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Multilevel Monte-Carlo for computing the SCR with the standard

formula and other stress tests
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Abstract

This paper studies the multilevel Monte-Carlo estimator for the expectation of a maximum of conditional
expectations. This problem arises naturally when considering many stress tests and appears in the calculation
of the interest rate module of the standard formula for the SCR. We obtain theoretical convergence results that
complement the recent work of Giles and Goda [15] and give some additional tractability through a parameter
that somehow describes regularity properties around the maximum. We then apply the MLMC estimator to the
calculation of the SCR at future dates with the standard formula for an ALM savings business on life insurance.
We compare it with estimators obtained with Least Squares Monte-Carlo or Neural Networks. We find that
the MLMC estimator is computationally more efficient and has the main advantage to avoid regression issues,
which is particularly significant in the context of projection of a balance sheet by an insurer due to the path
dependency. Last, we discuss the potential of this numerical method and analyse in particular the effect of the
portfolio allocation on the SCR at future dates.

1 Introduction

Solvency II is a regulatory framework introduced in Europe in the period post-financial crisis of 2008. Solvency II
establishes the requirements to be met to exercise the insurance or reinsurance activity in Europe and aims to
protect policyholders and to give stability in the financial sector of the European Union.

One of the advantages of the Solvency II directive is that the computation required to evaluate the Solvency
Required Capital (SCR) considers the specific risks borne by the insurers in comparison to the previous rules where
the need of own funds ignored, for example, part of risks embedded in the asset side of the balance sheet. In
practice, there are two possible ways to calculate the SCR: the insurance company can either use the standard
formula (see [22]) by applying shocks to each asset class or use an internal model to calculate a Value-at-Risk over
one year.

Today, the SCR indicator is one of the most important Key Performance Indicators used by companies to
monitor the activity. In particular, the so-called Solvency II ratio computed as the ratio between the “Eligible Own
Fund” and the SCR measures the solvency capacity of the insurers and it is followed by analysts to evaluate them
in financial markets. Nevertheless, it is important to remark that the SCR corresponds to the amount of required
capital in a 1 year horizon. Then, to have an idea of the total amount of required capital during the life of a product
or over the duration of the business, it is not only necessary to compute the current SCR value but also to estimate
the SCR at future dates.

The aim of this work is to deal with the problem of computing SCR at future dates which has several practical
applications to real problems that arise in the insurance industry. One of the first applications that should be
cited comes from the regulatory side and is called ORSA (Own Risk and Solvency Assessment) process, which aims
to evaluate from a prospective point of view the overall solvency needs related to the specific risk profile of the
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insurance companies. In order to do that, the computation of future SCR is necessary to ensure that the insurer is
able to integrate the regulatory constraints in terms of solvency during the strategic plan horizon.

Other important applications appear when the notion of cost of capital is concerned. Möhr [26] and Engsner
et al. [10] have pointed the importance of considering in this context the SCR values at future dates as random
variables and develop a theoretical framework to relate them with the risk margin and the cost of capital. Among
the applications related to the cost of capital, one can mention:

(i) Applications for ALM (Asset Liability Management) when a Strategic Asset Allocation needs to be computed
for a given portfolio: to evaluate the optimality of an asset allocation, a criterion based on the sum of the
present values of shareholder margins minus the amount of cost of capital generated by the asset allocation
is usually studied. The idea of this approach is to analyse if the future gains generated by the portfolio meet
the shareholder’s expectations in terms of cost of capital.

(ii) Applications for pricing, when evaluating if future margins pay the return expected by the shareholders.
Before launching a new product, the insurers evaluate the profitability of that product and then compare
expected future shareholder margins with the need of capital generated by the new business.

Finally, the computation of future SCR can be used as a tool for studying the solvency of the company under
different economic scenarios. For example, the current low interest rates environment leads to several questions
about the solvency of insurance companies and the future sustainability of the Savings business. In addition, the SCR
computation at future dates allows to better understand the pattern of cash-flows generated by a product during
the lifetime of the business. In particular, the approach based on shocks employed in this work as, for example, the
shocks on the market conditions is useful to study the evolution of the balance sheet and the policyholder behavior
under those shocked conditions.

Today, the computation of future SCR values are in practice often made with rough extrapolations from the
initial SCR, which may ignore the evolution of the risk profile of the insurer and then lead to bad decisions impacting
the business. Thus, the goal of the present work is to develop numerical methods for the calculation of the SCR
required at some future date t. We focus here on the calculation of SCR with the standard formula, which is fully
described by the documents of the European Insurance and Occupational Pensions Authority (EIOPA) [22, 23].
Basically, this standard formula consists in applying different shocks on the different market sectors: the impact
on the portfolio of each shock is evaluated in a risk-neutral world, and the SCR is then evaluated by using an
aggregation formula from these impacts. Let us explain more precisely how it works. We consider an insurance
company that handles a Savings portfolio up to time T > 0 and models the financial market by a vector valued
stochastic process (ξt)t≥0 for its risk-neutral valuation. Let us assume for sake of simplicity that this is a diffusion
model:

ξs = ξ0 +

∫ s

0

b(r, ξr)dr +

∫ s

0

σ(r, ξr)dWr, for s ≥ 0,

where W is a Brownian motion. We assume that the sum of the discounted future profits and losses between times
t ∈ (0, T ) and T is given by a function Ft,T (ξs, s ∈ [0, T ]). Note that this function may depend on (ξs, s ∈ [0, t])
since the portfolio management may be path-dependent. Let us suppose first that the company calculates SCR0

(the SCR at the initial time 0) with the standard formula. It has to implement P different shocks that correspond
to the different source of risks. These shocks happen just after the initial portfolio allocation, which requires a
recalibration of the model by the company. Thus, each shock i ∈ {1, . . . , P} corresponds to a stress on the model
parameters, and the market path corresponding to the shock i is described by:

ξi0 = ξ0 and ξis = ξ̌i0 +

∫ s

0

bi(r, ξr)dr +

∫ s

0

σi(r, ξr)dWr, for s > 0,

so that ξi0+ = ξ̌i0 immediately after the shock at time zero. For example, the shock on equity is simply a drop of the

initial value (ξ̌i0 6= ξi0) while the shocks on the interest rates require also a recalibration of the model to the shocked
yield curve (and thus bi and σi may then be different from b and σ). The P&L contribution of each shock is given
by

ζi0 = E[F0,T (ξs, s ∈ [0, T ])]− E[F0,T (ξis, s ∈ [0, T ])] = E[F0,T (ξs, s ∈ [0, T ])− F0,T (ξis, s ∈ [0, T ])].
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The SCR on market risk is finally obtained by using a so-called aggregation formula SCR0 = h(ζ1
0 , . . . , ζ

P
0 ), where

h is a function prescribed by the EIOPA. Now, we apply the same methodology at time t to calculate the required
capital SCRt. The market path corresponding to the shock i at time t is given by:

ξis = ξs for s ∈ [0, t] and ξis = ξ̌it +

∫ s

t

bi(r, ξr)dr +

∫ s

t

σi(r, ξr)dWr, s > t,

and this shock is assessed with the random variable

ζit = E[Ft,T (ξs, s ∈ [0, T ])− Ft,T (ξis, s ∈ [0, T ])|(ξs, s ∈ [0, t])].

It is worth to notice that all the variables ζit are defined with the same conditioning: each stress consists in applying
a shock at time t, not in considering a particular conditioning set on (ξs, s ∈ [0, t]). Finally, the SCR at time t is
given by SCRt = h(ζ1

t , . . . , ζ
P
t ). For management purposes, it is interesting to assess at the initial time 0 how much

required capital will be needed in the future. We are thus interested in calculating quantities such as

E[φ(ξis, s ∈ [0, t])SCRt] = E[φ(ξis, s ∈ [0, t])h(ζ1
t , . . . , ζ

P
t )], (1)

where φ is a function that may include discounting as well as a change of probability between the risk-neutral and
the real one.

Many works in the literature deal with the numerical computation of the SCR so that we cannot be exhaustive.
Devineau and Loisel [9], Bauer et al. [3] have investigated numerical methods based on nested simulations. Bauer
et al. [2], Krah et al. [24] and Floryszczak et al. [12] have used Least Squares Monte-Carlo (regress now) methods
for the risk while Pelsser and Schweizer [27], Cambou and Filipović have developed the replicating portfolio (or
regress later) approach. Recently, Cheredito et al. [7] and Fernandez-Arjona and Filipović [11] have proposed to use
neural networks to approximate the conditional expectation. Up to our knowledge, there are however no dedicated
studies on the use of multilevel Monte-Carlo estimators for the calculation of the SCR with practical application
in an insurance context. This paper fills this gap. Besides, most paper deal with the quantile formulation of the
SCR and focus on the calculation of the current value of the SCR (there are few exceptions such as Vedani and
Devineau [28]). Here, we consider instead the calculation of the SCR with the standard formula at future dates.
Last, most of the literature either use simple Markovian underlying models or consider instead models from in-
surance companies that are black boxes, which makes difficult the reproducibility of the results. Here, we are in
between and make our experiments on a synthetic ALM model that we recently developed and fully presented in [1]
which takes into account many path-dependent features of the ALM for life insurance.

We now describe the formal mathematical framework and consider a probability space (Ω,F ,P). Let X and Y
be two random variables such that X takes values in a general measurable space (G,G) and Y takes values in RP ,
P ∈ N∗. We make the following assumptions:

(A.1) Y is square integrable RP -valued random variable,

(A.2) φ : G→ R is a measurable real-valued function φ such that φ(X) is square integrable.

For the financial application that we consider in this paper, X represents the market information up to some
time t > 0. We may thus take G = C([0, t],Rd), the space of Rd-valued continuous function, if we consider a market
with d ∈ N∗ continuous assets up to time t > 0. We are interested in the problem of computing nested expectations
of the form :

I = E
[
h
(
E
[
Y 1|X

]
, . . . ,E

[
Y P |X

])
φ(X)

]
, (2)

where h : RP → R is a measurable function with sublinear growth (i.e. ∃C > 0,∀x ∈ RP , |h(x)| ≤ C(1 + |x|)),
which ensures by Assumptions (A.1) and (A.2) that I is well defined. Formula (2) precisely corresponds to (1) by
taking X = (ξs, s ∈ [0, t]) and Y i = Ft,T (ξs, s ∈ [0, T ])− Ft,T (ξis, s ∈ [0, T ]). Thus, E[Y i|X] typically represents the
expected loss at time t with shock i, the function h describes the aggregation of the shocks in terms of own funds,
and the function φ weights the different events up to t.

The calculation of I is usually made by using a nested Monte-Carlo method: one simulates J independent
samples of X called primary scenarios and then, for each primary scenario, one simulates K independent samples
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of Y to approximate the conditional expectations involved in (2) by the corresponding empirical means. This
method has been investigated by Gordy and Juneja [19] and Broadie et. al [5] to calculate the probability of large
losses, which amounts to take P = 1, h(x) = 1x>u and φ ≡ 1 in (2) and enables them afterwards to estimate the
Value-at-Risk of E[Y 1|X]. Under mild assumptions, they show that the optimal tuning to approximate I with a
precision of ε > 0 is to take J proportional to ε−2 and K proportional to ε−1, leading to an overall complexity of
O(ε−3). The multilevel Monte-Carlo method (MLMC) developed by Giles [13] has been applied to the calculation
of nested expectations by Haji-Ali [21], Bujok et al. [6] and Giles [14]. Under some regularity assumptions on h,
they show that the antithetic MLMC estimator achieves a precision ε > 0 with a computational cost of O(ε−2).
Under additional regularity assumptions on h or on the probability density function of (X,Y ), Giorgi et al. [17]
have applied the Richardson-Romberg Multilevel method developed by Lemaire and Pagès [25] to improve the
convergence of the MLMC estimator.

In this work, we focus on the case where h is the maximum function:

I = E
[
max

{
E
[
Y 1|X

]
, . . . ,E

[
Y P |X

]}
φ(X)

]
. (3)

This function is sublinear, but is not differentiable when two (or more) arguments achieve the maximum. Due to
this singularity, the general result given by Giles [14, Section 9.1] when h is twice differentiable does not apply, and
a careful analysis is required. Note that (3) appears in the standard formula for the calculation of the SCR interest
rate module. To be precise, one has to compute in this case E

[
max

{
E
[
Y 1|X

]
, . . . ,E

[
Y P |X

]
, 0
}
φ(X)

]
, which

amounts to add a zero coordinate to Y . More generally, the problem of computing (3) occurs when one has to
determine the worst of a set of P shocks (or stress tests) on a portfolio of securities at some future time t. When the
function φ is nonnegative and such that E[φ(X)] = 1, φ(X) can be seen as a change of probability on the different
events up to time t. The function φ(X) does not add any technical difficulty in our study, but it enables us to
perform the evolution up to time t under the real probability and the evaluation of the losses under the risk-neutral
probability, as it is recommended by Solvency II. It can also include some discounting factor. Studies of MLMC
estimators for nested expectations for irregular functions h with applications to risk management have recently
been made by Giles and Haji-Ali [16], Bourgey et al. [4] and Giorgi et al. [17]. In a very recent work, Giles and
Goda [15] have studied precisely the problem of computing (3) with the MLMC method. Here, we also focus on
this problem as it is an important special case with some mathematical difficulties, but one should keep in mind
that the MLMC method can be applied for more general functions h in (2).

