
HAL Id: hal-03026596
https://hal.science/hal-03026596

Preprint submitted on 26 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LocKedge: Low-Complexity Cyberattack Detection in
IoT Edge Computing

Thu Huong Truong, Ta Phuong Bac, Dao M Long, Bui D Thang, Nguyen T
Binh, Tran D Luong, Kim Phuc Tran

To cite this version:
Thu Huong Truong, Ta Phuong Bac, Dao M Long, Bui D Thang, Nguyen T Binh, et al.. LocKedge:
Low-Complexity Cyberattack Detection in IoT Edge Computing. 2020. �hal-03026596�

https://hal.science/hal-03026596
https://hal.archives-ouvertes.fr

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.DOI

LocKedge: Low-Complexity Cyberattack
Detection in IoT Edge Computing
TRUONG THU HUONG1, (Member, IEEE), TA PHUONG BAC1, DAO M. LONG1, BUI D.
THANG1, NGUYEN T. BINH1, TRAN D. LUONG1, and TRAN KIM PHUC2
1Hanoi University of Science and Technology. 1 Dai Co Viet Street, Hai Ba Trung, Hanoi, Vietnam (e-mail: huong.truongthu@hust.edu.vn)
2GEMTEX Laboratory, Ecole Nationale Sup des Arts et Industries Textiles. 2 Allée Louise et Victor Champier BP 30329 59056 ROUBAIX CEDEX 1,FRANCE

Corresponding author: Truong Thu Huong.

This research is funded by the Hanoi University of Science and Technology (HUST) under project number T2020-SAHEP-010.

ABSTRACT Internet of Things (IoT) and its applications are becoming commonplace with more devices,
but always at risk of network security. It is therefore crucial for an IoT network design to identify attackers
accurately, quickly and promptly. Many solutions have been proposed, mainly concerning secure IoT
architectures and classification algorithms, but none of them have paid enough attention to reducing the
complexity. Our proposal in this paper is an edge-cloud architecture that fulfills the detection task right
at the edge layer, near the source of the attacks for quick response, versatility, as well as reducing the
cloud’s workload. We also propose a multi-attack detection mechanism called LocKedge (Low-Complexity
Cyberattack Detection in IoT Edge Computing) , which has low complexity for deployment at the edge zone
while still maintaining high accuracy. LocKedge is implemented in two manners: centralized and federated
learning manners in order to verify the performance of the architecture from different perspectives. The
performance of our proposed mechanism is compared with that of other machine learning and deep learning
methods using the most updated BoT-IoT data set. The results show that LocKedge outperforms other
algorithms such as NN, CNN, RNN, KNN, SVM, KNN, RF and Decision Tree in terms of accuracy and
NN in terms of complexity.

INDEX TERMS IoT, Security, Multi-class detection, Feature Processing, Federated Learning, Deep
Learning

I. INTRODUCTION

The Internet of Things (IoT) is a system of interconnected
devices that can transfer data automatically through a net-
work to provide services. In recent years, IoT has been
emerged with a lot of potential applications such as health-
care, agriculture, logistics, urban management. Along with
this also come to a lot of challenges, as the distributed and
heterogeneous nature of IoT allows various attacks such as:
DoS, DDoS, spyware, phishing. . . Thus, a reliable IoT system
must meet many security requirements such as access control
and authentication at the edge layer and attack detection at
the network layer [1].

However, as IoT systems get larger with more and more
connecting devices, bringing in much more traffic - with
an estimate of 43 billion IoT devices by 2023 [2]. It gets
even harder to deal with those functions while keeping the
system’s response fast or in real-time. Therefore, there is
a need for reducing the complexity of any attack detection

process [3].

In a flexible and scalable IoT platform, the central cloud
computing provides large storage and enough computing ca-
pacity to process data collected from IoT devices. However,
offloading computationally intensive tasks to a cloud center
may result in a delay, due to the time needed to transmit,
process, and receive a large amount of data. To overcome this
limitation, edge computing was born to quickly perform the
necessary computational task in the network edge.

Typically, the attack detection technique is done at the
network layer, while the edge layer, which is expected to have
lower computing power, deals with authentication, limited
access, threat hunting and data encryption. With more power-
ful edge devices nowadays, migrating the detection function
to the edge can obviously reduce communication time as
well as the cloud’s workload, which might be essential in
applications that involve a large amount of simultaneous of
users such as traffic monitoring in a smart city. Furthermore,

VOLUME X, 2020 1

Page 1 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

as the source of attacks such as DDoS and Mirai botnet
is mostly from compromised end devices, putting attack
detection at the edge – which is closer to end devices than
the cloud – will result in faster reaction time. Also, from the
privacy perspective, IoT devices may not want to send their
data far into the cloud, but prefer local processing. Therefore
attack detection might be more efficient with data that can
be only accessed on the edge. However, detection techniques
normally employed at the cloud cannot simply be moved to
the edge due to the computing capacity. Algorithms must
be more lightweight at the edge while still maintaining high
performances.

