
HAL Id: hal-03026824
https://hal.science/hal-03026824

Submitted on 26 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linearization of Expectation-Based Inequality
Conditions in Control for Discrete-Time Linear Systems

Represented with Random Polytopes
Yohei Hosoe, Dimitri Peaucelle, Tomomichi Hagiwara

To cite this version:
Yohei Hosoe, Dimitri Peaucelle, Tomomichi Hagiwara. Linearization of Expectation-Based Inequal-
ity Conditions in Control for Discrete-Time Linear Systems Represented with Random Polytopes.
Automatica, 2020, 122, pp.09228. �10.1016/j.automatica.2020.109228�. �hal-03026824�

https://hal.science/hal-03026824
https://hal.archives-ouvertes.fr


Linearization ofExpectation-Based InequalityConditions
inControl forDiscrete-TimeLinear Systems

RepresentedwithRandomPolytopes !

Yohei Hosoe a,b, Dimitri Peaucelle b, Tomomichi Hagiwara a

aKyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

bLAAS-CNRS, Univ. Toulouse, CNRS, Toulouse, France

Abstract

A technique of linearizing what we call expectation-based inequality conditions is proposed for control of discrete-time linear
systems with stochastic dynamics. In particular, the coefficient random matrices of the systems are assumed to be represented
with random polytopes, and the linearization technique is discussed so as to appropriately deal with associated uncertainties.
Our expectation-based inequality is an inequality that involves decision variables contained in the expectation operation, and
has a unique difficulty in direct linearization, in general. Hence, two key lemmas are provided so that the decision variables
can be taken out from the expectation operation. The combinational use of such lemmas and the conventional linear matrix
inequality (LMI) techniques, which is nothing but our linearization technique, is expected to be useful for transforming various
kinds of expectation-based nonlinear inequality into numerically solvable standard LMIs. As a demonstration, new robust
stability conditions are derived with the technique, whose effectiveness is confirmed numerically.

Key words: Stochastic dynamics; discrete-time linear systems; LMI; random polytopes; robust control.

1 Introduction

In this paper, we deal with a class of discrete-time lin-
ear systems with stochastic dynamics described by ran-
dom coefficient matrices. Such systems can be seen as a
discrete-time linear case of random dynamical systems
in the field of analytical dynamics (Arnold, 1998). The
system class is useful for representing the influence of
various stochastic phenomena such as packet interarrival
times (Paxson & Floyd, 1995) and failure occurrences
(Finkelstein, 2008) in system dynamics. In addition, it
is also considered to be compatible with the statistical
approaches for estimation and modeling such as the en-
semble Kalman filter (Evensen, 2003), whose direction
of research would have a potential of being a trend to-
ward future control technologies.

As a traditional class of systems with stochastic dy-
namics that have been dealt with in the field of control,
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Markov jump systems (Costa et al., 2005) are well
known, whose dynamics is determined by a Markov
chain. Although most of earlier studies on the systems
were assuming that the underlying Markov chain only
has finite modes (i.e., given with a countable state
space), Costa & Figueiredo (2014) weakened this part
of assumption so that a more general stationary Markov
process (i.e., that with an uncountable state space)
can be dealt with, through alternatively assuming the
boundedness of the supports of random coefficient ma-
trices (depending on the process). The research team
involved in the present paper, on the other hand, has
studied control of systems with dynamics determined
by an i.i.d. stochastic process (Hosoe et al., 2018; Hosoe
& Hagiwara, 2019), which is the time sequence of ran-
dom vectors that are independent and identically dis-
tributed (i.i.d.). One might consider that our system
class is included in that for Markov jump systems, since
i.i.d. processes are a special case of stationary Markov
processes. However, it is not true because the random
coefficient matrices in our studies are allowed to have
unbounded supports (e.g., normally distributed coeffi-
cients can be dealt with). Hence, the results for Markov
jump systems and those in this paper do not cover each
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other, in general.

In this paper, we propose a technique useful for deriv-
ing numerically-tractable inequality conditions for con-
trol of systems with the dynamics determined by an i.i.d.
process. In particular, to take account of possibilities of
the presence of modeling errors even in such stochastic
systems, we assume uncertainties in the random coeffi-
cient matrices that are represented with random poly-
topes (Hug, 2013), as in Hosoe et al. (2018). In Hosoe &
Hagiwara (2019), a Lyapunov inequality condition char-
acterizing nominal stability was proposed and proved
to be necessary and sufficient. However, the inequality
involves decision variables contained in the expectation
operation, which we call an expectation-based inequal-
ity. Such inequalities are difficult to transform toward
advanced control compared with the conventional lin-
ear matrix inequality (LMI) conditions for deterministic
systems (Boyd et al., 1994; Ebihara et al., 2015). Hence,
Hosoe et al. (2018) discussed robust stability analysis
and synthesis for the systems represented with random
polytopes only under the approximation treatment of
the distribution of the underlying i.i.d. process with its
samples. The technique proposed in the present paper
resolves this inconvenient situation in a direct fashion.

It is also remarked that the class of the systems with
dynamics determined by an i.i.d. process is essentially
the same as that of the systems with white parame-
ters studied in De Koning (1992); Van Willigenburg &
De Koning (1999) (which is a generalization of the sys-
tems with multiplicative noise (Boyd et al., 1994)). The
contributions of our study compared to those earlier re-
sults mainly lie in our (re-)developing control theory for
the systems based on LMIs through some new treatment
of expectations. Our direction of the study naturally en-
ables us, e.g., to achieve multi-objective control and to
deal with random polytopes for the stochastic systems,
as is the case with deterministic systems. The latter ad-
vantage about ease of handling of random polytopes will
be clearer through the arguments in this paper.

The contents of this paper are as follows. Section 2 briefly
describes the discrete-time linear systems represented
with random polytopes. Section 3 shows two key lem-
mas, and extends the Lyapunov inequality in Hosoe &
Hagiwara (2019) toward robust stability by using the
lemmas. In particular, the obtained robust stability con-
dition is reformulated as a standard LMI. The same tech-
nique of using the two lemmas is also applied to robustly
stabilizing state feedback synthesis in Section 4. Then,
Section 5 compares this new approach for robust control
with our earlier approach in Hosoe et al. (2018) through
a numerical example.

