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Abstract 

Decision making in dynamically changing uncertain environments is one of the most important 

elements in information and communications technology, ranging from resource assignments 

in data centers, wireless communications, search functions, among others. Here we review our 

research on physically efficiently realizing or accelerating decision making by photonics. 

Specifically, the problem under study is multi-armed bandit problem (MAB) to maximize total 

rewards from unknown environments that involve difficult trade-off called exploration-

exploitation dilemma. We show the principle of solving MAB problems by utilizing the wave-

particle duality of single photons in which the probabilistic attribute of single light quanta 

plays the role of exploration. The principle is transformed to ultrafast laser chaos where the 

chaotically oscillated irregular time series provides fast and scalable decision-making abilities. 

The problem becomes even more difficult when multiple players are involved, called 

competitive MAB (CMAB) problem, in which the expected value could regard to social benefit 

maximization and ensuring equality or fairness for individuals. We show that entangled 

photons can resolve CMAB problem. Theoretical studies on photonic decision making are also 

reviewed showing where total six entities are interacted with each other in a form called 

octahedron structure. 

 

Index-terms: Decision making, photonics, reinforcement learning, artificial intelligence, multi-

armed bandit problem, single photon, laser chaos, entangled photon, categorical system model 
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I. INTRODUCTION 

Decision making is to conduct adequate judgements in dynamically changing uncertain environment, 

which widely applies in information and communications technology ranging from frequency and 

channel assignments in networks [Lai, Kuroda], Monte-Carlo tree search in artificial intelligence 

[Silver], among others. Decision making is also the foundation of reinforcement learning [Sutton]. 

One of the most important and fundamental issues in decision making is the multi-armed bandit 

(MAB) problem where the point is to find the best slot machine dispensing a lot of reward from 

many slot machines whose reward probabilities are unknown [Sutton]. To find the best machine, one 

must sufficiently explore the machines; however, too much exploration may involve much loss. On 

the other hand, too quick a decision may miss the best machine. Moreover, the best machine may 

change overtime known as uncertainty in environments; one must change his/her decision depending 

on situations. Thus, there is a difficult trade-off called exploration-exploitation dilemma. In this 

study, decision making refers to solve MAB problems. 

We examine solving MAB problems physically with photons and photonic technologies 

instead of conventional computer algorithms performed in digital computers [Daw, Robbins, Auer] 

with a view to benefiting from unique physical attributes of photons to pave the way for breaking the 

limitations of conventional approaches such as von Neumann bottleneck [Backus], energy efficiency, 

operating speeds, and creating novel values. In particular, by pursuing the ultimate performances of 

photons, we can design novel system architectures and functionalities. In Sec. II, single-photon 
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decision maker is shown by utilizing wave-particle duality of light quanta. The principle is, in Sec. 

III, transformed to ultrafast chaotic lasers where the high bandwidth nature of light is utilized, 

allowing additionally a superior scalability by time-domain multiplexing of chaotic time series. The 

MAB problems become even more difficult when multiple decision makers are involved known as 

competitive MAB (CMAB) problem. The decision conflict inhibits maximum utilizations of 

available opportunities; namely, social value maximization is expected. Additionally, the issue of 

equality or fairness of individual players becomes a concern. In Sec. IV, we show the proof-of-

principle experimental demonstration of solving CMAB by entangled photons. In photon-based 

decision makers, various elements ranging from decisions, betting results, probabilistic attributes of 

photons, etc. are involved; understanding of the complex mechanisms is important for systematic 

system design. In Sec. V, a theoretical study based on category theory is presented where the notion 

of triangulated category clearly describes the inherent interdependencies of the subject matter. 

Section VI concludes the paper. 

Research of photonics for intelligent functionalities has been intensively studied from late 

2010s [Inagaki, Larger, Brunner, Chen, Bueno] in accordance with a variety of social and 

technological developments such as ever-growing importance of computing power and artificial 

intelligence, expected end of Moore’s low [Theis], and extensive progress of photonic technologies 

since the extensive optical computing and optical neural network research in 1980s [Psaltis, 

Ishikawa]. Photonic decision making shows a clear departure from recent photonic computing such 
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as photonic Ising machines [Inagaki], optical reservoir computing [Larger, Brunner], and light-based 

neural networks [Shen, Bueno] in terms of its intended functionalities and architectures technologies. 

The goal of the other recent systems is combinatorial optimization or recognition/classification tasks 

involving certain amount of training data sets, which does not apply for photonic decision maker 

examined in the present study. However, it should be emphasized that the photonic decision makers 

and photonic solution searchers are in a complemental relation. Indeed, for example, Kanno et al. 

demonstrated the composite system of laser-chaos decision maker and optical-fiber-based reservoir 

computing where dynamic model selection has been demonstrated that enhances the prediction 

ability of the reservoir computing as a whole [Kanno]. That is, the fusion of various photonic 

systems, as well as non-photonic systems, with photonic decision making is an interesting future 

possibility. Such future studies will be briefly discussed at the end of the paper. 

