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Abstract 

 

Background: The opioid-mediated analgesic activity of mucosal CD4+ T lymphocytes in 

colitis has been reported in immunocompetent mice so far. Here, we investigated whether 

CD4+ T lymphocytes alleviate from inflammation-induced abdominal pain in mice with 

defective immune regulation.  

Methods: Endogenous control of visceral pain by opioids locally produced in inflamed 

mucosa was assessed in IL-10-deficient mice. 

Key Results: CD4+ T lymphocytes but not F4/80+ macrophages isolated from the lamina 

propria of IL-10-deficient mice with colitis express enkephalin-containing opioid peptides as 

assessed by cytofluorometry. Colitis in IL-10-/- mice was not associated with abdominal pain. 

Intraperitoneal injection of naloxone-methiodide, a peripheral opioid receptor antagonist, 

induced abdominal hypersentivity in IL-10-/- mice with colitis.   

Conclusion and inferences: Opioid-mediated analgesic activity of mucosal T lymphocytes 

remains operating in IL-10-/- mice with impaired immune-regulation. The data suggest that 

endogenous T cell-derived opioids might reduce inflammation-induced abdominal pain in 

inflammatory bowel diseases associated with homozygous “loss of function mutations” in 

interleukin-10. 
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Key Points 

 

ü Analgesia mediated by T lymphocyte-derived opioids is well documented in 

immunocompetent mice with colitis 

ü Here we show that the opioid-mediated analgesic effect of T lymphocytes persists in 

inflammatory bowel disease-like colitis in interleukin-10-deficient mice 

ü Our data suggest that the endogenous control of abdominal pain by colitogenic 

mucosal T lymphocytes could be generalized regardless of the origin of the chronic 

intestinal inflammation  
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1 | INTRODUCTION 

 

 Inflammatory bowel diseases (IBD) are characterized by an abnormal response of the 

mucosal immune system against microbiota. Etiology of IBD remains largely unknown, but 

genetic defects in immune regulation are predisposing to development of inflammatory bowel 

diseases including Crohn’s disease 1,2. Among more than 230 susceptibility loci reported so 

far, a number of genes are related to IL-10 biology including IL10, IL10RA, or IL10RB genes 

3-9. IL-10 is a key anti-inflammatory cytokine produced by both macrophages and regulatory 

T cells in the gut. Its role in the regulation of the inflammatory responses to microbes and in 

the maintenance of the regulatory T cell activity is fundamental for sustaining intestinal 

homeostasis 10,11. In this context, IL-10-deficient mice, which develop colitis sharing 

physiopathological features with Crohn’s disease including transmural lesions, represent a 

valuable animal model of IBD 12. It has been shown that, piroxicam-induced alteration of 

epithelium integrity results in bacterial translocation which leads, in the absence of IL-10, to 

an excessive inflammatory immune response. Colitis which develops in IL-10-/- mice 

following piroxicam treatment is similar to the colitis that occurs spontaneously in untreated 

IL-10-/- mice after 3 to 6 month of age 13,14. Colitis in IL-10-/- mice is characterized by an 

aberrant response of Th1 and Th17 subsets of CD4+ T lymphocytes but also innate immune 

cells and, particularly macrophages 15. Indeed, the inability of macrophages to produce IL-10 

upon bacterial infection exacerbates innate immune response leading to fatal colitis 16.  

