × 10−5)], the width and the surface area for the insula
[ICC= 0.65, h2= 0.14 (pval= 2.6 × 10−5)] and [ICC= 0.65,
h2= 0.16 (pval= 3.8 × 10−6)], respectively (Supplementary
Data 18).

The heritability estimates for the global measures (i.e., the sum
across sulci) of sulcal length, mean depth, width, and surface area
(covarying for ICV, age, and sex variables) are also reported in
Supplementary Fig. 17. QTIM, HCP, and GOBS showed similar
trends across descriptors and hemispheres; only QTIM had
generally higher heritability estimates for sulci in the right
hemisphere compared to those in the left (paired t-test: pval=
1.5 × 10−10).

Thirty-three percent (36% for mega-analysis) of the total
number of bilaterally averaged sulci showed significant h2 for
sulcal length, 57% (59% for mega-analysis) for mean depth, 67%
(65% for mega-analysis) for width, and 62% (60% for mega-
analysis) for the surface area. Six sulci were significantly heritable
for only one of the four descriptors (one for mega-analysis). No
sulcus show significant heritability for length only. Sulci that were
significantly heritable across descriptors included the intrapar-
ietal sulcus, occipital lobe, subcallosal sulcus, internal frontal
sulcus, orbital sulcus, anterior inferior temporal sulcus, and the
polar temporal sulcus, among others; in total 15 sulci were
significantly heritable across all four descriptors in the meta-
analysis, and 19 for the mega-analysis (see Supplementary
Data 19–20).

A significant Pearson’s correlation was identified between
heritability estimates averaged across sulcal descriptors and
the approximate appearance of sulci (in weeks) during develop-
ment50 (Supplementary Fig. 17, r=−0.62, p= 0.0025).

Genetic correlations between sulcal shape descriptors of the left
and right cortical hemispheres. Genetic correlation across the
hemispheres: Averaging brain-imaging derived traits across the
left and right hemispheres, as above, has been shown to reduce
noise due to measurement error in large scale, multi-cohort
efforts2,20,51,52. Improvements in the signal-to-noise ratio may be
essential for discovering single common genetic variants that
explain < 1% of the overall population variability in a trait.
However, by assessing left and right separately, we may be able to
discover lateralized genetic effects, if they exist.

Bivariate variance components models confirmed that the
genetic correlations between the same global sulcal descriptor on

the left and right hemispheres of the brain were significant (ρG∼
0.92 ± 0.10) (Supplementary Data 21–24).

The genetic correlation (ρG) between left and right homo-
logous regions was computed for sulcal metrics that showed both
“good” reliability estimates (ICC > 0.75) and significant univariate
heritability estimates for both the left and right metrics; (Fig. 3,
Supplementary Data 21–24). The genetic correlations between the
left and right sulcal metrics was generally highest for the sulcal
width metric. The width of the central sulcus, the inferior frontal
sulcus, intermediate frontal sulcus, superior frontal sulcus,
posterior lateral sulcus, the superior postcentral intraparietal
superior sulcus, and the intraparietal sulcus, and the surface of the
occipital lobe showed significant genetic correlations across all
tested cohorts.

Two sets of p values are obtained when performing genetic
correlations with bivariate variance components models: a more
traditional p value comparing the correlation to the null hypoth-
esis of no correlation (ρG = 0), and another p value comparing
the genetic correlation to the hypothesis of a perfect over-
lap (ρG = 1), assessing the difference between the genetic
correlation obtained and a correlation of 1. Bonferroni correction
for the more traditional p values was conducted by correcting for
the number of traits tested so p < 0.05/[N], where N= 11
heritable sulci with ICC > 0.75 for length, +31 for mean depth
+36 for width +37 for surface area, for a total of 115 traits.
The second set of p values comparing the genetic correlation
(ρG) between hemisphere homologs to the indistinguishable
value of 1 are listed in Supplementary Data 24, and the −log10
(p values) of those significantly different than 1 are mapped in
Fig. 3. For these regions, the 95% confidence interval surrounding
the correlation estimate did not contain 1. These sulci represent

Fig. 3 Genetic correlations between sulcal shape descriptors of the left
and right cortical hemispheres. Left: the genetic correlations (ρG) between
corresponding sulcal descriptors on the left and right hemispheres were
assessed in three family based cohorts and meta-analyzed correlation
values are mapped onto the brain. Right: the −log10 of the p value
comparing the resulting genetic correlation to a perfect overlap (ρG = 1)
are mapped. Significant values here suggest that the genetic components of
variance may be partially unique across the left and right homologous sulcal
metrics; i.e, despite a genetic correlation between hemispheres, lateralized
genetic effects may be detectable. Sulci are mapped to the left hemisphere
for visualization purposes.
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regions and descriptors that may have diverging genetic
influences across hemispheres. The meta-analysis revealed
evidence for lateralized genetic effects in sulcal width or surface
area of the occipital lobe, the intraparietal lobe, the median
frontal sulcus, the intermediate left frontal sulcus, and the
collateral sulcus; no evidence for lateralization of genetic
influences was detected with either sulcal length or depth metrics.