II. SINGLE PHOTON DECISION MAKER 

The difficulty of MAB becomes evidently clear when the number of candidates increases. However, 

only two choices, that is, two-armed bandit problem, involves significant difficulties. Intuitively, one 

may think that it would be reasonable to keep choosing the slot machine when the selected machine 

mostly wins in recent trials. However, in reality, one can be easily fooled by such incidental events: 

the unselected, other machine may be the truly higher probability slot machine. That is, maintaining 

certain moment of thinking-over is critical for correct decision making. 
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The idea of single-photon decision maker is based on the fact that the wave-particle duality 

of light quanta directly applies for the structure of solving two-armed bandit problem [MN15]. As 

shown in Fig. 1(a), we utilized single photons emitted from a NV-center in a nondiamond. A single 

photon impinges on a polarization beam splitter (PBS) after passing through a polarizer. If the 

photon is detected by APDA, which is the vertical direction of PBS, the decision is immediately to 

choose the slot machine A whereas when the photon is measured by APDB for the horizontal 

polarization, the decision is to select the slot machine B. A linearly-polarization single photon 

polarized 45 degrees with respect to the horizontal is detected either by APDA or APDB with 50:50 

probability. On the other hand, when the polarization of input single photon is almost vertical, the 

photon is highly likely observed by APDA whereas almost vertically-polarized single photon will be 

detected by APDB. Hence, the strategy of decision making is to control the single photon polarization 

toward the better slot machine. 

What is important is the above-mentioned thinking-over process; this is physically 

supported by the probabilistic attribute of single photons. For example, a nearly horizontal single 

photon is mostly detected by APDB, but sometimes, it is detected by APDA. We should emphasize 

that such a property cannot be achieved if the input photon is classical; when the physical quantity 

measured by photodetectors are the ratio of light intensity, we need one additional step to determine 

the decision [SR15]. 
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In the experiment, a NV-center in a nanodiamond was excited a green laser. The arrival 

timing of photons at APDs was characterized by a time-correlated single-photon detection system. 

The two slot machines were implemented in a computer using pseudorandom numbers. Based on the 

betting results, the angle of the half-wave plate was mechanically controlled to configure the 

polarization of single photons. A representative experimental result is shown in Fig 1(b). The 

horizontal axis shows the time or the number of cycles of slot machine play while the vertical axis 

depicts correct decision ratio (CDR) which is the ratio of selecting higher reward probability slot 

machine over total ten repetitions. In the first 150 cycles, the reward probabilities of the slot machine 

A and B were given by 0.8 (PA = 0.8) and 0.2 (PB = 0.2), respectively; hence the selection of slot 

machine A is correct decision. The red solid curve is rapidly approaching to one, meaning that 

correct decision-making is being conducted. In every 150 cycles, the reward probabilities of the slot 

machines are swapped in order to implement environmental uncertainty. Accordingly, CDR drops 

right after the 150 cycle, but it gradually recovers to high scores, indicating that the autonomous 

adaptation to environmental changes were demonstrated. The blue dotted line shows the results when 

the reward probabilities are given by 0.6 and 0.4, which is more difficult decision problem since the 

difference between the reward probability is smaller than the previous case. Accordingly, the CDR 

exhibits relatively lower scores compared with the former case. Nevertheless, the autonomous 

decision making was clearly demonstrated. 
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Before finishing Sec. II, we describe several remarks. First, essentially the same architecture 

with the above-described single-photon decision maker has been implemented using optical near-

field coupling between quantum dots, which is theoretically examined in [SR13] followed by 

experimental demonstration [JA], pursuing the ultra-small nature of optical near-field in the 

subwavelength scale [RoPP]. The energy transfer via optical near-field was modulated by external 

control light so that the photon was transferred preferably to either of the quantum dots 

corresponding to decisions to select machines A or B. Meanwhile, recent advancements in nano-

optics allow further functionalities including memorization of past events, which are important 

elements in decision making. Nakagomi et al. demonstrated in recording nano-scale patterns on the 

surface of photochromic single crystal via optical near-field [Nakagomi]. 

Secondly, by cascading PBSs in a tree-form architecture, the four-armed bandit problem has 

been experimentally resolved using single photons [ACS]. Such scalability of the photon-based 

decision making is discussed in detail later in Sec. III. Here we put a remark on the control 

mechanism of the polarizer. Suppose that PA = 0.8 and PB = 0.7, meaning that both slot machine 

yield rewards rather frequently. No matter what the decision is, one can win the slot machine playing 

by 75% whereas the lose events are rare with only 25%. This means that the event of lose must be 

highly, more specifically, three-times largely evaluated than the event of win. On the other hands, 

when PA = 0.3 and PB = 0.2, meaning that both slot machines yield very smaller rewards, one mostly 

loses by a factor of 75 % with only 25% rate of winning; hence the event of win must be three-times 
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largely appreciated than the event of lose. In such manners, the degree of polarization control is 

attenuated or accelerated by considering the ratio of the overall winning figure A B( )P P+  to the 

overall losing metric A B[2 ( )]P P− +  [ACS]. Generally, this implies that the information of 

environments seriously affects the decision, which is theoretically analysed in the categorical 

investigation discussed in Sec. IV. Naruse et al. also present local reservoir model to account of 

decision making featuring the effects of environments [PLOS]. 

