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Idriss J. Aberkane1

1Unesco-Unitwin Complex Systems Digital Campus

26th November 2020

Abstract

We analyses the 3n + 1 dynamical system in terms of both the fundamental
and emerging properties of the quivers it generates over 2N + 1. In particular,
we offer a first description of the endomorphism underlying the structure of the
quiver known among popular mathematics circles as the ”Collatz Seaweed” and
describe its generative rule. We then establish some fundamental properties of other
endomorphisms generated by the 3n+1 dynamical system, mapping this quiver onto
proper subsets of 2N + 1 composed of the nodes we prove any Collatz orbit must
intersect (which we call ”Determinants”) and draw interesting conclusions from those
properties, allowing us to claim a result strictly superior to the one of Tao (2019)
on the Collatz conjecture.

1 Introduction

The dynamical system generated by the 3n + 1 problem is known to create complex
quivers over N, one of the most picturesque being the co-called ”Collatz Seaweed”, a
name popularized by Clojure programmer Oliver Caldwell in 2017. In this research we
bring new levels of detail in the characterisation of these oriented graphs and will give
the first ever description of the underlying generative rules that allow to reconstruct the
”seaweed”. Our methodology first consists of covering N with an ad hoc coordinate system
the geodesics of which are the branches of the complete binary, ternary and quaternary
trees developed over the Natural numbers, that is, the iterations of the following three
sets of actions, for each of them, in any order

• {·2; ·2 + 1} binary tree

• {·3; ·3 + 1; ·3 + 2} ternary tree

• {·4; ·4 + 1; ·4 + 2; ·4 + 3} quaternary tree
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The binary tree over N thus generates an infinity of branches that has the cardinality of
R.

1.1 Definitions

Note 1.1. For all intent and purpose we will define Syr(x) or the ”Syracuse action”
as ”the next odd number in the forward Collatz orbit of x”.

Whenever two numbers a and b have a common number in their orbit, we will also note
a ≡ b, a relation that is self-evidently transitive:

∀{a; b; c}

a ≡ b ∧ b ≡ c → a ≡ c

Definition 1.1. Action S
The Action S (”Successor”) on any natural number a is defined as S(a) = 2a+ 1

Definition 1.2. Action V
The Action V (”Vertical”) on any natural number a is defined as V (a) = 4a+ 1

Definition 1.3. Action G
The Action G (”Glacial”) on any natural number a is defined as G(a) = 2a− 1
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Figure 1. Quiver connecting all odd numbers from 1 to 31 with the arrows of operations
S,V and G. The set 2N+1 is thus endowed with three unary operations without a general
inverse that are non commutative with G◦S = V . Whenever we will mention the inverse
of these operations, it will be assuming they exist on N.

Definition 1.4. Rank
The rank of an odd number is the number of consecutive end digits 1 in its base 2
representation, or equivalently, the number of times the action S has been applied to
generate it (S is then defined on N), and any odd number o of rank 1 can be written S(e)
where e is even.
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Definition 1.5. Odd branch
An odd branch of root r is the infinite set of numbers {r;S(r);S2(r) . . .} where r is of
rank 1.

Definition 1.6. Glacis
The glacis of bottom b is the infinite set of numbers {G(V (b));G2(V (b)) . . .} where b
is any odd number.

Definition 1.7. Pivot
The pivot p of any odd branch of root r is G−1(r). Any number of rank 1 admits a pivot.

Definition 1.8. Vertical, Verticality
A number a of rank 1 always admits a V −1(a) which is called its Vertical. To avoid any
confusion, when ambiguous, we will call V (a) the V + of a. If the vertical of a is odd, we
will call it Vertical odd, otherwise, it is Vertical even.
The Verticality of a number a of rank 1 is the vector

[
n
b

]
where b is either an even

number or a number of rank 2 or more, and a = V n(b) We will say that a has a verticality
of n and of bottom b.

Definition 1.9. Successal, Successality
A number a of rank 2 or more will be called Successal, and its successality is equal to
its rank.

Definition 1.10. Glaciality
In a glacis of bottom b, the glaciality of S(b) is set to −1, that of V(b) is set to 0 and
that of Gn(V (b)) is set to n. To aggregate the information of the bottom b of its glacis
to any glacial number (that is, a number that can be written as G(x) where x is odd), its

glaciality will be the vector
[
n
b

]

2 Essential lemmas

Lemma 2.1. If a = V (b) and b is odd, then Syr(a) = (Syr(b)) and we will note a ≡ b

Proof. If a is written 4b+ 1 then 3a+ 1 = 12b+ 4 = 4(3b+ 1) therefore a ≡ b

This lemma is quite trivial and thus in no way original, but it is an essential building
block nonetheless.

Lemma 2.2. Let a be a number of rank 1 and of pivot p, then Syr(S(a)) = G(3 · p) Let
a be a number of rank n in an odd branch of pivot p, then Syrn−1(a) = G(3n−1 · p)
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Proof. If a is of pivot p then a = 2p− 1, thus p is odd.

S(a) = 4p− 1

3S(a)+1
2 = 12p−2

2 = 6p− 1 = G(3 · p)

Syr(S(a)) = G(3 · p)

Let’s generalize to the n

Note that if Syr(S(a)) can be written G(3 · p) it is also of rank 1, whereas S(a) was of
rank 2, therefore, the action of Syracuse has made it lose one rank.

All we thus have to prove now is that Syr(S2(a)) = S(Syr(S(a))) under those conditions

3·(S2(a))+1
2 = 6a+ 5

S(Syr(S(a))) = S(3a+ 2) = 6a+ 5 = Syr(S2(a))

Corollary 2.3. If a is of rank n > 1, Syr(a) is of rank n−1, and Syr(S(a)) = S(Syr(a))

Note 2.4. The Syracuse action over an odd number is equivalent to adding 1 to it, then
the half of the result, then −1. How many times one can add an half to an odd number
+1 directly depends on the length of the immediate even branch of the binary tree that is
to its right.