 A number of previous studies have reported that colitogenic Th1 and Th17 

lymphocytes produce endogenous opioids which inhibit inflammation-induced abdominal 

pain 17-20. However, the analgesic effects of T cell-derived opioids were evidenced in 

intestinal inflammatory models mimicking an excessive immune response in which innate and 

adaptive immune cells display unaltered functional properties 18,20-22.  
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 In this study, we investigated whether the opioid-mediated analgesic properties of 

CD4+ T lymphocytes still operate in a context of immunoregulatory deficiency with innate 

immune hyper-responsiveness.   
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2 | MATERIALS AND METHODS 

 

2.1 | Animals and ethics statement 

 

Ten to twelve week old IL-10 gene-deficient male (IL-10-/-) mice on C57BL/6 genetic 

background were bred and raised in the animal care facility at Toulouse (INSERM US 006 

ANEXPLO/CREFRE, Toulouse, France). Colitis was accelerated by adding 150 mg/Kg 

piroxicam, a non-steroidal anti-inflammatory drug, into standard chow diet for 10 days 

(SAFE, Scientific Animal Food & Engineering, Augy, FRANCE). All procedures were 

performed in accordance with the Guide for the Care and Use of Laboratory Animals of the 

European Council and were approved by the Animal Care and Ethics Committee of 

US006/CREFE (CEEA-122; application number APAFIS #7762- CE2016112509278235V2). 

 

2.2 | Macroscopic assessment of colonic damage 

 

 Macroscopic colonic tissue damage was evaluated using a scale ranging from 0 to 11 

as follows: erythema (absent (0), length of the area less than 1 cm (1), more than 1 cm (2)), 

edema (absent (0), mild (1), severe (2)), strictures (absent (0), one (1), two (2), more than two 

(3)), ulceration (absent (0), present (1)), mucus (present (0), absent (1)), and adhesion (absent 

(0), moderate (1), severe (2)). Bowel wall thickness was measured with an electronic calliper 

in the distal part of the colon, at 0.5 cm below the cecum.  
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2.3 | Histological assessment of colonic damage 

 

 Colonic tissue specimens were excised 2 cm proximal to the anus and immediately 

transferred into 10 % formol to be further embedded in paraffin. Five-micrometer colonic 

sections were then stained with haematoxylin-eosin (H & E). Damage scoring was evaluated 

on a scale ranging from 0 to 12. Inflammatory cell infiltration, epithelial/mucosal alteration 

(including vasculitis, goblet cell depletion and crypt abscesses), mucosal architecture 

alteration (including ulceration and crypt loss) and submucosal edema were graded from 0 to 

3 (absent, mild, moderate and severe).  

 

2.4 | Immunofluorescent staining of lymphocytes in colon tissue biopsy 

 

Colonic sections (5µm) were saturated with PBS 1% BSA and then incubated with 

rabbit anti-CD3 (Clone SP7, Diagnostic BioSystems, Pleasanton, CA) monoclonal antibodies 

(mAb) for 1 hour at room temperature. After washing with PBS, bound antibodies were 

revealed with Alexa Fluor 555-labeled goat anti-rabbit IgG antibodies (Invitrogen). Slides 

were mounted and nuclei were stained with 4',6-Diamidino-2-Phenylindole (DAPI) 

fluorescent mounting medium (VECTASHIELD®, Vector laboratories Inc., Burlingame, CA). 

Fluorescence images were taken using confocal laser scanning microscope LEICA TCS SP8 

(LEICA microsystems, Nanterre, France) with x 20 objective. 
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2.5 | Isolation of lamina propria mononuclear cells 

 

 Intestine was longitudinally opened, cut into small pieces, washed and incubated twice 

with RPMI 5% FCS 5 mM EDTA at 37° C for 15 minutes. After washing, colonic tissues 

were digested with 0.02 % collagenase VIII (Sigma, St Louis, MO, USA) for 1 hour at 37°C. 

Supernatant was then passed through a 70 µm cell strainer and centrifuged. Mononuclear cells 

were then isolated upon Percoll gradient 17.  