Phenotypic correlations (ρP) between the left and right indices
were on average less than 0.5 in each cohort (Supplementary
Fig. 18). Sulcal width showed the highest (ρP= 0.38 ± 0.15) meta-
analyzed correlation between left and right homologs compared
to the other sulcal descriptors (0.29 ± 0.07 for sulcal length,
0.30 ± 0.11 for mean depth, and 0.33 ± 0.12 for surface area).

Discussion
Our study has four main findings: (1) many of the sulci common
across individuals were reliably extracted across a variety of MRI
acquisition parameters, with some sulcal shape descriptors
being more reliable than others; (2) cortical folding patterns were
highly heritable and sulcal shape descriptors such as sulcal
width may be promising phenotypes for genetic analysis of cor-
tical gyrification; (3) the proportion of variance attributed to
additive genetic factors varied regionally, with the earlier forming
sulci having higher heritability estimates than later forming sulci;
(4) incomplete pleotropy was identified between select left and
right sulcal descriptors, suggesting sulcal analyses may provide
insights into genetic factors underlying the lateralization of brain
structure.

Cortical sulci may serve as prominent landmarks for identi-
fying homologous functional regions across individuals35,36.
BrainVISA offers the ability to automatically extract and char-
acterize the sulci at high spatial resolutions, by segmenting and
labeling 123 sulci across the cerebral cortex. Here, we analyzed
four sulcal shape descriptors: length, mean depth, width, and
surface area. Sulcal length has been associated with neurodeve-
lopmental processes29,53,54, while sulcal depth and width
have been correlated with aging and neurodegenerative pro-
cesses33,55–57. Sulcal surface area represents a combination of
depth, width and length features.

A primary goal of this work was to identify the sulci and the
corresponding shape metrics that may be reliably extracted irre-
spective of the specific MRI scanner or scan acquisition protocol,
to ensure a globally viable trait for disease related biomarker and
genetic association analyses. Poor reliability may be attributable
to measurement errors, which could lead to a ceiling effect on
heritability estimates. This is because highly heritable traits can
only be detected if the traits are robustly measured58 and low
reliability could lead to an underestimation of the true herit-
ability59. While heritability is a population-specific estimate, one
main goal of imaging genetics consortia such as ENIGMA1 and
CHARGE23 is to identify genetic variants that affect brain
structure and function in populations around the world. There-
fore, it is of utmost importance to ensure that measures are
reliably extracted across different data sets, and furthermore, are
heritable across different populations. Even beyond imaging
genetics, the reliability of the measurements and the reproduci-
bility of any set of results are essential for reproducible science
at large.

Here we identified the most reliable sulcal regions using test-
retest (TRT) data from four cohorts with independent samples
and different scanning protocols to ensure the robustness of
results. We assessed bias, a subject-based index of consistency49

as well as ICC, which compares the within-subject variance to the
between-subjects variance. ICC may be affected by the homo-
geneity of the population under study; when variability in the

population is low, for example, if age range is limited, then lower
ICC values may be expected, while bias would be unaffected. Our
results show high consistency between test and retest (“bias” <
0.149 on average). Furthermore, in considering the number of
sulci that had ICC estimates greater than 0.9, sulcal width was the
most reliable metric among the descriptors analyzed. Although
some visual quality control was conducted on individual sulcal
extractions, we did not ensure the anatomical validity of the
entire set of sulcal labels for each of the individual MRI
scans used in this study. Our reliability results are therefore more
a reflection of methodological consistency, rather than anatomical
accuracy.

A study examining the relationship between reproducibility
and heritability of different brain structures in the QTIM cohort60

found a correlation between ICC and heritability, with a large
percentage of traits showing low reliability (ICC < 0.75)60. Here
we showed that most of the reliable sulcal shape descriptors were
also highly heritable. This trend might be due to the lower var-
iance across subjects for more robust anatomical regions, such as
the central sulcus, which are easier to identify with automated
image processing pipelines and less prone to segmentation errors.
However, even in regions with “excellent” reliability (ICC > 0.9),
we identified a range of heritability estimates, suggesting that not
all reliable traits are necessarily highly heritable59.

Many earlier works have focused exclusively on the central
sulcus37,40,61. We have replicated findings of significant herit-
ability in the central sulcus and further, showed that it is
indeed the sulcus with the highest heritability estimate across the
entire cortex. However, out of 61 total bilateral cortical sulci, it is
only one of 34 that showed significant heritability estimates
across all four shape descriptors.

