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Benefits of the Adaptive algorithm for
retracking altimeter nadir echoes: results from
simulations and CFOSAT/SWIM observations

C. Tourain, F. Piras, A. Ollivier, D. Hauser, J@id3on, F. Boy, P. Thibaut, L. Hermozo, C. Tison

Abstract— The accuracy of sea surface parameters retrieved
from altimeter missions is predominantly governed g the choice
of the so-called “retracking” algorithm, i.e. the nodel and
inversion method implemented to obtain the surfac@arameters
from the backscattered waveform. For continuity reaons, the
choice of space agencies is usually to apply thens retracker
from one satellite mission to the other to ensureohg time
homogeneous series. Here, taking the opportunity o& new
configuration of the nadir pointing measurements orboard the
recently launched CFOSAT satellite with the SWIM (Sirface
Waves Investigation and Monitoring) instrument (Hauwser et al,
2020), the retracking method was upgraded, by impleenting a
novel algorithm, called “Adaptive” retracker. It combines the
improvements brought by Poisson et al (2018) for #h estimation
of surface parameters from peaked waveforms over adce,
improvements in the way the instrumental charactestics are
taken into account in the model (mispointing, pointtarget
response) and a more accurate consideration of spée statistics.
In this paper, we first show from simulations carried out in the
instrumental configuration of SWIM that the Adaptiv e algorithm
has better accuracy and performances than the clasal MLE4
algorithm. Then, the geophysical parameters obtairte with real
data from SWIM are analyzed with comparisons to re¢érence data
sets (model and products from altimeters). We shothat this new
algorithm has several benefits with respect to thelassical MLE4
method: no need of look-up tables to correct biasesignificant
noise reduction on all geophysical variables espedy the
significant wave height, and performance of inversin over a large
set of echo shapes, resulting from standard ocearscenes as well
as highly specular conditions such as over bloom sea-ice.

Index Terms— retracking algorithm, CFOSAT, SWIM,
validation, nadir, altimetry, radar, ocean

|I. INTRODUCTION

In satellite altimetry, the return echo resultsnira series of
pulses reflecting the Earth’s surface. Geophysiadhbles are
obtained from the on-ground processing by inversibrihe
backscattered echo, using a method called « rétigek For
observations over the sea surface, this methoddinalytical
model described by [1] as the convolution of a Pdiarget
Response (PTR), a Flat Sea Surface Response (F®8Rhe
Probability Density Function (PDF) of the scattgriglements
of the elevations. Historically, the first retrasgimethod used
for oceanic surfaces was the so-called MLE3 [2]vigliog
three parameters: the epoch, defined as the positio the
signal in the analysis window with respect to thacking
reference point (which is then converted in sefasarheight
SSH), the normalized radar cross-sectiynand the significant
wave height SWH. After the launch of Jason-1 in22@ad to

better account for attitude effects, the MLE4 waisoduced
[3], providing the same 3 parameters as the MLHEGs the
slope of the trailing edge of the waveform. Howeubese
retracking algorithms show several known limitatiormhe
major one is the need for look-up tables [4] to pensate the
error made by modeling the point target response ®gussian
function. Furthermore, the likelihood function used the
estimator is equivalent to an unweighted least igastimator
[2, 4]. This means that the optimization does naipprly
account for the speckle noise statistics impadtiegyvaveform
and introduces significant noise on the retrievathmeters.
The state of arts of
improvements dedicated to non-water surfaces. |@Ebhsed
on the Offset Centre Of Gravity (OCOG) method [Bproves
robust for nonstandard waveforms such as thoseudrety
encountered over continental waters [6]. Its owtjawe limited
to range and®. ICE-2 [7] is based on the fitting of a simplified
Brown model [1] around the leading edge for clessarean
geophysical parameter, and ice and land-orientednpeters
estimation based on the trailing of the wavefortrprbvides
information over land and ice surfaces. Howevegracean,
performances are lower than ocean oriented retra¢kach as
MLE3 and MLE4). ALES [8] is designed to be appliedth
over open and coastal ocean, as it adapts the widthe
subwaveform according to the SWH.

A new algorithm, named “Adaptive”, was developed @lyfor
ENVISAT data processing to improve the continuity o
performances of sea level inversion between opearo@and
arctic leads. One of its key advantage is the thtetion of the
mean square surface slope of the dominating refeesurface
(ms3g as a parameter influencing the trailing edgehefécho.
This better constrains the retrieval of the norpeli
backscatter (which is related mnessin specular backscattering
conditions) and provides better fits on echoes froighly
reflective surfaces such as sea-ice. Finally, thgmation
procedure proposed in [9] allows to better accdanspeckle
noise characteristics. This is important for aihaéter missions
but even more important for SWIM because of itatreély
lower sampling rate of downloaded waveform (4.5ikktead
of 20 Hz in standard altimeter missions) and héower spatial
resolution and noisier compressed 1Hz data.

In this paper, we propose a modified version of Aldaptive
retracking method of [9], by extending its modeltéie into
account the real Point Target Response (PTR) oéltiraeter
measured in-flight. We also propose another impre@ on
the approach of [9] by using the mispointing as iaput
variable, motivated by the specific configuratidrttee SWIM
instrument on board the recently launched CFOSAS3sioin

retracking methods also covers
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[10,11], which provides a systematic estimatiomigpointing
angles estimated from the off-nadir observatiorst tan be
directly used for the nadir pointing observationdagtive
retracking.