The contribution of this paper is twofold. First, we provide an original mathematical analysis of the MLMC
estimator for the calculation of (3) that completes the result obtained by Giles and Goda [15]. Our analysis relies
on different arguments and the required assumptions are therefore also different. In particular, Giles and Goda
make some technical assumptions to control the probability of two elements being close to the maximum. These
assumptions are replaced in our analysis by an integrability assumption involving a parameter η ∈ (0, 1) that
gives some additional flexibility in the application of the MLMC estimator. Our second contribution is to apply
this method to an ALM model for life insurance that takes into account the main characteristic of the business:
book values, profit-sharing mechanism, minimum guaranteed rate, etc. Thus, the model is truly path-dependent
so that the conditional expectation at time t really involves the past dynamics, which makes the use of regression
techniques more delicate. Indeed, one of the main advantage of the MLMC estimator is to calculate directly I and
skip the regression issue. The second main advantage is that it provides an estimator with accuracy ε and with a
computational cost in O(ε−2): it is thus asymptotically as efficient as a Monte-Carlo method for plain expectations.
In our numerical study, we compare the estimation of I with MLMC, Least Squares Monte-Carlo (LSMC) estimator
and the use of Neural Networks (NN), and demonstrate the main advantages of the MLMC estimator.

The paper is organized as follows. Section 2 presents the mathematical results on the estimation of I with nested
Monte-Carlo and MLMC. Technical proofs are postponed to Appendix A. Section 3 then deals with the application
to ALM. Subsections 3.1 and 3.3 present the ALM model for life insurance business that we developed in [1] while
Subsection 3.2 recalls the calculation of the SCR with the standard formula. Subsection 3.4 compares the numerical
performance of the MLMC estimator with estimators obtained with LSMC or NN. Last, Subsection 3.5 shows the
interest of analysing the SCR at future dates, exhibiting some interesting properties such as the dependence of the
SCR on the portfolio allocation or on the market risk premia.
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2 Mathematical analysis of Monte-Carlo estimators of I

2.1 Nested Monte-Carlo estimator

In order to compute I defined by (3), the classical approach is to approximate the inner and outer expectation by
using Monte-Carlo estimators. The procedure consists in generating an i.i.d sample (X1, . . . , XJ) of X called outer
(or primary) scenarios. Then, conditionally on Xi, we sample (Yi,1, . . . , Yi,K) called inner (or secondary) scenarios
following the conditional law of Y given X = Xi and approximate the conditional expectation E [Y p|X = Xi] by

Êpi,K =
1

K

K∑
k=1

Y pi,k, (4)

for i ∈ {1, . . . , J} and p ∈ {1, . . . , P}. The outer expectation is then approximated using the standard MC estimator:

ÎJ,K =
1

J

J∑
j=1

max
{
Ê1
j,K , . . . , Ê

P
j,K

}
φ(Xj) (5)

Nested Monte-Carlo estimators have been studied for example by Gordy and Juneja [19] in the context of portfolio
risk measurement. These estimators introduce two levels of error: one for the inner expectation and the other
one for the outer expectation. In a standard way, we analyse the Mean-Square Error (MSE) of the estimator

MSE(ÎJ,K) = E
[
|ÎJ,K − I|2

]
and use the bias-variance decomposition:

MSE(ÎJ,K) = bias2(ÎJ,K) + Var(ÎJ,K),

where bias(ÎJ,K) = E[ÎJ,K ]− I.

Notation. • We set EpX := E[Y p|X] for p ∈ {1, . . . , P} and Mp
X = max{E[Y 1|X], . . . ,E[Y p|X]}.

• Let K ∈ N∗ and Y1, . . . , YK be an i.i.d. sample following the conditional law of Y given X. Then, we set

∀p = 1, . . . , P, ÊpK =
1

K

K∑
k=1

Y pk and M̂p
K = max{Ê1

K , . . . , Ê
p
K}. (6)

• Besides, when K is even, we define

∀p = 1, . . . , P, Êp,′K/2 =
2

K

K∑
k=K/2+1

Y pk and M̂p,′
K/2 = max{Ê1,′

K/2, . . . , Ê
p,′
K/2}. (7)

From the LLN, we have ÊpK → EpX and M̂p
K →Mp

X almost surely as K → +∞. The next theorem analyses the MSE
of the nested estimator and provides estimates that will be then useful for the analysis of the MLMC estimator.

Theorem 1. Let P ≥ 2 and η ∈ (0, 1]. We assume that (A.1) and (A.2) hold, and we define, for p ∈ {1, . . . , P},
σp(X) =

√
Var(Y p|X). Let us set Σ1+η

P (X) =
∑P
i=1 σ

1+η
i (X) and

CP (X) = 2ηΣ1+η
P (X)

P∑
p=2

1

|EpX −M
p−1
X |η

.

Assume that the following condition holds:

(i) ∀ p = 2, . . . , P, P
(
Mp−1
X = EpX

)
= 0,

(ii) Σ2 = E[Σ2
P (X)φ2(X)] <∞ and C = E[CP (X)|φ(X)|] <∞.
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Then, we have ∣∣∣E((M̂P
K −MP

X

)
φ(X)

)∣∣∣ ≤ C

K
1+η
2

and E
((

M̂P
K −MP

X

)2

φ2(X)

)
≤ Σ2

K
. (8)

Besides, if V = Var(MP
Xφ(X)) <∞, we get

MSE(ÎJ,K) ≤ C2

K1+η
+

2V

J
+

2Σ2

JK
. (9)

With this upper bound, taking K ∼ cε−
2

1+η and J ∼ c′ε−2 for some constants c, c′ > 0 is an asymptotically optimal
choice to get MSE(ÎJ,K) = O(ε2) while minimizing the computation cost JK.

Remark 1. Let us note that the assumptions (i) and C < ∞ of Theorem 1 are only needed to improve the upper
bound on the bias. If it does not hold, we still have∣∣∣E((M̂P

K −MP
X

)
φ(X)

)∣∣∣ ≤ E
(∣∣∣(M̂P

K −MP
X

)
φ(X)

∣∣∣) ≤ Σ√
K
,

from the right hand side of (8) and Cauchy-Schwarz inequality. Note that this speed of O(K−1/2) is the best rate
of convergence without further assumption, as illustrated by the following example. Consider the case where Y =
(Y 1, Y 2) and, given X, Y 1 and Y 2 are independent normal distribution with unit variance (σ1(X) = σ2(X) = 1)

and the same mean m(X). Then, M2
X = m(X) and, given X, M̂2

K −M2
X has the same law as 1√

K
max(G1, G2)

where G1 and G2 are independent standard normal variables. Thus, we have for φ ≡ 1: E
[∣∣∣M̂2

K −M2
X

∣∣∣] = c√
K

with c = E[|max(G1, G2)|].

Remark 2. For practical applications such as the standard formula for the SCR interest rate module, one usually
considers the positive part of the maximum. This amounts to add the coordinate Y P+1 = 0 in our framework. Thus,

if we assume in addition that P(MP
X = 0) = 0 and C̃ = E

[(
CP (X) +

2ηΣ1+η
P (X)

|MP
X |η

)
|φ(X)|

]
<∞, then

∣∣∣E(((M̂P
K)+ − (MP

X )+
)
φ(X)

)∣∣∣ ≤ C̃

K
1+η
2

and E
((

(M̂P
K)+ − (MP

X )+
)2

φ2(X)

)
≤ Σ2

K
.

Remark 3. Let us assume for simplicity that φ ≡ 1 and there exists σ, σ ∈ R∗+ such that for all p ∈ {1, . . . , P},

σ ≤ σp(X) ≤ σ, a.s.

Then, the integrability condition (ii) of Theorem 1 is equivalent to have E[|EpX − Mp−1
X |−η] < ∞ for all p ∈

{2, . . . , P}. Suppose now that EpX −M
p−1
X admits a probability density fp(x) that is continuous and does not vanish

at 0. Then, the integrability condition near 0 gives∫ ε

−ε
|x|−ηfp(x)dx <∞ ⇐⇒ η < 1.

This indicates that, in a quite general framework, condition (ii) of Theorem 1 is not satisfied for η = 1 but may be
satisfied for any 0 < η < 1.

The proof of Theorem 1 is a consequence of the next lemma, whose proof is postponed to Appendix A.2. The
analysis is rather standard, but the difficulty is to handle in the bias analysis the irregularity of the maximum when
two (or more) arguments are equal. This is why we need Assumption (i) and the finiteness of C in Assumption (ii).
These assumptions are different from Assumptions 2 and 3 that are used by Giles and Goda [15] in a similar context.
With their assumptions, they obtain a bias in O(1/K1−δ) for any arbitrary 0 < δ < 1. Here, we directly see the

link between the integrability assumption and the bias in O(1/K
1+η
2 ). Besides, let us note that we do not need to

assume the boundedness of any moments of Y pφ(X), p ∈ {1, . . . , P} (Assumption 1 of [15]) since we are using a
different approach that does not make use of the Burkholder-Davis-Gundy inequality.
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Lemma 2. Let η ∈ (0, 1]. For i ∈ {1, 2}, we consider real valued random variables θ̂iK and real valued functions ϕi
that satisfy the following conditions :

(i) θ̂iK −−−−→
K→∞

ϕi(X) a.s.

(ii) There are nonnegative measurable functions Ci and σ2
i such that for all K ∈ N∗:∣∣∣E [θ̂iK − ϕi(X)|X

]∣∣∣ ≤ Ci(X)

K
1+η
2

, (10)

E
[∣∣∣θ̂iK − ϕi(X)

∣∣∣2 |X] ≤ σ2
i (X)

K
. (11)

(iii) P (|ϕ12(X)| = 0) = 0, where ϕ21(x) := ϕ2(x)− ϕ1(x).

Then, we have with

C(X) = 1ϕ21(X)<0C1(X) + 1ϕ21(X)>0C2(X) + 2η
σ1+η

1 (X) + σ1+η
2 (X)

|ϕ21(X)|
, (12)

σ2(X) = σ2
1(X) + σ2

2(X), (13)

the following estimates: ∣∣∣E [max{θ̂1
K , θ̂

2
K} −max{ϕ1(X), ϕ2(X)}|X

]∣∣∣ ≤ C(X)

K
1+η
2

, (14)

E
[∣∣∣max{θ̂1

K , θ̂
2
K} −max{ϕ1(X), ϕ2(X)}

∣∣∣2 |X] ≤ σ2(X)

K
. (15)

Proof of Theorem 1. We first prove by induction on P ≥ 2 that∣∣∣∣E(M̂P
K −MP

X

∣∣∣∣X)∣∣∣∣ ≤ CP (X)

K
1+η
2

and E
((

M̂P
K −MP

X

)2
∣∣∣∣X) ≤ Σ2

P (X)

K
. (16)

We apply Lemma 2, noticing that E[ÊpK − E
p
X |X] = 0 and E[(ÊpK − E

p
X)2|X] =

σ2
p(X)

K , for p ∈ {1, . . . , P}. First,
this gives the result for P = 2. Second, with the induction hypothesis for P , Lemma 2 gives that (16) is satisfied
for P + 1 with

CP+1(X) = CP (X) + 2η
Σ1+η
P (X) + σ1+η

P+1(X)

|ÊP+1
K −MP

X |η
and Σ2

P+1(X) = Σ2
P (X) + σ2

P+1(X),

which gives the claim.