Our results indicated significant heritability estimates for
sulcal surface area and width in several medial frontal regions,
partially confirming findings in ref. 40. Our results also confirmed
prior findings of sulcal heritability in the temporal lobe62 and the
corpus callosum area63 and are also in line with studies showing
high estimated heritability in prefrontal and temporal lobes for
cortical thickness and surface area64–70, especially for sulcal mean
depth and width.

The sulcal descriptors identified as being heritable in this
work may serve as phenotypes for large-scale genome-wide
association studies, or GWAS, enhancing our ability to identify
specific genomic variants that influence brain structure and dis-
ease risk. These reliable and heritable sulcal measures may also
serve as biomarkers for understanding genetically mediated brain
disorders. The significant correlation identified between herit-
ability estimates averaged across sulcal descriptors and the
appearance of sulci (in weeks) during development50 implies that
sulci appearing early in brain development71,72, including the
central sulcus, Sylvian fissure, parieto-occipital lobes, and super-
ior temporal sulcus50 may be under stronger genetic control.
However, some regions including the frontal lobe and the tem-
poral sulcus also had high heritability, even though these regions
are reported to develop later72, suggesting more work is needed to
identify the developmental role in the regional genetic
architecture.

Across three independent family-based cohorts, QTIM—an
Australian cohort of young adult twins and siblings—HCP, a
North American cohort of twins and siblings, and GOBS—a
Mexican-American cohort of extended pedigrees, we found
similar patterns of heritability for four descriptors of sulcal
morphometry. Globally, we found sulcal heritability estimates of
~0.3–0.4, similar to estimates in other species, including Papio
baboons40. Heritability estimates from GOBS were lower than for
QTIM or HCP, as may be expected for an extended pedigree
design when compared to twin designs73. It has also been
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proposed that higher image quality, and therefore lower mea-
surement error, could lead to higher heritability estimates74.
GOBS and HCP MRI volumes were acquired with a 3T scanner
and HCP has higher spatial resolution compared to GOBS. QTIM
was acquired with slightly lower spatial resolution but at higher
magnetic field strength (4T). Further analyses will be needed to
investigate how the signal-to-noise estimates (SNR) vary across
cohorts and how this affects heritability estimation74. SNP-based
heritability estimated in the UK Biobank showed a similar h2

pattern (Supplementary Fig. 20) across the brain, but with lower
h2 values compared to the family-based cohorts. This may be
partially due to the “missing heritability” effect in the SNP-based
heritability estimation75. We note that recent work has found less
discrepancy between twin-based heritability estimates and those
derived from large-scale population studies of approximately
20,000 individuals76, therefore, larger population samples may be
required to better power our SNP-based heritability estimates and
help determine the true extent of the missing heritability.

Apart from work by the ENIGMA Laterality group77, many
published ENIGMA studies2,20,43,78 performed analyses on
pooled bilateral measures of brain structure, averaging data from
the left and right hemispheres. We indeed found that for most
sulcal descriptors, averaging the sulcal measures across hemi-
spheres provided more regions with reliable estimates, and more
consistent heritability estimates across cohorts. The bivariate
genetic analysis used to estimate the genetic correlation between
left and right sulcal measures, further confirmed strong and sig-
nificant genetic correlations between hemispheres.

A genetic correlation between measures across the right and
left hemispheres indicates pleiotropy, suggesting that genetic
influences underlying the structure and variability in the mea-
sures tends to overlap. In family-based studies, bivariate variance
components analysis may be used to determine the genetic cor-
relation between traits as in this work. When a significant genetic
correlation is identified, the confidence interval around the
genetic correlation often includes one, suggesting the underlying
genetic influences of the measures were not statistically dis-
tinguished from each other. Incomplete pleiotropy is suggested
when genetic correlations are significant, but the confidence
intervals around the correlations do not include one. While in
SNP-based genetic correlation models, incomplete pleiotropy
may be suggested over complete pleiotropy in the presence of
measurement error, in a bivariate polygenic model, measurement
error falls into the environmental component of variance and the
environmental correlation, and therefore, does not influence the
maximum-likelihood estimate of the genetic correlation; i.e,
measurement error makes it more difficult to reject the null
hypothesis that the genetic correlation is one. Features that
exhibit unique genetic influences in one hemisphere may reveal
insights into the biological causes of brain lateralization that may
play an important role in neurodevelopmental or psychiatric
disorders. Evidence of less genetic control in the left hemisphere
has been found in refs. 50,62, where the authors found higher
cortical gyrification complexity in the right hemisphere at an
early development stage.

Here we found incomplete pleiotropy, or suggested asymme-
trical genetic influences, in the frontal lobe (width). This may
relate to disorder-specific abnormalities seen in brain folding
patterns, for example, as reported in a postmortem study on
schizophrenia79. Incomplete pleiotropy was also detected in sulci
of the occipital lobe, a highly polygenic region80; structural
abnormalities in this region have been associated with Parkin-
son’s disease81,82, posterior cortical atrophy, a disorder causing
visual dysfunction, and logopenic aphasia83.

