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Abstract—discrimination and quantification of volatile organic 

compounds (VOCs) using a non-selective sensor requires a 

combination of sensors followed by pattern recognition methods. 

Based on this concept, this paper deals with the discrimination of 

gas from the responses of several gas sensors coated with 

different type of polymer. Quartz crystal microbalance (QCM) 

electrodes were coated from hexamethyldisiloxane (HMDSO), 

hexamethyldisilazane (HMDSN) and tetraethoxysilane (TEOS) 

for the elaboration of gas sensors with different chemical affinity 

towards VOC molecules. The sensitivity of the elaborated QCM-

based sensors was evaluated by monitoring the frequency shifts 

of the quartz exposed to different concentrations of volatile 

organic compounds, such as; ethanol, benzene and chloroform. 

The sensors responses data have been used for the identification 

and quantification of VOCs. The principal component analysis 

(PCA) and the neural-network (NNs) pattern recognition analysis 

were used for the discrimination of gas species and 

concentrations. Good separation among gases has been obtained 

using the principal component analysis. The feed-forward multi-

layer neural network (MLNNs) with a hidden layer and trained 

by Broyden Fletcher Goldfarb Shanno (BFGS) Quasi Newton 

algorithm has been implemented in order to identify and 

quantify the VOCs.  By increasing the number of the neuron in 

the hidden layer, the precision of the estimate concentration 

increases. The approach is standard, however its application on 

the elaborated sensors have not been studied in depth so far.  

Keywords- Discrimination of gas; pattern recognition; multi 

sensors; BFGS Quasi Newton algorithm. 

I.  INTRODUCTION 

Volatile organic compounds (VOCs) can be found in a 

variety of settings, including industrial and residential sites. 

These compounds can cause disastrous effects on the 

environment through premature degradation of the 

surrounding area and health hazards to people living around 

the contaminated areas [1]. The identification and monitoring 

of VOCs have become serious tasks in many countries of the 

world and are important for the early control of environmental 

pollution [2]. The need for an accurate, cost-effective and 

objective system for detection and identification of VOCs is 

therefore undisputed. In this study, the surface of the QCM 

electrode is coated with organosilicon material capable of 

interacting sensitively with the molecules of interest. 

However, the selectivity of sensors for gas is not possible in 

most cases. Instead, a multi-sensor system answering to these 

VOCs in different way is used to identify. The development of 

such system is based on the choice of sensors and multi-

variable analysis techniques [3]. Over the last decade, a lot of 

important work has been done on developing gas recognition 

systems from its smell (electronic noses) using pattern 

recognition methods such as: principal component analysis 

(PCA) and multi layers neural networks (MLNNs). 

PCA is a very useful classification technique widely used 

in the gas-sensing area [4] and the neural networks are 

analogue computer systems, which are inspired by studies on 

the human brain and known to be universal approximates. 

Multi-layer neural networks (MLNNs) have been successfully 

used in replacing conventional pattern recognition methods for 

identification of chemical gases. Implementation of neural 

network to analyses the response of multi gas sensor offers 

several advantages over the conventional signal processing in 

terms of adaptability [5].  
In this study, Plasma enhanced chemical vapor deposition 

(PECVD) technique has been used to produce QCM-coating 
with different physical and chemical structures layers. The 
sensing layers were elaborated from pure vapor of HMDSO, 
HMDSN and TEOS. The sensing properties of the elaborated 
QCM sensors have been evaluated towards VOCs molecules 
such as ethanol, chloroform and benzene. Subsequently, the 
data generated by these sensors are analyzed by pattern 
recognition methods that allow the identification and 
quantification of these VOCs. PCA and artificial neural 
networks multilayer perception (ANNMLP) are used as feature 
extractor using an experimentally obtained dataset. 



 

II. EXPERIMENTAL 

A. Thin Film Elaboration  

Thin sensitive coatings were elaborated using PECVD 

technique [6]. The films were deposited in low frequency 

plasma reactor from vapors of HMDSO, HMDSN and TEOS 

in order to obtain sensors with different chemical affinity. The 

system consisted of parallel symmetrical electrodes, vacuum 

system (composed of Alcatel primary pump) and a monomer 

inlet system (Fig 1). The pressure in the reactor was monitored 

by a pressure measurement system (Pirani).  