Since bias(ÎJ,K) = E
[(
M̂P
K −MP

X

)
φ(X)

]
, we get |bias(ÎJ,K)| ≤ E[CP (X)|φ(X)|]

K
1+η
2

= C

K
1+η
2

. Similarly, we have

Var(ÎJ,K) =
1

J
Var[M̂P

Kφ(X)] ≤ 2

J
Var

[(
M̂P
K −MP

X

)
φ(X)

]
+

2

J
Var[MP

Xφ(X)]

≤ 2

J
E
[(
M̂P
K −MP

X

)2

φ2(X)

]
+

2

J
Var[MP

Xφ(X)],

which leads to (9).
Last, we notice that for c1, c2 > 0, the minimization of JK given c1

K1+η + c2
J = ε2 leads to J = c2

(1+η)c1
K1+η

and thus K ∼ cε−
2

1+η and J ∼ c′ε−2 for some c, c′ > 0. Since 1
JK ≤

1
J and 1

JK = O(ε2+ 2
1+η ) is negligible with

respect to 1
K2 and 1

J , this choice is asymptotically optimal: it gives MSE(ÎJ,K) = O(ε2) with a computational cost

in O(ε−3− 1−η
1+η ).
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2.2 The Multilevel Monte-Carlo estimator

The Multilevel Monte-Carlo (MLMC) is a general method to reduce the computational complexity of estimating
an expected value with a biased estimator. Under suitable assumptions, it can even lead to the same asymptotic
computational cost as an unbiased Monte-Carlo estimator. It has originally been developed by Giles [13] for
Stochastic Differential Equations, when the solution is approximated by a discretization scheme such as the Euler
scheme. Its application to the calculation of nested expectations has been developed by Haji-Ali [21], Bujok et
al. [6] and Giles [14]. For a detailed presentation of the method, from its origins to its applications, we refer to
Giles [14]. Let us explain its principle in few words and suppose that we are interested in computing E[ξ] with a
family of estimators ξl such that E[ξl] →

l→∞
E[ξ]. We assume that ξl can be simulated and the larger is l, the more

the simulation of ξl requires computation time. Then, the basic idea is to take a large value of L and to consider
the Monte-Carlo estimator 1

J

∑J
j=1 ξL,j . However, in many situations, it is possible to simulate jointly (ξl−1, ξl) in

such a way that the variance of ∆l = ξl − ξl−1 is much smaller than the variance of ξl−1 and ξl. Then, observing

that E[ξL] = E[ξ0] +
∑L
l=1 E[∆l], we consider the following MLMC estimator

1

J0

J0∑
j=1

ξ0,j +

L∑
l=1

1

Jl

Jl∑
j=1

∆l,j , (17)

where the variables ξ0,j ,∆1,j . . . ,∆L,j are sampled independently. This estimator has the same bias as 1
J

∑J
j=1 ξL,j

but may have, for a given computational cost, a much lower variance. Since the computational cost of the simulation
of ξ0,j is much lower than the one of ξL,j , one may use a large number of simulations for the level 0 (J0 >> J) to
reduce the statistical error. For the other levels l ∈ {1, . . . , L}, it is instead possible to use a relatively small number
of simulations Jl thanks to the variance reduction given by the joint simulation of (ξl−1, ξl). The optimal tuning of
L and J0, . . . , JL clearly depends on the context, and is analysed for a general framework in [14, Theorem 1]. Here,
we apply this method when ξl is the nested Monte-Carlo estimator studied in Subsection 2.1. In this case, the bias
comes from the approximation of the inner expectation by a second Monte-Carlo estimator.

We now present more precisely the MLMC estimator of I defined by (3). We consider L ∈ N∗ that represents
the number of levels and J0, . . . , JL ∈ N∗ that are the number of primary scenarios for each level. We consider
K0, . . . ,KL ∈ N∗ that describe the numbers of inner simulations and are such that

∀l ∈ {1, . . . , L}, Kl = K02l. (18)

For each level l ∈ {0, . . . , L}, we consider (Xl,j , 1 ≤ j ≤ Jl) i.i.d. random variables having the same distribution
as X, and random variables (Yl,j,k, 1 ≤ j ≤ Jl, 1 ≤ k ≤ Kl) that are independent given (Xl,j , 1 ≤ j ≤ Jl) and such
that Yl,j,k follows the distribution of Y given X = Xl,j . These random variables are assumed to be independent
between levels, i.e. (Xl,j , Yl,j,k, 1 ≤ j ≤ Jl, 1 ≤ k ≤ Kl)l∈0,...,L are independent. Then, we define for l ∈ {0, . . . , L}
and p ∈ {1, . . . , P}:

Êpl,j,K =
1

K

K∑
k=1

Y pl,j,k, K ∈ {1, . . . ,Kl} (19)

M̂p
l,j,K = max(Ê1

l,j,K , . . . , Ê
p
l,j,K) (20)

Then, the MLMC estimator of I is defined by

ÎMLMC =
1

J0

J0∑
j=1

M̂P
0,j,K0

φ(X0,j) +

L∑
l=1

1

Jl

Jl∑
j=1

(M̂P
l,j,Kl

− M̂P
l,j,Kl−1

)φ(Xl,j). (21)

Note that the sum 1
J0

∑J0
j=1 M̂

P
0,j,K0

φ(X0,j) of level 0 is a nested Monte-Carlo with J0 outer simulations and K0

inner simulations, while the sum 1
Jl

∑Jl
j=1(M̂P

l,j,Kl
− M̂P

l,j,Kl−1
)φ(Xl,j) is the difference of two nested Monte-Carlo

estimators with Jl outer simulations with Kl and Kl−1 inner simulations that are computed with the same random
variables. We recall in this context the heuristical explanation of the MLMC estimator (21). The level 0 uses a
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large number of outer simulations with a small number of inner simulation: this reduces the statistical error but
leaves some bias. The other levels l ∈ {1, . . . , L} are bias corrections that have a much smaller statistical error:

M̂P
l,j,Kl

and M̂P
l,j,Kl−1

are close to each other since they are constructed from the same random variables. The
MLMC estimator uses this idea and we have to determine the values of Jl and L that are asymptotically optimal
to estimate I with a precision ε > 0.

Before going on, let us emphasize that it is possible to define in the same way the MLMC estimator of (2) for

a general function h by replacing in Equation (20) max(Ê1
l,j,K , . . . , Ê

p
l,j,K) by h(Ê1

l,j,K , . . . , Ê
p
l,j,K). Here, we focus

on the maximum function as an interesting special case that raises mathematical difficulties. Interestingly, it is
possible to compute the MLMC estimators of (2) for different functions h at the same time with the same samples,
see also Remark 5 below for the MLMC antithetic estimators.

Let us assume that the assumptions of Theorem 1 hold. We have bias(ÎMLMC) = E
[(
M̂P
KL
−MP

X

)
φ(X)

]
=

O(K
− 1+η

2

L ) = O(2−
1+η
2 L). Besides, we have

Var
((
M̂P
Kl
− M̂P

Kl−1

)
φ(X)

)
≤ 2Var

((
M̂P
Kl
−MP

X

)
φ(X)

)
+ 2Var

((
M̂P
Kl−1

−MP
X

)
φ(X)

)
= O(K−1

l ) = O(2−l)

and the computational cost of (M̂P
l,j,Kl

− M̂P
l,j,Kl−1

)φ(Xl,j) is O(Kl) = O(2l). We can thus apply Theorem 1 [14],
which leads to the following result.

Proposition 3. Let us assume that the assumptions of Theorem 1 hold for some η ∈ (0, 1]. Then, by taking when
ε→ 0

L =

⌈
2

1 + η

| log(ε)|
log(2)

⌉
, J0 = 2d

2| log(ε)|+| log(| log(ε)|)|
log(2) e = O(ε−2| log(ε)|) and Jl = J02−l, l ∈ {1, . . . L}, (22)

we have MSE(ÎMLMC) = E[(ÎMLMC − I)2] = O(ε2) with a computational cost in O(ε−2 log2(ε)).
If only the assumption Σ2 <∞ of Theorem 1 holds, the same conclusion holds by taking η = 0 in (22).

Proof. We just check that the parameters achieve the claim. From the bias-variance decomposition, we get by using
Theorem 1, (18) and (22) that there is a positive constant C such that

MSE(ÎMLMC) ≤ C

(
1

K1+η
L

+
1

J0
+

L∑
l=1

1

JlKl

)
= C

(
2−(1+η)L

K1+η
0

+
1

J 0
+

L

J0K0

)
.

The choice of L gives 2−(1+η)L ≤ ε2 and the choice of J0 then gives L
J0

= O(ε2). Last the computational cost is given

by
∑L
l=0 JlKl = LJ0K0 = O(ε−2 log2(ε)). In the case where we only know Σ2 < ∞, only the second statement of

Equation (8) holds, and we get ∣∣∣E [(M̂P
KL −M

P
X

)
φ(X)

]∣∣∣ ≤ Σ√
KL

=
Σ√
K0

2−L/2,

which gives the second claim with the same arguments.

Remark 4. Let us note that the analysis of the computational cost gives that it is asymptotically bounded by
Cε2 log2(ε) for some constant C > 0, but it does not analyse precisely this constant. Nonetheless, since this cost is
LJ0K0, this constant can be chosen to be proportional to the number of levels.

Thus, the analysis of the bias given by Theorem 1 under the integrability assumption E[CP (X)|φ(X)|] < ∞
enables to reduce the number of levels and then to reduce this constant.

It is however possible to construct a better estimator by using the following MLMC antithetic estimator

ÎMLMC
A =

1

J0

J0∑
j=1

M̂P
0,j,K0

φ(X0,j) +

L∑
l=1

1

Jl

Jl∑
j=1

(
M̂P
l,j,Kl

−
M̂P
l,j,Kl−1

+ M̂P,′
l,j,Kl−1

2

)
φ(Xl,j), (23)
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where we set for p ∈ {1, . . . , P},

Êp,′l,j,Kl−1
=

1

Kl−1

Kl∑
k=Kl−1+1

Y pl,j,k and M̂p,′
l,j,Kl−1

= max(Ê1,′
l,j,Kl−1

, . . . , Êp,′l,j,Kl−1
). (24)

This is a rather natural idea to reduce the variance contribution of each level, see Section 9.1 of [14]. However,
the irregularity of the maximum function makes the analysis of the variance more delicate as if it were a smooth
function. Giles and Goda [15] give an analysis of the variance that require the boundedness of any moments of
Y pφ(X), p ∈ {1, . . . , P} (Assumption 1 of [15]) and assumptions to control the probability that another component
is close to the maximum (Assumptions 2 and 3 of [15]). Here, our proof relies on a different argument. It only
requires a moment condition that quantifies in a different way the probability that two or more arguments in
the maximum are close to the maximum. The parameter η ∈ (0, 1] involved in this condition gives besides more
flexibility to apply the MLMC method. Details are in the appendix (see Proposition 12).

Remark 5. For the calculation of (2) with a general function h, the antithetic MLMC estimator is defined by

1

J0

J0∑
j=1

h(Ê1
0,j,K0

, . . . , ÊP0,j,K0
)φ(X0,j)

+

L∑
l=1

1

Jl

Jl∑
j=1

(
h(Ê1

l,j,Kl
, . . . , ÊPl,j,Kl)−

h(Ê1
l,j,Kl−1

, . . . , ÊPl,j,Kl−1
) + h(Ê1,′

l,j,Kl−1
, . . . , ÊP,′l,j,Kl−1

)

2

)
φ(Xl,j).

In particular, it is possible to estimate by MLMC the value of (2) for different functions h with the same simulations.

Theorem 4. Let η ∈ (0, 1]. We assume that the assumptions of Theorem 1 hold and besides that

∀p ∈ {2, . . . , P}, E

[
D2+η(X)

|EpX −M
p−1
X |η

φ2(X)

]
<∞,

where Dp
2+η(X) = E[|Y p − E[Y p|X]|2+η|X]. Then, by taking when ε→ 0

L =

⌈
2

1 + η

| log(ε)|
log(2)

⌉
, J0 = 2d

2| log(ε)|
log(2) e = O(ε−2) and Jl = dJ02−(1+ η

4 )le, l ∈ {1, . . . L}, (25)

we have MSE(ÎMLMC
A ) = E[(ÎMLMC

A − I)2] = O(ε2) with a computational cost in O(ε−2).

Proof. We have bias(ÎMLMC
A ) = bias(ÎMLMC) = O(2−

1+η
2 L). By Proposition 12, the variance of each level satisfies

Var

((
M̂P
Kl
−
M̂P
Kl−1

+ M̂P,′
Kl−1

2

)
φ(X)

)
= O(K

−(1+ η
2 )

l ) = O(2−l(1+ η
2 )),

and the computational cost of

(
M̂P
Kl
−

M̂P
Kl−1

+M̂P,′
Kl−1

2

)
φ(X) is in O(Kl) = O(2l). We are thus in the framework of

Theorem 1 of [14], and we just check that the choice of parameters (25) gives the claim. By using the bias variance
decomposition, we have

MSE(ÎMLMC
A ) ≤ C

(
2−(1+η)L +

1

J0
+

L∑
l=1

1

JlK
1+ η

2

l

)
≤ C

(
ε2 + ε2

L∑
l=0

2−
η
4 l

)
.

Since
∑L
l=0 2−

η
4 l ≤

∑∞
l=0 2−

η
4 l = 1

1−2−
η
4

, we indeed have MSE(ÎMLMC
A ) = O(ε2). Observing that for ε ∈ R∗+

small enough, we have J02−(1+ η
4 )L ≥ 1 and thus Jl ≤ 2J0 × 2−(1+ η

4 )l for l ∈ {0, . . . , L}, we can upper bound the
computational cost as follows

L∑
l=0

JlKl ≤ 2J0K0

L∑
l=0

2−
η
4 l ≤ 4K0ε

−2

1− 2−
η
4

.
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Remark 6. We can easily extend Theorem 4 if we assume that the assumption of Theorem 1 is true for some
η1 ∈ (0, 1] and that

∀p ∈ {2, . . . , P}, E

[
Dp

2+η2
(X)

|EpX −M
p−1
X |η2

φ2(X)

]
<∞,

for some η2 > 0. If we then take

L =

⌈
2

1 + η1

| log(ε)|
log(2)

⌉
, J0 = 2d

2| log(ε)|
log(2) e = O(ε−2) and Jl = dJ02−(1+

η2
4 )le, l ∈ {1, . . . L},

we get in the same way that MSE(ÎMLMC
A ) = O(ε2) with a computational cost in O(ε−2). However, roughly

speaking, the integrability assumption of Theorem 1 for the bias deals with the integrability of 1

|EpX−M
p−1
X |η1

when

|EpX −M
p−1
X | is close to 0, similarly as the assumption for the variance estimate. Thus, it is rather natural to

consider η1 = η2, and we state Theorem 4 in this case for sake of simplicity.