Some regions that showed this suggested lateralization of
genetic effects for sulcal descriptors, showed the same effect for

other measures extracted from the cortex; for example, the effect
seen with the sulcal surface area of the collateral fissure was also
detected with the corresponding gyral surface area (Supple-
mentary Fig. 21). However, for the occipital lobe, we found evi-
dence for lateralization of genetic effects with sulcal width, but
not with either cortical thickness or surface area of corresponding
gyri. This suggests that sulcal descriptors may offer additional
insights into cortical development and lateralization, beyond
more commonly analyzed metrics of gyral morphometry. As a
larger than expected portion of our study population was right-
handed, our findings may be biased towards right handed indi-
viduals and may not be fully representive; the degree of cerebral
volume asymmetry has been shown to be lower for non-right-
handed twins than right-handed pairs62 and future investigations
focusing on the genetics of brain gyrification and lateraliza-
tion across handedness are needed to confirm these findings.

The genetic influences on brain cortical structure are regionally
dependent, and differ according to the metric, or descriptor, being
evaluated. For example, the genetic correlation between aver-
age cortical thickness and total surface area has been shown to
be weak and negative, with largely different genetic compositions32.
Different metrics are often used to describe and quantify different
biological processes such as those such as length and surface area
with potentially more developmental orgins, and others including
sulcal width that may capture more degenerative processes. In
nonhuman primates, brain cortical folding was also found to be
influenced by genetic factors largely independent of those
underlying brain volume84,85. Measuring cortical folding through
sulcal-based morphometry could therefore highlight brain
metrics beyond thickness and surface area, and may complement
these more traditional measures to reveal a deeper understanding
of the processes underlying variation in human brain structure,
its association with disease and the underlying genetic risk fac-
tors. Our findings suggest that conducting a GWAS of sulcal
features may be particularly informative for the sulcal width—the
most heritable of the four tested metrics. Although for most sulci,
the genetic components of variances were largely indistinguish-
able (i.e., highly correlated) across the two hemispheres, our
results suggest that conducting a separate GWAS of sulcal mea-
sures in select frontal, temporal, and occipital regions may pro-
vide added insight into the biological mechanisms that drive
hemispheric specialization. The discovery and replication of
specific genetic influences on brain structure require very highly
powered analyses, achievable through large-scale studies and
collaboration. Harmonized imaging and genetic analysis proto-
cols, rigorous quality assurance, reproducibility assessments,
along with statistical rigor are vital in the collaborative endeavors
such as those proposed by the ENIGMA consortium. To allow
for a variety of such international collaborations, the customized
MRI image processing protocol using and extending the Brain-
VISA toolkit as in this work, has been made freely available at:
http://enigma.ini.usc.edu/protocols/imaging-protocols/.

Methods
Participants and MRI imaging. Queensland Twin Imaging study (QTIM): Brain
MRI from 1008 right-handed participants86, 370 females and 638 males, were used
in this study. This included 376 dizygotic (DZ) and 528 monozygotic (MZ) twins
(one set of DZ triplets) and 104 siblings, with an average age of 22.7 ± 2.7 years
[range: 18–30]. T1-weighted images were acquired on a 4T Bruker Medspec
scanner with an inversion recovery rapid gradient echo sequence. Acquisition
parameters were inversion/repetition/echo time (TI/TR/TE)= 700/1500/3.35 ms;
flip angle= 8°; with an acquisition matrix of 256 × 256; voxel size= 0.94 × 0.90 ×
0.94 mm3.

Human Connectome Project (HCP): 816 participants87, 362 females and 454
males, average age 29.1 ± 3.5 years [range: 22–36]. These included 412 siblings, 205
DZ and 199 MZ twins, including triplets. T1-weighted images were acquired using
a 3T Siemens scanner. MRI parameters: (TI/TR/TE)= 1000/2400/2.14 ms; flip
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angle= 8°; voxel size= 0.7 mm isotropic; acquisition matrix= 224 × 224. The
subset of TRT scans includes all right-handed subjects.

Genetics of Brain Structure and Function (GOBS): A total of 1205 individuals
of Mexican-American ancestry from extended pedigrees (71 families, average size
14.9 [1–87] people) were included in the analysis. Sixty-four percent of the
participants were female and ranged in age from 18 to 97 (mean ± SD: 47.1 ± 14.2)
years. Individuals in this cohort have actively participated in research for over 18
years and were randomly selected from the community with the constraints that
they are of Mexican-American ancestry, part of a large family, and live within the
San Antonio, Texas region. Imaging data were acquired at the UTHSCSA Research
Imaging Center on a Siemens 3T Trio scanner (Siemens, Erlangen, Germany).
Isotropic (800 µm) 3D Turbo-flash T1-weighted images were acquired with the
following parameters: TE/TR/TI= 3.04/2100/785 ms, flip angle= 13°. Seven
images were acquired consecutively using this protocol for each subject and the
images were then co-registered and averaged to increase the signal-to-noise ratio
and reduce motion artifacts88.