Let us take Mersenne numbers for example, that are defined as 2n−1. One can transform
them consecutively in this way a number of time equal to their rank-1, indeed, 31, which
is written 11111 is of rank 5, because 32 = 25 so if one repeats the action ”add to the
number+1 the half of itself” which is equivalent to a multiplication by 3

2 this will yield an
even result exactly four consecutive times.

Thus, any ascending Collatz orbit concerns only numbers a of rank 2 or more, and is
defined by

(a+ 1) · ( 32 )
rank−1 − 1

because the rank is strictly indexed on the length of the next even branch of the binary
tree on the right of the number, defining how many consecutive times the action · 32 will
yield an even number.
Lemma 2.5. Let a be an odd number of rank 1 that is vertical even, then 3a is successal,
and 9a is vertical even.
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Let a be an odd number of rank 1 that is vertical odd, then 3a is successal, and 9a is
vertical odd.

Proof. If a is vertical even it can be written 8k + 1 ∀k

3a = 24k + 3 and this number admits an S−1 that is

12k + 1, which is an odd number, therefore 3a is Successal

9a = 72k + 9 and this number admits a V −1 that is

18k + 2, an even number indeed.

Now if a is vertical odd, it can be written 8k + 5 ∀k

3a = 24k + 15 and 9a = 72k + 45, 3a admits an S−1 and 9a admits a V −1, respectively

12k + 7 and 18k + 11 and they are both odd.

Theorem 2.6. (regular quaternary equivalence)
Let a be a number that is vertical even, then (a) ≡ S(a) and Sk(a) ≡ Sk+1(a) for any
even k. Let a be a number that is vertical odd, then S(a) ≡ S2(a) and Sk(a) ≡ Sk+1(a)
for any odd k.

We will call these relations merging alternate pairs of odd branches ”regular quaternary
equivalences” or qe.

Proof. If a is vertical even then it can be written as Gp) where p is necessarily vertical
(odd or even)

so by lemma 2.5 we have that 3p is successal and by lemma 2.2 we have Syr(S(a)) = G(p)
so it is necessarily vertical odd (since 3d is successal) so Syr(a) = V −1(Syr(S(a)) and
therefore a ≡ S(a)

This behavior we can now generalize to the n, because if a is vertical even and of pivot
p, then the lemmas we used also provide that Syrn(Sn(a)) = G(3n · p) and therefore
Syrn(Sn(a)) will be vertical even for any even n because 3n · p will be vertical something
(even or odd, depending on what the pivot was) for any even n.

Now if a is vertical odd it can be written G(p) and p is necessarily successal because
G ◦ S = V .

Thus 3p is vertical (even or odd) and therefore Syr(S(a)) = G(3p) is vertical even.

This qe theorem is a more elaborate, and now very useful building block of our demon-
stration, because it allows to place a relation of equivalence between every other pair of
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any odd branch of the binary tree, up to infinity. It is also based on the characteristics
of increasing phases of the Collatz orbits: any number of rank n is finitely turned into a
number that has a vertical, either odd or even.

We should now interest ourselves with the decreasing phases of the Syracuse orbits 1.
These decreasing phases only concern the glacis.

Theorem 2.7. (glacial decreasing)

Let a be a vertical even number with a glaciality of
[
n
b

]
where n is even, then a ≡ 3

n
2 (b)

Let a be a vertical even number with a glaciality of
[
m
b

]
where m is odd, then a ≡

S(3
m+1

2 (b))

Proof. if a is of glaciality
[
n
b

]
then by definition a = 2n+2b+ 1.

Then 3 · a+ 1 = 3(2n+2b+ 1) + 1) = 2n+2 · (3b) + 4.

As this expression can be divided by 2 no more than twice, we have

Syr(a) = 2n3b+ 1, therefore the glaciality of Syr(a) is[
n− 2
3b

]
Note that if n = 2 then V −(Syr(a)) = V −(22 · (3a) + 1) = 22 · 1

4 · (3b) = 3b which is of
course an odd number. Therefore Syr(a) is vertical odd and V −(Syr(a)) = 3b thus we
have proven that a ≡ 3b.

If n = 1 then a = 23 · b + 1 so 3(a + 1) = 23 · 3b + 4 therefore Syr(a) = S(3b) and thus
a ≡ S(3b).

From this we can generalise the progression of glacis numbers. Let b be any odd number,
thus defining a glacis bottom. All ”Variety S” numbers of its glacis are written V (b ·
22k−1) or S(b ·22k) = 22k+1 · b+1 and all ”Variety V” numbers of its glacis are written
V (b · 4k) or equivalently S(b · 22k+1) = 4k+1 · b + 1. Any glacis number g of order 2k or
2k − 1 may be thus reduced to a glaciality of 0 or −1 by the following transformation:

(g − 1) ·
(

3
4

)k

+ 1 therefore we do have indeed that,

1remember that we are still only considering odd numbers when we write ”decreasing phases”, and
still defining Syr(a) as ”the next odd in the orbit of a”
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• for Variety S numbers : 22k+1 · b ·
(

3
4

)k

+ 1 = 2b · 3k + 1 = S(b · 3k)

• for Variety V numbers : 4 · 4k · b ·
(

3
4

)k

+ 1 = 4b · 3k + 1 = V (b · 3k)

As the obtaining of these equalities will fit any odd number b, we have that any glacis
number of glaciality 2k will be finitely mapped to 4b ·3k+1 = V (b ·3k) and that any glacis
number of order 2k − 1 will be mapped to 2b · 3k + 1 = S(b · 3k). In plain English:any
glacis number (and by the qe, also its successor) merges either directly with
a power of three of its bottom or with the successor of it.. This result too may
seem anecdotal, but it is actually irreplaceable to describe the underlying generator of
the ”Collatz Seaweed”

3 General description of the Syracuse dynamic

The qe theorem allows to place an infinite amount of equivalences along the binary tree
over N.