Remark 7. In all the presentation of the MLMC method, we have considered Kl = K02l. We could more generally
consider Kl = K0ν

l, with ν ≥ 2. In this case, the antithetic estimator (23) would then be defined by

ÎMLMC
A =

1

J0

J0∑
j=1

M̂P
0,j,K0

φ(X0,j) +

L∑
l=1

1

Jl

Jl∑
j=1

(
M̂P
l,j,Kl

− 1

ν

ν∑
ν̃=1

M̂P,ν̃
l,j,Kl−1

)
φ(Xl,j),

where M̂P,ν̃
l,j,Kl−1

is the estimator of the maximum obtained with the samples Y pl,j,k with (ν̃−1)Kl−1 +1 ≤ k ≤ ν̃Kl−1.

In the context of MLMC for Stochastic Differential Equations, Giles [13, Section 4.1] proposes a heuristic method
to determine ν and uses ν = 4 in his experiments. Tuning the parameter ν will not improve the asymptotic rate
of convergence in O(ε−2) given by Theorem 4, but may improve the convergence by a multiplicative factor. For
simplicity and clarity, we have kept ν = 2 through all the paper and we leave the optimization in ν for further
research.

2.3 Least Squares Monte Carlo techniques for Nested Expectations

In this paragraph, we aim at presenting briefly the classical technique of regression in our context, i.e. for the
calculation of I. For simplicity, we only consider here regressors that are indicator functions.

Let Nr ∈ N∗ be the number of regressors. We consider B1, . . . , BNr ∈ G disjoint measurable sets of the space
where X takes values, and we define for n ∈ {1, . . . , Nr} and p ∈ {1, . . . , P},

αpn = E[Y p|X ∈ Bn] =
E[Y p1X∈Bn ]

P(X ∈ Bn)
(with the convention 0/0 = 0).

Then we have

∀p ∈ {1, . . . , P}, E

(Y p − Nr∑
n=1

αpn1X∈Bn

)2
 = min

α1,...,αNr∈R
E

(Y p − Nr∑
n=1

αn1X∈Bn

)2
 ,

i.e.
∑Nr
n=1 α

p
n1X∈Bn is the L2 projection of Y p on {

∑Nr
n=1 αn1X∈Bn : α1, . . . , αNr ∈ R}. It is a natural proxy

of EpX , which is the L2 projection on the larger space of σ(X)-measurable random variables. We then define

γPn = maxp=1,...,P α
p
n, so that

∑Nr
n=1 γ

P
n 1X∈Bn approximates MP

X .
Let us consider (Xj , Yj)1≤j≤J an i.i.d. sample following the distribution of (X,Y ). We define

α̂pn,J =

∑J
j=1 Y

p
j 1Xj∈Bn∑J

j=1 1Xj∈Bn
(with the same convention 0/0 = 0)
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and have similarly

∀p ∈ {1, . . . , P}, 1

J

J∑
j=1

(
Y pj −

Nr∑
n=1

α̂pn,J1Xj∈Bn

)2

= min
α1,...,αNr∈R

1

J

J∑
j=1

(
Y pj −

Nr∑
n=1

αn1Xj∈Bn

)2

.

We define γ̂Pn,J = maxp=1,...,P α̂
p
n,J , so that

∑Nr
n=1 γ̂

P
n,J1Xj∈Bn approximates MP

Xj
. Thus, we define the Least Squares

Monte-Carlo estimator of I by

ÎLSMC =
1

J

J∑
j=1

φ(Xj)

Nr∑
n=1

γ̂Pn,J1Xj∈Bn . (26)

We are interested in estimating the MSE of this estimator. The next proposition gives a framework to analyse it,
which is useful to determine asymptotically the number of regressors and the number of Monte-Carlo samples to
reach a given precision ε > 0.

Proposition 5. For p = 1, . . . , P , we set σp(x) = Var(Y p|X = x), and assume that there exists σ, φ ∈ R∗+ such

that for all x ∈ G, σ2
p(x) ≤ σ2 and |φ(x)| ≤ φ. Then, we have

E[(ÎLSMC − I)2] ≤ 2φ
2

σ2NrP + E[(MP
X )2]

J
+

P∑
p=1

E

(EpX − Nr∑
n=1

αpn1X∈Bn

)2
 .

We now suppose in addition that X takes values in G = [0, 1]d and that:

1. Nr = ndr for some nr ∈ N, and for any n ∈ {1, . . . , Nr},

Bn =

[
i1
nr
,
i1 + 1

nr

)
× · · · ×

[
id
nr
,
id + 1

nr

)
.

where i1, . . . , id ∈ {0, . . . , nr − 1} are the unique integers determined by the decomposition in base nr of n− 1,

i.e. n− 1 =
∑d
k=1 ikn

k−1
r ,

2. for any p ∈ {1, . . . , P}, the function G 3 x 7→ Epx = E[Y p|X = x] is Lipschitz continuous with constant L for
the ‖‖∞ norm on Rd.

Then, we have

E[(ÎLSMC − I)2] ≤ 2φ
2
(
σ2NrP

J
+
PL2

N
2/d
r

)
.

With this upper bound, taking J ∼ cε−d−2 and Nr ∼ c′ε−d for some constants c, c′ > 0 is an asymptotic optimal
choice to have E[(ÎLSMC − I)2] = O(ε2), with an overall computational cost in O(ε−d−2).

In comparison with the MLMC estimator, it is worth to notice that ÎLSMC suffers from the curse of dimensionality.
This is a well-known weakness of Least Squares Monte Carlo, see e.g. [18, Section 8.2], which is not related to
our particular problem. The larger is the dimension of G (the space where X takes values), the more it requires
computational effort. As we will see, for the problem of the calculation of the SCR for ALM management, this
is particularly detrimental. The MLMC antithetic estimator (23) has the clear advantage to converge with the
same computational cost O(ε−2) as an unbiased Monte-Carlo estimator, independently from the dimension of the
problem.
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Proof. From the definition of ÎLSMC (26), we get by using (a+ b)2 ≤ 2a2 + 2b2 and Jensen’s inequality:

E[(ÎLSMC − I)2] = E


ÎLSMC − 1

J

J∑
j=1

φ(Xj)M
P
Xj +

1

J

J∑
j=1

φ(Xj)M
P
Xj − I

2


≤ E

 2

J

J∑
j=1

φ2(Xj)

(
Nr∑
n=1

γ̂Pn,J1Xj∈Bn −MP
Xj

)2
+ 2

Var(φ(X)MP
X )

J

≤ 2φ
2

E

 1

J

J∑
j=1

(
Nr∑
n=1

γ̂Pn,J1Xj∈Bn −MP
Xj

)2
+

E[(MP
X )2]

J

 .

Now, Theorem 8.2.4 [18] gives

E

 1

J

J∑
j=1

(
EpXj −

Nr∑
n=1

α̂pn,J1Xj∈Bn

)2
 ≤ σ2Nr

J
+ E

(EpX − Nr∑
n=1

αpn1X∈Bn

)2
 .

We recall that γ̂Pn,J = maxp=1,...,P α̂
p
n,J and observe that for Xj ∈ Bn, we have

(MP
Xj − max

p=1,...,P
α̂pn,J)2 ≤ max

p=1,...,P
(EpXj − α̂

p
n,J)2 ≤

P∑
p=1

(EpXj − α̂
p
n,J)2

since |maxp=1,...,P ap −maxp=1,...,P bp| ≤ maxp=1,...,P |ap − bp| for any a, b ∈ RP . This gives the first upper bound.
We now consider the case G = [0, 1]d with the related assumptions. Then, for X ∈ Bn, we have for any p

|EpX − α
p
n| =

∣∣∣∣EpX − ∫
x∈Bn

EpxP(X ∈ dx|X ∈ Bn)

∣∣∣∣
≤
∫
x∈Bn

|EpX − E
p
x|P(X ∈ dx|X ∈ Bn) ≤ L

nr
=

L

N
1/d
r

,

since ‖X − x‖∞ ≤ 1
nr

for X,x ∈ Bn. This gives the second bound. To have this upper bound smaller than Cε2 for

some constant C > 0, one must at least have Nr ≥ c1ε
−d and J ≥ c2Nrε

−2 for some constants c1, c2 > 0, which
leads to take Nr ∼ c′ε−d and J ∼ ε−d−2.

Last, we observe that the computational cost to find n such that x ∈ Bn is constant since ik = bnrxkc and

n = 1 +
∑d
k=1 ikn

k−1
r . Therefore, computing all the 2Nr sums

∑J
j=1 Y

p
j 1Xj∈Bn and

∑J
j=1 1Xj∈Bn that define can

be achieved with a computational cost of O(J), and the calculation of (26) costs similarly O(J). Since J ∼ cε−d−2,
we get the claim.

2.4 Numerical results on a toy example: the Butterfly Call Option with the Black-
Scholes model

The goal of this section is to illustrate the theoretical results on a simple case where the conditional expectations
are known explicitly. Thus, we consider an asset following the Black-Scholes model:

St = S0 exp

(
σWt −

σ2

2
t

)
, t ≥ 0,

where W is a standard Brownian motion and σ > 0 is the volatility. We consider a butterfly option with payoff at
time T > 0:

ψ(ST ) = (ST −K1)+ + (ST −K2)+ − 2

(
ST −

K1 +K2

2

)+

,
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where 0 < K1 < K2. The price of this butterfly option at time t ∈ [0, T ] is given by

E[ψ(ST )|St] = CallBS(T − t, St,K1) + CallBS(T − t, St,K2)− 2CallBS

(
T − t, St,

K1 +K2

2

)
=: Butterfly(T − t, St),

with CallBS(t, s,K) = sN ( 1
σ
√
t

ln(s/K) + σ
2

√
t)−KN ( 1

σ
√
t

ln(s/K)− σ
2

√
t), where N is the cumulative distribution

function of the standard normal distribution.
Now, we consider multiplicative upward and downward shocks sup/down on the asset value that occur instan-

taneously at time t. We want to compute the worst loss between these shocks when it is positive. Since the
Black-Scholes model is multiplicative with respect to the spot value, these shocks amount to multiply the asset by
1 + sup and 1 + sdown, with −1 < sdown < 0 < sup. Hence, setting X = St, Y

1 = (ψ(ST )− ψ((1 + sup)ST )) and
Y 2 =

(
ψ(ST )− ψ((1 + sdown)ST )

)
we want to compute the following quantity :

I = E
[
max

{
E[Y 1|X],E[Y 2|X], 0

}]
.

We are thus indeed in our general framework with P = 3 and Y 3 = 0 and φ(x) = 1, and we have

M3
X = max

{
Butterfly(T − t, (1 + sup)X),Butterfly(T − t, (1 + sdown)X), 0

}
.

Since X follows a log-normal distribution, the exact value of I can be thus obtained by numerical integration.
Numerical values. In all our numerical experiments, we consider the initial price S0 = 100, the volatility

σ = 0.3, the strikes K1 = S0 + a and K2 = S0 − a with a = 50, the option maturity T = 2 years and perform the
shocks at t = 1 year. In our tests, we take sup = 0.2 and sdown = −0.2.

Figure 1 illustrates the bias E[M̂3
K−M3

X ] in function of K with a log-scale. The expectation is approximated by
the Nested Monte-Carlo with J = 104 to get a negligible statistical error. As a comparison, the function K 7→ 1/K
is drawn, and we observe that two curves are quite parallel, which indicates that the bias behaves asymptotically

like c/K. Also, we have drawn in Figure 2 the variance of M̂3
Kl
−

M̂3
Kl−1

+M̂3,′
Kl−1

2 in function of Kl, and we observe

a behaviour in K
−3/2
l . Thus, it is reasonable to apply then the Multilevel method with η = 1 to determine the

parameters in Equation (25). We have drawn in Figure 3 the RMSE in function of the computational cost (defined

by
∑L
l=0 JlKl) for different values of η ≤ 1. We observe a behaviour in ε−2, which is in line with Theorem 4. The

RMSE is calculated empirically, and we have runned many times the MLMC estimator to do so.

Figure 1: Bias behaviour of the nested estimator
Figure 2: Var

(
M̂3
Kl
−

M̂3
Kl−1

+M̂3,′
Kl−1

2

)
in function of Kl
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Figure 3: Empirical RMSE of the MLMC antithetic es-
timator as a function of the cost (log-scale) for different
values of η.

Figure 4: Empirical RMSE of the LSMC estimator as
a function of the number of samples J (log-scale)

We now present the implementation of LSMC estimator. We note that X ′ = 1
σ log(X) + σ/2 is a standard

normal distribution. It therefore takes with a probability greater than 99% its values in [−3, 3]. We notice that
E[Y p|X] = E[Y p|X ′] and take the following regressors

1X′∈[−3+6j/Nr,−3+6(j+1)/Nr], j = 0, . . . Nr − 1.

Up to a translation, we are thus in the framework of Proposition 5. In Figure 4, we have plotted the RMSE as a
function of the number of samples J , which is also the computational cost of the method. The behaviour is in line
with the theoretical result given by Proposition 5 with d = 1.

We already see on this one-dimensional example that the MLMC estimator has some benefit in terms of conver-
gence with respect to the LSMC estimator. As we will see in the next section for the SCR estimation, this benefit
is much more important when X takes values in a high-dimensional space.