III. ULTRAFAST DECISION MAKING BY LASER CHAOS 

The single photon and near-field photon decision making discussed in Sec. II directly utilize the 

single light quanta, demonstrating the ultimate abilities of photon at its energy efficiency and spatial 

density. However, at the point of our research, there are several technological difficulties such as the 

operating speed limits of single photon sources or mechanical control of polarizations. On the other 

hands, one of the significant attributes of light is its ultrahigh bandwidth, which has been widely 

utilized in long- and short-distance optical communications, for example. This section transforms the 

principle shown in Sec. II in the time-domain property of lightwave by using ultrahigh speed chaotic 

lasers. 

A. Laser Chaos 

The generation of chaos in semiconductor lasers has been extensively studied in the literature 

[Ohtsubo, UchidaWiley]. For example, the oscillation of lasers becomes unstable, leading to chaos, 

when a portion of output light is fed back to the laser cavity after certain delay via an externally 
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arranged mirror. Therefore, antireflection coatings or optical isolators are indispensable to guarantee 

stable operations of lasers in general applications. However, such laser chaos also provides unique 

sources of randomness. Indeed, ultrahigh speed physical random generations with a view to 

accomplish fast rates unachievable by conventional algorithms on digital computers have been 

experimentally demonstrated [Uchida08, Argyris]. Furthermore, the nonlinear dynamics of chaotic 

lasers, including its ultrafast transient process, is a fascinating resource for reservoir computing 

[Brunner]. The application of laser chaos to decision making described herein is one of the most 

recently proposed and demonstrated utilizations of nonlinear dynamics of lasers for intelligent 

functionalities. 

B. Principle 

Abstractly, the principle of the laser-chaos decision maker is equivalent to the single-photon decision 

maker in Sec. II, but its realization and enabling features completely differ from each other. As 

shown schematically in Fig. 2(a), a light intensity level is sampled from the laser chaos signal, which 

is then subjected to a comparison to a given threshold (TH) value. When the signal level is larger 

than TH, the decision is immediately determined to select slot machine A whereas the case with 

signal level being lower than TH the decision is to choose slot machine B. The threshold level is 

reconfigured based on the betting result. Let, for instance, the threshold being sufficiently high. 

Consequently, the sampled signals result mostly being smaller than the threshold, leading to the 

decision to take slot machine B. However, thanks to chaotically oscillating input light, the sample 
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could sometime be even larger than the threshold; that is, the decision to select machine A is 

occasionally taken. In such a manner, the action of thinking-over is physically accomplished as in the 

case of the single-photon decision maker. 

In [SR17], with using a chaotic time series generated by a semiconductor laser with a 

delayed feedback, ultrafast and adaptive decision-making was demonstrated for solving two-armed 

bandit problems. A semiconductor laser operated at a center wavelength of 1547.785 nm is coupled 

with a polarization-maintaining (PM) coupler. The light is connected to a variable fiber reflector 

which provides delayed optical feedback to the laser. The output light at the other end of the PM 

coupler is detected by an AC-coupled photodetector through an optical isolator and optical attenuator. 

The signal is sampled by a high-speed digital oscilloscope at a rate of 100 GSample/s (a 10 ps 

sampling interval) with an eight-bit resolution. 

The blue curve in Fig. 2(b) shows the evolution of CDR when the chaotic signal is sampled 

with 50 ps interval, namely, at a rate of 20 GSample/s that exhibits the promptest adaptation to the 

unknown environments. After about 20 cycles of trials, the CDR reaches above 0.9, indicating that 

the latency from the initial no knowledge status to the correct decision is about 1 ns. The sampling 

interval 50 ps that provides the best decision-making performance exactly coincides with the 

negative autocorrelation inherent in the chaotic time series shown in the inset of Fig. 2(b). 

Meanwhile, although a quasiperiodic signal exhibits larger negative maximum in its autocorrelation 

the decision-making results in poor performances. Moreover, even assuming that pseudorandom 
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numbers and color noise were available in such a high-speed domain, the laser chaos outperformed 

these alternatives (Fig. 2(a)); that is, chaotic dynamics yields superior decision-making abilities. 

Here, the color noise containing negative autocorrelation was calculated based on the Ornstein–

Uhlenbeck process using white Gaussian noise and a low-pass filter [Fox] with a cut-off frequency 

of 10 GHz. Such an aspect regarding the temporal structure of irregular signals and the decision 

making is further discussed in the next section. 