QCM samples were placed in the grounded lower electrode 
and the reactor chamber was pumped down to 10 Pa. A 
constant partial pressure of monomers HMDSO, HMDSN and 
TEOS was adjusted to 30 Pa and injected to the reactor from 
the lower electrode. The monomers were varied in order to 
elaborate VOC sensors with different sensing properties and to 
create an impression of each VOC analyte.  

B. Sensors and Measurement System 

The principle of the QCM sensors is based on changes in 

the fundamental oscillation frequency Δf upon sorption of 

molecules from the gas phase. To a first approximation the 

frequency change Δf results from an increase in the oscillating 

mass Δm. This phenomenon can be described by the 

Sauerbrey equation (1) [7]. 

    
    

 

 
                                           

Where A is the area of the sensitive layer, Cf is the mass 

sensitivity constant (2.26×10
-10

 m
2
 s g

-1
) of the quartz crystal 

and f0 is the fundamental resonance frequency of the quartz 

crystal. 

“Fig 2” shows the schematic view of the experimental 

setup. The used piezoelectric crystals were AT-Cut 5 MHz 

quartz crystal (ICM International crystal Manufacturers) with 

gold plated electrodes (8 mm of diameter) on both sides. The 

frequency changes of vibrating crystal were measured by a 

universal frequency counter QCM2000 (USA) connected to a 

personal computer via RS232 interface. The coated QCM-

based sensors were tested for its sensitivity by monitoring the 

frequency shifts of the quartz exposed to different 

concentrations of VOC vapors. A liquid of known volume and 

density was introduced in the testing cell using a syringe and 

heated to evaporate freely. After evaporation and diffusion 

towards the electrode surface, the injected vapor was 

subsequently adsorbed onto the surface of the functionalized 

QCM electrode which induced a frequency shifts. This effect 

is reversible since the crystal is able to return to its initial state 

when the desorption occurs after purging the testing cell with 

dry air. The sensitivity of the elaborated QCM-based sensor 

was evaluated towards different concentrations of ethanol, 

benzene and chloroform. The concentration of injected analyte 

was calculated in parts per million (ppm) according to the 

following equation: 

  
    

 
                                       

Where C is the concentration in ppm (1 mg/l 1 ppm), 𝛒 is 

the density of liquid sample in mg/l, Vl is the volume of liquid 

sample in l, V is the volume of the testing cell in l. 

The concentrations of the VOCs molecules were varied 

from about 40 to 200 ppm. The frequency shifts (Hz) versus 

concentrations (ppm) characteristics were recorded using three 

QCM sensors (coated with HMDSO, HMDSN and TEOS). 

Ethanol, Benzene and chloroform were used as analyte 

species. For discrimination of VOCs, the frequency shifts of 

balance state obtained from these measurements were used as 

an input data for pattern recognition methods. all 

measurements have been carried out at room temperature and 

humidity relative of about 30%. in order to take into account 

the effect of humidity which originates from the ambient, the 

resonance frequency of the QCM was measured and taken as 

the absolute resonance frequency before measurements.      

 

III. RESULTS AND DISCUSSION 

A. Sensors Responses 

“Fig 3” shows the typical real time frequency response 
curves of the coated QCM sensors. For all types of VOCs 
vapors, the kinetic response characteristics showed that the 
absolute value of the QCM frequency shift increases gradually 
with time then reaches a steady value. The maximum responses 
were taken until the frequency variations were less than 1 Hz. 
When the maximum adsorption of the QCM sensor was 
obtained, the test chamber was purged with dry air and the 
VOCs vapor desorption process took place. The application of 

 
Figure 1.  plasma reactor used for QCM Coating. 

 

 
Figure 2.  Experimental setup used for sensor response evaluation. 

 

 



 

dry air permits fast analyte desorption. The frequency of the 
crystal back shifted to its initial values indicates full desorption 
of analytes from the electrode surface. Adsorption-desorption 
experiments were carried out on three different volatile organic 
vapors over the same range of concentrations of about 40 to 
200 ppm. 

“Fig 4” shows the maximum value of shift frequency 

recorded for the three VOCs sensor at different concentrations. 