We use the following notation in this paper. The set of
real numbers, that of positive real numbers and that of
non-negative integers are denoted by R, R+ and N0,

respectively. The set of n-dimensional real column vec-
tors and that of m × n real matrices are denoted by
Rn and Rm×n, respectively. The set of n × n symmet-
ric matrices and that of n × n positive definite matri-
ces are denoted by Sn×n and Sn×n

+ , respectively. The
identity matrix of size n is denoted by In; the subscript
will be dropped when the size is obvious. The Euclidean
norm of the vector (·) is denoted by ||(·)||. The vector-
ization of the matrix (·) in the row direction is denoted
by row(·), i.e., row(·) := [row1(·), . . . , rowm(·)], where m
is the number of rows of the matrix and rowi(·) denotes
the ith row. The Kronecker product is denoted by ⊗.
The (block) diagonal matrix is denoted by diag(·). For
the real square matrix M , He(M) := M + MT , where
MT denotes the transpose of M . The expectation (i.e.,
the expected value) of the random variable (·) is denoted
by E[(·)]; this notation is also used for the expectation
of a random matrix. If s is a random variable obeying
the distribution D, then we represent it as s ∼ D.

2 Discrete-Time Linear Systems Represented
with Random Polytopes

Let us consider the Z-dimensional discrete-time stochas-
tic process ξ = (ξk)k∈N0

satisfying the following assump-
tion.

Assumption 1 ξk is independent and identically dis-
tributed (i.i.d.) with respect to k ∈ N0.

This assumption naturally makes ξ stationary and er-
godic (Klenke, 2014). The support of ξk is denoted by
Ξ . By definition, Ξ ⊂ RZ , and Ξ corresponds to the
set of values that ξk can take.

With such a process ξ, consider the discrete-time linear
system

xk+1 = A(ξk)xk (1)

where xk ∈ Rn, A : Ξ → Rn×n, and the initial state
x0 is assumed to be deterministic. This system class is
general in the sense that any discrete-time linear finite-
dimensional system with stochastic dynamics can be de-
scribed by representation (1) with ξ satisfying Assump-
tion 1 if the random coefficient matrix (denoted by Ak)
determining the stochastic dynamics is i.i.d. with respect
to the discrete time; in such a case, we can always take
A(·) and ξ such that A(ξk) = Ak.

In this paper, we assume that the random coefficient
matrix A(ξk) in (1) has an uncertainty and is represented
by

A(ξk) = A(ξk; θ) :=
L∑

l=1

θ(l)A(l)(ξk) (2)
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with a deterministic uncertain parameter vector θ (=
[θ(1), . . . , θ(L)]T ) satisfying

θ ∈ EL :=

{
θ ∈ RL : θ(l)≥0 (l=1, . . . , L),

L∑

l=1

θ(l) =1

}

(3)

and the given mappings A(l) : Ξ → Rn×n (l = 1, . . . , L)
satisfying the following assumption.

Assumption 2 For each l = 1, . . . , L, the squares of
elements of A(l)(ξk) are all Lebesgue integrable, i.e.,

E[A(l)
ij (ξk)2] < ∞ (∀i, j = 1, . . . , n), (4)

where A(l)
ij (ξk) denotes the (i, j)-entry of A(l)(ξk).

This assumption naturally makes the squares of elements
of A(ξk) = A(ξk; θ) also Lebesgue integrable for each
θ ∈ EL. Although Assumption 1 is stronger than that
used in the earlier study (Costa & Figueiredo, 2014),
in which ξ is assumed to be stationary and Markovian,
Assumption 2 is weaker than another corresponding as-
sumption used in the same study about boundedness of
(not Ξ but) the support of A(ξk). This implies that As-
sumptions 1 and 2 would lead to such results that cannot
be covered with the studies on Markov jump systems, in
general. The system (1)–(3) with ξ satisfying Assump-
tions 1 and 2 has been already dealt with in our earlier
study (Hosoe et al., 2018), and we call it a discrete-time
linear system represented with (or characterized by) ran-
dom polytopes (Hug, 2013).

The random polytope {A(ξk; θ)}θ∈EL is a stochastic
counterpart of the usual deterministic matrix polytope
and is useful for representing uncertainties in random
matrices. In particular, the introduced parameter θ can
be reinterpreted as uncertainties in the distributions of
random matrices in some cases. For example, it is stated
in Hosoe et al. (2018) that the random matrix

Ak =





0.6 0 a2k

−0.4 a1k 0

0 −0.4 −a1ka2k



 (5)

involving the random variables a1k and a2k obeying re-
spectively the uncertain continuous uniform distribution
with minimum 1.1−0.3δ1 and maximum 1.4−0.3δ1 (δ1 ∈
[0, 1]) (denoted by U(1.1−0.3δ1, 1.4−0.3δ1)) and the un-
certain normal distribution with mean 0.6 and standard
deviation 0.3δ2 (δ2 ∈ [0, 1]) (denoted by N(0.6, (0.3δ2)2))
can be represented in the random polytope form without
loss of generality, by associating θ with the uncertainties
δ1 and δ2 under some appropriate vertices.

As the stability notion for system (1)–(3), this paper
uses the following second-moment exponential stabil-
ity 1 (Kozin, 1969).

Definition 1 For a fixed θ ∈ EL, the system (1)–(3)
(satisfying Assumptions 1 and 2) is said to be exponen-
tially stable in the second moment if there exist a =
a(θ) ∈ R+ and λ = λ(θ) ∈ (0, 1) such that

√
E[||xk||2] ≤ a||x0||λk (∀k ∈ N0,∀x0 ∈ Rn). (6)

If the system is (exponentially) stable for all θ ∈ EL,
we say that the system is (exponentially) stable robustly
with respect to EL.