C. Scalable chaos-based decision maker 

Scalability is an important aspects of information systems in general. Here, developing principles 

and technologies toward an N-armed bandit with N being a large natural number is of great interests. 

Taking advantage of the high-bandwidth attributes of chaotic lasers, we proposed and demonstrated 

the time-division multiplexing method in the decision-making strategy; specifically, consecutively 

sampled chaotic signals were used to determine the identity of the slot machine in a binary digit form. 

We considered a MAB problem in which a player selects one of N slot machines, where N = 

2M with M being a natural number. The N slot machines are distinguished by the identity given by 

natural numbers ranging from 0 to N − 1, which are also represented in an M-bit binary code given 

by 1 2 MS S SL  with Si (i = 1, …, M) being 0 or 1. For example, when N = 8 (or M = 3), the slot 

machines are numbered by S1S2S3 = {000, 001, 010, …, 111} (Fig. 3(a)). The reward probability of 

slot machine i is represented by Pi (i = 0, …, N − 1), and the problem addressed herein is the 

selection of the machine with the highest reward probability. 
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The identity of the slot machine to be chosen is determined bit by bit from the most 

significant bit (MSB) to the least significant bit in a pipelined manner. For each of the bits, the 

decision is made based on a comparison between the measured chaotic signal level and the 

designated threshold value. First, the chaotic signal s(t1) measured at t = t1 is compared to a threshold 

value denoted as TH1 (Fig. 3(b)). The output of the comparison is immediately the decision of the 

MSB concerning the slot machine to choose. If s(t1) is less than or equal to the threshold value TH1, 

the decision is that the MSB of the slot machine to be chosen is 0, which we denote as D1 = 0. 

Otherwise, the MSB is determined to be 1 (D1 = 1). Here we suppose that s(t1) < TH1; then, the MSB 

of the slot machine to be selected is 0. Based on the determination of the MSB, the chaotic signal 

s(t2) measured at t = t2 is subjected to another threshold value denoted by TH2,0. The first number in 

the suffix, 2, means that this threshold is related to the second-most significant bit of the slot 

machine, while the second number of the suffix, 0, indicates that the previous decision, related to the 

MSB, was 0 (D0 = 0). If s(t2) is less than or equal to the threshold value TH2,0, the decision is that the 

second-most significant bit of the select slot machine to be chosen is 0 (D2 = 0). Otherwise, the 

second-most significant bit is determined to be 1 (D2 = 1). 

All of the bits are determined in this manner. In general, there are 2k
−
1 kinds of threshold 

values related to the k-th bit; hence, there are 2M − 1 = N − 1 kinds of threshold values in total. What 

is important is that the incoming signal sequence is a chaotic time series which enables efficient 

exploration of the searching space, as discussed later. 
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Based on the betting results, the threshold values are adjusted so that that the same decision 

will be highly likely to be selected in the subsequent play. Therefore, for example, if the MSB of the 

selected machine is 0, TH1 should be increased because doing so increases the likelihood of 

obtaining the same decision regarding MSB being 0. All of the other threshold values involved in 

determining the decision are updated in the same manner. The details of the principle are described 

in [SR18]. 

Four kinds of chaotic signal trains were generated, referred to as Chaos 1, Chaos 2, Chaos 3, 

and Chaos 4 by varying the reflection by the variable reflector by letting 210, 120, 80, and 45 µW of 

optical power be fed back to the laser, respectively. While the time-domain waveforms of Chaos 1–4 

look similar, there was a clear difference in their radio-frequency power spectra obtained using 

Chaos 1, 2, 3, and 4, as shown in [SR18]. A quasiperiodic signal train was also generated by the 

variable reflector by providing a feedback optical power of 15 µW. In addition, computer-generated, 

uniform pseudorandom numbers (RAND) and color noise, of which generation is the same the one in 

Sec. II.B, were examined for comparisons. 

We applied the proposed time-division multiplexing decision-making strategy to bandit 

problems with two, four, eight, 16, 32, and 64 arms. We assigned the reward probabilities to the 

multiple slot machines so that the difficulty keeps coherence. First, the highest and the second 

highest reward probabilities were given by given by 0.9 and 0.7, respectively. Second, the 

probabilities were arranged so that the contradiction condition applies for all group of the slot 



 15 

machines. In the case of four-armed bandit, for example, the probabilities were given by (P0, P1, P2, 

P3) = (0.7, 0.9, 0.5, 0.1) where the maximum-reward-probability machine is machine 1. Neglecting 

the LSB, the machines are grouped to {Machine 0 and Machine 1} and {Machine 2 and Machine 3} 

where the sum of the probabilities is larger in the latter group although the best machine belongs to 

the former group, which we call contradiction condition. Such situations are satisfied for all groups 

for the sake of coherent comparison with the increased arm numbers. The details are described in 

[SR18]. 