3 Calculation of the SCR with the Standard Formula in an ALM model

In this section, we want to illustrate and compare the MLMC and LSMC methods on a more realistic example for
the application to insurance. Namely, we consider the case of Asset Liability Management (ALM) for life insurance
contracts. We are interested in computing the SCR with the standard formula after t years. This example is
of practical interest and the conditional expectations that are at stake are typically high-dimensional. In fact,
the process that determines the ALM strategy is really path-dependent and involves book values, market values,
crediting rates, etc. To illustrate this, we will use the recent ALM model that we have developed in [1]. In this
section, we mainly focus on the interest rate module of the SCR with the standard formula, but discuss also the
calculation of the SCR on the market risk in the last subsection.

3.1 The ALM model in a nutshell

In this section, we briefly present the ALM model developed in [1] and refer to this paper for the full details.
We consider an insurance company that handles a life insurance, namely a General Account guaranteed with
participation contracts. We consider a runoff portfolio with an initial Mathematical Reserve MR0 corresponding
to policyholders’ deposit. The Capitalization Reserve (a buffer for capital gains on bonds imposed by the French
legislation) and the Profit Sharing Reserve (a buffer for capital gains on stocks to smooth the crediting rate) are
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empty at time 0, i.e. CR0 = 0 and PSR0 = 0. At time 0, the insurance company invests MR0 in two asset classes,
stocks and riskless bonds, with respective weights wS0 ∈ [0, 1] and wb0 = 1−wS0 . Thus, the initial Market Value and
Book Value in stock (resp. in bonds) is given by

MV S0 = BV S0 = wS0MR0 (resp. MV b0 = BV b0 = wb0MR0).

During all the ALM strategy, the insurance company invests in an equity asset (St)t≥0 that may be a stock index
or more generally an average of stocks with weights corresponding to the investment of the insurance company. It
therefore has φS0 = MV S0 /φ

S
0 equity assets at time 0. The insurance company also invests in bonds, and we assume

that this investment is made with an equally weighted portfolio of bonds with maturities 1, . . . , n. We introduce
some notation to precise this: we denote P (t, t+ i) the price of a Zero-Coupon bond at time t with maturity t+ i,
B(t, n, c) =

∑n
i=1 cP (t, t+ i) + P (t, t+ n) the price at time t of a bond with constant coupon c ∈ R, unit nominal

value and maturity n and for c = (ci)i∈{1,...,n} ∈ Rn we denote by

B̄(t, n, c) =
1

n

n∑
i=1

B(t, i, ci)

the value of an equally weighted portfolio of bonds with coupons c. During all the ALM strategy, we assume that

bonds are bought at par with the swap rate cswap(t, n) = 1−P (t,t+n)∑n
i=1 P (t,t+i) . We set c0 = (cswap(0, i))i∈{1,...,n} and have

B̄(0, n, c0) = 1. At time 0, the insurance company has then φb0 = MV b0 = MV b0 /B̄(0, n, c0) assets B̄(0, n, c0).
We assume that the portfolio is handled up to time T ∈ N∗ and that it is static on each period (t − 1, t),

t ∈ {1, . . . , T}. At each time t, it is reallocated in such a way to have at the end of the reallocation

φSt =
wSt MVt
St

, φbt =
wbtMVt
B̄(t, n, ct)

quantities of equity assets and bonds, where MVt denotes the market value of the portfolio at time t and wSt =
1 − wbt ∈ [0, 1] is the target weight decided for ALM strategy. The coupons ct ∈ Rn are determined by the
reallocation procedure that we describe now and takes into account the specificities of life insurance contracts. We
decompose this reallocation in five steps:

1. Calculation of the cash inflows and book value movements related to the bonds. Since the portfolio composition

is unchanged on (t− 1, t), the insurer receives
φbt−1

n

(
1 +

∑n
i=1 c

i
t−1

)
corresponding to the nominal value of the

expiring bonds and the coupons. The value of the matured bonds
φbt−1

n is removed from the book value of
bonds BV bt .

2. Payment of the policyholders that exit their contract. The proportion of policyholders that exit on [t− 1, t] is
denoted by pet−1. It is modelled as the sum of a deterministic part related to the relevant life table and of a

dynamic part modelling surrenders DSR(∆t−1) = DSRmax1∆t≤α + DSRmax
β−∆t

β−α 1α<∆t<β , where ∆t−1 is

the difference between the crediting rate to policyholders rph(t− 1) and a competitor rate rcompt−1 . We assume
that policyholders exit uniformly on [t− 1, t], and the amount to pay is thus pet−1MRt−1(1 + rG/2), where rG
is the minimum guaranteed rate. This means that they are remunerated with this rate on the last period.

3. Reallocation step. At this step, the market value of the portfolio is given by

MVt = Gt + φSt−1St +
φbt−1

n

n−1∑
i=1

B(t, i, ci+1
t−1),

where Gt is the liquidity gap that corresponds to the difference between the cash inflows and outflows of the
two first steps. The second term φSt−1St represents the market value of equity assets, and the last term the

market value of bond assets. Note that a bond at time t− 1 with maturity i+ 1 and coupon ci+1
t−1 becomes at

time t a bond with maturity i with the same coupon.
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The portfolio is reallocated with the prescribed weights wSt ∈ [0, 1] and wbt = 1 − wSt given by the ALM
strategy. The amount of equity assets to hold is thus given by φSt = wSt MVt/St. If this quantity is greater
than φSt−1, there is a purchase of φSt −φSt−1 equity assets which increases the book value BV St by (φSt −φSt−1)St.
If this quantity is lower than φSt−1, there is a sell of φSt−1 − φSt equity assets which decreases the book value
BV St by the factor φSt /φ

S
t−1. This generates capital gain or loss on stocks that is registered, since capital gain

has to be redistributed to policyholders with a participation rate πpr ∈ [0, 1].

The reallocation in bonds follows the same principles but is more involved. At the end of this step, the
portfolio in bonds is made with φbt combinations of bonds B̄(t, n, ct). Since the bonds are bought at par,
there is a precise relation between ct, ct−1 and the swap rates at time t. According to the French legislation
rules, the capital gain or loss on bonds is stored in the Capitalization Reserve and is separated from the ALM
portfolio. Details can be found in [1].

4. Determination of the crediting rate. This step determines the policyholders’ earning rate rph(t) on the period
(t − 1, t). Due to regulatory constraint, it has to be greater than the minimum guaranteed rate rG and the
amount distributed to policyholders has to be greater than the proportion πpr of the gains (participation
rate). Besides the insurance company compares rph(t) with a competitor rate rcompt (typically the market
short rate) and tries at best to have rph(t) ≥ rcompt to avoid dynamic surrenders. We call “target rate”, the
maximum rate given by these three constraints.

The amount to distribute is typically made with the coupons, the capital gain or loss on stocks and possibly
dividends. To smooth these gains along the years, the insurance company uses a Profit Sharing Reserve. In
addition, the insurance company may also want to realize a part of latent gain or loss on stocks. In the model
developed in [1], the amount to distribute depends on all these quantities. We distinguish four cases (from
the best to the worst) to determine rph(t).

(A) The target rate can be distributed without using latent gain or by realizing all the latent loss on stocks.

(B) The target rate can be distributed by using latent gain or without realizing all the latent loss on stocks.
The proportion of gain or loss is determined accordingly.

(C) The target rate cannot be reached with the available amount, but the minimum guaranteed rate can be
distributed. The insurance company then uses all the latent gain in order to serve the best possible rate.

(D) The minimum guaranteed rate cannot be reached with the available amount. Then, the insurance
company clears out the Profit Sharing Reserve and credit the policyholders with the lowest rate above
rG that also satisfies participation rate constraints.

Once rph(t) is determined, the Mathematical Reserve of the remaining policyholders is updated accordingly:
MRt = MRt−1(1 − pet−1)(1 + rph(t)). The Profit Sharing Reserve and the book value of stocks are also
modified according to the case. The shareholder’s margin can be calculated as well as the profit and loss
P&Lt generated on the period (t − 1, t), which is defined as the sum of the shareholder’s margin and the
interest generated by the Capitalization Reserve. Again, all the details can be found in [1].

5. Externalization of the Capitalization Reserve and of Shareholders’ margin from the accounting. This last step
is a technical accounting operation that slightly change the quantities of assets and the book values, while
keeping unchanged the target weights wSt and wbt .

The last step at the final time T follows the same lines: instead of being reallocated, the portfolio is cleared and
policyholders get back the remaining Mathematical Reserve MRT .

3.2 The Solvency Capital Requirement with the standard formula

We now present the main lines of the SCR calculation with the standard formula as indicated by the EIOPA [22, 23].
Let us denote by (Ft, t ≥ 0) the filtration representing the market information at time t ≥ 0 and Q the pricing
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measure. We consider a short-rate model (rt, t ≥ 0) for interest rates and define at time t ∈ {0, . . . , T −1} the Basic
Own Funds by

BOFt = EQ

[
T∑

u=t+1

e−
∫ u
t
rsdsP&Lu

∣∣∣∣Ft
]
,

i.e. the expected value of the discounted future profits and losses. The principle of the standard formula is to apply
shocks on each asset class (equity, interest rate, etc.) and evaluate the variation of Basic Own Funds. Then, the
SCR on market risk is obtained by using a given formula that aggregates all risk modules. In this paper, we focus
on the interest rate module, where upward and downward shocks are prescribed by the regulator. The methodology
to apply these shocks is described in Section 2.5 of [1]. We have used in our simulations the shocks specified in [22].
At time t, the SCR value of the interest module is then defined by

SCRintt = max{BOFt −BOF upward shock
t , BOFt −BOF downward shock

t , 0},

where shocks are applied at time t on the interest-rate curve. We also set

SCRupt = max{BOFt −BOF upward shock
t , 0} and SCRdownt = max{BOFt −BOF downward shock

t , 0},

so that SCRintt = max(SCRdownt , SCRupt ). At time t = 0, SCRint0 is a number that can be calculated by Monte-
Carlo. This has been investigated in [1]. However, for the ALM strategy, it may be useful to have quantitative
insights on the evolution of the SCR along the time to asses the cost of capital. Thus, in this paper we are interested
with the valuation of

I = EP[max{BOFt −BOF upward shock
t , BOFt −BOF downward shock

t , 0}], (27)

the average value under the historical (or real) probability of the SCR at time t. If we denote by dP
dQ

∣∣∣∣
Ft

the change

of probability, we have

I = EQ

[
dP
dQ

∣∣∣∣
Ft

max{BOFt −BOF upward shock
t , BOFt −BOF downward shock

t , 0}

]
, (28)

and we are precisely in the framework of Section 2 if X denotes a random variable that represents all the market
information up to time t (i.e. σ(X) = Ft). The equity module of the SCR is similarly defined by

SCReqt = max{BOFt −BOF equity shock
t , 0},

where the equity shock amounts to a strong decrease of S immediately after t. Usually, the maximum with zero is
useless since the shock is always negative. Last the standard formula that defines the SCR on market risk as follows
(see Articles 164 and 165 of [8]):

SCRmktt =
√

(SCReqt )2
t + (SCRint)2

t + 2εSCReqt SCR
int
t (29)

where ε = 0 if the interest-rate exposure is due to the upward-shock on interest rates and ε = 1
2 if it is due to the

downward shock of the interest rate module. Thus, the expected value of the SCR is given by:

EP[SCRmktt ] = EQ

[
dP
dQ

∣∣∣∣
Ft

√
(SCReqt )2

t + (SCRint)2
t + 2εSCReqt SCR

int
t

]
.

3.3 The stock and short-rate models

We consider (Wt, Zt)t≥0 a standard two-dimensional Brownian motion under Q. Following [1], we assume that
the equity assets follows a Black-Scholes model and that the short interest rate follows a Vasicek++ (or Hull and
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White) model:

dSt
St

= rtdt+ σSdWt (30)

rt = xt + ϕ(t), with dxt = k(θ − xt)dt+ σr(γdWt +
√

1− γ2dZt), (31)

where γ ∈ [−1, 1] tunes the dependence between equity and interest rates. We assume k, θ, σS , σr > 0. As explained
in [1], the shift function ϕ : R+ → R is particularly convenient to implement the shocks prescribed by the EIOPA.
Mainly, shocks amounts to modify the shift, leaving the dynamics of x unchanged, which makes easy to calculate
the ALM strategies in both normal and shocked cases on each sample.

A new feature with respect to [1] is that we now also consider the dynamics under the real-world probability P.
We assume here for simplicity the following basic change of probability

dP
dQ

∣∣∣∣
Ft

= exp

(
λWWt + λZZt −

1

2
((λW )2 + (λZ)2 + 2γλWλZ)t

)
=: Lt, (32)

with λW , λZ ∈ R. By the Cameron-Martin theorem, dW P
t = dWt − λWt dt and dZP

t = dZt − λZdt are independent
Brownian motions under P. We then have the following dynamics under P:

dSt
St

= (rt + λWσS)dt+ σSdW
P
t

rt = xt + ϕ(t), with dxt = k

(
θ + σr

γλW +
√

1− γ2λZ

k
− xt

)
dt+ σr(γdW

P
t +

√
1− γ2dZP

t ),

To run this asset model with the ALM model described in Subsection 3.1, we have to be able to sample St, rt and
the change of probability Lt at each time t ∈ N. It is possible to do it exactly by using the following recurrence
formula

St = St−1 exp

(∫ t

t−1

xudu+

∫ t

t−1

ϕ(u)du+ σS(Wt −Wt−1)− σ2
S

2

)
,

xt = xt−1e
−k + θ(1− e−k) + σr

∫ t

t−1

e−k(t−u)(γdWu +
√

1− γ2dZu),

Lt = Lt−1 exp

(
λW (Wt −Wt−1) + λZ(Zt − Zt−1)− 1

2
((λW )2 + (λZ)2 + 2γλWλZ)

)
,

and ∫ t

t−1

xudu =
1

k
(xt−1 − xt) + θ +

σr
k

[γ(Wt −Wt−1) +
√

1− γ2(Zt − Zt−1)].