3 Expectation-Based Inequality Conditions,
Their Linearization, and Application in Ro-
bust Stability Problem

This section first reviews nominal stability conditions
that are represented with what we call expectation-
based inequalities, and then shows and discusses two
key lemmas and their roles through extending the con-
ditions toward robust stability. The inequality condi-
tion finally obtained in this section can be solved as a
standard linear matrix inequality (LMI), and hence, we
call the technique for such an extension using the two
key lemmas a linearization technique. Our linearization
technique is expected to be useful not only for the ro-
bust stability problem but also for other robust control
problems associated with random polytopes.

3.1 First Key Lemma and Its Implication

The following theorem giving nominal stability condi-
tions is shown in Hosoe & Hagiwara (2019).

Theorem 1 Suppose ξ satisfies Assumption 1 and
A(l)(ξk) (l = 1, . . . , L) satisfy Assumption 2. For each
θ ∈ EL, the following three conditions are equivalent.

1. The system (1)–(3) is exponentially stable in the
second moment.

2. There exists P = P (θ) ∈ Sn×n
+ such that

E[P − A(ξ0)T PA(ξ0)] > 0. (7)

3. There exist P = P (θ) ∈ Sn×n
+ and λ = λ(θ) ∈ (0, 1)

such that

E[λ2P − A(ξ0)T PA(ξ0)] ≥ 0. (8)

1 Note that second-moment exponential stability (also
called exponential mean square stability) is shown in Hosoe
& Hagiwara (2019) to be equivalent to second-moment
asymptotic stability (i.e., asymptotic mean square stability)
and quadratic stability for the present class of systems.
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The expectation-based inequality (7) is a stochastic
counterpart of the Lyapunov inequality for discrete-time
deterministic linear time-invariant systems. In addition,
(8) is also useful when the convergence rate with respect
to the sequence

(√
E[||xk||2]

)

k∈N0

is required, since λ

in (8) corresponds to that in (6). For this reason, we
will derive a robust stability condition from (8) with a
technique using two lemmas shown later. However, the
same technique can be used also for (7), which leads
to another slightly different robust stability condition
without λ.

The following is the first key lemma used in our lineariza-
tion technique.

Lemma 1 For a given random vector ξ0 (with support
Ξ ) and a given mapping R : Ξ → Sn0×n0 , the following
two conditions are equivalent.

1. The following inequality holds.

E[R(ξ0)] ≥ 0 (9)

2. There exists T : Ξ → Sn0×n0 such that

E[T (ξ0)] ≤ 0, (10)
T (ξ") + R(ξ") ≥ 0 (∀ξ" ∈ Ξ ). (11)

PROOF. 1⇒2: T (·) = −R(·) readily leads to (10) and
(11).

2⇒1: It follows from (11) that for each sample of ξ0,
we have T (ξ0) + R(ξ0) ≥ 0. This implies E[R(ξ0)] ≥
−E[T (ξ0)] for random ξ0, which together with (10) leads
to (9).

The newly introduced mapping T in this lemma enables
us to make the random matrix R(ξ0) uncontained in the
expectation operation as in (10) and (11); the converse
assertion (i.e., the assertion from condition 2 to condi-
tion 1) is also important and will be used soon. Although
this lemma itself might seem almost trivial, it is actually
very powerful in deriving inequality conditions associ-
ated with the use of random polytopes in system rep-
resentation. For example, we can easily obtain the fol-
lowing corollary, which gives a stochastic counterpart of
the LMI condition with S-variables (i.e., auxiliary vari-
ables) (Ebihara et al., 2015) developed for deterministic
systems.

Corollary 1 For given ξ0 (with Ξ ), P ∈ Sn×n
+ , N1 :

Ξ → Rn1×n0 (n1 ≥ n0), U : R × Sn×n → Sn1×n1 and
λ ∈ (0, 1),

E[N1(ξ0)T U(λ, P )N1(ξ0)] ≥ 0 (12)

holds if there exist S ∈ Rn1×n2 , T : Ξ → Sn0×n0 , J :
Sn0×n0 → Sn1×n1 and N2 : Ξ → Rn2×n1 satisfying (10)
and

J(T (ξ")) + U(λ, P ) + He(SN2(ξ")) ≥ 0 (∀ξ" ∈ Ξ ),
(13)

N1(ξ")T J(Π )N1(ξ") = Π (∀Π ∈ Sn0×n0 ,∀ξ" ∈ Ξ ),
(14)

N2(ξ")N1(ξ") = 0 (∀ξ" ∈ Ξ ). (15)

PROOF. By post- and pre-multiplying N1(ξ") and its
transpose on (13), we obtain

T (ξ") + N1(ξ")T U(λ, P )N1(ξ") ≥ 0 (∀ξ" ∈ Ξ ) (16)

by (14) and (15). This, together with Lemma 1, com-
pletes the proof.

The significance of this corollary lies in the linearity of
the inequality condition (10) and (13) in the operator
N2(·), despite the nonlinearity of (12) in N1(·) (which
has a close connection with N2(·) through (15)). This
significance can be demonstrated by showing the follow-
ing theorem, which gives a robust stability condition for
the systems represented with random polytopes.

