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Static Output Feedback Stabilization of Discrete-Time Linear Systems
with Stochastic Dynamics Determined by an i.i.d. Process

Yohei Hosoe and Dimitri Peaucelle

Abstract— This paper discusses an extension of our ear-
lier results about state feedback stabilization toward static
output feedback stabilization for discrete-time linear systems
with stochastic dynamics determined by an independent and
identically distributed (i.i.d.) process. A completely-linearized
necessary and sufficient inequality condition for static output
feedback synthesis is known to be difficult to obtain even in the
case with deterministic systems. Hence, this paper derives with
the so-called S-variable approach a bilinear matrix inequality
condition that can be effectively solved through exploiting the
result of state feedback synthesis. An illustrative numerical
example is also given for such synthesis.

I. INTRODUCTION

Randomness is regarded as one of the important concepts
in modern science and technology, with which various kinds
of phenomenon have been interpreted and described. Con-
trol technology is also no exception, and the demand for
approaches that can take into account randomness behind
systems is increasing more and more. To make a contribution
in this direction of studies, this paper discusses static output
feedback stabilization for discrete-time linear systems with
dynamics determined by a stochastic process. Such systems
are called discrete-time linear random dynamical systems
in the field of analytical dynamics [1]. In this paper, we
particularly focus on the case that the process determining the
system dynamics is independent and identically distributed
(i.i.d.) with respect to the discrete time, as in the earlier
studies [2], [3], [4].

Markov jump systems [5] are one of the most famous
subclasses of random dynamical systems. Although the dy-
namics of a standard Markov jump system is described with
a finite-mode Markov chain, the earlier study [6] succeeded
in alleviating this part of assumption so that a more general
stationary Markov process can be dealt with in stability
analysis. Since i.i.d. processes are a special case of station-
ary Markov processes, one might consider our arguments
would be covered by the results for Markov jump systems.
However, the above results on Markov jump systems were
actually obtained under an additional assumption that the
supports of random coefficient matrices (depending on a
Markov process) are bounded, which is needless to use in
the i.i.d. process case; instead, a milder assumption is used
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just for defining second-moment stability (see Assumption 2
introduced later). Hence, the arguments for the above two
subclasses do not cover each other, in general. Regarding
the relationship of the projection-based control approach [2]
with our study for essentially the same systems, the latter
can be seen as a redevelopment of the theoretical basis first
developed in the former with the recent results on linear
matrix inequality (LMI)-based control. A difference can be
found, e.g., in the way of dealing with stability; stability is
characterized by the spectral radius of some mapping in [2]
while it is by a Lyapunov inequality in our study that can
be solved as a standard LMI through some pre-calculation
of expectation (details will be clearer later).

In [3], [4], we discussed state feedback stabilization as
a part of main results. The purpose of this paper is to ex-
tend those results toward static output feedback stabilization
(under the assumption that the output equation of a system
is described with a constant C matrix). It is considered
to be unusual in practice that all the system states can be
directly measured, and one may have to design an output
feedback controller or to use a state observer together with
a state feedback controller. This paper is concerned with
the former theme (i.e., output feedback synthesis). In the
case of deterministic systems, complete linearization of the
inequality condition for static output feedback stabilization
controller synthesis is known to be difficult [7]. Hence, a sim-
ilar difficulty finally remains also in the present arguments
for stochastic systems. However, at least the same level of
results as the case of deterministic systems is obtained even
in such a situation through using the S-variable approach
[8], which are expected to be sufficiently practical as is the
case with deterministic systems.

The results in this paper could be used, e.g., for taking into
account the effect of randomness of packet interarrival times
in control for networked systems; an associated numerical
example about random aperiodic sampling (i.e., a random
version of aperiodic sampling [9]) was dealt with in [4].
Another prospective application would be the combination
of our theory with statistical approaches for parameter es-
timation such as the ensemble Kalman filter [10], [11]. As
is well known, the estimated parameters in modeling more
or less fluctuate in practice. Our framework has a potential
of dealing with such fluctuations more effectively in control
than deterministic approaches.