 

2.6 | Isolation and activation of CD4+ T lymphocytes 

 

CD4+ T lymphocytes were isolated from both splenocytes and lymph node cells using cell 

negative isolation kit according to manufacturer’s instructions (Invitrogen Dynal AS, Oslo, 

Norway). Twenty-four-well cell culture plates (Corning, Life Sciences, Amsterdam, 

Netherlands) coated with 2.5 µg mL-1 of both anti-CD3 (clone 145-2C11) and anti-CD28 

(clone 37.51) mAbs (BD Biosciences, San Jose, CA) were seeded with 5 × 105 purified naive 

CD4+ T cells (more than 88 % pure) in RPMI-1640 medium (GIBCO Life Technologies, 

Paisley, UK) supplemented with 10% heat inactivated fetal calf serum (GIBCO Life 

Technologies), 1% non-essential amino-acids, 4 mM L-glutamine, 1 mM sodium pyruvate, 

100 IU mL-1 penicillin, 100 µg mL-1 streptomycin (GIBCO-BRL), 10 mM HEPES (4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid ) and 2 × 10-5 M 2-β-Mercapto-ethanol. 

Proliferation of the cells was monitored using the CellTraceTM Violet Cell Proliferation Kit 

(Invitrogen, Carlsbad, CA). 
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2.7 | Cytofluorometric analysis 

 

 Mononuclear cells purified from lamina propria or CD4+ T lymphocytes were first 

incubated with blocking buffer (PBS with 1% FCS, 3% normal mouse serum, 3% normal rat 

serum, 5 mM EDTA, 0.1% NaN3) containing 5 µg mL-1 rat anti-CD16/CD32 mAb (mouse Fc 

blockTM, clone 2.4G2, BD Biosciences) for 15 min at room temperature. Cells were then 

incubated with Viability Dye eFluor™ 780 (e-bioscience). CD4+ T lymphocytes were stained 

with both BV510-conjugated rat anti-mouse CD4 (clone RM4-5) and PE-Cy7-conjugated 

hamster anti-mouse TCR β chain (clone H57-597) mAbs and, to monitor activation status of 

the cells, PE-conjugated rat anti-mouse CD25 (clone PC61) together with FITC-conjugated 

Hamster anti-mouse CD69 (clone H1.2F3) mAbs. Macrophages were stained with APC-

labelled rat anti-mouse F4/80 (clone BM8) mAb. All antibodies were 1:400 diluted in FACS 

buffer (PBS 1 % FCS, 5 mM EDTA, 0.1% NaN3) for 30 min on ice. To assess the content in 

Met-enkephalin-containing peptides in CD4+ T lymphocytes and macrophages, cells were 

incubated with the anti-CD16/CD32 mAb prior adding both anti-CD4 and anti-F4/80 mAbs 

for 30 minutes at 4°C. After washing, cells were fixed, permeabilized and then stained with 

either rabbit anti-Met-enkephalin polyclonal IgG antibodies (Merck-Millipore-Chemicon 

International, Temecula, CA) or control rabbit non-immune serum IgG (Jackson 

Immunoresearch Lab, Baltimore, PA) as previously described 23. Data were acquired for each 

individual sample on 100,000 cells by forward and side scatter intensity on a Fortessa (BD 

Biosciences) and further analyzed using the FlowJo software (Tree Star, Ashland, OR). 
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2.8 | Real-time quantitative PCR analysis 

 

 Colonic tissue samples were homogenized in 500 µL TRIzol™ Reagent (Sigma). 

Total RNA was then isolated by using GenEluteTM Mammalian total RNA miniprep Kit 

following the manufacturer’s instructions (Sigma). RNA was reverse-transcribed with 

Moloney murine leukemia virus reverse transcriptase using random hexamers for priming. 