To tackle this problem, we propose an edge-cloud based
security scheme – LocKedge (Low-Complexity Cyberattack
Detection in IoT Edge Computing) that retains the advan-
tages of the centralized cloud and the edge. In LocKedge, we
enable 2 modes: Centralized learning mode and Federated
learning mode. In the centralized learning mode, the cloud
receives information of the entire network so that it can do
the training phase and update the training model to edge
nodes. While the edge carries on the threat detection task,
so that the processing intelligence is performed near to the
data sources. In the federated learning mode, edge nodes
carry on the detection procedure as well the training task; but
in this mode, the edge sends simplified information such as
weights for the cloud to update the training model globally. In
fact, in terms of attack detection, edge computing can reduce
the communication time between the edge and the cloud,
thereby increasing the system response during attacks, being
cost-effective to process and analyze data without network
communications, and reduce the workload of the central
cloud.

LocKedge is a detection framework for multiple types of
attacks. LocKedge utilizes the traditional neural network, but
is more lightweight thanks to deploying some techniques to
reduce the dimension of the data before the detection phase,
the number of layers and the number of neurons in the hidden
layer to minimize the solution’s complexity while keeping
the detection performance high. Therefore, LocKedge with
its high accuracy and low complexity can be suitable for
deployment at edge devices with limited computational ca-
pacity. On another hand, we also investigate LocKedge in two
manners: centralized learning and federated learning manner
to train the system for attack detection. The investigation
helps us to have more insight into the performance of the IoT
architecture and computing capacity.

The rest of this paper is structured as follows. Section II
presents the review of the literature. Section III describes our
edge-cloud based LocKedge detection framework. Section
V evaluates the mathematical complexity of our algorithm
as well as its performance against under attack. We also
evaluate the impact of attack volumes in the computing
performance and resource consumption of the Edge in a case
study. Finally, Section VI is for the conclusion and future
work.

II. RELATED WORK
Research in security for the IoT networks is increasingly
expanding in terms of both security architectures and mech-
anisms. We can find a group of authors who follow the
SDN-based framework to build a secured architecture for
IoT environment [4]- [5]. However, these researches are only
about designing the framework of components and lack of
presentation on a solid mechanism for the controller to detect
or prevent attacks. In addition, although SDN is a flexible
solution in managing networks through a central device, it is
still questionable to use SDN directly since attack detection
normally requires a lot of statistical information which can
be hardly achieved in the South bound interface of the SDN
protocol.

Several studies have proposed to use the advances of
edge computing in the field of IoT security [6] due to the
above-stated benefits. Security frameworks in [7]- [8] are
examples of this. However, these researches only design their
frameworks, and do not provide a detection algorithm nor
performance evaluation for the designs. Authors in [6] also
proposed an edge-centric architecture in contrast to the tradi-
tional layered architecture found in [9] and [4] .Our solution
follows the latter model as we believe the cloud centralization
is necessary for the sake of application services, big data and
model optimization.

Some other studies focus on attack detection algorithms
in IoT networks [10]- [11] but to the best of our knowledge,
none of them considered reducing the algorithmic complexity
for faster system response. One of the effective mechanisms
applied in the IoT environment for attack identification is
the Intrusion Detection system [12] in which the authors
proposed a method to generate the rules for signature-based
detection, but the accuracy was not investigated. In com-
mon attack detection algorithms, Neural Network (NN) is
especially popular. Despite its longer training and processing
time compared to other algorithms, its high accuracy [3]
and adaptability make it worth considering. Indeed, other
researches [10]- [12] have confirmed this statement, incor-
porating NN in the IoT threat detection. However, we believe
it is possible to further improve the processing time of NN
by reducing the number of data dimensions as proposed in
[10] while still keeping minimal accuracy degradation. In
[10], the authors rank the quality of features taken based
on statistics and use one-class classification with only the
best features instead of all of them to reduce complexity.
Their solution is found to have only a minor reduction of
accuracy. Moreover, work [10] and [11] generated their own
data set, we believe that using a publicly available data set is
more preferable, as it makes it easier for future researchers to
compare results with each other. In this paper, we propose to
use a well-known PCA [13] for feature engineering technique
combined with an optimized neural network, performing
multi-layer classification to detect attacks of different types
at the same time. PCA is faster and computationally cheaper
than other possible feature processing method, for example
Autoencoder.