UK Biobank: Analyses were conducted on the 2017 imputed genotypes
restricted to variants present in the Haplotype Reference Consortium89,90. UK
Biobank bulk imaging data were made available under application #11559 in July
2017. We analyzed 10,083 participants (4807 females), mean age= 62.4 ± 7.3 years
[range: 45–79]. Voxel matrix: 1.0 × 1.0 × 1.0 mm—acquisition matrix: 208 × 256 ×
256. 3D MP-RAGE, TI/TR= 880/2000 ms, sagittal orientation, in-plane
acceleration factor= 2. Raw MRI data were processed using the ENIGMA
FreeSurfer and sulcal analysis protocols. Following processing, all images were
visually inspected for quality control of FreeSurfer gray/white matter classifications.
For all subjects, the central sulcus segmented and labeled by BrainVISA was
visually assessed for labeling accuracy.

KKI (Kennedy Krieger Institute—Multi-Modal MRI Reproducibility Resource):
21 healthy volunteers with no history of neurological conditions (10 F, 22–61 years
old) were recruited. All data were acquired using a 3T MRI scanner (Achieva,
Philips Healthcare, Best, The Netherlands) with body coil excitation and an eight-
channel phased array SENSitivity Encoding (SENSE) head-coil for reception. All
scans were completed during a 2-week interval. The resulting data set consisted of
42 “1-h” sessions of 21 individuals. MP-RAGE T1-weighted scans were acquired
with a 3D inversion recovery sequence: (TR/TE/TI= 6.7/3.1/842 ms) with a 1.0 ×
1.0 × 1.2 mm3 resolution over a field of view of 240 × 204 × 256mm acquired in the
sagittal plane. The SENSE acceleration factor was 2 in the right–left direction.
Multi-shot fast gradient echo (TFE factor= 240) was used with a 3-s shot interval
and the turbo direction being in the slice direction (right–left). The flip angle was
8°. No fat saturation was employed91, https://www.nitrc.org/projects/multimodal/.

OASIS: This TRT reliability data set contains 20 right-handed subjects (19–34
years old) without dementia imaged on a subsequent visit within 90 days of their
initial session. MP-RAGE T1-weighted scans were acquired on a 1.5-T Vision
scanner (Siemens, Erlangen, Germany): (TR/TE/TI= 9.7/4.0/20 ms) with an in-
plane resolution of 1.0 × 1.0 × mm2 resolution over a FOV of 256 × 256 mm
acquired in the sagittal plane. Thickness/gap= 1.25/0 mm; flip angle= 10° (https://
www.oasis-brains.org/)92.

MRI image processing and sulcal extraction. Anatomical images (T1-weighted)
were corrected for intensity inhomogeneities and segmented into gray and white
matter tissues using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/);
segmentations and regional labels were quality controlled using ENIGMA
protocols for outlier detection and visual inspection (http://enigma.ini.usc.edu/
protocols/imaging-protocols/). BrainVISA (http://brainvisa.info) was run for sulcal
extraction, identification, and sulcal-based morphometry. Morphologist 2015, an
image processing pipeline included in BrainVISA, was used to quantify sulcal
parameters. Briefly, the Morphologist 2015 segmentation pipeline computes left
and right hemisphere masks, performs gray and white matter classification,
reconstructs a gray/white surface and a spherical triangulation of the external
cortical surface, independently for both hemispheres. Sulcal labeling has been
performed using BrainVISA suite which implements the algorithm fully described
in the cited paper by Perrot et al.93. It relies on a probabilistic atlas of sulci. The
sulcal recognition is made by combining localization and shape information. The
atlas is described in detail and freely accessible here: http://brainvisa.info/web/
morphologist.html and can be visualized online here: http://brainvisa.info/web/
webgl_demo/webgl.html.

To improve sulcal extraction and build on current protocols used by hundreds
of collaborators within ENIGMA, quality controlled FreeSurfer outputs (orig.mgz,
ribbon.mgz, and talairach.auto) were directly imported into the pipeline to avoid
recomputing several steps, including intensity inhomogeneity correction and gray/
white matter classification. Sulci were then automatically labeled according to a
predefined anatomical nomenclature of 62 sulcal labels for the left hemisphere and
61 sulcal labels for the right hemisphere94,95. The protocol developed for this work
is available at http://enigma.ini.usc.edu/protocols/imaging-protocols/ (ENIGMA-
Sulci).