Figures 3(b) summarize the results of the 16-, 32-, and 64-armed bandit problems, 

respectively. The red, green, blue, and cyan curves show the CDR evolution obtained using Chaos 1, 

2, 3, and 4, respectively, while the magenta, black, and yellow curves depict the evolution obtained 

using quasiperiodic signals, pseudorandom numbers and color noise, respectively. From Fig. 3(b), it 

can be seen that Chaos 3 provides the promptest adaptation to the unity value of the CDR, whereas 

the nonchaotic signals (quasiperiodic, RAND, and color noise) yield substantially deteriorated 

performances. The number of cycles necessary to reach a CDR of 0.95 increases as the number of 

bandits in the form of the power-law relation aNb, where a and b are approximately 52 and 1.16, 

respectively, indicating that the successful operation of the proposed scalable decision-making 

principle using laser-generated chaotic time series. 

In the results shown for bandit problems with up to 64 arms, Chaos 3 provides the best 

performance among the four kinds of chaotic time series. The negative autocorrelation indeed affects 
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the decision-making ability, as discussed in Sec. III.B; however, the value of the negative maximum 

of the autocorrelation does not coincide with the order of performance superiority, indicating the 

necessity of further insights into the underlying mechanisms. In this respect, we analysed the 

diffusivity of the temporal sequences based on the ensemble averages of the time-averaged mean 

square displacements (ETMSDs) [Miyaguchi, SR16]. A random walker is generated via comparison 

between the chaotic time series and a uniformly distributed random number; when the chaotic signal 

s(t) is larger than the random number, the walker moves to the right X(t) = +1 otherwise, X(t) = −1. 

Hence, the position of the walker at time t is given by x(t) = X(1) + X(2) + … + X(t). We then 

calculate the ETMSD using 

( )2
1

1( ) ( ) ( ) ,
T

t

ETMSD x t x t
T

τ

τ τ
τ

−

=

= + −
− ∑                                                                       (1) 

where x(t) is the time series, T is the last sample to be evaluated, and L  denotes the ensemble 

average over different sequences. The ETMSDs corresponding to Chaos 1, 2, 3, and 4 and 

quasiperiodic, RAND, and color noise at the time difference of τ = 1000 exhibits the maximum value 

followed by Chaos 2, 1, and 4 as shown in Fig. 4(a). This order agrees with the superiority order of 

the decision-making performance in the 64-armed bandit problem shown in Fig. 3(b). At the same 

time, RAND and colour noise exhibit larger ETMSD values than Chaos 1–4, although the decision-

making abilities are considerably poorer for RAND and coloured noise, implying that the ETMSD 

alone cannot perfectly explain the performances. 
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Figure 4(b) explains diffusivity in another way, where the average displacement ( )x t  and 

( )x t D+  are plotted for each time series superimposed in the XY plane with D = 10,000. Although 

the quasiperiodic and color noise, shown by the magenta and yellow curves, respectively, move 

toward positions far from the Cartesian origin, their trajectories are biased toward limited coverage 

in the plane. Meanwhile, the trajectories of the chaotic time series cover wider areas, as shown by the 

red, green, blue, and cyan curves. The trajectories generated via RAND, shown by the black curve, 

remain near the origin. 

To quantify such differences, we evaluated the covariance matrix Θ = cov(X1, X2) by 

substituting x(t) and x(t + D) for X1 and X2, where the ij-element of Θ is defined by 

( )( )1 1 2 2
1

1
1

N

i

X X X X
N =

− −
− ∑ , with N denoting the number of samples and iX  denoting the average 

of Xi. The condition number of Θ, which is the ratio of the maximum singular value to the minimum 

singular value, indicates the uniformity of the sample distribution. A larger condition number means 

that the trajectories are skewed toward a particular orientation, whereas a condition number closer to 

unity indicates uniformly distributed data. The square marks in Fig. 4(a) show the calculated 

condition numbers where Chaos 1–4 achieve smaller values whereas the quasiperiodic and coloured 

noise yield larger scores. Through these analyses using the ETMDSs and condition numbers related 

to the diffusivity of the time series, a clear correlation between the greater diffusion properties 

inherent in laser-generated chaotic time series and the superiority in the decision-making ability is 

observable. 
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IV. ENTANGLEMENT PHOTONS FOR SOCIAL MAXIMUM AND 

EQUALITY 

The decision-making problems under study in previous sections regard to a single player’s reward 

maximization. The problem becomes even more difficult when the number of individuals who join 

the game is multiple because interest conflicts may easily be induced which deteriorates the amount 

of each player’s reward if the total amount of dispensed reward remains the same, as schematically 

shown in Fig. 5(a). If the players try to maximize the total reward as a team, conflicts of decisions 

must be avoided to benefit from the potentially achievable total benefits. The problem is referred to 

as a competitive multi-armed bandit (CMAB) problem, which underlies important practical issues 

ranging from traffic jam in roads to congestions in information networks [Kai, Kim16, Liu]. 