Transcripts encoding hypoxanthine phosphoribosyl transferase (HPRT), proenkephalin 

(PENK), proopiomelanocortin (POMC), prodynorphin (PDYN), TNFα, IFNγ, IL-1β, IL-17, 

IL-22 were quantified by real-time using the following forward and reverse primers: 5’-

GTTCTTTGCTGACCTGCTGGAT-3’ and 5’-CCCCGTTGACTGATCATTACAG-3’ for 

HPRT, 5’-CGACATCAATTTCCTGGCGT-3’ and 5’-AGATCCTTGCAGGTCTCCCA-3’ 

for PENK, 5’-TGGCCCTCCTGCTTCAGAC-3’ and 5’-CAGCGAGAGGTCGAGTTTGC-3’ 

for POMC, 5’-TGTGTGCAGTGAGGATTCAGG-3’ and 5’-

AGACCGTCAGGGTGAGAAAAGA-3’ for PDYN 24, 5’-

CCACGCTCTTCTGTCTACTGAAC-3’ and 5’-GGTCTGGGCCATAGAACTGATG-3’ for 

TNFα, 5’-CAGCAACAGCAAGGCGAAA-3’ and 5’-AGCTCATTGAATGCTTGGCG-3’ 

for IFNγ, 5’-ACCTTCCAGGATGAGGACATGAG-3’ and 5’-

CATCCCATGAGTCACAGAGGATG-3’ for IL-1β, 5’-TCCAGAAGGCCCTCAGACTA-3’ 

and 5’-CAGGATCTCTTGCTGGATG-3’ for IL-17 and 5’-

ACCGCTGATGTGACAGGAGC-3’ and 5’-AGGTGGTGCCTTTCCTGACC-3’ for IL-22. 

The target gene expression was normalized to the HPRT mRNA and quantified relative to a 

standard cDNA (calibrator sample) prepared either from mouse inflamed colon (for 

inflammatory cytokines) or mouse brain (for opioid precursors) using the 2-DDCT method, 

where DDCT = DCT sample- DCT calibrator 25. 
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2.9 | Colorectal distension and electromyography recording 

 

 Three days before colorectal distension, 2 electrodes (Bioflex insulated wire AS631; 

Cooner Wire, Chatsworth, CA) were implanted into the abdominal external oblique 

musculature of mice previously anaesthetized with xylazine and ketamine. Electrodes were 

exteriorized at the back of the neck and protected by a plastic tube attached to the skin. When 

indicated, mice were intraperitoneally injected with 200 µL of either PBS or naloxone 

methiodide (NLX-meth 10 mg mL-1) 18. Thirty minutes after injection, electrodes were 

connected to a Bio Amp (ADInstruments, Inc., Colorado Springs, CO), which was connected 

to an electromyogram acquisition system (PowerLab, ADinstruments). A 10.5 mm diameter 

balloon catheter (Fogarty catheter for arterial embolectomy, 4F; Edwards Lifesciences, 

Nijmegen, Netherlands) was gently inserted into the colon at 5 mm from the anus and 

progressively inflated in a stepwise of 15 mm Hg. Ten-second distensions were performed at 

pressures of 15, 30, 45 and 60 mm Hg with 5 minutes rest intervals. Electromyography 

activity of abdominal muscles was recorded and visceromotor responses were calculated 

using Chart 5 software (ADinstruments) 26.  

 

2.10 | Statistics 

 

 Data are expressed as means ± SEM. Comparison between two groups of mice was 

performed using Mann-Whitney U test. The statistical analysis of the loss body weight 

induced by piroxicam treatment was performed using Wilcoxon matched pairs test. 

Comparison of visceral sensitivity in response to increasing distension pressures between two 

groups of animals were estimated with two-way repeated measurements analysis of variance 

(ANOVA). Due to the skewed distribution of the response; non-parametric tests were applied 
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on longitudinal data using a ranked-based approach on factorial experiments. The abdominal 

responses over the different pressures were explained in the statistical model by: treatment 

groups, an interaction term between treatment groups and distension pressures as fixed effects 

and a random effect to take into account the repeated measures of distension pressure on 

mice. Post hoc analysis using a Mann-Whitney-Wilcoxon test was performed at each 

distension pressure. P < 0.05 was considered as significant 21.   
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3 | RESULTS 

 

3.1 | Piroxicam treatment accelerates development of colitis in IL-10-/- mice  

 