This paper aims at demonstrating the interest aodisg the
performances of this algorithm. It is illustratedittw
CFOSAT/SWIM nadir data, but conclusions are moneegal.
In the following, we will present a performance lgges of this
novel Adaptive retracking algorithm based on bathusated
and real data sets. As the SSH is not a variahte tprovided
to users in SWIM products, this paper focuses oHSANdG°.
It is organized as follows: in section Il, the makhmaracteristics
of SWIM and its raw data are summarized. In sectibwe
recall the theoretical background of the currertaking
algorithms (used in ground-segments of space agenand
present the modifications brought by the Adaptietacking.
Then in section IV, simulation results obtained fan
observation configuration similar to SWIM are dissed to
illustrate the improvements brought by the Adap#igorithm,
in comparison to the MLE4 algorithm. In section the
performances of the Adaptive Algorithm are asseese8WIM
real data by comparing results from the Adaptive ttve MLE4
methods. In section VI, SWIM geophysical produditamed
with the Adaptive algorithm are compared to modgpats and
altimeter products at cross-over points to assdssr t
performance with respect to independent data ¥étstinally
conclude and give perspectives in the last section.

1.  SWIM NADIR MODE CONFIGURATION

The CFOSAT program [10] is carried out through ep=ration

acquisition of the signal on the non-nadir beantss Theans
that the native data cannot be analyzed at higld (H2)
frequency, and that the noise on the post-processed values
provided at 1 Hz is larger than for other altimetéssions (for
a same instrument characteristics). Therefore, ifspexffort
must be done to avoid additional noise on the eetd
parameters due to the inversion.

Another specificity of SWIM on-board CFOSAT is thide
mispointing angle is provided, as an ancillary infation, by
the off-nadir beam at the same frequency as thefeaw (4.5
Hz). The method to estimate the mispointing is ax@d in
[13]. This information is particularly importardgrf SWIM as it
was shown that the mispointing varies slightly witie look
angle during the rotation of the feed horn plateau.

I1l. THEORETICAL BACKGROUND ON NADIR RETRACKING AND

DESCRIPTION OF THE ADAPTIVE METHOD

The general principle of usual retracking algorighi is to fit
a waveform model to the real signal received byinkument.
The inversion (here-after called estimation proce}lis carried
out by using minimization of a likelihood functiomyhich
characterizes the distance between model and @igers.

In this section, we recall the historical backgrddior both the
MLE4 and the Adaptive method and describe the @sofor
the inversion procedure.

A. Theoretical background and MLE4 echo model

Here we first describe the theoretical backgrouwndte model
used in the commonly used retracker for oceanidases

between the French and Chinese Space Agencies (@GN&S (MLE4), then the specificities of the Adaptive mbdee

CNSA respectively). It aims at characterizing theean
surfaces to better model and predict the ocearesstahd
improve the knowledge in ocean/atmosphere exchaimpsa
over continental surface are also available fordistl on
continent.

The CFOSAT satellite was launched on 2018 OctoB&nath

detailed in section Il B.

The signalS(t) received by the instrument is given by the
following double convolution [1, 15]:

S(t) = FSSRY) * PDF(t) * PTRY) (1)

on-board two scientific Ku-Band radars: SWIM, a ina@hd where FSSR is the flat sea surface response, PDE mirface
near-nadir wave scatterometer [11] and SCAT, a winglevation probability density function of scatteyielements,

scatterometer [12]. CFOSAT has a sun synchronob# orpTR is the radar system point target response *aisl a
repetitive with a 13-day cycle, its altitude andlination are convolution product.

respectively 520km and 97.4° Although CFOSAT is mot
standard altimeter mission, SWIM includes a nadinfing

designed to measure SWH aafl as classically carried out
from other altimeter missions. In contrast, neitierepoch nor The surface elevation probability density functadrscattering

1) Probability Density Function: PDF(t) function

SSH, was specified as a variable to be providedéoss. SWIM
has also five beams pointing near nadir to estirdatetional
spectra of ocean waves [11, 13]. The six beamsiliate the
surface sequentially at 0°, 2°, 4°, 6°, 8° and ih@fdence with
respect to nadir, with a scanning geometry (see13]). Due
to this specificity the nadir waveform sampling skghtly

different from standard altimeter missions: althotige number
of raw samples considered in the on-board intedratdo is
larger than that of standard altimeter missiong} (@&tead of
90 for Jason missions), the mean waveform aftebaard

processing is provided at a 4.5 Hz rate, insteacsoélly 20 Hz
in standard altimetry. This is because time ismask for the

elements, is given by Eq 1.28 in [16], considernigurth order
development:

1

PDF(n) = Tomo

exp(-D)[1+ 2@ -3 +E@ -en+3)] (2)
n being the height normalized by the standard dieviatf wave
heightsos [16]. It is also characterized by the skewnegthird
order moment) and the kurtosks (fourth order moment).
Brown [1] approximates this expression by a Gausgiadel

with As=0 and Ks=0. Hayne [15] uses a non-null skewness

coefficientis.
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2) Point Target Response: PTR(t) function B. The Adaptive echo model

The radar point target response is generally eSpte®S a The formulation proposed in [15] shows limitatidnghe case
square sinc function that results from the decamtiarh of the 4 geq ice and leads. Based on the FSSR modelapeetby
emitted chirp (linear modulation of the frequency.tv the  amarouche (118, 19]), a modified formulation of tR8SR was

time) [3]: , proposed in [9]:
. t
() o
PTR(Y) = 5 3) FSSR(t) = AP exp [-=(2)] 1, (pt"/2) 7
TTs
] ) ) Where T =—Y™% and mss: mean square slope (7a)
WhereTs = 1/B is the sampling period arRithe radar system 4mss +y

reception bandwidth.
Brown [1] approximates this expression by a Gaussiadel
which according to [3, 16] leads to:

The main evolution in this model with respect t@ thmost
classical expression of (6) is that surface charstics effects

_2 are taken into account through timess parameter in the
PTR(t) = P <_Z> (4) exponential parameter (and not only through theliamle of
2moy, 203 the signal), allowing a far greater flexibility &mapt to specular
echoes (see section V). Indeed, the Amarouche husés the
With g, = 0.513T's related to the PTR width aBdB [17]. following ¢° modeling:
3) Flat sea surface response model: FSSR(t) function 6°(0) = 6°(0)exp(— Sinz(e)) ®)
mss