Sulci descriptors and quality control. Analyzing the shape of the cortex through
sulcal-based morphometry allows us to quantify the geometry of a sulcus in terms
of several distinct and complementary descriptors, consisting of length, mean
depth, surface area, and width (or fold opening) of all extracted and labeled sulci.
Cortical thickness and surface area have both been found to be moderately to
highly heritable, yet with largely independent and even negatively correlated
genetic influences7,80,96. Cortical thickness, surface area, and folding tend to exhibit

different age-related trajectories97,98. In particular, cortical thickness represents the
laminar organization of the cerebral cortex, which contains about 14 billion
neurons99. Each of the layers forming the cortex100 has a different cellular
organization, mostly distinguished on the basis of pyramidal cells in the various
laminae100. Surface area may reflect the number of radial columns perpendicular to
the pial surface98 and sulcal morphometry may additionally relate to the
microstructure of the neuronal sheets and to the local axonal connectivity within a
cortical region, which may influence the degree of folding84.

The length of a sulcus is measured in millimeters as the geodesic length of the
junction between a sulcus and the hull of the brain. The mean depth corresponds to
the average of the depth across all the vertices along the bottom of a sulcus (the
depth of a vertex located at the bottom of a sulcus is defined as the geodesic
distance along the sulcus to the brain hull). The surface area is the total area of the
sulcal surface. The enclosed cerebrospinal fluid (CSF) volume divided by the sulcal
surface area gives the width, a gross approximation of the average width of the CSF
in the fold61 (see Supplementary Fig. 32 for a representation of sulcal shape
descriptors).

To further quality control the extracted sulcal measures and identify subjects
whose sulci were not optimally identified, we consider as outliers those subjects
showing abnormal values for at least one of the descriptors for each sulcus. That is,
for a given sulcus, the z-score across subjects is computed for each descriptor. The
set of subjects showing an absolute z-score > 2.5 for one or more descriptors was
discarded from further analysis101. Therefore, if the length of the central sulcus for
a given subject was an outlier but width, depth, and surface area were not, that
subject’s central sulcus was removed from further evaluation; this ensured that the
same set of subjects were used for all analyses across descriptors. This led to
discarding ∼3% of subjects for each sulcus.

Statistics and reproducibility. Univariate and bivariate quantitative genetic
analyses: The relative influences of genetic and environmental factors on human
traits can be estimated by modeling the known genetic relationship between
individuals and relating it to observed covariance in measured traits; in twin stu-
dies, MZ twin pairs—who typically share all their common genetic variants—are
compared to DZ twin pairs, who share, on average, 50%. The same principle can be
used for extended pedigrees, in which many individuals have varying degrees of
relatedness. Here, we used both twins and extended pedigrees to estimate the
heritability of these in-depth cortical sulcal measures. For a given cohort of par-
ticipants, the narrow-sense heritability (h2) is defined as the proportion of the
observed variance in a trait (σ2p) that can be attributed to additive genetic
factors (σ2g):

h2 ¼ σ2g
σ2p

:

Variance components methods, implemented in the Sequential Oligogenic
Linkage Analysis Routines (SOLAR) software package102, were used for all genetic
analyses. Heritability (h2) is the proportion of total phenotypic variance accounted
for by additive genetic factors and is assessed by contrasting the observed
phenotypic covariance matrix with the covariance matrix predicted by kinship.
High heritability indicates that the covariance of a trait is greater among more
closely related (genetically similar) individuals; here, for example, MZ twins as
compared to DZ twins and siblings. Using SOLAR-ECLIPSE imaging genetics tools
(http://www.nitrc.org/projects/se_linux)102, we investigated the heritability profile
of four sulcal descriptors for sulci across the whole brain: 62 on the left and 61 on
the right hemisphere.

Prior to testing for the significance of heritability, sulcal descriptor values for
each individual are adjusted for a series of covariates. We estimated the influence of
specific variables (additive genetic variation and covariates including intracranial
volume, sex, age, age2, age × sex interaction, age2 × sex interaction) to calculate the
sulcal trait heritability and its significance (p value) for accounting for a component
of each trait’s variance within this population.

The significance threshold for heritability analysis of individual sulci was
set to be p ≤ (0.05/m*4), where m= 61 (number of bilateral sulci), and the
times 4 corresponding to the number of shape descriptors assessed. We set m=
123 when left and right sulcal heritability were estimated separately. This
reduced the probability of Type 1 errors associated with multiple
measurements.