 Addition of piroxicam in standard chow diet for 10 days triggered development of 

colitis in IL-10-/- mice as shown by significant body weight loss (Figure 1A) and severe 

colonic injuries. Both macroscopic and microscopic colonic lesions in IL-10-/- mice treated 

with piroxicam were more severe than those in untreated IL-10-/- mice (Figure 1B-E and 

Figure 3D). Development of colitis in piroxicam treated-IL10-/- mice was associated 

respectively with a 5-, 18-, 32- and 37-fold increase in TNFα, IL-17, IL-1β, IFNγ and IL-22 

mRNA expression levels (P < 0.001). By contrast, the expression level of proenkephalin 

(PENK) mRNA was significantly reduced (Figure 2). mRNA encoding for the dynorphin and 

β-endorphin precursors, respectively prodynorphin and proopiomelanocortin were 

undetectable.  

 

3.2 | CD4+ T lymphocytes within lamina propria of IL-10-/- mice with colitis 

express endogenous opioids 

   

 Lamina propria mononuclear cells were isolated from the inflamed mucosa of 

piroxicam-treated IL10-/- mice developing colitis. The frequency of F4/80+ macrophages in 

lamina propria of colitis IL10-/- mice was higher than that of CD4+ T lymphocytes (Figure 3A 

and 3B). The average number of F4/80+ macrophages was almost 3.5 fold higher than that of 

CD4+ T lymphocytes (Figure 3A). Although, their number was heterogeneous between 

individuals, mucosal F4/80+ macrophages were predominant relative to CD4+ T lymphocytes 
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in almost 90% of the animals (Figure 3B) (ratio F4/80+ macrophages versus CD4+ T 

lymphocytes was 3.6 ± 0.7 (average ± SEM, n = 15 for each group of mice). 

 We then assessed whether CD4+ T lymphocytes and/or macrophages in piroxicam-

treated IL-10-/- mice were able to produce endogenous opioids. As depicted in Figure 3C, 

CD4+ T lymphocytes isolated from lamina propria of IL10-/- mice treated with piroxicam, 

express enkephalin-containing peptides. By contrast, cytoplasmic accumulation of 

enkephalin-containing peptides was not found in mucosal F4/80+ macrophages as assessed by 

cytofluorometry (Figure 3C). The transmural injuries, 10-fold more frequent in IL10-/- mice 

treated with piroxicam, displayed T lymphocytes in the muscularis (Figure 3 D and 3E).  

 

3.3 | Colitis is not associated with intestinal hypersensitivity in IL-10-/- mice 

 

 Since CD4+ T lymphocytes in IL10-/- mice treated with piroxicam were able to 

produce endogenous opioids, we assessed their potency to induce analgesia. As shown in 

Figure 4A, the visceral sensitivity of piroxicam-treated IL10-/- mice which develop colitis was 

superimposable to that of untreated IL10-/- mice, as assessed by colorectal distension. The 

injection of naloxone-methiodide, an antagonist of the opioid receptors unable to cross the 

brain-blood barrier, in piroxicam-treated IL10-/- mice induced abdominal pain (Figure 4B). 

Given that naloxone-methiodide antagonizes only peripheral opioid receptors, the data 

indicate that the inhibition of abdominal pain is dependent on local release of opioids within 

the inflamed intestine. The induction of abdominal pain was not due to the inhibition of 

opioid-mediated anti-inflammatory effects, since, as already reported, the injection of 

naloxone-methiodide thirty minutes before visceral sensitivity assessment did not worsen 

inflammation-induced tissue damage (Figure 4C).  
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3.4 | The production of enkephalins by CD4+ T lymphocytes is lower in IL-

10-/- mice  

 

The ability of CD4+ T lymphocytes to synthesize PENK mRNA in response to TCR 

triggering was compared between wild-type (IL-10+/+) and IL-10-deficient (IL-10-/-) mice. 