In this section, we demonstrate the proof-of-principle experimental demonstrations of 

showing the usefulness and superiority of entangled photons for collective decision making [arXiv]. 

For the simplest case that preserves the essence of the CMAB problem, we consider two players 

(called Players 1 and 2), each of whom selected one of two slot machines (Machines A and B), with 

the goal of maximizing the total team reward. The amount of reward that could be dispensed by each 

slot machine per play is assumed to be unity; hence, when the two players make the same decision, 

the reward is divided into two halves. This example manifests that players could be easily locked in a 

local minimum due to conflicts between their decisions since everyone wants more rewards and tries 
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to select the higher-reward-probability slot machine whereas the total team rewards could be 

increased if they cooperated. 

We utilized entangled photons for the collective decision making. The signal and idler photon 

of an entangled photon pair regards to the decision of Players 1 and 2, respectively, as schematically 

shown in Fig. 5(a). Experimentally, the entangled photons were generated based on a standard 

Sagnac loop architecture [Fedrizzi] used to generate the photon states by spontaneous parametric 

down conversion. In the branch corresponding to Player 1, each signal photon is subjected to a PBS 

(PBS1); if the photon is detected by the avalanche photodiode corresponding to the horizontally 

polarized light (APD1H), also called H-photon detection hereafter, the decision of Player 1 is to 

choose Machine A, whereas if the photon is detected by APD1V corresponding to the vertical 

polarization (V-photon), then the decision of Player 1 is to choose Machine B. The same hold for 

player B by exchanging 1 by 3 and 2 by 4. Note that the two slot machines are externally arranged: 

we emulate the slot machines in a computer using pseudorandom sequences. 

The significance of entangled photons is that when Player 1 detects H-photon, Player 2 

detects V-photon whereas when Player 1 detects V-photon, Player 2 detects H-photon when the 

photon pair is represented by ( )1
2
HV VH−  state known as the maximally entangled singlet 

photon state. That is, no decision conflicts result. 

In the experiments, the reward probabilities of Machines A and B are given by PA = 0.2 and 

PB = 0.8, respectively, for the first 50 plays. In the next 50 plays, the reward probabilities are 
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swapped, i.e. PA = 0.8 and PB = 0.2, to emulate a variable environment. Therefore, from the 

standpoint of individual players, selecting Machine B is the correct decision in the first 50 plays and 

taking Machine A for the last 50 plays is good decision since it is highly likely to gain a greater 

reward. 

When the strategy of the single-photon decision maker demonstrated in Sec. II is 

implemented for both Players 1 and 2 by updating the halfwave plate located in front of the PBSs 

(not shown in Fig. 5(a)), the CDR of both Players 1 and 2, shown by the red and blue curves in Fig. 

5(b), quickly approaches unity, meaning that both players do choose the higher-reward-probability 

machine in the first half. At cycle 51, the CDR drops due to the flip of the reward probabilities; 

however, the CDR gradually returns to unity as time elapses, which clearly indicates that both 

players detect the environmental change and revises their decisions to the higher-reward-probability 

machine. 

However, this result means that both players make the same decision; indeed, the conflict 

ratio, defined as the number of times that the decisions of Players 1 and 2 are identical over the 10 

repetitions, exhibits high values close to unity, as shown by the red curve in Fig. 5(c). Consequently, 

the accumulated rewards of Players 1 and 2 shown by the red and blue curves, respectively, in Fig. 

5(d) are seriously decreased compared with the case when only single player play the slot machine 

(not shown in Fig. 5). The summation of the accumulated rewards of Players 1 and 2, referred to as 

the team reward, is depicted by the green curve in Fig. 5(d), is 70.9 at cycle 100. With the use of 
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entangled photons, on the other hands, the individual rewards and the team reward are enhanced 

since the decision conflicts are avoided as demonstrated by the red curve in Fig. 5(c) exhibiting low 

figures. The team reward reaches at 93.4 at cycle 100, which is almost the theoretical maximum, 

demonstrating that the entangled photons work for social maximum benefits. 

Entangled photons also provide interesting attributes from the viewpoint of equality, which 

shows contrasting behavior to the case of correlated photon pair. Let photon pairs subjected to PBS1 

and PBS2 are orthogonally polarized. With such correlated photons, decision conflicts are avoided if 

the input light for Player 1 is H-photon while at the same time the input for Player 2 being V photon, 

or vice versa. However, the players always select the same machine, meaning that a specific player 

always takes the better machine. That is, equality or fairness is severely deteriorated. Additionally, 

when the input photons are not exactly configured horizontally or vertically (for example 45 degree), 

decision conflicts do occur by orthogonally polarized photon pairs. 