This paper is organized as follows. Section II describes
the system to be dealt with in this paper, and introduces
some assumptions and the definition of exponential second-
moment stability for the system. Section III briefly reviews



a Lyapunov inequality characterizing the stability as well as
an inequality condition for synthesis of stabilizing state feed-
back. Then, Section IV discusses main results about static
output feedback synthesis. Since the technique of change of
variables used in the earlier study on state feedback synthesis
is difficult to employ in the case of output feedback directly,
we consider introducing an auxiliary variable called an S-
variable for deriving a new inequality condition. Although we
will not obtain a completely-linearized inequality condition
even with the S-variable, the new condition can be effectively
solved by exploiting the result of state feedback synthesis ap-
propriately. We also describe the details of this, and propose
a two-step synthesis method using our inequality conditions.
An illustrative numerical example of our synthesis is given
in Section V.

We use the following notation in this paper. The set of
real numbers, that of positive real numbers and that of non-
negative integers are denoted by R, R+ and N0, respec-
tively. The set of n-dimensional real column vectors and
that of m× n real matrices are denoted by Rn and Rm×n,
respectively. The set of n × n positive definite matrices is
denoted by Sn×n

+ . The identity matrix of size n is denoted
by In. The Euclidean norm of the vector (·) is denoted by
||(·)||. The vectorization of the matrix (·) in the row direction
is denoted by row(·), i.e., row(·) := [row1(·), . . . , rowm(·)],
where m is the number of rows of the matrix and rowi(·)
denotes the ith row. The Kronecker product is denoted by
⊗. The (block) diagonal matrix is denoted by diag(·). For
the real square matrix M , He(M) := M + MT , where
MT denotes the transpose of M . The expectation (i.e., the
expected value) of the random variable (·) is denoted by
E[(·)]; this notation is also used for the expectation of
a random matrix. If s is a random variable obeying the
distribution D, then we represent it as s ∼ D.

II. DISCRETE-TIME LINEAR STOCHASTIC SYSTEMS AND
SECOND-MOMENT STABILITY

A. Discrete-Time Linear Systems with Stochastic Dynamics
Determined by an i.i.d. Process

Let us consider the Z-dimensional discrete-time stochastic
process ξ = (ξk)k∈N0

satisfying the following assumption.
Assumption 1: ξk is independent and identically dis-

tributed (i.i.d.) with respect to the discrete time k ∈ N0.
This assumption naturally makes ξ stationary and ergodic

[12]. The support of ξk is denoted by Ξ. By definition, Ξ ⊂
RZ , and Ξ corresponds to the set of values that ξk can take
(at each k).

With such a process ξ, consider the discrete-time linear
random dynamical system

xk+1 = A(ξk)xk +B(ξk)uk, (1)
yk = Cxk, (2)

where xk ∈ Rn, uk ∈ Rmu , yk ∈ Rmy , A : Ξ → Rn×n,
B : Ξ → Rn×mu , C ∈ Rmy×n, and the initial state x0 is
assumed to be deterministic. The dynamics of this system is
determined by the random coefficient matrix A(ξk), which

is i.i.d. with respect to k because of Assumption 1. Hence,
we call the system having such dynamics a discrete-time
linear system with stochastic dynamics determined by an
i.i.d. process. The representation of this A matrix is indeed
general in the sense that any random matrix (denoted by Ak)
can be represented in that form with appropriate ξ; we can
always take A(·) and ξ such that A(ξk) = Ak (under the
i.i.d. assumption on Ak and ξk). A similar comment also
applies to B(ξk). Although C in (2) is confined to be a
deterministic constant matrix, this is natural, e.g., when a
deterministic filter is connected to the output of the system.

B. Closed-Loop System and Second-Moment Stability
As a controller for the system described in the preceding

subsection, let us consider the output feedback

uk = Kyk (3)

with static time-invariant gain K ∈ Rmu×my . Then, the
closed-loop system becomes

xk+1 = Aof(ξk)xk, Aof(ξk) = A(ξk) +B(ξk)KC. (4)

To define second-moment stability for this system, we intro-
duce the following assumption (which is actually a minimal
requirement for the stability definition, although the details
are omitted).