The final formulation of the model commonly used ir

conventional altimetry is derived from the Browndeb[1]. In where® is the incidence angle fr.om'nadir ami}sthe il
this formulation, the flat sea surface impulse oese in (1) is SAuare surface slope of the dominating reflecturéase in the
given by: altimeter footprint [9]. However, this formulatioas used in

[9] does not take into account the off-nadir anglentrary to
ct /4 y the original Brown model [1].
FSSR(t) = AP exp [_I (; cos2¢$ + “)] Iy (ﬁt 2) (5) Therefore, we propose to use the full expressigh@Adaptive
model as described in [18], allowing to specify thispointing
Where: as an input. (7) stays as it is but with thparameter replaced

) _ —4sin’g by:
A =exp (—Y ) y

- Y ha sin? (92—") with 8, : 3dB antenna beamwidth

- P: amplitude of the signal

- h: satellite altitude

- & s the absolute off-nadir pointing angle (9) is equivalent to (7a) when the mispointing angs
- a is a function of the radar observed surfac@eglected.
characteristics, mainly the mean square slope.

4y mss

9)

" 4mss cos28+y

- I, Bessel function Finally, the formulation of the analytical modeledsin the
1 Adaptive is the following:
4 2 .
- B=2(5) sinzg 4,
A t—1— THOs

Op

) ) S() = — [1+erf

Haynes [15] ignored the parameter, assuming that sea surface 2 V2o,

roughness cannot be null. The expression is thepligied 4c 2¢

from (5) to (6). X exp [— Th (t —-T— EGSZ)] + N, (10)

ct (4 1 Where:1 is the epoch, anMtis the additive thermal noise.

FSSR(t) = APexp [_I(; cost)] I, (,Bt /2) (6)

Itis similar to Eq. (5) of [9], but withs replacing the composite
variable g, of [9] (g, = (05* + 0,2)'/?) by imposing a null

The final formulation of the return power, considgrthe value of the PTR-related varianeg,?. This reduces the

skewness coefficient and a Gaussian approximafitmed®TR  analytical model expression (1) to the only contioh of the

is an analytical model described in [15] and [164 & the one FSSR with the PDANdeed, in the Adaptive algorithm, the PTR

used in the ground-segments of space agenciefddVILE4 s prought numerically by convolution.

algorithm. The final formulation of the model used in the Athe®
retracking, here after called the “Adaptive modsltherefore
a semi-analytical model, based on the analyticatession (10)
and a numerical PTR.
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C- Likelihood function and minimization procedure

The most commonly used minimization proceduresbased
on a likelihood estimator (like MLE), in order take into
account noise associated to the data in the iroregiocess.
Indeed, radar data is corrupted by a multiplicatspeckle
noise. To reduce the impact of this noise affectearh
individual echo, a sequence of consecutive pulseséraged
on-board. Assuming pulse-to-pulse statistical imsglence,
the resulting speckle noise follows a Gamma distidn
depending on the number N of averaged individuddgsu A
likelihood function can be derived from these stats [20],
and is expressed as:

€ =cst+NEIGEE— (N = D IS5 In(id) + N TS5 In(S,) (12)

Where y, is the measured waveforn§, the modelk the
waveform sample number within K samples, astda constant.

In common conventional altimetry processing suchttes
MLE4, a simplification of (11) is often applied foWing
expression (12) which is a more classical leasasgi@stimator.

C =YrZoWk — SK)* (12)

This is not optimal as it does not account for eqisoperties of
the measured variable and this can have an impaitteofinal
noise on the retrieved parameters.

D- The Adaptive algorithm for CFOSAT/SWIM

The first specificity of the algorithm selected BWIM is to
choose the Adaptive echo model from (10) with theameter
I given by (9), considering a Gaussian model forghdace
elevation probability density function (null skevesés and

kurtosis Ks in (2)). When applied on SWIM real data, the

The third specificity is to minimize the model bging the
likelihood estimator (MLE) from (11), i.e. takingtb account
the noise properties of the radar echo. This fierdint from

most of the MLE4 algorithms implemented for thereuat

altimeter missions, which use the simpler leastsgestimator
(LSE) given by (12).

A numerical scheme is required to inverse the stiadil
estimator function. Two main algorithms are used in
conventional altimetry. The first one is the Newfaphson
algorithm. It minimizes the cost function by a geat descent
approach. The second algorithm is a geometricahodetalled
the Nelder-Mead algorithm [21]. It is a direct sgamethod
(based on function comparison) and is often applied
nonlinear optimization problems for which derivatsvmay not
be known.

The Newton-Raphson algorithm has the advantage of
converging in a reduced number of iterations thatukshe
gradient descent method. To do so, the cost fumaiitd its
derivatives must be estimated. The Nelder-Mead ritlgo
needs more iterations, however only the cost fonathust be
estimated, which simplifies the implementation egdices the
number of operations at each iteration.

Therefore, for SWIM nadir processing, the Nelderade
method has been selected as the optimization #iguari

In the SWIM products, the outputs of this inversiame the
SWH estimated from thess parameter of (10) and the
normalized radar backscatt@®, constrained by both the
received power P and tiieparameter of (6).

The improvements brought by each of these evolstigith
respect to the classical MLE4 algorithm are detaile the
following sections.

IV. THEORETICALBENEFITS OF THE ADAPTIVE ALGORITHM
BASED ON SIMULATIONS

In this section, a simulated dataset is used tesashe
proposed method based on (10-11) and to compare its

mispointing angl€, is fixed from off-nadir angle estimations performance to the more classical retracking aflgors. We

provided independently from the off-nadir beam obatons
of SWIM (see [13]). Parameters estimated are tthesepoch
7, the standard deviation of wave heighisthe amplitude of
the signalP and the mean square slapss.