The plots are the direct measuring results from three sensors 

coated with HMDSO, TEOS and HMDSN. It is seen that the 

responses of the sensors differ each from other. Although all 

sensors present more affinity for ethanol compared to 

chloroform and benzene, it is clearly observed that the QCM 

sensor coated with TEOS present the largest sensitivity for all 

type VOCs compared to sensor coated with HMDSO and 

HMDSN. However, responses of QCM sensors elaborated 

from HMDSO and TEOS shown in (Fig 4a) and (Fig 4c), 

respectively, presents largest chemical affinity to ethanol and 

chloroform vapors compared to benzene. Sensor coated with 

HMDSN (fig 4b) has a great affinity to ethanol than 

chloroform and benzene. Slight variation of the shift frequency 

for chloroform and benzene compared to ethanol is observed, 

therefore, the sensor coated with HMDSN thin film present 

selectivity for ethanol.   
From the sensors responses characteristics, it is clearly seen 

that there is not of overall selectivity. This drawback can be 
compensated by the use of the three sensors response data. The 
combination of sensors is used to obtain a specific fingerprint 
for each gas and allow the sensors to identify it last. 

B. Discrimination of VOCs by Principal Component Analysis 

PCA analyzes the data by transforming interdependent 

coordinates into independent orthogonal set of coordinates 

called Principal Components (PCs) to maximize their variance 

[8]. PCA reduces a matrix of large data in a smaller losing less 

information size to detect the relationship between the data 

provided by the sensors and grouping them with similar 

characteristics (group of VOCs) [9]. Its main purpose is to 

summarize the whole of a complex matrix of data in a 

graphical representation of two or three main axes [10]. First 

two or three (PCs) axis explains the maximum variance and is 

most suitable to analyze the data [11-13]; Since PCs are 

obtained as linear combinations of original variables (sensors). 

Significant PCs are selected on the basis of their eigenvalues. 

Thus, PCA not only reveals redundant information in the data 

set and helps selecting important features (sensors). PCA is 

provided by the STATISTICA software  
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Figure 3.  typical sensor response coated with HMDSO for tree types 

of VOCs. 
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Figure 4.  Sensitivity toward different concentrations of VOCs of a 

QCM sensor coated with: (a) HMDSO, 

(b) HMDSN and (c) TEOS film 

. 

 



 

“Fig 5” shows the result obtained using PCA method, 12 

samples were used each sample has three variable 

corresponding to each sensor. The raw data shall be entered in 

the STATISTICA software, a common way for determining 

the PCs of a data set is by calculating the eigenvectors of the 

data correlation matrix. It delivers to the end of the analysis a 

graphical presentation that showing the relationship between 

the samples grouping them according to their similarities in 

the different areas of gases. The PCs are ordered so that PC1 

displayed the greatest amount of variance followed by the next 

greatest PC2 and so on; the first two principal components 

have a high cumulative variance (99.46%), indicating that the 

plane PC1 PC2 is very descriptive to classify gases. The 

results indicate that, with the PCA it was possible to 

distinguish three groups of gas such as ethanol, chloroform 

and benzene with different concentrations. The largest 

concentrations of ethanol are separated from the center of 

gravity of this latter which is due to the large sensors response 

to high concentrations of ethanol compared to chloroform and 

benzene, especially for sensor coated with HMDSN vapor. So, 

it was possible to identify the ethanol, chloroform and benzene 

from each other with the PCA method. 

C. Identification and Quantification of VOCs by MLNNs 

The MLNNs structure used for this purpose is shown in 

(Fig 6), the input layer is composed of a number of neurons 

corresponding to the number of used sensors, three neurons 

each neuron corresponds to a sensor and the output layer 

corresponds to the number of studied gases (identification or 

quantification), tree neurons each neurons correspond to a gas. 

The network may have more neurons in hidden layers. An 

activation function is applied to each neuron and it is identical 

to the neurons of the same layer. In this study, the activation 

function of hidden layer is “tansig” and the activation function 

of output layer is “logsig” The equations used in the neural 

network model are shown in Eqs (3)-(4). 

Tansig function: 

           
 

                
       

Logsig function:  

           
 

             
                      

Where: Xm the hidden layer neuron value Eqs (5) and Yn 

the output layer neuron value Eqs (6) 
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Where: Δf is the sensors response, W
ij 

is the weight from the 

input layer to hidden layer, b
ij 

bias of hidden layer, W
jk 

is the 

weight from the hidden layer to output layer, b
jk 

bias of the 

output layer, l is the number of the input neurons, m is the 

number of the hidden layer neurons and n is the number of the 

output neurons.  

To train the network, there are several learning algorithms, 

a number of researchers have conducted comparative studies 

of learning algorithms [14]. STATISTICA software offers 

three types of learning algorithms: Quasi Newton, conjugate 

gradient and gradient descent. 