Conversely with entangled photons, maximized team rewards and equality are always 

guaranteed regardless of the common polarization basis. This is due to the maximally entangled state 

that is invariant upon rotation of the basis, provided that the bases are the same for both players. 

Indeed, the CDRs of Players 1 and 2 always randomly fluctuate around 0.5 as shown in Fig. 5(b). 

This fluctuation agrees with the fact that nearly identical rewards were received by Players 1 and 2, 

as also observed in Fig. 5(d). 
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An important condition for establishing the social maximum by polarization-entangled 

photons is to share the polarization basis among the players. In other words, when the polarization 

bases are misaligned, team rewards are deteriorated. One can also interpret such a property that the 

action of deception or outperforming the other player with the intention of gaining a greater reward 

cannot be accomplished. The equality is preserved with the misaligned polarization bases with 

deteriorated social rewards. On the contrary, deception or greedy action by a player is achievable 

when the system is governed by correlated photons. The detailed theory and experimental 

demonstrations are shown in [arXiv]. 

V. CATEGORY THEORETIC ANALYSIS OF PHOTON DECISION 

MAKING 

Photon-based decision-making systems are operated with a variety of elements interacted with 

complex interdependencies. The elements include dynamically changing uncertain environments, 

namely, probabilistic attributes of slot machines and changes of probabilities, irregular nature of 

lights such as the probabilistic attributes of single photons, complex waveforms of laser chaos, and 

the controllers such as polarization controller or threshold adjusting mechanisms. In view of 

advanced system developments, systematic ways of system design, applications, constructing 

theoretical foundations and clearly grasping the entire system structure is indispensable. We should 

also emphasize that a part of system’s functionality is clearly outsourced to physically uncertain 
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processes, such as in single photons or chaotic lasers. Novel design frameworks and principles are 

expected. In this section, we review the outline of our approaches toward physical decision making 

by category theory. See [IJDM] for details. For category theory, well-known textbooks would 

include [MacLane, Awodey, Simmons]. 

Here we examine the single-photon decision maker dealing with two-armed bandit problem. 

The reward probability setting is modeled as an object called “Casino Setting” denoted by X while 

the setting of the halfwave plate is denoted by an object referred to as “Polarizer Setting” denoted by 

Y. In [IJDM], it has been demonstrated that, by a simple geometrical calculation, the polarization 

update strategy discussed in Sec. II autonomously configures Y so that it is approaching to X. That is, 

correct decision-making results. However, such an analysis does not explicitly deal with the 

randomness inherent in photons and environments; more general treatment is necessary. Categorical 

approach provides us to deeper understanding of the inherent structure. Let denote each decision (to 

choose Machine A or B) by an object P while the betting result (win or lose) by an object Q. 

Intuitively, the decision P directly leads to the result Q; which is represented by P Q→ . However, 

such interpretation prevents us from structural understandings. First, we need to consider that the 

Casino Setting X is a direct product of P and Q; that is, X P Q= × . Intuitively speaking, since the 

broker of the casino knows the exact reward probability of the slot machines, he/she can predict the 

betting result of the player’s decision. On the other hand, the Polarizer Setting Y is a direct sum of P 
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and Q; that is, Y P Q= + , indicating that the player can revise his/her decision based on the betting 

results.  

Furthermore, two additional objects are derived. One is the source of probabilistic attributes of 

the slot machine, referred to as “Machine Environment” denoted by M. It should be emphasized that 

M cannot be observed from the betting result Q. Namely, M is the kernel of Q. Using the notion of 

homological algebra, such a relation is represented by a short exact sequence given by 

0 0M X Q→ → → →  [IJDM]. One more object is the source of probabilistic attributes of single 

photons, named as “Photon Environment” denoted by F. Remember that the photon detection 

probability is biased by the orientation of the halfwave plate Y. However, if the movement of the 

halfwave plate is blocked or limited to some degrees, decision making cannot be improved based on 

the betting results (Q). In other words, the room for growth is important, which mathematically 

corresponds to the co-kernel of Q; 0 0Q Y F→ → → →  [IJDM]. Furthermore, based on the notion 

of triangulated category [Iversen], a total of six objects (X, Y, P, Q, M, F) are related with each other 

in the form of octahedron structure which is shown in Fig. 6(a). Here, the wiggled arrows are called 

characteristic arrow, meaning that the object of the origin affect the next step of the destination 

object. There are four updating triangles are observed in the octahedron: (Braid 1)

[1]M Q Y M→ → → , (Braid 2) [1]X Q F X→ → → , (Braid 3) [1]P Y F P→ → → , (Braid 4)

[1]M X P M→ → → , where A[1] means that the time step of object A is proceeded by a single step. 

Consequently, by temporally describing the relations in the horizontal direction, the four braids are 
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evolving through interacting with each other as shown in Fig. 6(b), called braid structure [Iversen]. 

The physical meaning of the intersections of the braids were examined in [IJDM]. 