Assumption 2: The squares of elements of A(ξk) and
B(ξk) are all Lebesgue integrable, i.e.,

E[Aij(ξk)
2] < ∞, E[Bij(ξk)

2] < ∞, (5)

where Aij(ξk) and Bij(ξk) represent the (i, j)-entries of
A(ξk) and B(ξk), respectively.

For each fixed K, this assumption ensures the squares
of elements of Aof(ξk) are also Lebesgue integrable. Under
Assumptions 1 and 2, we define exponential second-moment
stability (i.e., exponential mean square stability) [13] as
follows.

Definition 1: The system (4) with a fixed K satisfying
Assumptions 1 and 2 is said to be exponentially stable in
the second moment if there exist a ∈ R+ and λ ∈ (0, 1)
such that

√
E[||xk||2] ≤ a||x0||λk (∀k ∈ N0, ∀x0 ∈ Rn). (6)

In this paper, we discuss a method of designing K
that stabilizes the closed-loop system (4) in the sense of
Definition 1 under Assumptions 1 and 2.

III. EARLIER RESULTS ON STABILIZING STATE
FEEDBACK SYNTHESIS

If all the system states can be measured at each time
step (i.e., my = n and C = In in (2)), the present
output feedback stabilization problem reduces to that of
designing a stabilizing state feedback gain. Such a special
case was already studied in [4], and this section reviews the
earlier results before proceeding to the main discussions on
static output feedback stabilization; those results themselves
will also play an important role in the output feedback
stabilization discussed later.



Let us consider the state feedback

uk = Fxk (7)

with static time-invariant gain F ∈ Rmu×n, and the associ-
ated closed-loop system

xk+1 = Asf(ξk)xk, Asf(ξk) = A(ξk) +B(ξk)F. (8)

We see that the output feedback stated in the preceding
section reduces to the above state feedback under K = F if
my = n and C = In. This implies that Assumption 2 also
ensures the squares of elements of Asf(ξk) are Lebesgue
integrable for each F , and hence, the second-moment sta-
bility can be defined for system (8) in a fashion similar
to Definition 1. Then, the following theorem is known to
hold (see Theorems 2 and 3 in [4]), which gives a Lyapunov
inequality condition for second-moment stability.

Theorem 1: Suppose the open-loop system (1) satisfies
Assumptions 1 and 2. For given F ∈ Rmu×n, the following
two conditions are equivalent.

1) The closed-loop system (8) is exponentially stable in
the second moment.

2) There exist P ∈ Sn×n
+ and λ ∈ (0, 1) such that

E[λ2P −Asf(ξ0)
TPAsf(ξ0)] > 0. (9)

With the Lyapunov inequality (9), we can further obtain
the following theorem [4], which gives an inequality condi-
tion for synthesis of stabilizing state feedback.

Theorem 2: Suppose the open-loop system (1) satisfies
Assumptions 1 and 2. There exists a gain F such that the
closed-loop system (8) is exponentially stable in the second
moment if and only if there exist X ∈ Sn×n

+ , Y ∈ Rmu×n

and λ ∈ (0, 1) satisfying
[

λ2X ∗
Ḡ′

AX + Ḡ′
BY X ⊗ In̄

]
> 0 (10)

for Ḡ′
A and Ḡ′

B given by

Ḡ′
A := [ḠT

A1, . . . , Ḡ
T
An]

T ∈ Rnn̄×n, (11)
Ḡ′

B := [ḠT
B1, . . . , Ḡ

T
Bn]

T ∈ Rnn̄×mu , (12)
Ḡ =:

[
ḠA1, . . . , ḠAn, ḠB1, . . . , ḠBn

]

(ḠAi ∈ Rn̄×n, ḠBi ∈ Rn̄×mu (i = 1, . . . , n)) (13)

with a matrix Ḡ ∈ Rn̄×(n+mu)n (n̄ ≤ (n+mu)n) satisfying

ḠT Ḡ = E
[
[row(A(ξ0)), row(B(ξ0))]

T

· [row(A(ξ0)), row(B(ξ0))]
]
. (14)

In particular, F = Y X−1 is one such stabilizing gain.
While the Lyapunov inequality (9) involved decision vari-

ables contained in the expectation operation, the decision
variables in (10) are all uncontained in the expectation
operation. Hence, once Ḡ′

A and Ḡ′
B are calculated, (10) can

be solved as a standard LMI for each fixed λ. By minimizing
λ through a bisection method with respect to λ2 under such
an LMI, we can obtain a stabilizing gain that is optimal in the
sense of exponential second-moment stability; the minimal

λ corresponds to that in (6), which further corresponds to
the convergence rate of

√
E[||xk||2] with respect to k.