Theorem 2 Suppose ξ satisfies Assumption 1 and
A(l)(ξk) (l = 1, . . . , L) satisfy Assumption 2. The system
(1)–(3) is exponentially stable in the second moment
robustly with respect to EL if there exist S ∈ R2n×n,
P (l) ∈ Sn×n

+ , T (l) : Ξ → Sn×n (l = 1, . . . , L) and
λ ∈ (0, 1) satisfying

E[T (l)(ξ0)] ≤ 0 (l = 1, . . . , L), (17)
[
T (l)(ξ") + λ2P (l) 0

0 −P (l)

]
+ He

(
S

[
A(l)(ξ") I

])
≥ 0

(l = 1, . . . , L;∀ξ" ∈ Ξ ). (18)

PROOF. Fix θ ∈ EL. Fix also l and take

U(λ, ·) =

[
λ2(·) 0

0 −(·)

]
, N (l)

1 (·) =

[
I

−A(l)(·)

]
(19)

and then

J(·) =

[
(·) 0

0 0

]
, N (l)

2 (·) =
[
A(l)(·) I

]
(20)

so that (14) and (15) with Ni(·) replaced by N (l)
i (·) (i =

1, 2) hold. Then, it follows from (18) that

J(T (l)(ξ")) + U(λ, P (l)) + He(SN (l)
2 (ξ")) ≥ 0
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(∀ξ" ∈ Ξ ). (21)

Since this is true for each l, multiplying θ(l) on this
inequality and (17) and taking the sums leads to (10)
and (13) with T (·) = T (·; θ) :=

∑L
i=1 θ(l)T (l)(·), P =

P (θ) :=
∑L

i=1 θ(l)P (l) and N2(·) =
[
A(·) I

]
. Further-

more, taking N1(·) =
[
I − A(·)T

]T
leads to (14) and

(15). Hence, it follows from Corollary 1 that

E




[

I

−A(ξ0)

]T [
λ2P 0

0 −P

][
I

−A(ξ0)

]

 ≥ 0, (22)

which is nothing but (8). This together with Theorem 1
completes the proof.

Although the direct extension of the inequality condition
(8) toward robust stability is difficult because of its non-
linearity in A(ξ0), Corollary 1 about the introduction of
S-variables enables us to circumvent this issue as in the
above proof even for the present stochastic systems case.
Obviously, Lemma 1 has played a crucial role in show-
ing Corollary 1, and hence, the above arguments indeed
demonstrate an aspect of the powerfulness of Lemma 1;
the lemma (and the associated corollary) is useful for
deriving a sufficient inequality condition described with
the vertices of the random polytope, as in the present
robust stability problem.

If we restrict S in (18) to be [0, GT ]T with G ∈ Rn×n,
present Theorem 2 immediately reduces to Theorem 2
in our earlier study (Hosoe et al., 2018), which was de-
rived with a completely different approach (i.e., without
using Lemma 1). Hence, present Theorem 2 corresponds
to a generalization of the earlier result and would enable
us to achieve less conservative robust stability analy-
sis. The simultaneous inequality condition consisting of
expectation-based and infinitely-many matrix inequal-
ities such as (17) and (18), however, is generally diffi-
cult to directly use for numerical analysis (even when
the mappings T (l) are confined to some tractable class).
Indeed, this was an obstacle and an analysis method us-
ing samples of ξ0 was additionally discussed in Hosoe
et al. (2018), in which it was required to evaluate the
confidence level of the analysis result since the result in-
evitably depends on the used samples. Hence, if we stop
our arguments here, the analysis based on present The-
orem 2 would also have the same issue. To directly re-
solve this inconvenient situation so that the theoretically
equivalent level of analysis (i.e., that using Theorem 2)
can be performed without such a sample-based method,
we provide in the next subsection the second key lemma
and discuss a way of further transforming expectation-
based inequality conditions. Such arguments will simul-
taneously lead us to a numerically-tractable inequality

condition for robust stability that can be solved without
the sample-based method despite no increase of the con-
servativeness in the corresponding robust stability anal-
ysis (compared with that using present Theorem 2).

3.2 Second Key Lemma and Numerically-Tractable Ro-
bust Stability Condition

The following is the second key lemma in our lineariza-
tion technique.

Lemma 2 For matrices

M1 =





M11

...

M1p




(M1i ∈ Rr×m1), (23)

M2 =





M21

...

M2q




(M2i ∈ Rr×m2) (24)

and H ∈ Rp×q,

MT
1 (H ⊗ Ir)M2 =

p∑

i=1

q∑

j=1

hijM
T
1iM2j (25)

holds, where hij is the (i, j)-entry of H.

This lemma can be shown with the direct calculation of
the matrices, and corresponds to a generalization of the
idea implicitly used in Hosoe & Hagiwara (2019) for solv-
ing the expectation-based inequality conditions (7) and
(8) (involving the decision variable P contained in the
expectation operation) as standard matrix inequalities.

Before proceeding to the description of our linearization
technique for expectation-based inequalities, we demon-
strate how to use Lemmas 1 and 2 through deriving a
numerically-tractable LMI condition for robust stability
with the lemmas. Consider the (additional) constraint 2

S2 + ST
2 − P (l) > 0 (l = 1, . . . , L) (26)

on P (l) and S =: [ST
1 , ST

2 ]T (S1, S2 ∈ Rn×n). Then,
under this constraint, the Schur complement technique
(Boyd et al., 1994) ensures that the inequality in (18) is
equivalent to

T (l)(ξ") + λ2P (l) + He(S1A
(l)(ξ")) − (ST

1 + S2A
(l)(ξ"))T

2 This does not actually increase the conservativeness in
the associated analysis because of the positive definiteness
of P (l) although the details are omitted.
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· (S2 + ST
2 − P (l))−1(ST

1 + S2A
(l)(ξ")) ≥ 0. (27)

Hence, Lemma 1 leads us to the following corollary.

Corollary 2 For given S = [ST
1 , ST

2 ]T (S1, S2 ∈
Rn×n), P (l) ∈ Sn×n

+ (l = 1, . . . , L) and λ ∈ (0, 1), the
following two conditions are equivalent.

1. There exist T (l) : Ξ → Sn×n (l = 1, . . . , L) such
that (17), (18) and (26) hold.

2. The following inequality and (26) hold.

E[λ2P (l) + He(S1A
(l)(ξ0)) − (ST

1 + S2A
(l)(ξ0))T

· (S2 + ST
2 − P (l))−1(ST

1 + S2A
(l)(ξ0))] ≥ 0

(l = 1, . . . , L) (28)

This kind of transformation of inequalities using
Lemma 1 has never been considered in our earlier stud-
ies and will be a key in using Lemma 2 next.