The second specificity of the algorithm proposehiethat we
choose to use the real in-flight PTR of the insteatal, by
convolving its discretized values numerically te @nalytical
model given by (10).

We will see further below that this choice is sfgmnt as it
enables to estimate the geophysical parametersutigmy bias
correction to compensate from the Gaussian appiatiom of

the PTR. Furthermore, it can take into account nhtural

ageing of the instrument and its potential effdsides lobe
dissymmetry, evolution of the position of the maxim of the
PTR, ..). Indeed, for SWIM as for most altimet¢he PTR is
measured regularly through an internal calibrats@guence
mode [13]. Therefore, the PTR used as input ofithaptive is
updated along with the calibration sequences, tiovothe

instrument’s ageing as close as possible.

consider four configurations, as detailed in
Table 1below.

Brown Gaussian LSE
Model

Brown Real LSE

Brown Real MLE

Adaptive Real MLE

Table 1:List and specificities of the different retrackisgjutions
considered in the trade-off.

A. Simulated data set and method

The dataset was generated by modeling waveformsdbais
the analytical Hayne model according to (6) conedlwith a
real point target response (PTR). This latter ve&en from a
measured PTR of SWIM dated from August"22019. The
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simulations parameters are based on the CFOSAT gfepm
and SWIM instrumental characteristics. They aregiw Table
2. Note that no mispointing is considered in thaissulations.
Here we generate directly 4.5-Hz averaged wavefpsmshe
speckle noise is applied to model waveforms thrau@amma
law (1/N, N) with N=264, corresponding to the reamber of

SWIM samples accumulated at this 4.5 Hz frequenC)é

Simulations are generated for different SWH valdesn 1
meter to 8 meters, with a step of 1 meter. Roughnes
considered as homogeneous in the footprint. Foln s&p, a

- The average bias per SWH step, i.e. the mean
difference between the simulation input parametdr a
the result, over the 10 000 draws.

- The estimation noise per SWH step, i.e. the mean
standard deviation over the 10 000 draws.

Impact of the Point Target response: R1 versus MLE4

As already described, the conventional operatioe@hcking

random draw of 10000 gamma laws is generated aed thelgorithm considers a modeled point target responsgech

multiplied to the modelled waveform. The thermaisedbeing
an additive noise, itis thus applied posterightospeckle noise

multiplication step.

SWH = 2m SWH = 4m

160+
140+
120+
100+~
80
60+
40+
20F
0

Value (FFTpu)

. L
60 80

Samples

8 80 100 120 a0
Samples

a0

SWH = 6m SWH = 8m

160F
140+
120+
100+~
80
60+
40+
20+
0

Value (FFTpu)
Value (FFTpu)

e . | 1
60 80 100 120
Samples

60 80 20 40
Samples

Figure 1: Example of waveforms simulated for fowrbsteps (2m,
4m, 6m and 8m), after application of speckle naise thermal noise.
The Y axis represents the amplitude in FFT powésun

20 40

Altitude (Km) 550 | Amplitude (p.u) 160
Bandwidth (Hz) 320 Thermal Noise (p.Ui) 1.0
Sampling Freq. (Hz) 400, Skewness -0j1
Ant. Beam (°) 1.51| Off-nadir angle (°) 0
Nb of samples 256| First useful gate 64
Ref. Abscissa 108| Last useful gate 192

Table 2: Simulation parameters

The resulting datasets are then processed by tinedtracking
algorithms presented ifable 1

The first one corresponds to the MLE4, which is terent
operational conventional altimetry retracking alfon. Then,
components are modified one after the other to rebstheir
impact on the estimation performances.

To assess the performances of all three configanstithe
following diagnosis are performed:

implies the use of look-up tables [14] to compeasitVH and
o’biases. As shown in Figure 2, considering thepeilt target
response through a convolution (method R1, orangees)
instead of a Gaussian model (method MLE4, blackes)r
improves remarkably the fit of the modeled wavefavith the
signal. The differences between modeled wavefordneahoes
simulated with R1 (orange curve) are significastiyaller than
with MLE4 (black curve). This especially visiblerfine leading
edge (samples from 30 to 50). Note also that agogtd Figure
2, the improvement increases when SWH decreasesieVsl
mean values given in Figure 3a, show that with Bar{ge
curve), the bias on the retrieved SWH is very ld@sg than
1lcm), in opposite to MLE4 (blue curve). This intiegly
shows that when using the real Point Target Responshe
convolution product, no more look up tables aredeeefor
correcting this parameter after inversion. As fer tmean value
of o° (Fig.3b) we observe no significant difference begw the
MLE4 and R1 solution: a bias of 0.25 dB is found fmth
configurations. This was expected because the @auss
approximation of the PTR have a low impact on ffligameter.

C. Impact of the likelihood function: R1 vs R2

As illustrated in Figure 3, the implementation loé¢ tikelihood
function (10) (R2 : orange curve ) induces a 60%se&0
reduction on SWH and 11 % of, with respect to a least square
estimator (R1: red curve). The solution with R2 oals
significantly reduces the bias as?, providing a null bias
(compared to 0.25 dB for R1). Indeed, by using RkhieE
likelihood criterion, the speckle law statistics teken into
account, allowing not only to reduce the estimatioise, but
also to better fit the trailing edge of the waveforeducing the
remaining smalk® biases to almost zero. The same effect is
expected on the SWH parameter, even though it & no
significant enough to be visible on these simutaioHence,
these results show that to be fully free from lagktables, the
introduction of the real PTR is the most approgriat get rid

of SWH bias, while the MLE likelihood criterion isore
appropriate to get unbiasetl

- Waveform residuals (the average difference between

the model and the signal) for each SWH step, tessss
the quality of model fitting.