For bivariate genetic correlation estimates, classical quantitative genetic
models were used to partition the phenotypic correlation (ρP) between the
left and the corresponding right sulcal measures into the genetic (ρG), and a
unique environmental (ρE) components, for each pair of traits. Just as with
the univariate model, the bivariate phenotype of an individual is modeled as a
linear function of kinship coefficients that express relatedness among all
individuals within the cohort (MZ twins share all their additive genetic
information and DZ twins and siblings share on average 50%). The significance
of ρG and ρE was estimated from the likelihood ratio test when comparing the
model to ones where the correlation components are constrained to be 0102–104.
This estimates ρG and ρE and their standard error (SE). The significance of these
coefficients is determined by a z-test of their difference from 0. If ρG differs
significantly from 0, then a significant proportion of the traits’ covariance is
influenced by shared genetic factors.
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In this case, we tested another model where the genetic correlation factor ρG
is fixed to 1. Fixing ρG to 1 suggests that the additive genetic components
comprising the two traits overlap completely, and there is no detectable unique
genetic composition for the individual traits. Once again, the log-likelihood of
this model is compared to one where the parameters are freely optimized. If ρG
is not found to significantly differ from 1, then we cannot reject the hypothesis
that both heritable traits are driven by the same set of genetic factors. If ρG is
significantly different from 0 and significantly different from 1, then the traits
share a significant portion of their variance, however, each is also likely to be
partially driven by a unique set of genetic factors.

Some considerations should be made regarding the measurement error of the
traits analyzed here: ρG is the correlation between the latent genetic effects on the
two traits irrespective of the proportion of phenotypic variance these latent effects
explain (i.e., heritability). Measurement error, which is uncorrelated between
individuals regardless of their relatedness, falls into the environmental component
and environmental correlations. Measurement error therefore influences h2, ρE, ρP,
but not ρG.

In practice, measurement error does make ρG harder to estimate, because low
heritability means that the underlying genetic effects cannot be estimated with
precision. This causes the SE of the ρG estimate to increase, but critically, does not
change its maximum-likelihood estimate systematically. So measurement error
makes it harder to reject the null hypothesis that ρG= 1.

Moreover, the bivariate polygenic model used here to estimate the left–right
genetic correlation is a linear function of laterality (L–R). Indeed, the genetic
variance of L–R is:

σ2g Lð Þ þ σ2g Rð Þ � 2 ´ ρg ´
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2g Lð Þ´ σ2g Rð Þ
q

;

where σ2g Lð Þ and σ2g Rð Þ are the genetic variance for the left and right traits. The
phenotypic variance is similarly defined so that the heritability of L–R can be
obtained. But if L–R shows significant heritability, it could be because: (1) genetic
overlap is incomplete and/or (2) L and R have unequal genetic variances. So
studying laterality is not recommended here because (1) and (2) are confounded.

Meta-analysis of additive genetic variance. Meta-analysis calculates weighted
mean heritability (h2) and SE estimates based on measurements from individual
cohorts42,43. We weighted the heritability estimate from each cohort by the her-
itability SE, as extracted from the variance component model of SOLAR. The
heritability weighted by SE42,43 is:

h2MA�SE Sð Þ ¼
P

j se
�2
j ´ h2j ðSÞ

P

j se
�2
j

; ð1Þ

where S= 1 to Ns indexes the sulci and j= 1,2,3 indexes the cohorts.

Mega-analysis of additive genetic variance. While meta-analyses compute first
the heritability independently for each cohort and then combine the results, mega-
analyses combine first different cohorts and then run a single computation for
heritability evaluation. We use a program (polyclass), developed for SOLAR105 for
mega-analysis of heritability on sulci descriptors43,106. This function fits the model
after combining the pedigrees of QTIM, HCP, and GOBS into a single pedigree (for
more details see refs. 42,43).

Meta-analysis of genetic correlation. A meta-analysis of genetic correlation is
calculated weighting the genetic correlation computed for each cohort by its sample
size:

ρG�MA Sð Þ ¼
P

j ρ
2
Gj
ðSÞ ´Nsub

P

j NsubðjÞ
; ð2Þ

where S= 1 to Ns indexes the sulci, j= 1, 2, 3 indexes the cohorts, and NsubðjÞ is the
sample size of cohort j.

To combine p values in a meta-analysis, we used the Edgington’s method that
represents a compromise between methods more sensitive to largest p values (e.g.,
Pearson’s method) and methods more sensitive to smallest p values (e.g., Fisher’s
method)107,108:

Meta p-value ¼ Sk

k!
� k� 1ð ÞC1 S� 1ð Þk

k!
þ k� 2ð ÞC2 S� 2ð Þk

k!
; ð3Þ

where S is the sum of o values and k the number of tests (i.e., k= 3 cohorts in our
study). The corrective additional terms are used if the number subtracted from S in
the numerator is <S. All the p values in the meta-analyses estimated were computed
using this method.

SNP-based heritability analysis. We used genome-wide complex trait analysis
(GCTA)109 to estimate the heritability from the individual genotypes. Genotypes on
the autosomal chromosomes were used to calculate the genetic relationship matrix
with GCTA109. Heritability was calculated using a linear mixed model, with age, sex,
ICV, and the first four genetic components from multidimensional scaling analysis as
fixed covariates. We also covaried for the presence of any diagnosed neurological or

psychiatric disorder. In our analysis, we excluded participants with non-European
ancestry, missing genotypes, or phenotypes, and mismatched sex information.