We see that each term, after appropriate expansion, in
the expectation operation in (28) can be represented in
the form M1(ξ0)T HM2(ξ0) for Mi(ξ0) = A(l)(ξ0) or In.
For example, S1(S2+ST

2 −P (l))−1S2A(l)(ξ0) can be rep-
resented as in that form with M1(ξ0) = In, M2(ξ0) =
A(l)(ξ0) and H = S1(S2 + ST

2 − P (l))−1S2. Let us tem-
porarily focus on this form of expectations. Then, by
using Lemma 2 under r = 1, this expectation can be
transformed as

E[M1(ξ0)T HM2(ξ0)]

=
n∑

i=1

n∑

j=1

hijE[rowi(M1(ξ0))T rowj(M2(ξ0))], (29)

where hij is the (i, j)-entry of H (∈ Rn×n). The expec-
tation operation in the right-hand side of this equation
does not contain decision variables. Here, if we can take
X̄(l)

Ai ∈ Rn̄l×n and X̄(l)
Ii ∈ Rn̄l×n (for some n̄l) satisfying

E[rowi(A(l)(ξ0))T rowj(A(l)(ξ0))] = X̄(l)T
Ai X̄(l)

Aj , (30)

E[rowi(In)T rowj(A(l)(ξ0))] = X̄(l)T
Ii X̄(l)

Aj , (31)

E[rowi(In)T rowj(In)] = X̄(l)T
Ii X̄(l)

Ij (32)

for each l = 1, . . . , L, then Lemma 2 applied to the right-
hand side of (29) under r = n̄l leads us to

E[A(l)(ξ0)T HA(l)(ξ0)] = X̃(l)T
A (H ⊗ In̄l)X̃

(l)
A , (33)

E[HA(l)(ξ0)] = X̃(l)T
I (H ⊗ In̄l)X̃

(l)
A , (34)

(H =) E[H] = X̃(l)T
I (H ⊗ In̄l)X̃

(l)
I , (35)

where

X̃(l)
A =





X̄(l)
A1
...

X̄(l)
An




∈ Rnn̄l×n, X̃(l)

I =





X̄(l)
I1
...

X̄(l)
In




∈ Rnn̄l×n.

(36)

The right-hand sides of (33)–(35) are tractable from the
viewpoint of using LMI techniques. The matrices X̄(l)

Ai

and X̄(l)
Ii making this transformation possible can be ob-

tained as follows. Take full row rank matrices X̄(l)
1A ∈

Rn̄l×(n2+1) (l = 1, . . . , L) satisfying

X̄(l)T
1A X̄(l)

1A =E[X2(l)
1A (ξ0)], (37)

X2(l)
1A (ξ0) :=[1, row(A(l)(ξ0))]T [1, row(A(l)(ξ0))]. (38)

Then, X̄(l)
Ai can be obtained as

X̄(l)
1A =:

[
X̄(l)

1 , X̄(l)
A1, . . . , X̄

(l)
An

]

(X̄(l)
1 ∈ Rn̄l×1, X̄(l)

Ai ∈ Rn̄l×n (i = 1, . . . , n)), (39)

while X̄(l)
Ii can be constructed as

X̄(l)
Ii = X̄(l)

1 rowi(In) ∈ Rn̄l×n (i = 1, . . . , n), (40)

which can be confirmed by a direct calculation to satisfy
(30)–(32).

With the transformation of expectations (33)–(35), the
inequality condition (28) can be equivalently rewritten
as

λ2P (l) + He(X̃(l)T
I (S1 ⊗ In̄l)X̃

(l)
A )

−
{

(ST
1 ⊗ In̄l)X̃

(l)
I + (S2 ⊗ In̄l)X̃

(l)
A

}T

·
{

(S2 + ST
2 − P (l)) ⊗ In̄l

}−1

·
{

(ST
1 ⊗ In̄l)X̃

(l)
I + (S2 ⊗ In̄l)X̃

(l)
A

}
≥ 0

(l = 1, . . . , L). (41)

Since (S2 +ST
2 −P (l))⊗ In̄l > 0, the Schur complement

technique again ensures that (41) (i.e., (28)) is equivalent
to

[
λ2P (l) 0

0 −P (l) ⊗ In̄l

]

+ He

([
S1 ⊗ X̄(l)T

1

S2 ⊗ In̄l

] [
X̃(l)

A Inn̄l

])
≥ 0
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(l = 1, . . . , L), (42)

where we used X̃(l)
I = In⊗X̄(l)

1 , which can be confirmed
from (40) and (36). Hence, this, together with Theorem 2
and Corollary 2, leads us to the following theorem.

Theorem 3 Suppose ξ satisfies Assumption 1 and
A(l)(ξk) (l = 1, . . . , L) satisfy Assumption 2. The
system (1)–(3) is exponentially stable in the second
moment robustly with respect to EL if there exist
Si ∈ Rn×n (i = 1, 2), P (l) ∈ Sn×n

+ (l = 1, . . . , L) and
λ ∈ (0, 1) satisfying (26) and (42), where X̄(l)

1 and X̃(l)
A

are given as (39) and (36) with full row rank matrices
X̄(l)

1A ∈ Rn̄l×(n2+1) satisfying (37) and (38).

Once X̄(l)
1 and X̃(l)

A are calculated with the vertices
A(l)(ξ0) (l = 1, . . . , L), the inequality condition (26)
and (42) can be seen as a standard LMI (for each
fixed λ) with the decision variables Si (i = 1, 2) and
P (l) (l = 1, . . . , L). Hence, we can analyze robust sta-
bility by minimizing λ with respect to the inequality
condition through the bisection with respect to λ. This
inequality condition is numerically more tractable than
that in Theorem 2 in the sense that the sample-based
method and the associated evaluation of the confidence
level are not required. That is, the obtained λ readily
corresponds to an upper bound of the convergence rate
with respect to

(√
E[||xk||2]

)

k∈N0

for each θ ∈ EL.