Purified naïve CD4+ T lymphocytes were stimulated with anti-CD3 and anti-CD28 antibodies 

under non-polarizing conditions for 6 days in vitro. At the third day following the stimulation, 

all CD4+ T lymphocytes were activated as shown by the up-regulation of CD25 and/or CD69 

markers. CD4+ T lymphocyte was distributed as non-cycling (M1), intermediately (M2) and 

highly proliferative (M3) T lymphocytes depending on Celltrace violet fluorescence intensity 

which gradually decreases as cells divide (Figure 5A-D). As shown in Figure 5 E, although 

the proliferative response of CD4+ T lymphocytes originating from IL-10-/- mice was higher 

than that of CD4+ T lymphocytes from wild-type mice, their ability to synthesize PENK 

mRNA was lower. 
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4. Discussion 

 

 Opioids peptides are constitutively produced by mucosal immune cells in steady-state 

conditions but their production is not sufficient to inhibit abdominal pain upon acute colitis 

18,21,27-30. By contrast, chronic colitis is associated with a significant reduction of abdominal 

pain which correlates with the migration of opioid-producing CD4+ T lymphocytes within the 

inflamed colon 17,18,21,31-33.  As a matter of fact, in the model of colitis induced by passive 

transfer of naïve CD4+CD45RBhigh T lymphocytes into lymphodeficient mice, the expansion 

of Th1 and Th17 lymphocytes results in severe colonic tissue injuries, but paradoxically, the 

local release of their opioids content prevents abdominal pain 17,18. The peripheral opioid-

mediated analgesic activity of T lymphocytes is, however, not so efficient in all intestinal 

inflammatory models. Indeed, 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis 

results in visceral hypersensitivity which persist more than 14 days in mice 34 and at least 28 

days 35 in rats, a period of time at which it could be assumed that effector T lymphocytes 

(generated in response to hapten-modified antigens) accumulate within the inflamed mucosa. 

By contrast, the visceral hypersensitivity associated with the mild inflammation induced by 

instillation of 50 % ethanol (vehicle) reduces spontaneously on day 7 and is resolved in day 

14 35. The absence of T cell-mediated analgesia in TNBS-induced colitis may be related to 

central sensitization of spinal dorsal horn neurons and/or the significant loss of extrinsic 

afferent innervation in mucosal layer 34,36,37.  

 Here, we examined the endogenous control of visceral hypersensitivity in a model of 

colitis in mice with impaired IL10-dependent immune regulation in which CD4+ T 

lymphocytes produce less PENK mRNA upon activation (Figure 5). In this model where the 

number of macrophages is 3-4 times higher than that of CD4+ T lymphocytes, we show that 
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the opioid-mediated analgesia, mostly due to CD4+ T lymphocytes, still operates. However, 

the efficacy of the T cell-mediated analgesia in the IL10-deficient mouse colitis model is 

weaker than in the T cell-induced colitis model 18. The visceral sensitivity is similar between 

IL10-/- mice with (piroxicam-treated) or without (untreated) colitis while it was significantly 

reduced in mice with T cell-induced colitis as compared to control mice without colitis 

(immunodeficient mice non-transferred or transferred with both naïve and regulatory T 

lymphocytes) 18. In line with studies reporting that colitis in IL-10-deficient mice is mostly 

dependent on the inflammatory activity of macrophages, we found that the endogenous 

production of enkephalins is significantly decreased in inflamed colon 13,38.  Thus, although 

the intensity of abdominal pain may differ depending on genetic background of the mouse 

strains, we speculate that the reduced efficacy of the peripheral immune-mediated analgesia 

may be dependent on both the lower ability of lymphocytes to produce enkephalins and the 

ratio between opioid-producing CD4+ T lymphocytes and pro-nociceptive F4/80+macrophages 

within inflamed mucosa.  