1 2

3 4

5 6 7 8

14 15 16131211109

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Figure 2. A representation of the intersection of the binary and the quaternary trees
over N: as only the quaternary operation ·4 + 1 really matters to the representation, we
have just warped the binary tree so that V (a) is indeed Vertical to a. We have also
not connected the rank 1 numbers to the even ones of which they are the successors so
as to make glacis more easily visible. The bold black lines indicate the qe and vertical
equivalences, and so whenever numbers are joined by a connective series of those lines,
their Collatz orbits merge. Connecting all of those equivalences together completely solves
the Syracuse problem, and as we will see in the next section, this endeavour requires the
introduction of a third dimension: that of the ternary tree over N.
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3.1 Ascending phases

The orbit of an odd number can only increase if it is of rank 2 or more. Odd branch
numbers of rank n > 2 ascend with the progression +1 · 3

2

n−1 − 1 and this allows to
compress their orbit to the next glacis.

More particularly though, if a pair is not connected by the qe equivalence, it is because
the rank 1 reduction of its smallest number the Collatz action is vertical odd.
When we have a pair {a;S(a)} where a is vertical odd, a is mapped to Syr(V −1(a)) and
S(a) is mapped to the glacis of bottom Syr(V −1(a)) and this phenomenon, by which
a pair of numbers that were related on the binary tree become separated we call an
Avalanche. Avalanches account for absolutely all of the chaoticity of the Collatz orbits,
and whoever can perfectly predict their occurrence and consequences shall have cracked
all of the Collatz problem, beyond eve demonstrating that all natural numbers finitely
converge to one.

An example of Avalanche can be understood on figure 2 by observing the pair {3; 7} of
which the first Collatz image is {5; 11} where 5 indeed is vertical odd. The avalanche is
that 5 is mapped to the image of 1, which is 1, and 11 is mapped to 17, which is in the
glacis of bottom 1. This happens to all such pairs, which we will call ”buds”.

The alacrious reader will not fail to notice that 17 is precisely a glacis number of Variety
V , and this is not happening by chance: if a vertical odd number a is the finite vertical
of an even number, then S(a) will be mapped as a variety V in the next glacis, and
proportionally as high as a was vertical, and if the bottom of its verticality is odd, then
S(a) will be mapped as a variety S.

We have also noted that any power of 9 of a vertical number is either of the series ”vertical
odd” or the series ”vertical even” and these two are parallel: one cannot obtain a vertical
odd number by applying any power of nine to a vertical even one. Thus, the destiny of
branches the determinant of which falls within the ”vertical odd” or ”vertical even” series
is quite different, and this level of precision can also help understand the Collatz dynamic
better. Still, we shall not use this interesting property in this work, even though it is
more significant than a simple curiosity.

3.2 Descending phases

Any odd number can only decrease in Syr if it is of rank 1, and then it intersects either
the Successor or the Vertical of a power of 3 of the bottom of its glacis. Note that in so
doing, it always encounters the consequences of another qe on the branch it meets: either
the power of three of the bottom of the glacis can be proven to merge with its successor,
either it is vertical odd or it is its predecessor that is merging with it.

Here too, powers of 3 of the bottom of the glacis, just as being the case with odd branch
determinants had useful implications to elaborate more advanced theorems, can either be
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of the ”vertical odd” or ”vertical even” sequences.

Numbers of even glaciality n decrease following the dynamic −1 · ( 34 )
n
2 + 1 and those of

odd glaciality m, −1 · ( 34 )
m+1

2 + 1.

Thus, whenever one can prove that an odd number merges with its triple, one
proves that it merges with its first number of even glaciality

Also, whenever one can prove that an odd number merges with the successor
of its triple, one proves that it merges with its first number of odd glaciality.

We cannot stress enough the importance of this pair of results.

4 Using the ternary tree to connect the quaternary
equivalences

4.1 Definitions

In the previous sections we have mostly identified numbers by their position in the com-
plete binary and quaternary trees over N. Using statements of the kind ”a is vertical
even” is a typical example of crossing binary and quaternary properties to identify spe-
cific characteristics of a number. We will now expand this methodology by adding the
ternary tree, which elements we will identify with the following definitions:

Definition 4.1. Ternary, Ternarity
A number b is ternary or of type B, if it can be divided by 3. Its ternarity is the
total number of times it can be divided by 3, to which we will add the information of
the non-ternary number resulting from this finite operation, thus the full ternarity of any
ternary number that can be written 3n · x where x is non ternary is

[
n
x

]
For all intent

and purpose, when we will refer to just the ”ternarity” of a B type number (as opposed
to ”full ternarity”) we will just be meaning n alone, namely, the. number of times it is
dividable by 3.

Definition 4.2. 1-ternary, 1-ternarity
A number c is 1-ternary or of type C, if its base 3 representation ends with digit 1. The
number of times one can remove a consecutive end digit 1 (we call this operation C−1) is
its 1-ternarity, to which we add the information of the number resulting from it. Thus,
a number c that can be written x 1 . . . 1︸ ︷︷ ︸

n

in base 3 has a 1-ternarity of
[
n
x

]

Definition 4.3. 2-ternary, 2-ternarity
A number a is 2-ternary or of type A, if its base 3 representation ends with digit 2.
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The number of consecutive times one can remove an end digit 2 (we call this operation
A−1) is its 2-ternarity, to which we add the number resulting from it. Thus, a number

a that can be written x 2 . . . 2︸ ︷︷ ︸
n

in base 3 has a 2-ternarity of
[
n
x

]

Thus, as a memorandum of the types of odd numbers in the full ternary tree over 2N+1
in the word ”ABC”, B is dividable by 3, A+1 is and C-1 is, thus B is in the middle, A
on the left and C on the right.

Definition 4.4. ”up”, ”down”

A number is called ”up” if its qe makes it merge with its successor. If B ≡ S(B) we call
it a Bup and respectively for A and C, Aup and Cup. If B ≡ S(B), as we necessarily
have that S(B) is of type C, we will call this C ”down” or Cdown. If a number is vertical
odd, it is ”down”, if it is vertical even, it is ”up”.