TGRS-2020-00495

SWH = 1m
8_ 24 — MLE4
t — R1
L o4
]
o
© 21
> T T T T T T
0 20 40 60 80 100 120
SWH = 3m
3 27
'_
w
L oo "/\0%7 A
]
=)
© -2
> T T T T T T
0 20 40 60 80 100 120
SWH = 5m
2 27
=
w
L ool oo ’
]
=)
© 21
> L T T T T T
0 20 40 60 80 100 120
SWH =7m
3 21
|_
w
w o____—@gmw__
]
2
© -2
> T T T T T T
0 20 40 60 80 100 120
Samples

SWH = 2m
24
04
-2
0 20 40 60 80 100 120
SWH = 4m
2
o ——NA L (-
-2
0 20 40 60 80 100 120
SWH = 6m
2
0 A S Snd W— —
-2
0 20 40 60 80 100 120
SWH = 8m
2
OA___@Q@W A~
-2 4

20 40 60 80 100 120
Samples

Figure 2 : Differences between modeled waveform and siedlathoes over all samples for a retracking prangssith MLE4 algorithm
with modeled PTR convolution (black curve) andr&facking with real PTR convolution (red curveheTY axis represents the amplitude in
FFT power units.
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Figure 3 a) SWH biases b) biases ¢) SWH standard-deviatiors8tandard deviation. Statistics retrieved from MLEHie), R1 (red), R2
(orange) and Adaptive (black) algorithms. Note timai(d), the orange curve for R2 is hidden bettmelblack one
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. . . V. ADAPTIVE VERSUSMLE4: RESULTS OBTAINED ON REAL
D. Adaptive model vs Brown model: Adaptive vs R2 CEOSATDATA

Figure 3 shows that the Adaptive (black curves)RRdolution .

(yellow curves) show equivalent performances imteof bias The qm‘erent results presente_d above _have_ led cughe
for both SWH ands®. This is expected because the mai election Of. the so called A.daptllve retracking atgm for the
difference between the Adaptive and R2 is the thtation of WIM ntad’\||r tdattr; |ct)roA%esst|_ng |ntthek_NRT ?FO?}/—\tTV\?r:ound
the mssin the o® formulation. In the case of classical oceani¢c9Ment. Note that Adaptive Tetracking refers belowne
echoes such as the simulated dataset used inetttiers the configuration desc.rlbed In section I.”'D. combinediwthe
introduction of thensshas negligible impact on the biases. Nelder-Mead algorithm for the minimization process.

The main difference is for the® rms error where a noise In this section, we compare the results optainemﬁlje same
reduction of 20% is observed compared to R2. Ataéx@d just SWIM data set_usmg the Adaptwt_e algorithm on okie &ind
before, this is due to the fact that in the Adaptivodel, the° the MLE4 algorithm on the other side.
formulation considers thenssparameter (8); therefore it is
better constrained by the echo shape. In factntikeest of the A. Description of the data used
Adaptive model with respect to Brown model is thesmn
significant on peaky echoes processing. This istiated in \yg yse here two different datasets, both obtaimetBadays of
Figure 4, which shows a simulated peaky echo and theposaT data (1 orbital cycle): the first datasenteins
corresponding models for both MLE4 and Adaptivea@king.  aqaptive retracking outputs, obtained directly frtva ground-
The MLE4, aimed at processing ocean echoes, trig8gment products. The second dataset contains MLE4
unsuccessfully to fit the Brown model,_ Where_as_/Nuiaptlve retracking outputs, obtained by applying off-liree tMLE4
model perfectly fits the _waveform, proving its dtlyiko retrack processing on the 5Hz nadir SWIM echoes, for theqse of
echoes that are not typical ocean diffuse echoes. this demonstration. The cycles chosen for thisyaislare the
cycle 5 and cycle 16, covering respectively thequsr from
2018 December #3to 2019 January §5and 2019 May 15
to 2019 May 28.
To consider comparable datasets, SWH look-up taldes
been computed to compensate for the error madey usin
600 1 Gaussian approximation of the PTR in the MLE4 Xea.
These look-up tables have been computed usingrthéagions
described in section IlI.A, for SWH values from B2 to 12m
with a step of 0.25m. This correction on significevave height
varies between 15cm and 20cm (Figure 5) and hasdmaied
200 to the SWH MLE4 dataset for the analysis preseitethis
section. Note that no look-up tables have been cbedphere
L for the 6° parameter, as they are usually considered negligibl
and not used in the operational MLE4 products.
0 20 40 60 80 00 120 Results also include comparisons to models, intatpd at
Samples SWIM resolution.

800

—— Simulated WF

FFT p.u
H
3

0.30 N —

—— Simulated WF 0.05
---. Fitted Model MLE4 10 12

--- Fitted Model Adaptive
04
» \////

8 10 12

SWH STD (m)
o
w

T T T T T 0 2 4 s
35 40 45 50 55 60 65 SWH (m)

) . . ) Figure 5: MLE4 Look-Up tables for Significant Wadeight
Figure4 : A simulated peaky echo (upper plot) and the coordmg
models for Adaptive (red) and MLE4 (blue), zoomethe useful part
of the signal (lower plot). The Y axis represehtsamplitude in FFT

power units.
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B. Fit of the waveform

To assess the quality of a retracker's waveformtlie MSE
(Mean Squared Error), also called MQE (Mean Quéadrat
Error) is computed. The comparison of MQE obtaibetiveen
MLE4 and Adaptive, illustrated in Figure 6, shole superior
Adaptive performances: in average, the Adaptive MQB&%
lower than the MLE4 MQE with a similar standard id¢ion

C. Significant Wave Height

Figure 7 shows the differences between the SWHnpeter
(MLE4 or Adaptive) retrieved from altimetry and frothe
ECMWEF model, interpolated at the altimeter resolutiover
data from cycle #16 (13 days). Both solutions shdew mean
bias (~1cm for MLE4 and ~3cm for Adaptive), confing that
no look-up tables are needed for the Adaptive.dditeon, the

(Fig 6a). The map of the differences (Fig 6b) digpl only Adaptive measurements show a 40% lower standaricto®v

positive values, meaning that the Adaptive fit i® a
improvement compared to the MLE4, over all regiofishe
planet. This improvement is heterogeneous and rdiffe
patterns appear, correlated with the roughnestektrface,
which is a consequence of two main differences he t
algorithm. Firstly, by considering the real PTR dife
instrument, the fit on the leading edge is largeigroved with
the Adaptive model compared to MLE4 (Figure 2) amtjgzular
at low to moderate sea-state conditions. Secoadlmentioned
before, one interest of the Adaptive method is éttdr fit
nonstandard peaky echoes as observed on highlylspec
surfaces such as bloom events or marginal ice theeocean,
thanks to the inclusion of a parameter relatedhto durface
characteristics (namely the square sloy®3 in the exponential
term in (10).