2 VOLUME X, 2020

Page 2 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

From another research perspective, in recent years, Fed-
erated Learning [14] have emerged as a mechanism for
federated training problems, such as IoT security [15] [16]
or down-streaming [17]. With Federated Learning, instead of
sending data to a centralized cloud server for training, each
end user or client instead trains a model with their own data,
and only sends that model to the server for aggregation. This
way, less communication is required as the model is much
more lightweight than the data, and also the privacy of users’
data is preserved.

In the domain of Federated Learning, we can find multiple
research directions. The authors of work [18] assume a
system that is using Federated Learning for training. In this
work, the authors concern the way to protect the federated
learning’s weight updating process from free-rider clients
who fake weights during the updating process. However,
Federated Learning in this work is not considered as a secu-
rity solution to detect sources of attacks at all. So this work is
not comparable to our proposal. In the same problem, authors
in [19] [20] also consider unreliable clients who can send fake
weights that affect the Federated learning itself.

There is also the problem of data leakage. The study [21]
presents the danger of a malicious Federated Learning server
that sends forged weights to participants, then analyze the
plaintext weights that are sent back to expose their data. The
authors then propose a weight encryption scheme that help
clients individually find out whether the weights they get
from the server are legitimate or not. Meanwhile, the authors
in [22] remove the centralized server, and instead propose
a peer-to-peer federated learning model with blockchain
for securing data sharing in industrial IoT. Another group
of papers made adjustments to federated learning to better
suitable for end devices with limited resources. Work [23]
made adjustments to the algorithm, while [24] and [25]
propose an incentive mechanism with resource consideration.
In addition, paper [26] applies federated learning to solve
the security problem for IoT. It uses device-type specific
models with GRU for anomaly detection along with federated
learning. However, GRU has a very long training time and
may cause problem in low-end devices. Our approach has
better accuracy and shorter training time.

In this paper, we propose a detection framework for multi-
ple types of attacks using a neural network with lightweight
thanks to the reduced dimension of input data, the number
of layers and the number of neurons in the hidden layer
to minimize the solution’s complexity while keeping the
detection performance high. The overall architecture is also
deployed in the centralized training in the cloud and federated
training at the edge which is federated with light updating at
the cloud

III. PROPOSED SECURITY SYSTEM ARCHITECTURE -
LOCKEDGE
A. DESIGN OF EDGE-CLOUD SYSTEM ARCHITECTURE
There have been a variety of IoT architectures [1] depending
on the function required by different fields. The authors in

[9], [4] proposed five-layers architecture for IoT networks.
[9] propose an architecture including Business layer, Ap-
plication layer, Processing layer, Transport layer, Perception
layer. While [4] proposed an architecture of Business layer,
Application layer, Middle ware layer, Network layer, and
Perception layer. In our architecture, we propose to have an
additional layer: Edge layer which could distribute comput-
ing tasks better, that in turn helps to detect attacks near the
source faster, as shown in Fig.1.

Our Edge-Cloud security architecture is designed to: (1)
have low complexity in analyzing data, (2) be capable of de-
tecting early attack right at edge zones and (3) have accurate
attack detection with high reliability. With all these goals, the
system not only avoids having been badly damaged before
successfully detecting attacks but also adapts quickly to the
development trend of IoT network in the future with security
and scalability requirements as shown in Fig. 2

Detailed descriptions of the layers are as follows:
• Data perception layer: IoT devices with sensors.
• Edge layer: consists of IoT Gateways which support

wired or wireless network access protocols such as
Bluetooth, Wi-Fi, 6LoWPAN, NFC, Wi-Fi Direct, 4G-
LTE, Lo-Ra, NB-IoT, and so on. An IoT Gateway is
responsible for normalizing their data before performing
a multi-attack detection. At the Gateway, we develop
an accurate lightweight multi-attack detection module
called LocKedge that can detect different types of at-
tacks. When an attack is detected, the Gateway traces
its source then blocks the malicious connections. The
Gateway can either send its processed data to the cloud
for data mining purposes in the centralized mode (i.e.
centralized learning), or train the detection module lo-
cally and then sends the weights of the model to the
cloud for aggregation in the federated mode (federated
learning). In case of emergency when a particular attack
is too intense or its source cannot be determined in time,
the Gateway can simply block all incoming data from
its zone, not affecting the cloud or any other legitimate
sources of other zones. Detecting and mitigating attacks
right at each zone will make the system response faster
and more effectively since: (1) it is near the attack
sources so detection time is smaller; (2) it has to deal
with a smaller set of data from one zone only and
thus lessen the processing time and computing capacity
requirement; and (3) in the worst case scenario, only the
affected zone is down, the cloud is still protected and the
damage is minimized.