1

3

5 7

1513119

17 19 21 23 25 27 29 31

33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

65 67 12769 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125

Figure 3. All odd numbers from 20 to 27. Type A are circled in teal, B in gold and C
in purple. Numbers of a ternarity of 2 or more (numbers that can be divided by 9, that
is) are also colored in gold. To explain again the previous definitions: 27 is a Bup and 63
is a Bdown for example. Any glacis number of glaciality above 0 is ”up”: 17 is an Aup
for example, and 19 a Cdown. Though exotic, these names are absolutely essential
to the results we obtain, and their very use is a pure result of our methodology: the
”up” and ”down” properties come from the study of the intersections of the binary and
quaternary trees, and the A,B,C ones, from the ternary.

10



5 The Collatz quiver

5.1 Fundamental rules

From the theorems of the previous section we may now define the formal rules generating
a particular traversal quiver over the binary tree defined by actions G (left arrow) and
S (right arrow) over 2N+1. These rules apply anywhere on the set of odd numbers, where
they define an endomorphism.

• Rule One
∀x odd, V (x) ≡ (x)

• Rule Two
∀x, k odd, SkV (x) ≡ Sk+1V (x) and ∀x, k even, SkV (x) ≡ Sk+1V (x)
(this is the qe)

• Rule Three
∀n, y ∈ N2, ∀x odd non B, 3nx ≡ y

⇒
n∧

i=1

(V (4i3n−ix)) ∧ S(V (4i3n−ix)) ≡ y

• Rule Four
∀n, y ∈ N2 , ∀x odd non B, S(3nx) ≡ y

⇒
n∧

i=1

(S(4i3n−ix) ∧ S2(4i3n−ix)) ≡ y

• Rule Five
∀n ∈ N, ∀y ∈ N, ∀x odd non B where 3nx is of rank 1, a ≡ y, a = G(3nx)

⇒
n∧

i=0

(Si(G(3n−ix)) ∧ Si+1(G(3n−ix))) ≡ y

Applying these rules from number 3 generates what we will call the Collatz 3-quiver,
which number of branches grow exponentially, in a density which we will explore in further
details. As the five rules do apply anywhere on the set of odd numbers, one may develop
an n-quiver from any odd number n as well. importantly, demonstrating that any
n-quivers has at least one common node (i.e., number) than the 3-quiver solves
the Collatz problem.

5.2 Examples

Let us proceed with numbers 3 and 21

3 = 3 · 1 therefore by rule 3 we have 3 ≡ 17

by rules 1 and 2 we now have 3 ≡ 69 = 3 · 23 and 3 ≡ 141 = 3 · 47
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also, 17 = G(32 · 1) so by rule 5 and rule 1 we have 3 ≡ 45 ≡ 93 ≡ 7 ≡ 15 and by rule
4 we have 7 ≡ 9 so starting by 3 only we have already proven the convergence of all odd
numbers up to 31 with the exception of 27 and 31, but we already have by rules 4 and
5 that 31 ≡ 27 and we will also show that the Golden Automaton finitely proves that
15 ≡ 31

We have 21 = V 2(1) = 3 · 7 so rules 1, 2 and 3 give us that 113, 453, 227 and 909
converge while rules 5 and 2 further demonstrate the convergence of 75 and 151 = S(75)
and we keep going...

So any number than can be written 3na or S(3nc) solves a glacis B number and any
number that can be written 3nc or S(3na) proves a glacis A number.

In turn, any glacis A number, which can always be written G(3nx) proves a cup or a bup,
and on the way, strictly more than 2n type B numbers as well

1

3

5 7

1513119

17 19 21 23 25 27 29 31

33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

65 67 12769 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125

1 ≡
3⇒

1 ≡
17

1 ≡ 17 ⇒
3 ≡ 7

3 ≡ 7 ⇒ 5 ≡ 9

1 ≡
9

1 ≡
9

3 ≡
9

9 ≡
19

3
≡
7

11
≡

33

45
≡

89

19
≡

39

Figure 4. The golden branches on this figure are only a subset (and precisely: the Bup
series after exploiting 3) of the equivalences the 3-quiver proves to reach them: assuming
number 3 already grafted to the equivalence network (since we start from 1 ≡ 3 ≡ 5),
they are the ones generated by only considering the Bups, and not the (many) more
opportunities offered by connecting Bdowns like 21, 45 or 69.

5.3 Emerging properties of the Collatz quivers

Though the development of the 3-quiver is branching, as each B type number that is
vertical even provides with both an A type and a B type number to keep applying respec-
tively rules 5 and 3, we may follow only the pathway of type A glacis numbers to define
a single non-branching series of arrows, forming a single infinite branch of the 3-quiver
which we may call ”pure A”. The latter, if computed from number 15, leads straight to
31, solving a great deal of other numbers on the way:

Definition 5.1. A Ag or ”glacial A” is a type A number that is vertical even.
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15 ≡ 81 glacial type B (the only one, as we follow a ”pure A” branch from here)
81 ≡ 1025 Ag

1025 ≡ 303 branch Bup
303 ≡ 809 Ag

809 ≡ 159 branch Bup
159 ≡ 425 Ag

425 ≡ 283 branch Cup
283 ≡ 377 Ag

377 ≡ 111 branch Bup
111 ≡ 593 Ag

593 ≡ 175 branch Cup
175 ≡ 233 Ag

233 ≡ 103 branch Cup
103 ≡ 137 Ag

137 ≡ 91 branch Cup
91 ≡ 161 Ag

161 ≡ 31 branch Cup
31 ≡ 41 Ag

41 ≡ 27 branch Bup

Again, it is in no way a problem, but rather a powerful property of Collatz n-quivers
that this particular segment of the infinite series of arrows (each being a quiver branch)
already cover 19 steps (and actually more than that) because each of them is branching
into other solutions. Simply put, any type A number in a glacis solves a Cup or a Bup
(and on its way, many more numbers), which in turn brings either directly another glacial
type A or a glacial type B giving itself another glacial type B and a glacial type A.