Remark 1 When L = 1, S1 = 0 and S2 = P (= P (1)),
the inequality condition (42) essentially reduces to that
for nominal stability derived in our earlier study (Hosoe
& Hagiwara, 2019). A transformation similar to that
from (28) to (41) was also discussed in the study. The
main differences from the earlier result in terms of this
part are that the core idea of the technique used in the
transformation was summarized explicitly as Lemma 2
so that the applicability of the technique is improved, and
that we newly provided a key idea for dealing with the
left-hand sides of (34) and (35) as well as (33) through
the matrices X̃(l)

A and X̃(l)
I . This is because the present

paper dealing with robust stability came to handling the
expectations of the entries of the matrix A(ξ0) as in (34)
through the introduction of the S-variable, unlike the ear-
lier study in which it sufficed to deal with the expectations
of the products of these entries as in (33); for concisely
dealing with these two types of expectations, introducing
the matrices X̃(l)

A and X̃(l)
I is convenient, and is actually

quite essential in the robust stabilization synthesis stud-
ied in the following section. Furthermore, the advantage
of taking the full rank decomposition in (37) in reducing
the associated computation cost was not claimed in the
earlier study.

3.3 Summary of Linearization Technique Using Two
Key Lemmas

In the preceding subsections, a numerically-tractable ro-
bust stability condition was derived by using Lemmas 1
and 2, which condition itself is new and useful. However,
not such a specific condition but the technique used in
its derivation is more significant and indeed constitutes
a main contribution in this paper. The roles of the two
lemmas used in the derivation can be summarized as fol-
lows.

Role of Lemma 1: To obtain θ-independent (i.e.,
uncertainty-free) inequalities associated with the ver-
tices of the random polytope such as (28) from θ-
dependent inequalities such as (8).

Role of Lemma 2: To obtain inequalities with decision
variables uncontained in the expectation operation such
as (42) from those with decision variables contained in
the expectation operation such as (28).

Hence, even when we have only a θ-dependent inequal-
ity condition with decision variables contained in the
expectation operation (i.e., a θ-dependent expectation-
based inequality), these lemmas could lead us to a θ-
independent inequality condition with decision variables
uncontained in the expectation operation from that orig-
inal inequality condition. This is helpful for further using
the conventional LMI techniques, and indeed, the LMI
condition (26) and (42) was finally derived in the present
robust stability problem case through the combination of
the lemmas with the S-variable approach and the Schur
complement technique. The whole technique of deriving
LMI conditions in such a way with the two key lemmas
is nothing but what we propose in this paper. Note that
this technique itself is not specific to the present robust
stability problem, and many other robust control prob-
lems could also be tackled in a similar fashion.

Remark 2 To the best of the authors’ knowledge, no
similar arguments arise in the field of Markov jump linear
systems. This is because the inequality conditions such
as the Lyapunov inequalities for standard Markov jump
linear systems can always be written directly as standard
matrix inequalities since any underlying expectation can
be described merely as a weighted summation of a finite
number of matrix terms. Hence, we encounter no obsta-
cles in applying the standard LMI techniques such as the
Schur complement technique directly to the matrix in-
equalities. Indeed, robust stability problems have already
been discussed in de Souza (2006) for these systems only
through the standard treatment.
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4 Robustly Stabilizing State Feedback Synthe-
sis

The Linearization technique discussed in the preceding
section can be easily applied to the robustly stabilizing
state feedback synthesis problem for the systems repre-
sented with random polytopes. Let us consider the Z-
dimensional process ξ satisfying Assumption 1 and the
associated system

xk+1 = Aop(ξk)xk + Bop(ξk)uk, (43)

Aop(ξk) = Aop(ξk; θ) :=
L∑

l=1

θ(l)A(l)
op(ξk), (44)

Bop(ξk) = Bop(ξk; θ) :=
L∑

l=1

θ(l)B(l)
op (ξk) (45)

and (3), where xk ∈ Rn, uk ∈ Rm, A(l)
op : Ξ → Rn×n

and B(l)
op : Ξ → Rn×m (l = 1, . . . , L). On the vertices

of the coefficient matrices of the above system, we make
the following assumption similar to Assumption 2.

Assumption 3 For each l = 1, . . . , L, the squares of
elements of A(l)

op(ξk) and B(l)
op (ξk) are all Lebesgue inte-

grable.

Let us also consider the state feedback

uk = Fxk (46)

with the static time-invariant gain F ∈ Rm×n. Then,
the closed-loop system can be described by (1)–(3) with

A(l)(ξk) = A(l)
op(ξk) + B(l)

op (ξk)F (l = 1, . . . , L). (47)

Note that if A(l)
op(ξk) and B(l)

op (ξk) satisfy Assumption 3
then the above A(l)(ξk) also satisfy Assumption 2 (for
each fixed F ). This section shows an inequality condi-
tion for designing F such that the closed-loop system
is exponentially stable in the second moment robustly
with respect to θ ∈ EL.

By Theorem 2, we see that the inequality condition for
robust closed-loop stability can be given by (17) and
(18) with A(l)(ξk) in (47). Since this inequality condi-
tion is difficult to linearize for the synthesis of F under
the general class of S even in the case with deterministic
systems, we restrict the class of S-variables to the fol-
lowing form 3 with a given matrix As ∈ Rn×n (As can
actually be confined to a Schur stable matrix without

3 This form itself does not actually decrease generality of S
if As is also regarded as a decision variable.

loss of generality, although the details are omitted).