Remark 1: In [4], the Lyapunov inequality was shown
with the non-strict inequality sign, unlike (9). However, this
difference does not make any problem since for fixed P ,
there exists λ ∈ (0, 1) satisfying (9) if and only if there
exists λ ∈ (0, 1) satisfying its non-strict version; this can
be confirmed with P > 0 and the gap between λ and 1.
Since we need to deal with strict inequalities in the output
feedback synthesis later, we introduced the strict version (9)
of Lyapunov inequality in this section.

IV. STATIC OUTPUT FEEDBACK STABILIZATION

As reviewed in the preceding section, we can easily design
a stabilizing state feedback gain F by using Theorem 2. One
of the implicitly used tricks in deriving Theorem 2 was the
change of variables Y = FX for X = P−1 in (10), which
has been used also in the case of deterministic systems. Such
conventional techniques and some other key ideas associated
with (11)–(14) led us to Theorem 2 in the earlier study.
However, that change of variables is difficult to use in the
case of the present static output feedback stabilization. This
section first briefly describes this issue, and then shows an
inequality condition for static output feedback stabilization
that is derived with a different approach.

A. Difficulty in Change of Variables

Since the squares of elements of Aof(ξk) are Lebesgue
integrable under Assumptions 1 and 2, the stability of
system (4) can be characterized by the following Lyapunov
inequality as in Theorem 1.

E[λ2P −Aof(ξ0)
TPAof(ξ0)] > 0. (15)

Then, it can be shown from the arguments in [4] that

E[A(ξ0)
TPA(ξ0)] = Ḡ′T

A (P ⊗ In̄)Ḡ
′
A, (16)

E[A(ξ0)
TPB(ξ0)] = Ḡ′T

A (P ⊗ In̄)Ḡ
′
B , (17)

E[B(ξ0)
TPB(ξ0)] = Ḡ′T

B (P ⊗ In̄)Ḡ
′
B (18)

(with which Theorem 2 was derived); although n̄ was fixed at
(n+mu)n in [4], it may actually be arbitrary as in Theorem 2
of the present paper as long as (14) is satisfied. By using
(16)–(18), the Lyapunov inequality (15) can be equivalently
rewritten as

λ2P − (Ḡ′
A + Ḡ′

BKC)T (P ⊗ In̄)(Ḡ
′
A + Ḡ′

BKC) > 0.
(19)

This leads us to the following lemma.
Lemma 1: Suppose the open-loop system (1) and (2)

satisfies Assumptions 1 and 2. For given K ∈ Rmu×my , the
closed-loop system (4) is exponentially stable in the second
moment if and only if there exist P ∈ Sn×n

+ and λ ∈ (0, 1)
satisfying (19) for Ḡ′

A and Ḡ′
B given by (11)–(14).

Hence, if (19) can be linearized as in Theorem 2, we can
easily design a static output feedback. However, the Schur



complement technique [14] and the congruence transforma-
tion using diag(X,X ⊗ In̄) for X = P−1 only leads us to
the following inequality from (19).

[
λ2X ∗

Ḡ′
AX + Ḡ′

BKCX X ⊗ In̄

]
> 0 (20)

Since C is generally not a nonsingular square matrix in the
present output feedback control problem, we cannot apply
the change of variables to the product KCX in the above
inequality. This is the issue in the output feedback synthesis,
which does not occur in the state feedback synthesis (see,
e.g., [7] for the associated discussions on deterministic sys-
tems). Even if we try to solve the bilinear matrix inequality
(BMI) (20) iteratively by fixing a part of decision variables
(i.e., K or X) at each iteration, the way of selecting the
initial value for the variables becomes a problem; we have no
reasonable way of the selection for K and X in (20). Since
synthesis results obtained with BMIs do generally depend
on initial values, the above issue is significant. To alleviate
this issue, the next subsection shows an inequality condition
with what we call an S-variable [8].