Such a categoric analysis has also been adapted to solution searching system using optical 

energy transfer between quantum dots involving spatiotemporal probabilistic behavior [Phil]. The 

octahedron structure applies in the same way as the decision-making instance. A critically important 

condition for the validity of octahedron structure is that the objects are related in the form of short 

exact sequence, such as 0 0M X Q→ → → →  in the case of single-photon decision maker. 

Physically, this implies that the system should evolve to the next step after realizing an equilibrium 

state. Conversely, for example, if the system under study are operated too fast, the short exact 

sequence does not hold; hence, correct solutions cannot be found by the system [Phil]. We proposed 

a novel notion of time, what we call “short-exact-sequence-based-time”, to characterize the flow of 

time for given functionality [Phil]. For example, the solution searching performance in quantum-dot-

based device was analyzed as a function of operating speed by which we can quantitatively derive 

the short-exact-sequence-based time. 

The categorical approach is more vividly applied to composite systems that involve physical 

substrates and environments. Saigo et al. utilized natural transformation, known to be one of the 

core concepts in category theory [MacLane], by which rigorously describes the attributes of soft 

robots with mathematically evident difference to conventional hard robots [Saigo]; the softness and 

its function is characterized by categorical equivalence where abundant degrees of freedom inherent 
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in soft materials are represented. The probabilistic attributes of photons utilized for decision making 

would contain similar (or the same) architecture characterized by natural transformation; this is one 

of interesting future studies. 

VI. CONCLUSION 

We reviewed our theoretical and experimental studies on photonic decision making. By utilizing the 

intrinsic physical attributes of single photons, near-field optical interactions, chaotic lasers, multi-

armed bandit problems were resolved highlighting the probabilistic attributes of single photons, 

ultrahigh spatial density of near-field coupling, and ultrahigh speed chaotic dynamics of lasers, 

respectively. Entangled-photon-based collective decision making is also shown to maximize total 

team reward as well as ensuring equality among players. In order to systematic understanding of 

underlying mechanisms of photon-based decision making that involves uncertain natural processes 

as well as uncertain external environments, category theoretic approach was reviewed where the 

notion of triangulated category reveals the complex interdependencies of the subject matter. 

The research of decision making by photonics is an emergent field; there are many important 

issues and associated topics to be examined in future. The experimental demonstrations shown in this 

paper do not, of course, cover the potential abilities of photons and photonic technologies for 

decision making. Simply by limiting the discussion only with chaotic lasers in Sec. III, nonlinear 

dynamics of lasers allows versatile phenomena, such as synchronization, not just the irregular 

waveform generated by a simple delayed feedback configuration. The recent growth of photonic 
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integrated circuits impacts the design of system and device architectures. Deeper considerations into 

theoretical fundamentals and applications of photonic decision making are also exciting and 

important areas of research. 
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Fig. 1. Single-photon-based decision maker. (a) Architecture of single photon decision maker to 

solve two-armed bandit problem where the polarization of single photon is controlled. (b) 

Experimental demonstrations of autonomous decision-making adapting to dynamically changing 

environment. 
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Fig. 2. Laser-chaos-based decision maker. (a) Thresholding to the irregular waveform generated by 

chaotic lasers directly provides the decision. (b) Experimental demonstrations of solving two-armed 

bandit problem from zero prior knowledge. Laser chaos sampled with 50 ps interval yields the fastest 

adaptation, while the autocorrelation of the chaotic time series exhibits negative maximum at the 

time lag of 50 ps.  
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Fig. 3. Scalable decision making by time-domain multiplexing of laser chaos. (a) Schematic diagram 

of the principle. (b) Solving 16-, 32, and 64-armed bandit problem by chaotic time series and other 

random signals.   
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Fig. 4. Diffusivity analysis of chaotic time series. (a) The order of the ensemble-average of mean 

square displacement agrees with the performance of the decision making among Chaos 1, 2, 3, and 4. 

(b) A phase map of random walker generated by referring to the given time series. The walker by 

pseudorandom numbers stays at the origin whereas the ones by quasiperiodic and color noise go far 

away from the origin but following the same trajectory. The walker by chaotic lasers are distributed 

in a wider area.   
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Fig. 5. Collective decision making by entangled photons. (a) Architectural illustration of solving 

competitive bandit problem by entangled photons. (b, c, d) Experimental demonstration of decision 

making by two players based on of two independent single photons and entangled photons. (b) 
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Comparison of collect decision ratio, (c) Decision conflict ratio, and (d) Accumulated total reward by 

individual players and team as a whole.  
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Fig. 6. Category theoretic analysis of photon-based decision making. (b) Total six objects are 

interacted with each other (shown by arrows) called octahedron structure. (b) The time-domain 

illustration of the relation between objects in octahedron structure where four braids (Braid 1, 2, 3, 

and 4) are interacting with each other called braid structures. 