We may follow another interesting sequence to show that in the same way that Mersenne
number 15 solves Mersenne number 31, Mersenne number 7 solves Mersenne number 127,
this time we will follow a B branch up to the Ag of 127 which we know can be written
G(36) because 127 is the Mersenne of rank 7. By rule 4 we have the first equivalence

7 ≡ 9 Glacial Bup
9 ≡ 25 ≡ 49 both Glacial type C

So by Rule 2 we also have

25 ≡ 51

and rule 3 still gives us:

51 ≡ 273 Glacial Bup

so Rule 3 again gives us:

273 ≡ 1457 = G(729) ≡ 127
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The 3-quiver thus generates an infinity of branches, each infinite collections of arrows
between odd numbers. Importantly, the rules of the Collatz n-quivers ensures that its
branches wrap themselves diagonally around the binary tree over 2N+1. The 3-quiver
is a diagonal branching traversal of the complete binary tree over 2N+1 with a
non-uniform branching factor of at least 3 at every node. Applying its founding
rules in the regular order over 2N + 1 is also an extremelu powerful algorithm to solve
problems in the Collatz Conjecture.

Indeed, note that the only problems on the way of solving the Collatz conjecture have
always been Cups and Bups, because by induction, whoever could prove that any Cup
or Bup has a lower number than itself in its orbit would trivially solves Collatz just out
of rules 1 and 2. Furthermore, any Cup or Bup finitely maps to a Glacial A, therefore
any glacial A that is grafted by the 3-quiver solves a Cup (like 31) or a Bup (like 27).
Besides, we have proven that the Collatz dynamic makes it so that any Cup or Bup is
finitely mapped to another Cup or Bup, because any glacial A is finitely mapped to either
a B or a C type number by glacial decreasing, and any Cup or Bup of course, is finitely
mapped to a glacial A number.

The outline of our proof will consist of demonstrating that the 3-quiver solves too many
glacial A numbers - both densely and diagonally - so too many Cups and Bups - to allow
for any non-converging trajectory to exist over 2N+1. Simply put, the 3-quiver branches
too much and covers too much, and since any supposedly non-converging trajectory will
generate its own n-quiver, our strategy consists of demonstrating that the footprint of
any such n-quiver, for any supposedly non-converging Cup or Bup, grows too much not
to intersect the 3-quiver.

In turn the set of Cups and Bups can be measured very easily in terms of its density over
2N+ 1:

7 is the first Cup, 7+12 is a Cdown, 7+24 is a Cup, 7+36 is a Cup, 7+48 is a Cdown,
etc. If we study the series of C types of rank >1 (which is a section of the binary tree
over 2N+ 1) it gives

7 (U) - 19 (D) - 31 (U) - 43 (U) - 55 (D) - 67 (D) - 79 (D) - 91 (U) - 103 (U) - 115 (D) -
127 (D) - 139 (U) - 151 (D) - 163 (D) - 175 (U) - 187 (U) - 199 (U) - 211 (D) - 223 (D) ...

This is an infinite braid made of infinitely many strands of the C of rank>1, with each
same-rank strand of the braid following the rule U → D → U . As the same goes with
the number crystal of B type of rank>1, simply put, for any 7 consecutive numbers in
2N + 1, a maximum of 3 are Cups and Bups and a minimum of 1 is, and as the binary
tree develops, less than 16% of odd numbers are up, half of them being of a rank of 2
(like 27) meaning they are finitely mapped to another ”up” of higher rank (e.g. 31 in the
case of 27), which we may prove here.

We can indeed generalize the case of 27 in a theorem, to rigorously explain why all Cups
and Bups of rank 2 could be eliminated already, i.e that any up of rank 2 is either
converging to 1 straight away, or at least finitely mapped to a higher rank:
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Theorem 5.1. Second order rank theorem

let y = S(V (x)) where x is of rank n, then y is finitely mapped to (y + 5) · ( 98 )
⌊n

2 − 5

Proof. Though rather esoteric, this little theorem is actually very useful, both in method-
ology and consequences. We have already established as a founding theorem that any
number x of rank n is finitely mapped to (x+ 1) · ( 32 )

n−1 − 1 which is of rank 1. In this
theorem we can now define the second order rank of a ”bud” - ie. a number that can be
written S(V (x)) where x is odd - as the rank of x itself, and we can demonstrate that
any such bud will finitely decrease in second order rank and grow by increments of 9

8 by
being mapped to numbers of glaciality 1, then back to branches in a rank of 2.

For 27 we have indeed (27 + 5) · 9
8 − 5 = 31

For 59 we have (59 + 5) · 9
8 − 5 = 67

The general demonstration consists of observing that any number y = S(V (x)) where x
is of rank 2 or more is mapped to G2(Syr(x)) which can only be a number of glaciality
1, so it is mapped in turn to S(3 · S−1(Syr(x))) thus giving our general formula

For a geometric intuition of the process, it could be summed up as ”go to the closest
number dividable by 8 on the right of the bud” (hence the +5) then compute one increasing
Syr (branch process) and one decreasing Syr (glacis process), and that’s the 9

8 , then give
the +5 back. It is essentially the same process as computing Syrn of a rank n odd number,
only second order, in that it now concerns the bud right above said number.

As we have already noted any bud that is vertical even is strictly decreasing, that is, if
a number can be written S(V 2(e)) where e is even, then it maps to a type A number of
glaciality 2, and therefore maps straight to 3 · Syr(V (e)) which is a strictly decreasing
process.

So altogether, this eliminates all the Cups and Bups of rank 2 as problematic in the
establishment of a final resolution of the Syracuse problem, so we now have at most 8% of
odd numbers to worry about even before the 3-quiver is taken into account, and actually,
as we will see, much less than that.