Reliability analysis. Sulcal measurement reliability: To evaluate the reliability of
the sulcal shape descriptors, we analyzed their variability, or reproducibility error,
across the TRT sessions for each of the four TRT cohorts. For each MRI scan there
are several sources of variability, including variability from hydration status,
variability due to slightly different acquisitions in the two sessions (head position
change in the scanner, motion artifacts, scanner instability, etc.), and finally
variability due to the imaging processing methods themselves.

There could also be variability in the reliability estimates depending on the type
of MRI system used (vendor, model, and acquisition parameters), so it is important
to address the issue of reliability across a variety of platforms. We used two indices
of reliability: (1) the dimensionless measure of absolute percent bias of descriptor, b
(sulcal length, mean depth, width, and surface area) of a sulcus with respect to its
average and (2) the ICC coefficient. b is computed as follows:

b ¼ 100 ´
test � retest
testþ retestð Þ=2 : ð4Þ

The estimation of the means is more robust than the estimation of the
variance from the signed differences, in particular for smaller sets of subjects.
The distributions of sulcal measurement differences plotted the mean across
sessions were examined with a Bland–Altman analysis110. These plots show the
spread of data, the bias (i.e., mean difference), and the limits of agreement
(±1.96 SD), and were used to confirm that the distributions were approximately
symmetric around 0 and to check for possible outliers. While the ICC estimates
the relation between within-subject variance and between-subjects variance, b
offers a subject-based index that might be used to find outliers. If scan and
rescan are perfectly reliable, b should be equal to 0. The cases where b is >0.1, as
in ref. 49, are considered unreliable.

The ICC coefficient was computed to quantify the reproducibility for sulcal-
based measurements. ICC is defined as follows:

ICC ¼ σ2BS
σ2BS þ σ2WS

; ð5Þ

providing an adequate relation of within-subject (σ2WS) and between-subject (σ2BS)
variability111–113.

The ICC estimates the proportion of total variance that is accounted for by the
σ2BS. Values below 0.4 are typically classified as “poor” reproducibility, between 0.4
and 0.75 as “fair to good,” and higher values as “excellent” reproducibility48.

Equation (5) was used to estimate the ICC for each sulcal descriptor,
independently for each cohort. The four cohorts were then combined into a meta-
analysis (ICCMA−SE), similar to Eq. (1), in order to account for intra-site variability
end to better estimate the sulcal reliability:

ICCMA�SEðSÞ ¼
P

j se
�2
j ´ ICCðSÞ
P

j se
�2
j

; ð6Þ

where j= 1, 2, 3, 4 indexes the cohorts. The SE was computed like SE= ICC/Z,
where Z is obtained from a normal distribution knowing the p value. ICCMA�SE
was computed only if the cohort-based ICC computed with Eq. (5) was estimated
for at least 3/4 cohorts.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
OASIS: the OASIS data are distributed to the greater scientific community under the
Creative Commons Attribution 4.0 license. All data are available via www.oasis-brains.
org92. KKI (Kennedy Krieger Institute—Multimodal MRI Reproducibility Resource):
open access: https://www.nitrc.org/projects/multimodal/91. QTIM: data from the QTIM
cohort used in this paper can be applied for by contacting M.J.W. (margie.wright@uq.
edu.au). Access to data by qualified investigators are subject to scientific and ethical
review. Summary results from cohort QTIM are available as part of the supplementary
data52. HCP: family status and other potentially sensitive information are part of the
Restricted Data that is available only to qualified investigators after signing the Restricted
Data Use Terms. Open access data (all imaging data and most of the behavioral data) are
available to those who register and agree to the Open Access Data Use Terms. Restricted
data elements that could be potentially used to identify subjects include family structure
(twin or non-twin status and number of siblings); birth order; age by year; handedness;
ethnicity and race; body height, weight, and BMI; and a number of other categories. Each
qualified investigator wanting to use restricted data must apply for access and agree to
the Restricted Data Use Terms (https://humanconnectome.org/study/hcp-young-adult/
data-use-terms)87. GOBS: data from the GOBS cohort used in this paper can be applied
for by contacting D.C.G. (david.glahn@childrens.harvard.edu) or J. Blangero (John.
Blangero@utrgv.edu). Access to data by qualified investigators are subject to scientific
and ethical review and must comply with the European Union General Data Protection
Regulations (GDPR)/all relevant guidelines. The completion of a material transfer
agreement (MTA) signed by an institutional official will be required. Summary results
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from cohort GOBS are available as part of the supplementary data. UK Biobank: access to
data from the UK Biobank can be obtained by approved scientists through application
with UK Biobank (www.ukbiobank.ac.uk/researchers)90.

Code availability
The image processing protocol developed for this work is available at http://enigma.ini.
usc.edu/protocols/imaging-protocols/ (ENIGMA-Sulci).
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