The law of (Wt − Wt−1, Zt − Zt−1,
∫ t
t−1

e−k(t−u)(γdWu +
√

1− γ2dZu)) is a centered Normal distribution with
covariance  1 0 γ 1−e−k

k

0 1
√

1− γ2 1−e−k
k

γ 1−e−k
k

√
1− γ2 1−e−k

k
1−e−2k

2k

 .
This is the same law as

(
G1, G2, γ

1−e−k
k G1 +

√
1− γ2 1−e−k

k G2 +

√
1−e−2k

2k −
(

1−e−k
k

)2

G3

)
, where G1, G2, G3 are

independent standard Normal variables. Once this triplet is sampled exactly, we can calculate easily (St, xt, Lt)
using the formulas above.
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3.4 Numerical experiments I: comparison between methods to calculate E[SCRint
t ]

We now present our numerical results for the computation of I defined by (27). We use the following parameters
for the ALM model and for the asset model. They are summarized in Tables 1 and 2. Unless specified, we also
consider P = Q, i.e. that the real and risk-neutral probability are the same. We will discuss however later on the
impact of this change of probability for the SCR.

Stock model Short-rate model
S0 = 1 r0 = θ = 0.02
σS = 0.1 σr = 0.01
γ = 0 k = 0.2

Table 1: Market-model parameters

Management Parameters Liability Parameters
Target allocation in stock wst = 0.05 Dynamic surrenders triggering thresholds β = −0.01 and α = −0.05
Target allocation in bond wbt = 0.95 Maximum lapse dynamic surrender rate DSRmax = 0.3
Participation rate πpr = 0.9 Deterministic constant exit rate p = 0.05
Minimum guaranteed rate rG = 0.015 Time horizon: T = 30 years
Competitor rate rcompt = rt
Smoothing coefficient of the PSR: ρ̄ = 0.5
Bond portfolio maximal maturity n = 20
Projection Horizon T = 30

Table 2: Liability and management parameters

The implementation of the MLMC antithetic estimator is easily made by using (25). Instead, the implementation
of the LSMC raises some issues. The main one is how to choose the regressors. In fact, the ALM model presented
in Subsection 3.1 is truly path-dependent, and one needs to know (rt′ , St′)t′∈{1,...,t} to determine the book values,
the different reserves and the Bond portfolio at time t. Thus, SCRintt depends on all the past before t. For t = 1
the dimension of the regression space is equal to 2 and the choice of the regressors r1 and S1 is obvious. When t
gets larger, this is no longer the case and in view of the theoretical complexity result of Proposition 5 one cannot
afford to use all the 2t regressors. It is then important to select few regressors. We explain now the procedure that
we have used.

3.4.1 Selection of the regressors for the LSMC estimator

In Table 3 we have listed 12 relevant risk-factors for the insurance company. We will select the most relevant ones
for the SCR interest rate module by using a forward selection procedure.

To do so, we sample Jv scenarios up to time t of the ALM model. This produces in particular Jv samples
of (X1,j

t , . . . , X12,j
t )j=1,...,Jv . Then, we approximate for each scenario the value of the interest rate module of

the SCR, SCRint,jt , by using a Nested Monte-Carlo with K of secondary scenarios. We note ŜCR
Nested,j

t these
approximations (we drop for readability the superscript “int” in Paragraph 3.4.1 since we only consider the interest
rate module). In our numerical application, we have taken Jv = 2000 validation scenarios and K = 104 inner

scenarios. Let ŜCR : R12 → R be a function approximating the SCR from the values of X. We now consider the
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Attribute Risk-factor description
X1
t = St Equity asset value

X2
t = rt Short rate

X3
t = φSt Position in Stock

X4
t = φbt Position in bonds

X5
t = BV bt Book value of bonds

X6
t = BV St Book value of equity assets

X7
t = MRt Mathematical Reserve

X8
t = PSRt Profit sharing reserve

X9
t = CRt Capitalization Reserve

X10
t = MVt Portfolio market value

X11
t = φbtB̄(t, n, ct) Market value of bonds

X12
t = φSt St Market value of equity assets

Table 3: Non exhaustive list of risk factors

empirical RMSE, i.e. √√√√ 1

Jv

Jv∑
i=1

(ŜCR
Nested,j

t − ŜCR(Xj
t ))2

as a criterion to assess the accuracy of the regression function ŜCR.
We start by selecting the first variable. Up to a linear rescaling of the sample we may assume without loss of

generality that all the variables are in [0, 1]. We consider the 12 possible regressor functions for l ∈ {1, . . . , 12},

nr−1∑
i=0

α̂li1Xlt∈[i/nr,(i+1)/nr), with α̂li =

∑Jv
j=1 ŜCR

Nested,j

t 1Xl,jt ∈[i/nr,(i+1)/nr)∑Jv
j=1 1Xl,jt ∈[i/nr,(i+1)/nr)

,

and select l∗1 ∈ {1, . . . , 12} that achieves the lowest RMSE. Once l1 is selected, we consider the following 11 regressor
functions for l ∈ {1, . . . , 12} \ {l1}:

nr−1∑
i1,i2=0

α̂l1,li1,i2
1
X
l1
t ∈[i1/nr,(i1+1)/nr)

1Xlt∈[i2/nr,(i2+1)/nr),

with α̂l1,li1,i2
=

∑Jv
j=1 ŜCR

Nested,j

t 1
X
l1,j
t ∈[i1/nr,(i1+1)/nr)

1Xl,jt ∈[i2/nr,(i2+1)/nr)∑Jv
j=1 1Xl1,jt ∈[i1/nr,(i1+1)/nr)

1Xl,jt ∈[i2/nr,(i2+1)/nr)

.

We then select the regressor l2 ∈ {1, . . . , 12} \ {l1} that gives the smallest RMSE. We then proceed similarly to
select the next variables. We have run this selection for t = 10 with nr = 5. Table 4 shows the result of this
algorithm and indicate the Book values of bonds as the more significant variable to approximate the SCR module
on interest rates. We notice that the RMSE is significantly reduced by using the second variable. In contrast, the
third variable moderately improves the criterion. Since the number of variables is also a limitation then for the use
of the LSMC estimator, we do not go further in the selection procedure. Figure 5 illustrates the approximation of

the values of ŜCR
Nested,j

t by the regression function with the two first regressors.

3.4.2 Comparison between MLMC and LSMC estimators

We focus on the calculation of E[SCRintt ] with t = 10 years. We now compare and test numerically the MLMC

antithetic estimator ÎMLMC
A defined by (23) with the LSMC estimator ÎLSMC defined by (26), using the local cube

basis and the regressors selected by the procedure described in Paragraph 3.4.1.
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Figure 5: Plot of the points ŜCR
Nested,j

t and of the estimated regression function with the two first selected
regressors.

Best attribute RMSE
First variable BV bt (l1 = 5) 0.8739
Second variable rt (l2 = 2) 0.5292
Third variable St (l3 = 1) 0.5084

Table 4: Result of the Forward selection procedure for SCRintt with t = 10.

In Figure 6, we have drawn the Root Mean Square Error of the estimator ÎMLMC
A and of the estimators ÎLSMC

obtained by using the first, the two first and the three first selected regressors. In order to derive the RMSE of
the different estimators, as no closed formulas is available in this framework, we rely on a full nested Monte-Carlo
procedure based on a fixed simulation budget of Γ = 108 sample paths to approximate the true value of I. The
allocation between primary and secondary scenarios correspond to M ≈ Γ

2
3 primary samples and K ≈ Γ

1
3 inner

scenarios, as prescribed by Theorem 1 for η = 1. To compute the RMSE of the different estimators, we produce

Nbatch = 10 independent simulations (Î∗j )j=1,...,Nbatch and indicate the empirical RMSE
√

1
Nbatch

∑Nbatch
j=1 |Î∗j − I|2.

We plot the empirical RMSE’s of the different estimators as a function J (with J :=
∑L
l=0 JlKl for the MLMC

estimator). This represents the number of samples, as well as the computational cost (in log-scale) that is in O(J)
for both estimators.

Concerning the LSMC estimators, we notice that the estimator with two regressors does much better than
the estimator with one regressor. Instead, the interest of using a third regressor is tiny. We also observe that
the RMSE does not really decrease after 104 samples on our example. This is due to the regression error: since
we approximate SCRintt by a function of two or three variables, there is no way to go beyond a certain level of
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Figure 6: Empirical RMSE’s of the LSMC and MLMC estimators in function of the computational effort J (with

J :=
∑L
l=0 JlKl for the MLMC estimator). The computational time needed for the forward selection used by the

LSMC estimator is not taken into account in this plot.

precision. This is particularly noticeable for t ≥ 10 years: the projection of the balance sheet through the ALM
model is truly non-Markovian and the history up to time t cannot be summarized by two or three variables. In
comparison, the convergence of the MLMC antithetic estimator is in line with Theorem 4 and is asymptotically
more accurate than the LSMC estimator. Besides, the MLMC estimator avoids the step of selecting regressors that
requires computational time and may be determinant for the accuracy of the LSMC estimator. Last, we notice that
for a same level of precision, the computational time required by the MLMC is slightly smaller than the one required
by the LSMC estimator. More precisely, the computational time needed for J = 2×105 (where the three estimators

have quite the same accuracy) are 9950 seconds for ÎMLMC
A , 11230 seconds for ÎLSMC with two regressors (nr = 23)

and 12650 seconds for ÎLSMC with three regressors (nr = 13).
We now make a comment on the choice of the parameter η for the MLMC antithetic estimator. We recall that

η is, roughly speaking, related to the probability that two (or more) arguments of the maximum function are close
to the maximum, see Theorems 1 and 4. Heuristically, the smaller is this probability, the larger can be η, which
then reduces the number of levels and then the computational cost. In Figure 7, we have plotted the convergence of
the MLMC antithetic estimator for η ∈ {1/2, 3/4, 1} in function of the theoretical computational cost

∑L
l=0 JlKl.

Basically, the three estimators converge, but the one obtained with η = 1 does not seem to be asymptotically in
O(ε−2) while the two others are in line with the theoretical convergence in O(ε−2). This shows the interest of the
parameter η in a practical application and explains why we have chosen to take η = 3/4 is our experiments in
Figure 6.

Remark 8. In all our numerical experiments, we have used for the MLMC antithetic estimator the parameters
given by Theorem 4. However, in practice, it may be wise when doing a MLMC to estimate the variance V̂l of
each level (with a few number of samples) and then to optimize J0, . . . , JL with these values (i.e. to minimize the

variance proxy of the estimator
∑L
l=0 V̂l/Jl under the constraint

∑L
l=0 JlKl = Cε−2 on the computational cost,

for some constant C > 0). For sake of clarity and of reproducibility of our results, we do not have consider this
empirical improvement of the MLMC antithetic estimator.
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Figure 7: Convergence of the MLMC estimator for different values of η in function of the computational cost∑L
l=0 JlKl.

3.4.3 Comparison between LSMC and the use of Neural Network

In Paragraph 3.4.2, we have noticed that a significant drawback of the LSMC estimator with respect to the MLMC
antithetic estimator is that it requires first to select regressors. Beyond the computational time needed by this
selection, there is a significant regression error. A natural idea to skip the selection step in the regression is to use

Input Feature
X1
t Bond Book-Value BV bt

X2
t Stock Book-value BV st

X3
t Position in bond φbt

X4
t Position in stock φst

X5
t Profit-Sharing Reserve level PSRt

X6
t Mathematical Reserve level MRt

X7
t Capitalization Reserve level CRt

X8
t Spread crediting rate/competing rate ∆t

X9
t Stock price St

X10
t Interest-rate rt

Table 5: Inputs feature of the Neural Network

Neural Networks (NN). We have implemented a feedforward neural network with one hidden-layer. The hidden-
layer is made with 10 or 50 neurons. The activation function used is the sigmoid function. To train the network,
we generate J outer scenarios (Xt,j)1≤j≤J for which only one inner simulation Zj is performed and represents the
maximal variation of the discounted P&L due to the upward and downward shocks. Then, one minimizes

1

J

J∑
j=1

(Zj −NN(Xt,j))
2, (33)

where NN is the function generated by the neural network, so that it approximates the desired conditional ex-
pectation. The input features of the network have not been pre-processed. More precisely, the Neural Networks
approximate a function on the 10-dimensional space defined by the inputs of Table 5. The optimization above has
to be enough for detecting the relevant variables for the approximation of the conditional expectation. Once the NN
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has been obtained, we then estimate E[SCRintt ] simply by the empirical mean ÎNN := 1
J

∑J
j=1 NN(Xt,j). Since we

only use the NN on the training sample, the standard problem of overfitting is not an issue for our application. We
compare the RMSE of this estimator with the RMSE obtained with the LSMC method. The aim of our procedure
is first to assess if a NN with a whole range of input features is able to select relevant attributes and second to
compare with the LSMC method with well-chosen features.