CFOSAT Cycle 16

ADAPTIVE

Mean = 0.000952 | STD = 0.000207
MLE4

Mean = 0.001374 | STD = 0.000272
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150000 -

125000+
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0.0‘010 0.0blS
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50000+
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e L L
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CFOSAT cycle 16 -- Mean Quadratic Error differenceég'M

32°s

i i | | o —
0.00040 0.00042 0.00044 0.00046 0.00048 0.00050

MQE MLE4 - MQE ADAPTIVE
Figure 6 : Histograms of MQE Adaptive (Blue) and BAL(Red)
(Upper plot) and gridded map of the difference @®between
MLE4 and Adaptive (lower plot) for CFOSAT cyclel6

PR I -
0.00036 0.00038

compared to the MLE4 solution, which is consisteith the
results presented in section IV.

CFOSAT Cycle 16
MLE4
Mean = -0.0003 m | STD = 0.478 m

\ Adaptive
| Mean = 0.0345 m | STD = 0.370 m
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Figure 7: Histograms of SWH differences between M{IEJTs
applied) and ECMWF (orange), and Adaptive (No LUars)
ECMWF (green) for CFOSAT cycle 16
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A spectral analysis on the SWH parameter, perforrued
MLE4 and Adaptive, is illustrated in Figure 8. Témectra are
obtained from continuous series of SWH values altvagk

(segments of 700 km long). Noise levels can be ctetpusing
the following formula:

Ps
* AT

Noise Level (cm) = >

WhereAt is the resolution sampling (1.4km for 5SHz CFOSAT
data), and P is the power spectrum computed after the
averaging of several individual power spectra otsdi on
independent data segments [22].

For MLE4, the 5Hz noise level is equal to 36.8crheveas the
Adaptive 5Hz noise level equals to 21.7cm. Hende t
Adaptive reduces the SWH noise level by 41% conmptoehe
MLE4 solution. The results obtained on simulatigssction
IV) predicted a 60% noise reduction, however tisdseilations
did not take into account the 4.5Hz sampling rétthe SWIM
products, which is not enough to reach the “instntal
plateau” or white noise, that can be observed dftzXpectral
analysis [23]. A similar comparison, done with JaSodata
(not shown here), shows a 60% SWH noise reduction.
Nevertheless, the current Jason-3 instrumentalenois the
SWH parameter, retrieved with MLE4, is around 50@3],
meaning that SWIM SWH is 60% less noisy than theecu
Jason-3 SWH product.
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CFOSAT - Cycle 16

— ADAPTIVE
— MLE4 .

10+

36.4cm

SWH Spectrum (m2.km)

22.2cm
107 E

A i
102 101 10°

WaveNumber (1pkm)
Figure 8 : MLE4 and Adaptive SWH spectral analyBi&E4 in
orange, Adaptive in blue). For the MLE4 spectrumoktup tables
are accounted for. Noise levels are computed fdin Bolutions.

107

D. Backscattering coefficienf

Similarly to the along-track spectra shown for S\WiH-igure

8 , Figure 9 shows the spectra estimated forsthgarameter.
The MLE4 (orange curve) shows a “hump” at spedfiales.

This is a well-known artefact [23] due to a strayagrelation

between the slope of the trailing edge anddhparameter, in
conditions when the MLE4 algorithm is not well suditfor

retracking echoes departing from the Brown modethsas

echoes in rain events, bloom events, marginalcedi 22]. In

opposite, with the adaptive algorithm, tsfespectrum is much
more continuous. This is because, with the Adaptieeel, the
c° parameter is constrained by the trailing edgerantanly by

the amplitude of the echo.

g2 CFOSAT - Cycle 5

— ADAPTIVE
— MLE4

= =
o o
° =

SIGMAO Spectrum (dB.km)
-
o

102

10 102 10!

WaveNumber (1pkm)
Figure 9 : MLE4 and Adaptive® spectral analysis (MLE4 in orange,
Adaptive in blue).

This improvement can be particularly well obsereadspecial
events such as a rain event as illustrated in Eigdr On this
example, we can see SWIM nadir echoes impacted fayna
event, characterized by a significant loss in theldude of
waveforms associated with a decrease in the AGQofAatic
Gain Control) values compared to its classical nmeaalue (19
dB for SWIM) [24]. Even though botls® parameters are
impacted by the rain event, the Adaptive estimétéew the
AGC variations, whereas the MLE4 does not. In tliapgtive
algorithm, the echo trailing edge is constrainedh®emss(and
hencecs?), which enables® to follow naturally the amplitude
variations of the signal, making it a much bettad tompared
to the MLE4 to detect specific events such raircelts. Note
that a rain flag is defined in the nadir produatsing [24]. The
preliminary analysis already shows good consistdretyween
this flag and collocated radiometers.