S = diag(G,G)

[
AT

s

In

]
(G ∈ Rn×n) (48)

Then, G is nonsingular from P (l) > 0 and the lower
right block of (18), and applying the congruence trans-
formations using G−1 and diag(G−1, G−1) respectively
to (17) and (18), together with the change of variables
K = FV , Q(l) = V T P (l)V and W (l)(·) = V T T (l)(·)V
for V = G−1, leads to the following synthesis-oriented
condition: a robust stabilization gain exists if there ex-
ist V ∈ Rn×n, K ∈ Rm×n, Q(l) ∈ Sn×n

+ , W (l) : Ξ →
Sn×n (l = 1, . . . , L), and λ ∈ (0, 1) satisfying

E[W (l)(ξ0)] ≤ 0 (l = 1, . . . , L), (49)
[
W (l)(ξ") + λ2Q(l) 0

0 −Q(l)

]

+ He

([
AT

s

In

] [
A(l)

op(ξ")V + B(l)
op (ξ")K V

])
≥ 0

(l = 1, . . . , L;∀ξ" ∈ Ξ ). (50)

A robust stabilization gain can be obtained from the so-
lution of this inequality condition as F = KV −1. If we
take As = 0, the above condition immediately reduces
to that in Theorem 3 in Hosoe et al. (2018). Hence, the
above condition is a generalization of the earlier result.
Such a new condition, however, is also incompatible with
numerical synthesis as in the case of robust stability
analysis based on Theorem 2. Hence, we further derive
an equivalent numerically-tractable inequality condition
from the above condition by using Lemmas 1 and 2.

First, under the additional constraint

V + V T − Q(l) > 0 (l = 1, . . . , L), (51)

the inequality condition (49) and (50) can be equiva-
lently transformed to

E[λ2Q(l) + He(AT
s (A(l)

op(ξ")V + B(l)
op (ξ")K))

− (V T As + A(l)
op(ξ")V + B(l)

op (ξ")K)T (V + V T − Q(l))−1

· (V T As + A(l)
op(ξ")V + B(l)

op (ξ")K)] ≥ 0 (l = 1, . . . , L)
(52)

by using Lemma 1 and the Schur complement technique.
We see that this inequality involves decision variables
contained in the expectation operation. Hence, we next
consider applying Lemma 2 to take out the decision vari-
ables from the expectation operation (recall the argu-
ments in Subsection 3.2). Then, such transformation of
the inequality and the application of the Schur comple-
ment technique finally lead us to the following theorem.
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Theorem 4 Suppose ξ satisfies Assumption 1 and
A(l)

op(ξk) and B(l)
op (ξk) (l = 1, . . . , L) satisfy Assump-

tion 3. There exists a gain F such that the closed-loop
system (1)–(3) and (47) is exponentially stable in the
second moment robustly with respect to EL if there exist
V ∈ Rn×n, K ∈ Rm×n, Q(l) ∈ Sn×n

+ (l = 1, . . . , L) and
λ ∈ (0, 1) satisfying (51) and

[
λ2Q(l) 0

0 −Q(l) ⊗ Im̄l

]

+ He

([
AT

s ⊗ Ȳ (l)T
1

Inm̄l

] [
Ỹ (l)

A V + Ỹ (l)
B K V ⊗ Im̄l

])

≥ 0 (l = 1, . . . , L) (53)

for a given matrix As ∈ Rn×n, where Ȳ (l)
1 , Ỹ (l)

A and Ỹ (l)
B

are given as

Ỹ (l)
A :=





Ȳ (l)
A1
...

Ȳ (l)
An




∈ Rnm̄l×n, Ỹ (l)

B :=





Ȳ (l)
B1
...

Ȳ (l)
Bn




∈ Rnm̄l×m,

(54)

Ȳ (l)
1AB =:

[
Ȳ (l)

1 , Ȳ (l)
A1 , . . . , Ȳ (l)

An, Ȳ (l)
B1 , . . . , Ȳ (l)

Bn

]

(Ȳ (l)
1 ∈ Rm̄l×1, Ȳ (l)

Ai ∈ Rm̄l×n, Ȳ (l)
Bi ∈ Rm̄l×m

(i = 1, . . . , n)) (55)

with full row rank matrices Ȳ (l)
1AB ∈ Rm̄l×(n2+nm+1) sat-

isfying

Ȳ (l)T
1AB Ȳ (l)

1AB = E[Y 2(l)
1AB(ξ0)], (56)

Y 2(l)
1AB(ξ0) := [1, row(A(l)

op(ξ0)), row(B(l)
op (ξ0))]T

· [1, row(A(l)
op(ξ0)), row(B(l)

op (ξ0))]. (57)

In particular, V becomes nonsingular, and F = KV −1

is one such state feedback gain.

As in the case of Theorem 3, the inequality condition in
the above theorem can be solved as a standard LMI (for
each fixed λ) once Ȳ (l)

1 , Ỹ (l)
A and Ỹ (l)

B (l = 1, . . . , L) are
calculated. Hence, we can design a robustly stabilizing
state feedback by using this theorem, without using the
samples of ξ0. The increase of conservativeness in this
inequality condition, compared to that in Theorem 3,
could be led only by the fixed As in (48). In other words,
if As is also regarded as a decision variable, the synthesis-
oriented inequality condition in Theorem 4 is theoreti-
cally no more conservative than the analysis-oriented in-
equality condition in Theorem 3 (although appropriate
As is generally difficult to globally search for).

5 Numerical Example

This section demonstrates effectiveness of the robust sta-
bility analysis and synthesis framework developed with
the linearization technique using two lemmas, through
the comparison with the authors’ earlier approach in
Hosoe et al. (2018). Let us consider the process ξ satis-
fying Assumption 1 given by

ξk = [ξ1k, ξ2k]T , ξ1k ∼ U(1.1, 1.4), ξ2k ∼ N(0.6, 0.32)
(58)

(i.e., Z = 2) and the vertices

A(l)
op(ξk) =





0.6 0 a(l)
2k

−0.4 a(l)
1k 0

0 −0.4 −a(l)
1ka(l)

2k



 ,

B(l)
op (ξk) = [1, 0, 0]T (l = 1, . . . , 4),

a(1)
1k = a(3)

1k = ξ1k, a(2)
1k = a(4)

1k = ξ1k − 0.3,

a(1)
2k = a(2)

2k = 0.6, a(3)
2k = a(4)

2k = ξ2k (59)

(i.e., L = 4) for the open-loop system (3), (43)–(45).
This system was dealt with in Hosoe et al. (2018) and its
A matrix Aop(ξk; θ) can be identified with the uncertain
random matrix (5) under θ(1) = (1− δ1)(1− δ2), θ(2) =
δ1(1 − δ2), θ(3) = (1 − δ1)δ2 and θ(4) = δ1δ2.