5.4 Density and Diagonality of the 3-Quiver

Rules 3, 4 and 5 ensure that the development of the 3-quiver over the Binary tree
is diagonal, which is absolutely essential. Finishing a solution of the Collatz conjecture
consists of demonstrating it is also dense enough not to allow any trajectory it does not
capture. This would demonstrate at the same time that no cycles can exist in the Collatz
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dynamic but of course, that simply all natural numbers finitely converge to 1 in this
discrete dynamical system.

As many chaoticians have observed since Lorenz, and chief among them Stuart Kauffman,
chaos can actually remain quite ”boxed” in its space phase, and this is exactly the case
of the 3n + 1 dynamical system, which in spite of its deterministic chaoticity exhibits
rather precise attractors within 2N+1. However, if the Collatz orbits converge to certain
key numbers that can be beautifully visualised in the stems of the so-called ”Collatz
Seaweed”, the 3-Quiver generates strictly more branches than there are real numbers and
has therefore more branches than the complete binary tree over 2N+ 1. In this current,
and penultimate part of our demonstration, we will lay the foundations of this collision
analysis to prove that any n-quiver intersects the 3-quiver in finite time.

The way the 3-quiver works, any type B and type C number proven to converges also
provide either a Glacis A or a glacis B number, which in turn provide respectively a series
of new B numbers and a branch Cup or Bup (in the case of a glacis A). Yet, glacis A
numbers can be of any glacial order a priori, though a first step in ”boxing” more the
diversity of Collatz orbits into what we will call ”Determinants”, would consist of, for
example, demonstrating that any Collatz orbit has its own footprint among the set of
triple C numbers (which, by rule 3, is strictly equivalent to the set of glacial A numbers
of order 2). To this end, we prove the following simple lemma.

Lemma 5.2. Banana Split Lemma

Let g2 and g1 be glacis numbers of ranks 2 and 1 respectively then either

• g2 ≡ g1 (”Vanilla”)

• g2 ≡ g2−9
8 and g1 ≡ (g1 · 8) + 9 (”Banana”)

We will call the action 8x+ 9 ”Banup” and the action x−9
8 ”Bandown”

Proof. By the glacial decreasing theorem (3.7) we have g2 ≡ 3b where b is the bottom
of the glacis. Then b is either up or down. If it is up, b ≡ S(b) → g2 ≡ g1. If it is down,
S(3b) ≡ S2(3b) equivV (S2(3b)) the latter being of type C, therefore g1 ≡ Banup(g1). If
3b is down we also have either 3b = V (a) where a is of type A, or 3b = S(c) where c is of
type C, either way it implies that g2 ≡ Bandown(g2)

It is also easy to demonstrate that any banana starting from a type A (and either going
up or down) gives a type C number, and that any Banana from a type B gives another
type B.

This little lemma, though anecdotal in appearance is actually very useful because it will
guarantee that any trajectory merges with triple C or triple A numbers, which in turn
is a an extremely important property of the Collatz Dynamic. Indeed, it implies other
useful consequences:
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Lemma 5.3. • Let 3·a = V (x) where x is odd and a of type A, then Banup(3·a) = 3·c
where c is of type C and the pivot of the branch of x is dividable by 9.

In plain English: any type A branch with a pivot dividable by 9, that is, a branch
made of numbers that have been increasing at least twice under the Syr operation
has Triple A numbers above itself and triple C as any g2 numbers in its glacis

• Let V (a) where a is of type A be dividable by 9, then Banup(V (a)) is dividable by
9 but neither is V (S(a)) or Banup(V (S(a))). If V(a) is a triple B (dividable by 9)
then V(S(a)) is a triple C and Banup(V(S(a)) is a triple A. If a is of rank 2 or
more, then V (S(a) ≡ Banup(V (S(a)))

In plain English: let a Cup or Bup increase just once under Syracuse, then one
will find triple As and triple Cs it merges with right above its forward trajectory in
the binary tree over 2N+ 1

Proof. • It is trivial to demonstrate that by the Collatz Dynamic, the action ·3 on
any A branch gives a series of numbers that are vertical, except for the first number
of the branch, for which the triple must be successal; also, since we have tripled an
A branch (which pivot is therefore necessarily of type B) the pivot of the second
branch is dividable by 9. Now does Banup(3a) give a 3a number? Yes it does
24a+9

3 = 8a+ 3 which is of type A.

• What the second case meant in plain English is that if we apply the action ·3 on a
C-B branch now, we obtain a series of B numbers that are vertical of an A branch
(again, except for the root of the CB branch). Then either these verticals are 3B
numbers, and are dividable by 9, or they are triple Cs, and that is the reason one
will find triple Cs above any A branch of which the pivot is dividable by 3 only
once.

This allows us to further narrow the set of problems by formally defining it as, at most,
a certain proper subset of the set of triple Cs that are Vertical odd, or a certain proper
subset of the set of triple As that are Vertical odd. 69 is the first triple A that is vertical
odd, and the next one, 141 which it happens to be equivalent to by rules 1 and 2, is found
at a step of +72 over N, so that we now have reduced the set of problems to below 2,8%
of the odd numbers, evenly distributed of course over their set, and this without having
even used the 3-quiver yet. We may affirm that the set of actual problems is a proper
subset of those less than 2,8% of odd numbers specifically because any Cup or Bup of
rank n will, in its trajectory, intercept as many of those as its orbit inflates.

Furthermore, one must also note that any Triple A or Triple C also constitutes the starting
point of the grafting of infinitely many new odd numbers, so whenever a supposedly
diverging Cup or Bup expands its footprint in the set of problems (which we later call
a Collatz Determinant) it does so exponentially. If its orbit inflates, it will intersect
other Triple As and Cs but also other Cups and Bups forward, but each of the Triple
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As and Cs it intersects will themselves solve another infinite series of Cups and Bups,
backward. Simply put: diverging implies dense branching which we will further
demonstrate in the final subsection.