B. Inequality Condition Derived with S-variable Approach
and Two-Step Synthesis

We first show the following lemma, which gives another
inequality condition for stability of closed-loop system (4).

Lemma 2: Suppose the open-loop system (1) and (2)
satisfies Assumptions 1 and 2. For given K ∈ Rmu×my ,
P ∈ Sn×n

+ and λ ∈ (0, 1), the following two conditions are
equivalent.

1) The inequality (19) is satisfied.
2) There exists S ∈ R(n+mu)×mu satisfying

[
Ḡ′

A Ḡ′
B

In 0

]T [
P ⊗ In̄ 0

0 −λ2P

] [
Ḡ′

A Ḡ′
B

In 0

]

<He
(
S
[
KC −Imu

])
. (21)

Proof: 2⇒1: Let us denote the left-hand side of (21)
by Q. Then, by pre- and post-multiplying [In, CTKT ] and
its transpose on (21), we have

[
In
KC

]T
Q

[
In
KC

]
< 0, (22)

which is equivalent to (19) (regardless of S).
1⇒2: Since (19) can be rewritten as (22), it follows from

Finsler’s lemma [8] that (19) holds if and only if there exists
τ ∈ R+ such that

Q < τ

[
CTKT

−Imu

] [
KC −Imu

]
. (23)

This is nothing but (21) with

S =
τ

2

[
CTKT

−Imu

]
. (24)

This completes the proof.
The auxiliary variable S in (21) is called an S-variable [8].

By using S-variables, various kinds of inequality condition
have been derived for control of deterministic systems;

roughly speaking, the S-variable approach is an approach to
introducing auxiliary variables in matrix inequalities based
on Finsler’s lemma (or the elimination lemma). Lemma 2
implies that this approach is useful even for the present
stochastic systems control (in which the expectation oper-
ation has to be dealt with appropriately). For F ∈ Rmu×n

and S2 ∈ Rmu×mu , let us represent the S-variable in (21)
by

S =

[
FTS2

−S2

]
(25)

without loss of generality; S2 is nonsingular when (21) is
satisfied, which can be confirmed from the lower-right block
and P > 0 (to ensure this nonsingularity, the inequality sign
in the Lyapunov inequality needed to be strict). Then, (21)
can be rewritten as

[
Ḡ′

A Ḡ′
B

In 0

]T [
P ⊗ In̄ 0

0 −λ2P

] [
Ḡ′

A Ḡ′
B

In 0

]

<He

([
FT

−Imu

] [
S2KC −S2

])
. (26)

Hence, this, together with Lemmas 1 and 2 and the change
of variables S1 = S2K, leads us to the following theorem.

Theorem 3: Suppose the open-loop system (1) and (2)
satisfies Assumptions 1 and 2. There exists a gain K such
that the closed-loop system (4) is exponentially stable in
the second moment if and only if there exist F ∈ Rmu×n,
S1 ∈ Rmu×my , S2 ∈ Rmu×mu , P ∈ Sn×n

+ and λ ∈ (0, 1)
satisfying

[
Ḡ′

A Ḡ′
B

In 0

]T [
P ⊗ In̄ 0

0 −λ2P

] [
Ḡ′

A Ḡ′
B

In 0

]

<He

([
FT

−Imu

] [
S1C −S2

])
(27)

for Ḡ′
A and Ḡ′

B given by (11)–(14). In particular, S2 is
nonsingular, and K = S−1

2 S1 is one such stabilizing gain.
As we can see, the inequality condition (27) is still

bilinear. However, if we fix F , the inequality becomes an
LMI. The important point here is that the variable F is
not a Lyapunov matrix but an auxiliary variable, and hence,
the influence of fixing it is relatively limited. In addition,
a reasonable way of selecting F actually exists, which is
related to the state feedback synthesis as indicated by the
used symbol for the variable. To see this, we show the
following lemma.

Lemma 3: Suppose the open-loop system (1) and (2)
satisfies Assumptions 1 and 2. For given F ∈ Rmu×n,
P ∈ Sn×n

+ and λ ∈ (0, 1), there exist S1 ∈ Rmu×my and
S2 ∈ Rmu×mu satisfying (27) only if (9) holds.