Quasi-Newton (QN) is an advanced method for training of 

the MLNNs, QN algorithm used in this study is one of the 

fastest types of these algorithms and this method converges 

faster than conjugate gradient and gradient descent methods 

[15-16]. The Newton algorithm is computed according to the 

following: 

 ⃑⃑⃑      ⃑⃑⃑        ⃑⃑                           
Where: 

      
    ⃑⃑⃑  

  ⃑⃑⃑    
          ⃑⃑     

     ⃑⃑⃑  

   ⃑⃑⃑    
 

Where: Hessian matrix  ⃑⃑     is the second derivative of 

the mean squared error function    ⃑⃑⃑   at the current values of 

the weights and biases. 

The neural network was trained and validated by samples. 

The training samples are composed of pairs of data, the input 

data that includes the responses of the sensors and the output 

data that includes the identification of gas and estimation of 

the concentration. These pairs (input, target) are presented to 

the network to adjust the parameter weights and biases to 

build the model. The training is completed when the output of 

the network approaches the interest values (target) when the 

error Eqs (8) between the desired output (target) and the 

network output is smaller. As long as the error is large, the 

learning algorithm continues updating the bias (b) and 

synaptic weights (w). 

    ∑       
 

 

   

                                

The training of sensors has been carried out using a large 

range of analyte concentration and the test of the model has 

been carried out using unknown concentration for the 

quantitative and gas identification. 

For identification, four neurons in the hidden layer is 

sufficient to obtain a perfect identification of tested gas, each 
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output neuron matches to one gas. According to the detected 

gas, the corresponding neuron has a high level of output and 

the level of the other two output neurons remains at zero. 

Therefore in the identification step, the activation function of 

the output layer is used as a function of threshold; the output 

neurons can have two values, one for presence of gas and zero 

for the absence of this latter. The obtained results are 

illustrated in (Fig 7). For example, if ethanol is introduced into 

the detection chamber, its corresponding output neuron (N1) 

shows a high level, whereas, the two remaining output neurons 

(corresponding to chloroform and benzene N2, N3) show 

nothing (Fig 7a). 

For quantification, the number of neurons in hidden layer 

was increased to obtain a perfect result. (Fig 8) shows the 

performance and the accuracy of the neural network with 4, 6 

and 8 neurons in the hidden layer. When using only four 

neurons in the hidden layer, during the training step this 

network does not achieve the desired accuracy of 100%. The 

increase in the number of neurons to six, contributes to 

increase the performance of training. Another model was 

tested using 8 neurons; this model converges to a perfect 

quantification of gas and the performance of training reaches 
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Figure 6.  Structure of MLPNN (3:4:3) for identification and quantification of ethanol, chloroform and benzene 
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Figure 7.  Identification of VOCs by ANNMLP (3:4:3) of (a) Ethanol (b) Chloroform (c) Benzene 

TABLE I.  Quantification of VOCs  

 
Number of 

neurons in 

hidden layer 

Target concentration (ppm) Output network concentration (ppm) 

Ethanol 

(N1) 

Chloroform 

(N2) 

Benzene 

(N3) 

Ethanol 

(N1) 

Chloroform 

(N2) 

Benzene 

(N3) 

4 

142 0 0 143.61 6.75 3.53 

0 47 0 0 52.71 43.19 

0 0 95 0 1.5 74.13 

6 

142 0 0 143.61 0 0 

0 47 0 0 37.75 1.61 

0 0 95 0 0.1 102.5 

8 
142 0 0 148.48 0 0 

0 47 0 0 46.99 0 

0 0 95 0 0 95 

 



 

100%. 

“Table 1” summarizes the result of few training samples of 

concentration estimation by the network with different number 

of neuron in hidden layer. Using the structure with four 

neurons in the hidden layer the estimate concentration presents 

a great difference between the target and the output of the 

network. Increasing the number of neurons in the hidden layer 

can decrease the difference between output and target. 
The power of neural networks has led to the identification 

at 100% of the target gas and estimated its corresponding 
concentration. 

IV. CONCLUSION 

In this study, the use of a combination of non-selective sensors 

has allowed the identification and quantification of gas with 

the PCA and MLNNs, The application of PCA, that is a 

method of visual analysis showed a good separation of areas 

of the studied gas and the neural networks have confirmed this 

separation by identifying the gas introduced into the chamber. 

The increase in the number of neurons in the hidden layer 

increases the network performance, for quantification. The use 

of four neurons in the hidden layer was enough to get a good 

result, but the quantification was difficult, which is overcome 

by the increase of the number of neurons in hidden layer. 
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