From a Ramsey-theoretical perspective, it would be fascinating to define not some Collatz
determinant as we have still rather broadly done here, but an absolute Critical Set
defined as the smallest set of odd numbers - if it exists - whose solving solves Collatz.
Such an endeavour is nevertheless not required at all to finish the proof, as the 3-quiver
simply solves way too many problems, and the problems’ footprint simply inflate way
too much if we just assume they are problems (namely, that they dodge the 3-quiver’s
own footprint), that a collision between the 3-quiver and any supposedly non-connected
n-quiver is inevitable anyway.

For any glacis B number we have an increasing and a decreasing pathway, which we saw
in the example 15 → 31. Any Glacis B number finitely points to a pair of A and B
glacis numbers, and, if it is dividable by 9 or more, to as many Bdown numbers as it is
dividable by 3 minus one time. We now have that only Bups and Cups of rank strictly
above 2 are problems in Syracuse, and that each time they grow they intersect twice as
many triple As as their rank-1, plus one. Any number which orbit is supposed to escape
the Golden Quiver will form an exponentially growing Silver Quiver within the space
of Triple As. All we have to do now is to demonstrate that the Golden Rules starting
from 3 grow too many solutions to avoid any possible Silver Quiver. This can be done in
many ways but we would like to take the opportunity of this demonstration to expand
upon the concept of Romanesco Calculus. Thus, although it could be demonstrated in a
more straightforward manner, we will develop here a slightly more technical approach to
build upon the more general interest of the methods and tools we have conceived in this
article. We do not want to miss the opportunity to apply Romanesco algebra to a second
order, that is, to now map all the triple A numbers to a 2-4 Romanesco and analyse their
trajectory from this new referential. Again, this was not necessary in the first place, but
the future potential of this sort of analysis warrants breaking ground for it in this very
article already.

18



1

3

5 7

1513119

17 19 21 23 25 27 29 31

33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127

129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 201 203 205 207 209 211 213 215 217 219 221 223 225 227 229 231 233 235 237 239 241 243 245 247 249 251 253 255

281273 497

729

1457

753

377

593

297 465

(3)

(17
)

(17)

(7)

(9)

(9)

(9)

(9)(6
5) (21)

(21)

(8
9)

(8
9)

(39)

(39)

(2
09

)

(105)

(2
81

)

(33)

(33)

(187)

(1
87

)

(5
1)

(2
73

)

(273)

(1
45

7)

(141)

(1
41

)

(3
77

)

(111)
(111)

(5
93

)

(87)
(87)

(2
33

)

(103)

(103)

(1
37

)

(1
5)

(91)

(1
61

)

(1
61

)

(1
61

)

(1
27

)

(31)

(4
1)

(27)

(27)

(27)

(1
61

)

(1
13

) (27)

(27)

Figure 5. Note that the development of the 3-quiver is dual to the ”Collatz
Seaweed”, yet it is not constructed by the brute-force computing of each odd
number. This more complete description of the 3-quiver, grafting the qe together as it
progresses from 1 ≡ 3 ≡ 5, goes all the way to grafting 127 and 31. Each branch indicates
which number generates it, for example 9 is grafted to 5 because 7 is grafted to 3, and 9
being a Bup it grafts 33 and 65.

5.5 Quiver analysis of Collatz determinants

In this final part of our proof, we demonstrate that the diagonality and density of the 3-
quiver interdicts the existence of any n-quiver defined by the property of not intersecting
it.

Paramount to this demonstration is the analysis of the consequences of the 5 rules, and
in particular rules 3, 4 and 5 implying, among others, that

• any triple A solves a glacial Bup

• any Bup solves a glacial A and a glacial Bup

• any glacial A solves a branch Cup or a branch Bup

but also, still by those same rules 3, 4 and 5, we may focus on the case of glacial Bup 81,
which we have demonstrated finitely solves Mersenne number 31. Since 81 is of ternarity
4, the rules imply it solves 2 · (4 − 2) = 4 triple Cs on its way to mapping to the single
glacial A-B pair it solves, and any triple C solves a glacial A, which solves a branch Cup
or Bup, and on its way, other triple As and triple Cs. The important part of this final
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step to solving the Collatz problem is the analysis of the geometric consequences of action
·3 on branches and glacis.

• let Gx = {g1...gn} be a glacis of bottom x, then 3 · Gx = S(G3x) to which is
appended 3 · g1 = S(V (3x))

• let Bx = {x, S(x)...Sn(x)} be a branch of root x, then 3 · Bx = V (Syr(Bx)) to
which is appended G(Syr(S(x))

These consequences of the five rules ensure, among others, that any supposedly escaping
orbit would also leave an exponentially growing quiver of triple Cs and triple As as a
footprint. For example, the mere orbit of 7 also provides, among others, Triple A 483,
(by banana between 241 = S−1(483) and 29 = V (7), which had to be because of the rank
of 7) but also triple A 753 and Triple C 93 by banana over 23 = S(Syr(7)) and finally
triple As 69 and 141 (over 17 = Syr2(7)) and triple C 1137 (by banana, again inevitable
from the rank of 7 , from 1137 to 141)

A further step, though unnecessary per se to solve the Collatz problem, consists of map-
ping all the triple A numbers that can be written as the vertical of an A type number
and establish thiss Collatz Determinant within this space phase that any orbit has to
intersect, also noting that any triple A provides a quiver of new solutions.

69

141

213 285

357 429 501 573

1005 1077 1149933861789717645

1221 1293 1365 1437 1509 1581 1653 1725 1797 1869 1941 2013 2085 2157 2229 2301

2373 2445 2517 2589 2661 2733 2805 2877 2949 3021 3093 3165 3237 3309 3381 3453 3525 3597 3669 3741 3813 3885 3957 4029 4101 4173 4245 4317 4389 4461 4533 4605

Figure 6. Representation of a Collatz Determinant mapped onto a binary tree over N,
made of the Triple A numbers that can be written V (a) where a is of type A. Each number
is associated with a single integer, circled in blue if even, and red if odd. For any integer
n, its associated Triple A is equal to 72n− 3. The solid black lines plot the consequences
of rules 1 and 2 onto this representation. Only a subset of the Triple A numbers that are
”vertical odd” in this referential (i.e. that admit, in this representation, a V −1 that is
itself a Triple A of odd integer n ; they are displayed in darker gold and they are +576
apart from each other in nominal value e.g. 357+ 576 = 933) actually needs to be solved
to solve the Collatz problem and that the 3-quiver solves an infinity of Triple A numbers
in a density that is sufficient to interdict the existence of any other independent n-quiver
finishes the proof.