A number of colon biopsies from IL-10-/- colitis mice exhibit transmural damage with 

an inflammation of muscularis. The muscle layer and mucosa both innervated by spinal 

afferents, that can be inhibited by opioids 28,39-41, are infiltrated by lymphocytes.   Based on 

previous studies reporting that T lymphocytes may specifically migrate towards afferent nerve 

endings innervating the inflammatory site including mucosa as well as muscularis, it could be 

speculated that T cell-mediated pain relief is still observed because of an optimal topographic 

distribution of opioid-producing CD4+ T lymphocytes at the vicinity of sensory nerves42. The 

observation of an endogenous opioid-mediated analgesic effect in IL-10-/- colitis mice also 

suggests that, in contrast to the TNBS-induced colitis, most of the primary afferents remains 

still functioning.    
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 Taken together our results show that the opioid-mediated analgesic activity of T 

lymphocytes remains operating in IL-10-/- mice with impaired immune-regulatory function. 

Thus, our study suggests that even in severe infantile inflammatory bowel diseases associated 

with homozygous “loss of function mutations” in interleukin-10, the endogenous opioid tone 

may modulate the intensity of the inflammation-induced abdominal pain through opioid 

receptors expressed on nociceptors innervating the gut 40. However, this endogenous opioid-

mediated immune control of abdominal pain may last for a limited period of time that still 

remains to define. 
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FIGURE LEGENDS 

 

FIGURE 1 Piroxicam treatment induces (accelerates) colitis in IL-10-/- mice. IL-10-/- mice 

were fed with standard chow diet without (white symbols) or with piroxicam (black symbols) 

for 10 days (n = 26 for each group of mice). The severity of the disease was assessed by body 

weight loss (A, body weight before (white circle) and after piroxicam treatment (black circle), 

each symbol represent 1 mouse) and by comparing wall thickness (B), and both macroscopic 

(C) and histological (D) colonic tissue damage between age-matched mice fed or not with 

piroxicam. (E) Representative histopathological analysis performed on H&E-stained colon 

sections. IL-10-/- mice fed without piroxicam display a low cellular infiltration, a submucosal 

edemas and a muscle thickening (upper panel). IL-10-/- mice fed with piroxicam display a 

strong cellular infiltration, a muscle thickening, a massive epithelial disruption, and a loss of 

epithelial architecture (lower panel). Scale 50 µm. In panel A, statistical analysis was 

performed using Wilcoxon matched pairs test. In panels B to D, data are expressed as means 

± SEM; statistical analyses were performed using Mann-Whitney U test.  **p < 0.01, ***p < 

0.001. 

 

FIGURE 2 Piroxicam treatment increases inflammatory cytokine mRNA levels in colon of 

IL-10-/- mice. mRNA encoding for pro-inflammatory cytokines IL-1β, TNFα, IFNγ, IL-17 and 

IL-22 as well as for endogenous opioid precursors were quantified by real-time PCR in 

colonic biopsies from IL-10-/- mice fed with standard chow diet containing (black histogram) 

or not (white histogram) piroxicam (n = 15 for each group of mice). mRNA content was 

normalized to the HPRT mRNA and quantified relative to standard cDNA prepared from 

referential mouse inflamed colonic tissue for cytokines or from normal mouse brain for PENK 
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(calibrator samples). For each sample, mRNA level was expressed relative to the average of 

mRNA levels in untreated IL10-/- mice. Data are expressed as means ± SEM. Statistical 

analysis was performed using Mann-Whitney U test.**p < 0.01, ***p < 0.001. 