As explained in [9], the introduction of a parametdated to
the surface roughness allows the retracking of peakoes,
characteristic of specular surfaces such as seafios is
particularly of interest in the Arctic basin whéhe diversity of
surface types can result in complex waveform shapeb
characteristics. Indeed, leads (calm water) angingals (new
sea ice) are characterized by a highly strong paetern. On
the other hand, a uniform cover of sea-ice will mhaihave
stronger signal than ocean, due to the high réfiectof the
sea-ice. But in some areas, the specificities@fdh will imply
a received power similar to over ocean, typicalltha west of
the Arctic basin. The®values retrieved in the Arctic region are
displayed in Fig. 11 for the MLE4 and Adaptive aitfuns.
shows for the same period, the sea-ice concentrpicameter
extracted from ECMWF (Figure 12b) and the sea-igeet
extracted from the OSISAF website for a specifig daring
the period (Figure 12a). As expected, tfeestimated from
MLE4 do not show a good consistency with the sea-ic
characteristics: the retrieveflare lower over sea-ice than over
the ocean and there is no variation visible inAnetic basin.
This is the consequence of the use of the Brownemhadich
was defined for fitting ocean-like waveforms only.
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—— o o o o e e o o

7  CFOSAT Cycle 16 Pass 22

AGC (dB)

SigmaO (dB)

94 o2 N 9.0 85 86 “8.4 7
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Figure 10 : From top to bottom: radargram illustiag power in each waveform bin for the chosen eaaiong-track (color indicates
intensity), Automatic Gain Control (AGC) for thersaalong-track section and for the same along-track section (Adaptive in bM&E4 in
red). The red dotted box indicates the beginning)@md of the rain event.

From 27/04/2019 to 27/05/2019 From 28/04/2019 to 28/05/2019
i\ ¥ 1

120 128 13.6 144 152 160 168 17.6 120 128 136 144 152 160 168 17.6
Sigma0 adaptive (dB) Sigma0 MLE4 (dB)

Figure 11: Gridded maps @f Adaptive (left) and® MLE4 (right) over 30 days of data
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Figure 12 : Daily sea-ice type map extracted fribve OSI-SAF quick-look website website http://dsiset.no/p/ for the day
30/04/2019 (a) and gridded map of sea-ice concéiotifrom ECMWF over 30 days on data (b)

In opposite, the® obtained from the Adaptive retracker (Figure

11 left) shows a qualitative high consistency wtike sea-ice
extent (Figure 12b), and exhibits variations witkiie Arctic
basin consistent with the ice type map of Figwe, With first-
year ice observed in Figure 12a corresponding ¢ohilghest

values ofc®. These preliminary results show that the Adaptiv

model fits well non-Brownian echoes. This openspectives
for studies on sea-ice surfaces, as well as orescaifiected by
rain and/or bloom. Indeed, thanks to its inclinati€FOSAT
reaches a maximum latitude of 82.5 degrees nordjrg it a
good candidate to study the polar areas. As CFO&#eE not
give information about topography, it cannot be duge
compute the sea-ice freeboard. However, as shovendibeve,
o® values have potential to characterize sea-ice, tygch
could lead to multiple sea-ice applications. Fostamce, it
could be used to enrich existing altimeter seaeitent data to
improve the quality of multi-mission sea-ice ext@nbducts.
And this work could be linked to analysis on SWI#-oadir
data which also shows sensitivity to sea-ice ty@me
operational application would be to replace theantrsea-ice
detection based on ECMWF data by a SWIM nadir anltioed
nadir and off-nadir sigma0 processing.

VI. QUALITY ASSESSMENT OF THE ADAPTIVE ALGORITHM

USED FORSWIM BASED ON INDEPENDENT DATA SETS

To complete the assessment of the operational S\WdkA

products which are based on the adaptive algoritrergnalyze
th this section the SWIM nadir data with respednttependent
external datasets such as models, and conventittiraktric

missions.

A. Description of the dataset

This assessment is based on SWIM L2 nadir produwts,
operational processing version V4.3.2, more spelfi the
following parameters given at 5Hzswh_native and
sigma0_nativederived from the Adaptive algorithm, and
wind_native derived froms® thanks to the inversion algorithm
described in [25]. Results include comparisons todets,
interpolated at SWIM resolution as well as compmanss to
altimetric missions (Jason-3 and AltiKa). For tredtdr, a
colocation at crossover points was performed bgimagtg
points when distances are less than 7km along &adktime
differences are less than 3 hours. The cycles chfisethis
analysis are the cycles 21 to 28, covering theoperom 2019
July 28" to October 1.

B. Significant Wave Height (SWH)

Figure 13 shows a 2° x 2° gridded comparison of EWadir
SWH to ECMWF Hs model. As seen on the histogranopn
of the plot, a good agreement is noticed, withabgl bias of
~3cm. The map highlights that the highest bias eslcan be
observed in specific regions corresponding to lowd &igh
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waves (high latitudes and Indian ocean mostly).dvheless,
as already shown in Fig.6 of [13], the mean biasedess than

1 cm regardless of the sea-state and show a masitiye trend
with wave height (from O to about 0.5 m for sigoént wave
height varying from 2 to 7 m) and wind speed (frorro 0.2m
for wind speed varying between 2 and 17 m/s). Weéwe

height bias is negative for small significant wédneights (less

than 1m), null around 2 meters height and posifrehigher
waves (Fig.6 of [13]).

SWH Differences CFO / Model ECMWF

-0.4 -0.2 0.0 0.2 0.4

Figure 13 : Difference between SWIM nadir SWH a@iVE&VF Hs
for SWIM cycles 21 to 24: Map and histogram (gm)to
Mean=0.0362 m, Median=0.0246m, Standard Deviatiod4@8m
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C. Backscattering coefficiemfand wind speed

As already described in [13], the analysis oveadaim cycle
#23 (from 2019 august 140 26") has shown the remarkable
consistency of the® parameter between SWIM and Jason-3
altimeter (Poseidon-3B) which is in Ku-Band, as SWIA
mean difference of only 0.12dB (with 0.4dB standard
deviation) was found in this comparison.