J LSMC dim 1 LSMC dim 2 LSMC dim 3 NN: 10 neurons NN: 50 neurons
500 1.0e-3 3.36e-4 3.50e-4 7.075e-4 7.56e-4
103 1.0e-3 3.75e-4 4.28e-4 6.46e-4 3.017e-4
5× 103 9.52e-4 1.23e-4 1.46e-4 1.63e-4 1.8153e-4
5× 104 1.0e-3 1.12e-4 1.24e-4 6.60e-5 7.29e-5
105 9.97e-4 1.068e-4 1.19e-4 6.32e-5 6.92e-5
106 9.86e-4 8.67e-5 8.06e-5 4.22e-5 4.50e-5

Table 6: RMSE of E[SCRintt ] for t = 10 given by the Neural Network (one hidden layer with the indicated number
of neurons) and the LSMC in function of J

Table 6 indicates the RMSE of the estimator with the different methods. First, we notice that there is no need
on our example to consider many neurons: a simple layer with 10 neurons in enough and do as well as the NN with
50 neurons in terms of RMSE. We notice also that the estimator given by the NN is slightly better than the one
obtained with the LSMC with two or three regressors when the training sample gets large. However, the use of
neural networks present serious drawbacks. First, it requires to store all the samples to achieve the minimization
of (33) while the LSMC (and also MLMC) estimator only uses once each sample. Second, the time needed by the
minimization (indicated in Table 7) is important, making at the end this method less competitive than MLMC.
Note that one could be then tempted to train the NN on a smaller size of samples and then use it for large J : one
would then face the problem of overfitting, which we want to avoid.

J 500 103 5× 103 5× 104 105

Time (s) 18.8 30.4 50.5 273.1 1693

Table 7: Time required in seconds for the optimization of (33) for a neural network with 10 neurons.

To sum up, the use of NN can indeed be useful to reduce the approximation error observed by using LSMC
estimators. However, it both demands memory and computational time, making the gain with respect to the LSMC
not obvious. The MLMC estimator presents the clear advantage to avoid this issue of function approximation, and
to avoid any storage of data.

3.5 Numerical experiments II: some insights on the ALM

We now present some applications of the MLMC antithetic estimator for the ALM. One of the major issue in ALM
is to determine the optimal asset allocation between the different asset class backed to the insurance portfolio. For
that reason, it is crucial to evaluate precisely the amount of SCR required by the strategy. We are interested in
calculating E[SCRmktt ], E[SCReqt ] and E[SCRintt ], see Subsection 3.2 for the definition of these modules. Since
SCReqt and SCRintt are random variables and the aggregation formula (29) is not linear, E[SCRmktt ] cannot be
obtained by applying this formula to E[SCReqt ] and E[SCRintt ]. Note that by using the MLMC Antithetic estimator,
it is possible and easy to calculate at the same time all these expectations, see Remark 5 for the general expression of
these estimators that we use for different functions h. At each level l, one simulates Jl primary scenarios up to time t.
Then, one simulates for each primary scenario Kl secondary scenarios, on which we perform four different evolutions:
the first one without any shock, the second one with the equity shock, the third one with the upward shock on
interest rates and the last one with the downward shock on interest rates. Then, one computes the corresponding
empirical means related to the calculation of SCReqt and SCRintt and use the aggregation formula (29) for SCRmktt .
Let us note that the discontinuity induced by the coefficient ε may in principle deteriorate the MLMC estimation.
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However, we have thus run the MLMC estimator with a regularization of this coefficient and we have noticed a tiny
impact of the regularization. This can be heuristically understood from Figure 11: the activation of ε may occur
on a wide range (perhaps the whole range) of values of SCRint, which smooths the phenomenon.

Figure 8: Values of the SCR modules in function of the
constant allocation weight wS in equity for t = 0.

Figure 9: Expected values of the SCR modules in func-
tion of the constant allocation weight wS in equity for
t = 10.

Figure 10: Expected values of the SCR modules in func-
tion of the constant allocation weight wS in equity for
t = 20.

Figure 11: Sample of 1000 approximated values of
SCRint10 given by a nested estimator: in red (resp. blue)
are the values obtained when the downward shock is
greater (resp. smaller) than the upward shock on inter-
est rates.

Figures 8, 9 and 10 illustrate respectively the different values of the SCR modules E[SCRmodt ] for mod ∈
{mkt, eq, int, up, down} in function of the constant allocation weight wS in equity for t = 0, t = 10 and t = 20 years
(at t = 0, we can remove the expectation). As one may expect, these values globally decrease with respect to the
time since we are considering a run-off portfolio with an exit rate greater than 5%. We notice several interesting
points.

• At time t = 10, the value of E[SCRintt ], which is equal to E[max(SCRupt , SCR
down
t )], is significantly larger

than max(E[SCRupt ],E[SCRdownt ]). This shows that deterministic proxy values of SCR modules may induce
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errors. We no longer observe this phenomenon at time t = 20 because the greater shock is always given by
the upward shock and we have then SCRint20 ≈ SCR

up
20 (the green and blue curves coincide). This is explained

in the next point.

• The main effects of the shocks on the interest rate are the following. The upward (resp. downward) shock
leads to an immediate decrease (resp. increase) of the portfolio market value, but on the long run higher
(resp. lower) rates gives a better (resp. worse) profitability. Here, we are considering a run-off portfolio with
final maturity T = 30. Thus, as t increases, the effect on the long run of this shocks get less important making
the immediate effect on market value dominant. Thus, at t = 20 the downward shock is harmless while the
upward shock gets painful. This explains why we observe SCRint20 ≈ SCR

up
20 .

• The aggregation formula (29) somehow encourages to have SCRint and SCReq of the same order: if SCRint >>
SCReq it is possible to invest more in equity to have a better average return with a moderate increase of
SCRmkt, and if SCRint << SCReq, one should reduce the investment in equity to reduce SCRmkt. There-
fore, it is interesting to look at the allocation that is such that E[SCRintt ] = E[SCReqt ]. We see from Figures 8,
9 and 10 that the corresponding weight wS evolves slightly. We get wS ≈ 0.05 for t = 0, wS ≈ 0.06 for t = 10
and wS ≈ 0.05 for t = 20, which is still a relative variation of 20%. This shows that a better evaluation of the
SCR along the time may lead to significant adjustments on the investment strategy.

Besides the calculation of the SCR, we can also use of the MLMC Antithetic estimator to calculate the sen-
sitivity of the SCR with respect to some variations of parameters or market prices. These sensitivities are inter-
esting information for management and they can also be useful to calculate quickly a proxy value of the SCR.
For example, suppose that we have computed the value of E[SCRmkt10 ] and, after few days, we want to estimate
the new value of E[SCRmkt10 ] by taking into account the small variation on the equity and on the interest rates.

Then, we can do this easily if one has computed the values of the sensitivities
E[SCRmkt10 (r0+δr0)−SCRmkt10 (r0)]

δr0
and

E[SCRmkt10 (S0+δS0)−SCRmkt10 (S0)]
δS0

, where implicitly all values are kept constant but respectively r0 and S0. Note that
these sensitivities can be computed with the MLMC antithetic estimator with the same samples that are needed
for the estimation of SCRmkt. Table (8) indicates the sensitivities obtained with our parameters with δr0 = 0.001
and δS0 = 0.01.

E[SCRmkt10 (S0+δS0)−SCRmkt10 (S0)]
δS0

E[SCRmkt10 (r0+δr0)−SCRmkt10 (r0)]
δr0

0.0228 -0.0845

Table 8: Sensitivities of the SCRmkt10 with wS = 0.05.

Last, the MLMC estimation is a tool for example to analyse how the SCR depends on the risk premia of stocks
and interest rates. If the evaluation of the SCR has to be performed for regulatory reasons under a risk neutral
framework, it is more relevant for ALM to calculate EP[SCRmodt ] under the real probability, which corresponds
to the average value of the own funds that will be necessary at time t. From equations (28) (generalized to any
other SCR module) and (32), it is possible to see the impact of the risk premia λW and λZ on each SCR module.
In Figures 12 and 13, we have indicated the more remarkable ones: the dependence of EP[SCRintt ] on λZ and of
EP[SCReqt ] on λW . We notice that the larger is λZ , the larger is EP[SCRintt ]. This can be understood as follows.
A higher λZ leads to a higher mean reverting level for the short rate r. Thus, under the real probability measure,
bonds are better remunerated on the time interval [0, t], and at time t the amount of savings (mathematical reserve)
is higher. Since the evaluation of SCRintt is risk neutral, λZ has then no incidence on this evaluation. Thus, we
observe a higher value of EP[SCRintt ] simply because the mathematical reserve at time t is higher because of better
returns. The same interpretation holds for EP[SCReqt ]: the higher is λW , the higher is the amount of savings at
time t and therefore the higher is EP[SCReqt ]. Last, let us mention that for the simulations of Figures 12 and 13,
we have run independently the MLMC algorithm for each time t. A natural question then is if we could handle all
these calculations together to spare some computational time. This is left for further research.
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Figure 12: Estimated values of EP[SCRintt ] in function
of t for different risk premia λZ .

Figure 13: Estimated values of EP[SCReqt ] in function
of t for different risk premia λW .

A Technical proofs for Theorems 1 and 4

A.1 Preliminary results

In this section, we gather elementary but useful results for the analysis of the nested and the multilevel Monte-Carlo
estimators.

Proposition 6. Let g0(u) = max{u, 0} and, for ε > 0, gε(u) = u2

2ε1u∈[0,ε] + (u − ε
2 )1u>ε. The function gε is C1

and piecewise C2 with

g′ε(u) =
u

ε
1u∈[0,ε] + 1u>ε, g

′′
ε (u) =

1

ε
1u∈[0,ε]

Moreover, gε is 1-Lipschitz and we have

gε ≤ g0 ≤ gε +
ε

2
.

In addition, for any θ, θ̂ such that θ ≤ θ̂ ∈ R we have:

∀a ∈ R, 0 ≤
∫ θ̂

θ

g′′ε (t+ a)dt ≤
∫
R
g′′ε (t)dt = 1. (34)

Finally, the following asymptotic properties holds : ∀ u ∈ R gε(u) −−−→
ε→0

g0(u), ∀ u ∈ R g′ε(u) −−−→
ε→0

1u>0 and∫
R g
′′
ε (u)ϕ(u)du −−−→

ε→0
ϕ(0) for any function ϕ : R→ R that is right-continuous at 0.

Lemma 7. Let θ, θ̂ ∈ R and {aε} an arbitrary function that converges to a as ε→ 0, then:

lim sup
ε→0

∣∣∣∣∣
∫ θ̂

θ

g′′ε (t+ aε)dt

∣∣∣∣∣ ≤ ∣∣∣1θ≤−a≤θ̂ − 1θ̂≤−a≤θ∣∣∣ (35)

Proof of Lemma 7. Without loss of generality, we assume that θ < θ̂. First we have that :∫ θ̂

θ

g′′ε (t+ aε)dt =
1

ε

∫
Aε

1dt

28



where Aε = [θ, θ̂] ∩ [−aε, ε− aε]. Hence, if −a < θ or θ̂ < −a, it exists ε0 > 0 such that ∀ε ∈ [0, ε0], Aε = ∅. In this
case:

lim sup
ε→0

∣∣∣∣∣
∫ θ̂

θ

g′′ε (t+ aε)dt

∣∣∣∣∣ = 0

Otherwise (i.e if θ ≤ −a ≤ θ̂) we always have: Aε ⊂ [−aε, ε−aε]. Therefore, we have lim supε→0

∣∣∣∫ θ̂θ g′′ε (t+ aε)dt
∣∣∣ ≤ 1

by (34). Thus we obtain

lim sup
ε→0

∣∣∣∣∣
∫ θ̂

θ

g′′ε (t+ aε)dt

∣∣∣∣∣ ≤ 1{θ≤−a≤θ̂}.

Lemma 8. Let θ, θ̂ ∈ R. Then, we have ∣∣∣1θ≤0≤θ̂ − 1θ̂≤0≤θ

∣∣∣ ≤ 1θθ̂≤0, (36)

1θθ̂≤0 ≤
|θ̂ − θ|
|θ|

for θ 6= 0. (37)

Proof. Inequality (36) is an equality when θ 6= 0 or θ = 0, θ̂ 6= 0 and an obvious inequality when θ = θ̂ = 0. The right

hand side of (37) is nonnegative. When θ < 0 and θ̂ ≥ 0 (resp. θ > 0 and θ̂ ≤ 0) , we have |θ̂−θ| = θ̂−θ ≥ −θ = |θ|
(resp. |θ̂ − θ| = −θ̂ + θ ≥ θ = |θ|).