Simply put; the process generating problems (i.e. Cups and Bups of rank 2 or more) can-
not win against the process generating solutions (glacial As), by virtue of its diagonality
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and the arities (plural, because they are not the same at every node) of its nodes, which
are anywhere strictly above 2, and in fact, progressive ones indexed on the ternarity of
the B nodes : taking the case of 81 as an example, we have this number of ternarity 4
mapping to 513 (glacial B) and 1025 (glacial A) but also, on its way, to triple A 771,
triple B 1539, triple C 579, triple C 1155, triple C 867 and triple C 435, giving a final
arity of 8 to this node, which depends only on the ternarity of 81. The 3-quiver solves
problems faster than they can appear, and each presumed problem grows a footprint that
cannot escape it. Another approach to finish the proof consists of noting that there is a
bijection from the set of successal Cups and Bups to the set of glacial As, yet a proper
surjection from the same set to the set of triple C numbers (each representing another
glacial A of order 2) and that while only a proper subset of numbers of ternarity 1 needs
to be solved, numbers of ternarity strictly above 1 solve exponentially more of those (e.g.
case 81).

If any n-quiver is finitely intercepted by the 3-quiver then not only cannot there be any
kind of cycle in the 3n+1 dynamic, but every number also finitely converges to 1.

5.6 Romanesco Algebra

We now, in this final step, formalize the results of the quiver analysis of the Collatz orbits
into a precise algebraic system. This system of unary algebras over 2N+1 we here call a
”Romanesco Algebra”
Definition 5.2. Romanesco Algebra

The unary algebra {2N + 1;G,S, V, ·3} is called a ”Romanesco Algebra (2;3;4) over odd
numbers”.

Examples

• The complete Binary Tree with the extra V operation over 2N+1 (Figure 1) forms
a ”Romanesco (2;4) over odd numbers”

• Figure 3, identifying odd numbers by their ternarity while mapping them in a
binary tree where V is visible, is a representation of Romanesco (2;3;4).

Romanesco arithmetic may be seen as an epistemological extension of modular arithmetic,
hence our use of the symbol ≡ in this article. Romanesco arithmetic involves words taken
in the alphabet {G;S;V ; 3}, which we will call in their order of application, just like in
turtle graphics. For example VGS3 means 3 · S ◦G ◦ V

Rules 3, 4 and 5 may now be reformulated as such, without loss of generality

• Rule 3
Let b be of type B, then b ≡ V GS3−1 from b
We will call this action Rb
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• Rule 4
Let c be of type C, then c ≡ GS3−1 from c
We will call this action Rc

• Rule 5
Let a be of type A, then a ≡ V 3−1S−1 from a
We will call this action Ra

We have already proven that the Collatz dynamic produces a one-to-one correspondence
between all the Bups and Cups of rank 2 or more, and we know by the second order rank
theorem that any of those is also finitely mapped to a Bup or Cup of rank 3 or more.
So solving the Ag of order 2 in a glacis which bottom is of rank 4 or more would solve
Collatz, but such a delicate Ramsey-theoretical pursuit is not needed to demonstrate that
the 3-quiver finitely intersects any n-quiver.

Theorem 5.4. The 3-quiver finitely intersects any n-quiver.

Proof. Ag numbers are 12 points apart on 2N+1 (24 in nominal value, e.g. 17 to 41) and
any Bup or Cup they represent is smaller than them since action Ra is strictly decreasing
so up to the nth Ag there are 2n (Bups + Cups) of rank 2 or more and half of them are
equivalent to these Ag (e.g. between 17 and 41 Bup 27 is equivalent to Ag 41, which is
equivalent by glacial decreasing to Cup 31)

between any two consecutive Ag in 2N+ 1 there are

• 8 non-A numbers

• 1 of them at most is mapped to the second Ag

• 3 at most are ups of rank 2 or more

Besides,

• Let b be of type B, there are 2b
3 numbers of type Ag that are smaller than V 2(b)

• Let c be of type C, there are S(c)
3 numbers of type Ag that are smaller than V 2(c)

• Let 3c be a type B where c is of type C, there are S(c)
3 numbers of type Ag up to

Rb(3c) included

• Let 3a be a type B where a is of type A, there are G(a)
3 numbers of type Ag smaller

than Rb(3a)

These consequences of Rules 1 to 5, which again do apply anywhere on 2N+ 1 allow but
one conclusive property, of which we saw isolated, though significant examples when we
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calculated that 15 is finitely demonstrating the convergence of 31 and 7 finitely demon-
strating the convergence of 127, both demonstrating an exponential amount of other
non-trivial convergences on the way, that is :

let numbers 2n + 1 to 2n+1 − 1 be proven to converge, then applying Rules
1 to 5 on them and their successor by those rules finitely demonstrate the
convergence of 2n+1 + 1 to 2n+2 − 1.

6 Conclusion

Pál Erdős famously said of the Collatz conjecture that mathematics may not be ready for
this kind of problem. What we have attempted here has been to provide a simple theory
of unary algebras, and especially of complete n-ary trees over 2N+1, which we have called
”Romanesco Algebra”. Unary algebras of this kind could be particularly fecund to attack
other diophantine problems and we have in no way intended Romanesco algebra to be
an ad hoc ”fire and forget” theory made to measure for the Collatz conjecture. Rather,
we predict its founding methodology and principles be used to approach other unsolved
problems in Number theory and discrete dynamic systems.
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