On the other hand, when comparing SWIM results @€und)

to AltiKa results (in Ka Band), biases are obsenesddescribed

in [13]. They are mainly due to the different respe of the
backscattering in Ku with respect to Ka band.

As opposed ta° (see just above) the winds retrieved from the
o? (through empirical relationships relatimd to wind speed
and SWH) are directly comparable between altimetarsn for
different radar bands, provided that the empirmnadels used
for converting c° into wind speed have been assessed
independently. Here we compare SWIM wind to ECMWF
model outputs, AltiKa and Jason-3 data. The winéesp
obtained with SWIM is consistent with the ECMWF mbd
wind speed (Figure 15). The mean difference is 032 and
the standard deviation of the difference is 0.92. fhe highest
differences are observed in the tropics and at kitfudes.

Wind Differences CFO / Model ECMWF

7T —T—T—
1140 - .’/'HI‘ 1“1;‘\‘\
T T T T

The comparison to altimetric data from Jason-3 anc
SARAL/AltiIKa also shows a good agreement. Smallsbs&a
with weak SWH dependencies can be observed in &igyr
except for the points below 1m and above 6m whHer@tmber

of crossover points are much smaller. This smallenber of
points also induces an increase of the standaiidtitavaround
the mean. For this comparison, it is important éterthat the
SARAL and Jason-3 datasets are based on the MltExtker,
corrected using look-up tables, whereas SWIM esémdo not

need any look-up tables as proved in sections B/\an

CFO/(AL | J3) SWH Difference at 3 hours crossovers

1.0
Bins=50cm
~— CFO/AL=3.17cm
~— CFO/)3=-6.77cm
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=
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0 1 2 3 4 5 6 7 8

AL | J3 SWH (m)

Figure 14: Bias between SWIM SWH and two altimetissions
(SARAL/AItiKa in blue, Jason-3 in green) for SWipdle 21 to 28.
Each dot of the solid line is the mean computedbperof 50cm of
SWH and the envelope represents the associatedasthdeviation

-4 22 0 2 4
Figure 15: Difference between SWIM nadir altimeténd and
ECMWF wind for SWIM cycle 21 to 28 Map and histogi@n top).
Mean=0.32 m/s, Median=0.30 m/s and Standard Dem&tD.92 m/s

Compared to the winds provided by Jason-3 and
SARAL/AltiKa at crossover points (within 3 hourscainkm, as
for Figure14) , the winds from SWIM are quite consistent as
shown in (Figure 16). The mean differences (arodma/sec)
can be attributed to the® inversion retrieval algorithms
because they differ for each mission. Furthermfmregxtreme
data (below 1m and above 6m), the amount of dataush
weaker and the metrics though, less stable. FaKa|ltthe
algorithm is based on [26], whereas for SWIM ie&imated
from [25]. In the future, a refinement of the mofizh] will be
proposed based on a 2D look-up tahief(nction of wind
speed and significant wave height) as propose@ih [t will
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be carried out using one year of SWIM data to emsustable
statistical model.
CFO/(AL | J3) Wind Difference at 3 hours crossovers

Bins=50cm
— CFO/AL = -1.25m/s
4 — CFO/J3 =-0.93m/s
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Figure 16 : Bias between SWIM wind and two altimetissions
(SARAL/AItiKa in blue, Jason-3 in green) for SWipdle 21 to 28.
Each dot of the solid line is the mean computedbperof 50cm of

SWH and the envelope represents the associatedasthdeviation.

VIl. SUMMARY AND CONCLUSION

In this paper we have described and validated tfepfive
algorithm proposed to retrieve the significant waegght and
the normalized radar cross-section from radar reattioes. We
have shown from simulations that compared to tlassital
MLE4 algorithm, these parameters are retrieved autlbias
and with less noise (restitution noise reductiof@fo for SWH

and 11% for?). As it is not an output of the CFOSAT product,[Z]

range performances from the Adaptive algorithm hentebeen
detailed in this paper. However, significant impments are
also observed for this parameter on oceanic edheigsamong

other, we can note a 10% restitution noise redoctidgthout

any bias.

When applied on real CFOSAT/SWIM data,
improvements ensure the same level of performaneeaxean
than conventional altimetry missions, in spite lbé tSWIM
instrument lower measurement rate (4.5Hz vs 20Hhjs
indicates that for a given noise level on the raloes, the
geophysical variability can be detected with theaptive
algorithm at smaller scales than with the MLE4 dtad
method. This opens the way to higher resolutioma daialysis
from conventional altimetry missions, which willlfili the
need of end-users to refine regional models atlsnales.

Despite its increased complexity (in particulariiuenerical
convolution with the real Point Target Responsd)e t
processing with the Adaptive retracking methodadspliant
with near real-time production requirements. Faaregle, for
CFOSAT, the processing time is approximately 3 ri@aifor
105 minutes of measurements. Other missions coltwf this
upgrade to improve the whole nadir constellatioa.admatter
of fact, the Jason future reprocessed products indlude
products derived from the Adaptive algorithm asali@rnative
to the MLE4. Both solutions will be available iretproducts.

In addition, we have shown that the Adaptive Alturi
provides improved parameters on specific areas asiciea-ice
or rain impacted surfaces, mainly due to the chatehe
Amarouche flat surface response model. This latteoduces
the mean square slope of the surface as a paraofdter flat

these

13

response, allowing to better invert echoes thatléferent from

the Brown model shape. Although no analysis has loleme

yet on the retrieved mean square slope parameter,can
presume that it will bring complementary information the
surface roughness characterization, especiallarfeas where
the surface roughness changes rapidly, typicallyséa-ice
regions, inland waters such as rivers, and speeifents such
as rain cells and blooms. Thanks to the improvérméithe

retrieved parameters, new applications could adstomsidered
over sea-ice surfaces. CFOSAT SWIM nadir produtfesr @

large dataset to explore the potential of this pssing.
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