 

FIGURE 3 Macrophages are more abundant than opioid-producing CD4+ T lymphocytes 

within inflamed colonic mucosa of piroxicam-treated IL-10-/- mice. The relative frequency of 

CD4+ T lymphocytes and F4/80+ macrophages within the colonic lamina propria of 

piroxicam-treated IL-10-/- mice was determined by cytofluorometric analysis. A representative 

dot-plot of CD4+ T lymphocytes and F4/80+ macrophages is shown in panel A. Their 

respective frequency in lamina propria mononuclear cells expressed as means ± SEM (n = 

15) is indicated on the picture. The frequency of F4/80+ macrophages (white circle) and CD4+ 

T lymphocytes (black circle) in lamina propria, expressed as percentage of lamina propria 

mononuclear cells (LPMC) isolated from inflamed mucosa of piroxicam-treated mice (each 

symbol represent 1 mouse), is depicted in B. Intra-cytoplasmic accumulation of Met-

enkephalin-containing peptides in F4/80+ macrophages (C, left panel) and CD4+ T 

lymphocytes (C, right panel) was assessed by cytofluorometry. Cells were incubated with 

either control rabbit IgG (white histogram) or rabbit anti-Met-enkephalin IgG antibodies (grey 

histogram). The figure shows one representative experiment. The percentage of transmural 

bowel injuries in IL10-/- mice treated (black histogram) or not (white histogram) with 

piroxicam (n = 23 for each group of mice) is shown in (D). A representative H&E-stained 

colon section exhibiting longitudinal muscle thickening and massive inflammatory cells 

infiltration in the mucosal, submucosal and in the muscular layers (upper panel) and the 

corresponding anti-CD3 immunofluorescence staining of T lymphocytes within the muscular 

layer stained with DAPI (lower panel) is depicted in E. Scale 20 µm. 
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FIGURE 4 Local production of endogenous opioids in inflamed intestine of piroxicam-

treated IL10-/- mice inhibits abdominal pain. (A) Colonic sensitivity of IL-10-/- mice fed with 

standard chow diet containing (black circles) or not (white circles) piroxicam was measured 

by colorectal distension. Abdominal muscle contraction was recorded in response to 

distension pressure of 15, 30, 45 and 60 mmHg. (B) Piroxicam-treated IL10-/- mice were 

injected with PBS (white circles) or naloxone-methiodide (NLX-meth) (black circles) 30 min 

before pain assessment. Data are expressed as means ± SEM (n = 10-14 animals). Statistical 

analysis was performed using repeated-measures two-way ANOVA and subsequent post hoc 

tests as described in Materials and Methods. *p < 0.05. (C) Colitis severity assessed by wall 

thickness (left panel) and macroscopic tissue damage (right panel) 30 min after intra-

peritoneal administration of either PBS (white histogram) or NLX-meth (black histogram) 

(same groups of animals as above). Data are expressed as means ± SEM. Statistical analysis 

was performed using Mann-Whitney U test. 

  

FIGURE 5 CD4+ T lymphocytes from IL-10-/- mice activated under non-polarizing 

conditions produce lesser amounts of PENK mRNA that those from wild-type. Naïve CD4+ T 

lymphocytes isolated from either wild-type (IL-10+/+) or IL-10-/- mice were activated with a 

cocktail of anti-CD3 and anti-CD28 antibodies for 6 days. Proliferation was monitored by 

analyzing CellTrace Violet dispersion in live CD4+ T cells before (A) and, on days 3 (B) and 

6 (C) following activation (left panels). Cells were distributed as non-proliferative cells (M1), 

intermediately (M2) and highly proliferative (M3) cells. Percentage of cells in M1, M2 and 

M3 sections expressed as means ± SEM from four independent experiments is shown in panel 

D.   The activation status was also estimated by the up-regulation of CD69 and CD25 on 

CD4-gated cells (right panels A, B, C). Left and right panels of A, B and C depict one 

representative experiment out of 4 performed. PENK mRNA expression in CD4+ T 
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lymphocytes originating from wild-type (IL-10+/+, white histogram) or IL-10-/- (black 

histogram) mice (n = 4) was quantified by real-time PCR each day from day 0 to day 6 

following stimulation. mRNA content was normalized to the HPRT mRNA and quantified 

relative to standard mouse brain cDNA. Data are expressed as means ± SEM. Statistical 

analysis was performed using Mann-Whitney U test.*p < 0.05. 
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