Lemma 9. Let (Zk)k∈N∗ be an i.i.d. sequence of square integrable real valued random variables. Let µ = E[Z1] and
σ =

√
Var[Z1]. For γ ∈ [1, 2], we define Dγ = σγ and for γ > 2, Dγ = E[|Z1 − µ|γ ] ∈ [0,+∞]. Then, we have

E

[∣∣∣∣∣ 1

K

K∑
k=1

Zk − µ

∣∣∣∣∣
γ]
≤ Cγ

Dγ

Kγ/2
,

with Cγ = 1 for γ ∈ [1, 2] and Cγ =
(
2
√
γ − 1

)γ
for γ > 2.

Proof. For γ ∈ [1, 2], We have from Jensen inequality E
[∣∣∣ 1
K

∑K
k=1 Zk − µ

∣∣∣γ] ≤ E
[∣∣∣ 1
K

∑K
k=1 Zk − µ

∣∣∣2]γ/2 =

σγ/Kγ/2. For γ > 2, this result is stated in Corollary 2.5 [20]

A.2 Nested Monte-Carlo estimator

Proof of Lemma 2. Let b̄(X) = E
[
max{θ̂1

K , θ̂
2
K} −max{ϕ1(X), ϕ2(X)}|X

]
. Since max{a, b} = a + g0(b − a) for

a, b ∈ R, we get

b̄(X) = E
[
θ̂1
K − ϕ1(X) + g0(θ̂21

K )− g0(ϕ21(X))|X
]

(38)

Now, we observe that

b̄(X) = lim
ε→0

b̄ε(X) with b̄ε(X) = E
[
θ̂1
K − ϕ1(X) + gε(θ̂

21
K )− gε(ϕ21(X))|X

]
. (39)

Since gε is 1-Lipschitz, we have

|gε(θ̂21
K )− gε(ϕ21(X))| ≤ |θ̂21

K − ϕ21(X)| ≤ |θ̂1
K − ϕ1(X)|+ |θ̂2

K − ϕ2(X)|.

Then, we get (39) by using the integrability assumption (ii) and Lebesgue’s dominated convergence theorem. Since
gε is C1 and piecewise C2, we can make a Taylor expansion to obtain:

b̄ε(X) = E

[
θ̂1
K − ϕ1(X) + g′ε(ϕ21(X))

(
θ̂21
K − ϕ21(X)

)
+

∫ θ̂21K

ϕ21(X)

(
θ̂21
K − t

)
g′′ε (t)dt|X

]
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Then, since g′ε(ϕ21(X)) is σ(X)-measurable, using Proposition 6 we get

lim
ε→0

E
[
θ̂1
K − ϕ1(X) + g′ε(ϕ21(X))

(
θ̂21
K − ϕ21(X)

)
|X
]

= E
[
θ̂1
K − ϕ1(X) + 1ϕ21(X)>0

(
θ̂21
K − ϕ21(X)

)
|X
]

= E
[
1ϕ21(X)≤0

(
θ̂1
K − ϕ1(X)

)
+ 1ϕ21(X)>0

(
θ̂2
K − ϕ2(X)

)
|X
]

Using condition (ii) we get :∣∣∣E [1ϕ21(X)≤0

(
θ̂1
K − ϕ1(X)

)
+ 1ϕ21(X)>0

(
θ̂2
K − ϕ2(X)

)
|X
]∣∣∣ ≤ 1ϕ21(X)≤0C1(X) + 1ϕ21(X)>0C2(X)

K
1+η
2

(40)

Now we focus on the remainder in the Taylor decomposition. Using Lemma 7 and the dominated convergence
theorem and then Lemma 8 with ϕ21(X) 6= 0 a.s. (Assumption (iii)), we get

lim
ε→0

∣∣∣∣∣E
[∫ θ̂21K

ϕ21(X)

(
θ̂21
K − t

)
g′′ε (t)dt|X

]∣∣∣∣∣ ≤ E

[
|θ̂21
K − ϕ21(X)| lim sup

ε→0

∣∣∣∣∣
∫ θ̂21K

ϕ21(X)

g′′ε (t)dt

∣∣∣∣∣ |X
]

≤ E
[
|θ̂21
K − ϕ21(X)||1ϕ21(X)≤0≤θ̂21K

− 1θ̂21K≤0≤ϕ21(X)||X
]

≤ E
[
|θ̂21
K − ϕ21(X)|1θ̂21K ϕ21(X)≤0|X

]
≤ E

[
|θ̂21
K − ϕ21(X)|1+η

|ϕ21(X)|η
|X

]
=

E
[
|θ̂21
K − ϕ21(X)|1+η|X

]
|ϕ21(X)|η

Now, we use the norm inequality E
[
|θ̂21
K − ϕ21(X)|1+η|X

] 1
1+η ≤ E

[
|θ̂1
K − ϕ1(X)|1+η|X

] 1
1+η

+E
[
|θ̂2
K − ϕ2(X)|1+η|X

] 1
1+η

and the convexity of x 7→ x1+η to get

E
[
|θ̂21
K − ϕ21(X)|1+η|X

]
≤ 2η

(
E
[
|θ̂1
K − ϕ1(X)|1+η|X

]
+ E

[
|θ̂2
K − ϕ2(X)|1+η|X

])
≤ 2η

σ1+η
1 (X) + σ1+η

2 (X)

K
1+η
2

(41)

With (39), equations (40) and (41) give the bias estimate (14).
We now focus on the variance. The proof is straightforward using condition (ii) and the inequality |max{a1, a2}−

max{b1, b2}| ≤ max{|a1 − b1|, |a2 − b2|} :

E
[∣∣∣max{θ̂1

K , θ̂
2
K} −max{ϕ1(X), ϕ2(X)}

∣∣∣2 |X] ≤ E
[
max{|θ̂1

K − ϕ1(X)|2, |θ̂2
K − ϕ2(X)|2}|X

]
≤ E

[
|θ̂1
K − ϕ1(X)|2|X

]
+ E

[
|θ̂2
K − ϕ2(X)|2|X

]
≤ σ2

1(X) + σ2
2(X)

K
=
σ2(X)

K
.

A.3 Antithetic MLMC estimator

In this section we prepare the proof of Theorem 4 and start with a useful preliminary lemma.

Lemma 10. Let p ≥ 2 and K ∈ 2N∗. With the notation introduced in (6) and (7), the following property holds:

E

∣∣∣∣∣M̂p
K −

M̂p
K/2 + M̂p,′

K/2

2

∣∣∣∣∣
2

|X

 ≤ 2E

∣∣∣∣∣M̂p−1
K −

M̂p−1
K/2 + M̂p−1,′

K/2

2

∣∣∣∣∣
2

|X


+ 2E

[
h2
(
M̂p−1
K − ÊpK/2, M̂

p−1,′
K/2 − Ê

p,′
K/2

)
|X
]
,

where h(x, y) =
(
x+y

2

)+ − (x)++(y)+

2 .
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Proof of Lemma 10. Observing that ∀a, b ∈ R, max{a, b} = a+ (b− a)+, we deduce that

M̂p
K −

M̂p
K/2 + M̂p,′

K/2

2
= max{ÊpK , M̂

p−1
K } −

max{ÊpK/2, M̂
p−1
K/2}+ max{Êp,′K/2, M̂

p−1,′
K/2 }

2

= ÊpK + (M̂p−1
K − ÊpK)+ −

ÊpK/2 + (M̂p−1
K/2 − Ê

p
K/2)+ + Êp,′K/2 + (M̂p−1,′

K/2 − Ê
p,′
K/2)+

2

= (M̂p−1
K − ÊpK)+ −

(M̂p−1
K/2 − Ê

p
K/2)+ + (M̂p−1,′

K/2 − Ê
p,′
K/2)+

2

= (M̂p−1
K − ÊpK)+ −

(
M̂p−1
K/2 + M̂p−1,′

K/2

2
− ÊpK

)+

+ h
(
M̂p−1
K − ÊpK/2, M̂

p−1,′
K/2 − Ê

p,′
K/2

)
,

using that ÊpK =
Êp
K/2

+Êp,′
K/2

2 for the third and fourth equality. We conclude using that (a+ b)2 ≤ 2(a2 + b2).

The following lemmas gives a bound on h

Lemma 11. Let h(x, y) =
(
x+y

2

)+ − (x)++(y)+

2 for x, y ∈ R. Then, we have h(x, y) = − |x|∧|y|2 1xy≤0.

Proof. By distinguishing the cases as follows, we get the claim:

h(x, y) =


y/2 if x+ y ≥ 0, x > 0, y < 0,
x/2 if x+ y ≥ 0, x < 0, y > 0,
−x/2 if x+ y < 0, x > 0, y < 0,
−y/2 if x+ y < 0, x < 0, y > 0,
0 otherwise.

Proposition 12. We use the notation introduced in (6) and (7). Let η > 0 and Dp
2+η(X) = E[|Y p−E[Y p|X]|2+η|X].

We assume that P(EpX = Mp−1
X ) = 0 for all p ∈ {2, . . . , P} and

∀p ∈ {2, . . . , P}, E

[
Dp

2+η(X)

|EpX −M
p−1
X |η

φ2(X)

]
<∞.

Then, there exist a constant C ∈ R∗+ such that

Var

[(
M̂P
K −

M̂P
K/2 + M̂p,′

K/2

2

)
φ(X)

]
≤ C

K1+η/2
.

Proof. Let us define for p = 1, . . . , P ,

UpK = E

∣∣∣∣∣M̂p
K −

M̂p
K/2 + M̂p,′

K/2

2

∣∣∣∣∣
2 ∣∣∣∣X


εpK = E

[
h2
(
M̂p−1
K − ÊpK/2, M̂

p−1,′
K/2 − Ê

p,′
K/2,

)
|X
]
.

We notice that U1
K = 0, and Lemma 10 gives UpK ≤ 2(Up−1

K + εpK) for p = 2, . . . , P . A straightforward induction
leads to

UPK ≤
P∑
p=2

2P+1−pεpK . (42)

The variance being smaller than the expectation of the square, we get by using the tower property of the conditional
expectation

Var

[(
M̂P
K −

M̂P
K/2 + M̂p,′

K/2

2

)
φ(X)

]
≤

P∑
p=2

2P+1−pE[εpKφ
2(X)]. (43)

31



For p = 2, . . . , P , we define the following random variables

Hp
X = Mp−1

X − EpX , Ĥ
p
K/2 = M̂p−1

K/2 − Ê
p
K/2, Ĥ

p,′
K/2 = M̂p−1,′

K − Êp,′K .

We now use Lemma 11 and the equality 1Ĥp
K/2

Ĥp,′
K/2

<0 = 1Ĥp
K/2

Ĥp,′
K/2

<01Ĥp
K/2

HpX<0 + 1Ĥp
K/2

Ĥp,′
K/2

<01Ĥp,′
K/2

HpX<0 that

is true a.s. since P(Hp
X = 0) = 0 to get

E[εpKφ
2(X)] =

1

4
E
[(

min
(
|Ĥp

K/2|, |Ĥ
p,′
K/2|

)2
)
φ2(X)1Ĥp

K/2
Ĥp,′
K/2

<01Ĥp
K/2

HpX<0

]
+

1

4
E
[(

min
(
|Ĥp

K/2|, |Ĥ
p,′
K/2|

)2
)
φ2(X)1Ĥp

K/2
Ĥp,′
K/2

<01Ĥp,′
K/2

HpX<0

]
≤ 1

4

(
E
[
|Ĥp

K/2|
2φ2(X)1Ĥp

K/2
HpX<0

]
+ E

[
|Ĥp,′

K/2|
2φ2(X)1Ĥp,′

K/2
HpX<0

])
=

1

2
E
[
|Ĥp

K/2|
2φ2(X)1Ĥp

K/2
HpX<0

]
,

since Ĥp
K/2 and Ĥp,′

K/2 have the same law given X. Now, we use that |Ĥp
K/2| ≤ |Ĥ

p
K/2 − H

p
X | on {Ĥp

K/2H
p
X < 0}

and Lemma 8 gives 1Ĥp
K/2

HpX<0 ≤
|Ĥp
K/2
−HpX |

η

|HPX |η
for η > 0. This leads to

E[εpKφ
2(X)] ≤ 1

2
E

[
|Ĥp

K/2 −H
p
X |2+η

|HP
X |η

φ2(X)

]
.

We now use Lemma 9 and get E[|Ĥp
K/2 −H

p
X |2+η|X] ≤ C2+η

Dp2+η(X)

(K/2)1+η/2
, and therefore

E[εpKφ
2(X)] ≤ 2η/2C2+ηE

[
Dp

2+η(X)

|Hp
X |η

φ2(X)

]
.

Using this bound in (43), we get the claim with C = 2η/2C2+η

∑P
p=2 2P+1−pE[

Dp2+η(X)

|HpX |η
φ2(X)].
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[26] Christoph Möhr. Market-consistent valuation of insurance liabilities by cost of capital. ASTIN Bulletin,
41(2):315–341, 2011.

33



[27] Antoon Pelsser and Janina Schweizer. The difference between LSMC and replicating portfolio in insurance
liability modeling. Eur. Actuar. J., 6(2):441–494, 2016.

[28] Julien Vedani and Laurent Devineau. Solvency assessment within the ORSA framework: issues and quantitative
methodologies. working paper or preprint, October 2012.

34