Proof: By pre- and post-multiplying [In, FT ] and its
transpose on (27), we have (9) under (16)–(18). This implies
that (27) can have a solution only if (9) holds.

From this lemma, it is meaningless in (27) to consider F
that does not satisfy (9), which in turn implies that selecting
a stabilizing state feedback gain as the variable F is rea-
sonable. Although such selection of F does not necessarily



lead to a globally optimal (or near) solution, a similar idea is
empirically known to be effective in the case of deterministic
systems [7]. Hence, this paper also exploits this idea and
proposes the following two-step synthesis method for static
output feedback stabilization controller synthesis.

Step 1: Minimize λ such that there exist X ∈ Sn×n
+ and

Y ∈ Rmu×n satisfying (10) through a bisection method with
respect to λ2. If λ < 1, take F = Y X−1, and proceed to the
next step; if not, the problem is unsolvable by Lemma 3.

Step 2: For fixed F , minimize λ such that there exist S1 ∈
Rmu×my , S2 ∈ Rmu×mu and P ∈ Sn×n

+ satisfying (27)
through a bisection method with respect to λ2. If λ < 1,
then K = S−1

2 S1 is a stabilizing output feedback gain.
Although we did not refer to the iterations about the

products of F , S1 and S2 in (27) in the above method, we
can try them if the minimal λ does not become sufficiently
small with the fixed F .

C. About Assumption on Constant C Matrix
Before closing this section, we would like to make remarks

on the inequality condition (27), which facilitates understand-
ing of the difference between the present study on stochastic
systems and those for deterministic systems. With (16)–(18),
we can rewrite (27) as

E

[[
A(ξ0) B(ξ0)
In 0

]T [
P 0
0 −λ2P

] [
A(ξ0) B(ξ0)
In 0

]]

<E

[
He

([
FT

−Imu

] [
S1C −S2

])]
. (28)

This is actually a straightforward representation of the in-
equality condition that can be first anticipated from the
form of the expectation-based Lyapunov inequality (15) with
knowledge of LMIs for deterministic systems. By pre- and
post-multiplying [In, CTKT ] and its transpose on (28) (as
in the proof of Lemma 2), we obtain

E

[[
Aof(ξ0)

In

]T [
P 0
0 −λ2P

] [
Aof(ξ0)

In

]]

<E
[
He

(
(FT − CTKT )(S1C − S2KC)

)]
(29)

with (4). Since the right-hand side of this inequality becomes
0 for K = S−1

2 S1, the inequality reduces to (15). Although
this conclusion itself was already led in Theorem 3, the above
arguments provide us with more insight into the influence
of the presence of ξ in our system. To see this, let us
temporarily consider the case where the C matrix in (2) is
given by C(ξk) (i.e., a random matrix depending on ξk).
Then, one might consider (28) with C replaced by C(ξ0)
could be the corresponding inequality condition for output
feedback synthesis. Unfortunately, however, the arguments
for stochastic systems are not so simple, and we soon notice
that the dependence of A(ξ0), B(ξ0) and C(ξ0) becomes
a problem in obtaining (29) (i.e., (15)) with C replaced by
C(ξ0); for random variables s1 and s2, E[s1]E[s2] is not
equal to E[s1s2], in general. This is actually the reason why
we had to confine ourselves to the case where the C matrix
is given by a constant matrix in this paper.

In the case of deterministic systems, it is known that
stability of the system xk+1 = Adxk with the A matrix Ad

is equivalent to that of the system ηk+1 = AT
d ηk (i.e., the

transposed system). Hence, a similar idea could be used also
in the case of our stochastic systems; in that case, we might
be able to deal with the random C matrix C(ξ0) through
alternatively confining the B matrix to a constant matrix.
However, the arguments for this direction is also not simple,
and the expectation operation in inequality conditions causes
an issue when we transform them with conventional LMI
techniques; this issue is related to the non-square Ḡ′

A and
the extended Lyapunov matrix P ⊗ In̄ in (27). Resolving
this issue is left for future work.