We first briefly revisit the numerical results obtained
in the earlier study (Hosoe et al., 2018) for the above
system. In the earlier study, we carried out synthesis
and post-synthesis analysis through approximating the
distribution of ξ0 with its samples (i.e., with the em-
pirical distribution), although the details are omitted
not to make the arguments verbose. Such a sample-
based method then led us in the study to the gain F =
[−1.4267, 2.9341, 0.0609] as the optimal solution (i.e.,
that minimizing λ) for the synthesis under 100 generated
samples of ξ0 (and some restriction on mappings corre-
sponding to W (l) in (49) and (50), which was needed at
the numerical stage in association with the calculation of
the confidence level in the post-synthesis analysis). The
computation time for this synthesis was 70.06 s under the
environment with MATLAB, YALMIP (Löfberg, 2004)
and SDPT3 (Tütüncü et al., 2003) running on a laptop
equipped with 8.00 GB RAM and Intel(R) Core(TM) i7-
5600U CPU @ 2.60 GHz; we also used this environment
for computations in this paper. Since the above syn-
thesis result depended on the generated samples, post-
synthesis analysis was additionally performed with 1000
different samples of ξ0, and λest = 0.7492 was obtained
as an estimate of the true minimal λ (denoted by λmin)
satisfying the earlier robust stability condition (with a
restriction on mappings); this estimate corresponds to
that of an upper bound of minimal λ satisfying (6) for all
θ ∈ E4. With that estimate and some other information,
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the confidence level for λmin < 1 (i.e., robust stability)
was calculated and confirmed to be sufficiently high.

For the same system, we next design a robustly stabi-
lizing gain F with Theorem 4. Before solving the LMI,
we need to calculate the LMI coefficients Ȳ (l)

1 , Ỹ (l)
A and

Ỹ (l)
B (l = 1, . . . , L) given by (54)–(57). This calculation

can be numerically performed with MATLAB and Sym-
bolic Math Toolbox, and we obtained all the coefficients
in 38.38 s under the computation environment described
above. The associated ranks m̄l became 2 for l = 1 and
2, and 4 for l = 3 and 4, which are less than the worst
case value n2+nm+1 = 13 in the sense of the size of the
expectation in (56) for the present situation. With such
coefficients and As = 0, we minimized λ under (51) and
(53) through a bisection with respect to λ. Then, we ob-
tained 0.6837 as the minimal λ, and the solution leading
to the gain F = KV −1 = [−1.0678, 2.5312, 1.6770]. In
the bisection for the synthesis, we solved the LMI seven-
teen times, and the average time of the single LMI com-
putation was 0.3079 s. Since the above value of minimal
λ is the result obtained under the fixed As (i.e., under the
constraint on the S-variable), the post-synthesis analysis
using Theorem 3 without such a constraint might pro-
vide us with a less conservative result. Hence, we numer-
ically computed the minimization of λ under (26) and
(42) in a fashion similar to the above synthesis. Then,
we obtained 0.6806 as the minimal λ, which is less than
the value obtained at the synthesis stage.

As we can see, the new robust stability analysis and syn-
thesis framework successfully provided a better result
(i.e., smaller λ) than that in Hosoe et al. (2018) revisited
above, despite no need to use the sample-based method;
the value of minimal λ obtained in the new framework
is not an estimate, and readily corresponds to an upper
bound of minimal λ satisfying (6) for all θ ∈ E4. Possi-
ble reasons for this improvement could be attributed to
a quality issue of the generated samples of ξ0 in the ear-
lier study and the use of less conservative inequality con-
ditions in the new framework; in the present situation,
the latter reason is related essentially only with the re-
striction on mappings needed to introduce in the earlier
study, since we took As = 0 above (recall the arguments
below (50)). In summary, we can say that although the
earlier framework has an advantage that the exact model
of the distribution of ξ0 is not necessarily required (since
only samples of ξ0 are used), the new framework pro-
vides us with more accurate and less conservative results
when the LMI coefficients can be calculated.

Remark 3 In the synthesis using Theorem 4, we have a
degree of freedom in the selection of As. By exploiting this
degree of freedom, we can actually further improve the re-
sults in the new framework. As we can see from (48), S1

and S2 in Theorem 3 correspond to GAT
s and G, respec-

tively. Hence, if we take As = (S−1
2 S1)T with S1 and S2

obtained in the post-synthesis analysis, and if we design

the gain F with such As again, we can guarantee that the
obtained result at least does not become worse than that
in the analysis (since a trivial solution always exists). By
using this idea once in the above numerical example, we
obtained F = [−1.0494, 2.5652, 1.8049], which led us to
0.6794 as the minimal λ under (26) and (42).

6 Conclusion

This paper proposed a technique of using two key lem-
mas for linearizing parameter-dependent inequality con-
ditions with decision variables contained in the expec-
tation operation for discrete-time linear systems repre-
sented with random polytopes. As a demonstration of
usefulness of the technique, we derived with the lem-
mas new numerically-tractable LMI conditions for ro-
bust stability of the systems. The obtained LMI con-
ditions correspond to a solid stochastic counterpart (in
other words, a generalization in the stochastic sense) of
one of the latest robust stability results for determinis-
tic systems (Ebihara et al., 2015). Hence, they enable us
to achieve the same level of robust stability analysis and
synthesis as such latest deterministic systems results,
despite our dealing with systems represented with ran-
dom polytopes. The improvement of the inequality con-
ditions from the viewpoint of conservativeness was nu-
merically confirmed through comparison with our earlier
result. The proposed linearization technique is expected
to contribute to deriving LMI conditions not only for
the present robust stability problem but also for other
robust control problems, and would facilitate the future
development of the LMI-based control framework for the
systems represented with random polytopes.
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