V. NUMERICAL EXAMPLE

This section illustrates our synthesis approach through
a numerical example. Let us consider the two-dimensional
random process ξk = [ξ1k, ξ2k]T satisfying Assumptions 1
and 2 whose distribution is given by

ξ1k ∼ N (0, 0.22), ξ2k ∼ U(−0.5, 0.5), (30)

where N (0, 0.22) and U(−0.5, 0.5) denote the normal dis-
tribution with mean 0 and standard deviation 0.2 and the
continuous uniform distribution with minimum −0.5 and
maximum 0.5, respectively. We assume that ξ1k and ξ2k are
also independent of each other at each k. Then, let us further
consider the system (1) and (2) with coefficients

A(ξk) =




1.3 + ξ2k 0.8 + ξ1k −0.5

0.5 0.3 + ξ1kξ2k −1.2 + ξ21k
−0.2 0.8 0.6



 ,

B(ξk) =
[
0 ξ1k 1

]T
, C =

[
1 0 0
0 0 1

]
. (31)

This system can be confirmed to be unstable by Theorem 1
with F = 0.

For the above system, we first design a state feedback gain
based on Theorem 2, which corresponds to Step 1 of our syn-
thesis method. The expectation in (14) can be calculated with
MATLAB and Symbolic Math Toolbox. Since n̄ is arbitrary,
taking it as the rank of the expectation (i.e., constant matrix)
is reasonable. The corresponding Ḡ (and hence, Ḡ′

A and Ḡ′
B)

can be constructed with the singular value decomposition. In
addition, LMIs can be solved with MATLAB, YALMIP [15]
and SDPT3 [16]. In our calculation, n̄ in (11) and (12) was
5. Through minimizing λ with respect to (10), we obtained
λ = 0.8174, and X and Y leading to

F = Y X−1 =
[
2.3120 0.4735 −2.2271

]
. (32)

Since the above λ is less than 1, the closed-loop system (8)
with this gain is stable by Theorem 2. Since the condition
in the theorem is necessary and sufficient, this value of λ
is optimal in the sense of state feedback stabilization using
a static gain. This further ensures that the above value is
a lower bound of λ that can be achieved by static output
feedback (recall Lemma 3), which we next design.

The matrices Ḡ′
A and Ḡ′

B were already calculated in the
above state feedback synthesis, and we can use them also for



Fig. 1. Overlays of initial value response of output feedback system
generated with 100 sample paths of ξ and x0 = [1, 0, 0]T .

the output feedback synthesis based on Theorem 3, which
corresponds to Step 2 of our synthesis method. We fixed F
obtained above, and minimized λ with respect to (27). Then,
we obtained λ = 0.8614, and S1 and S2 leading to

K = S−1
2 S1 =

[
1.8093 −1.8487

]
. (33)

Since the above λ is less than 1, the closed-loop system (4)
with this gain is stable by Theorem 3. Hence, our two-step
synthesis succeeded in stabilization for the present example.
The initial value response of state of the closed-loop system
with x0 = [1, 0, 0]T became as in Fig. 1; this figure shows
the overlays of the response obtained with 100 sample paths
of ξ.

Since the result λ = 0.8614 of output feedback synthesis
is relatively close to the result λ = 0.8174 of state feedback
synthesis, the room for further improvement about λ (i.e.,
the convergence rate of

√
E[||xk||2]) in the output feedback

synthesis is considered to be not large in the present example.
For reference, with an additional iteration for solving (27),
we obtained λ = 0.8587 with a slightly different gain.

VI. CONCLUSIONS

In this paper, we derived an inequality condition for
static output feedback stabilization of discrete-time linear
systems with stochastic dynamics determined by an i.i.d.

process. Since the complete linearization of the inequality
condition was difficult as is the case with deterministic
systems, we propose a two-step synthesis method in which
a state feedback gain is used as the fixed parameter in the
inequality condition. A lemma was also provided for showing
reasonability of such synthesis.

As a future issue, the case of the random C matrix is
remaining. In addition, the extension of the results in this
paper toward robust output stabilization might be possible
through exploiting the idea of random polytopes [17] as in
the state feedback synthesis in [3]; random polytopes can
be used for representing uncertainties, e.g., in mean and
variance of random matrices.
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