• Network layer: The network layer which secures data
transfer from the lower layer to the higher layer, so it
plays an important role in a general architecture .

• Data management layer: The cloud. Within the scope of
security, the cloud is designed for analyzing given IoT-
device data sets. The Optimization Module developed in
the Cloud is responsible for analyzing data, and deciding
the number of neurons per layer as well as the weights
of the neural network algorithm. Periodically, the cloud

VOLUME X, 2020 3

Page 3 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

FIGURE 1: Our architecture vs 2 reference architectures

FIGURE 2: Proposed edge-cloud architecture for IoT networks

sends the aforementioned information to all gateways.
Hence, the cloud deals with big data and the computing
phase, and its new rules will be updated to all IoT
gateways for more efficient protection of the network.

• Application layer: is responsible for inclusive applica-
tions management based on the processed information
in the Data management layer such as intelligent trans-
portation ,smart car, mart health, identity authentica-
tion,smart glasses, location, and safety, etc. This layer
is providing all kinds of applications for each industry.

• Business layer: Business layer functions cover the whole
ToT applications and services management. It can create
business models, flow charts, executive reports, so on
base on data received from lower layers and effective
data analysis process. It will help the functional man-
agers or executives to make more accurate decisions
about the business strategies base on analysis results

B. DATA PRE-PROCESSING AT THE EDGE
Before the detection phase in which a detection algorithm
only takes numerical input, raw traffic needs to be normalized
since the data is both categorical and numerical, with numer-
ical data being in vastly different ranges. First, categorical
data will be converted to numerical data. Then, all data will
be transformed into values in the range between 0 and 1
through the min-max normalization method as follows:

zi =
xi−min(x)

max(x)−min(x)
(1)

Where: xi, zi (i = 1,2 . . .d) are values before and after nor-
malization of one data feature and d is the dimension of data.

In fact, in this architecture, we will develop 2 learning
modes: (1) a centralized-learning based, (2) a federated
learning-based. Our design contribution can be summarized
as follows:
• Feature extraction is analyzed in the Cloud to define

which features are important to use for detection. It
helps the system to reduce complexity for computing
full features of a dataset.

4 VOLUME X, 2020

Page 4 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

• Centralized learning in the cloud to define the number
of neurons per hidden layer and the number of layers
in order to receive high accuracy and low complexity of
the detection phase.

• Design and evaluate the centralized and federated-
learning based detection solutions to cope with facts of
IoT networks

In the following section, we will present the detection solu-
tions in both ways aforementioned. We will also elaborate the
reasons to use each of the solutions and perform an evaluation
for the two methods.

IV. DETECTION MECHANISM
Basically, our detection mechanism is based on a feature
extraction module and a classification module as shown in
Fig. 3. The feature extraction phase aims at reducing the
number of features of incoming samples that are fed to the
detection phase. Reducing the dimension of data for detection
algorithms is always critical, especially if the data analytic
is carried out at the edge devices with low computational
capacity and energy supply [3]. This extraction phase also
increases the efficiency of the detection phase and reduces the
time taken for a system to respond and record information.
The detection module is implemented with a neural network
performing multi-class classification to detect different types
of attacks at the same time. Again, we propose to optimize
NN in terms of the number of layers and the number of
neurons in the hidden layer to minimize the algorithm’s
complexity while still ensuring high detection accuracy.

FIGURE 3: Multi-attack detection mechanism

According to Fig. 3, normalized data with d dimension will
be passed through the Feature Extraction module to perform
feature extraction and the dimension of data will be reduced
to k features (k < d). Those k features will be then used to
perform multi - class classification by the Neural Network
module afterward.

A. FEATURE EXTRACTION AND DIMENSION
REDUCTION MODULE
There are many techniques and corresponding algorithms
that can reduce the dimensions of data, the authors in [27]
have divided them into 4 groups: Feature Ranker, Feature
Evaluator, Dimensionality Reduction and Clustering Algo-
rithms. In this research we experimented with some different

algorithms with the BoT-IoT dataset [28] to evaluate the
performance. Finally, we choose the Principal Components
Analysis (PCA) method [13] to extract the most important
features due to its better performance and since PCA is
fast and computationally cheap. With PCA, the original data
points will be transformed into a new space, where it is
possible to differentiate the importance of the components
together. The size of data dimensions is decreased from d to
k which are k important components of the data in the new
space system.

Let’s consider the input data matrix including N row
vectors X={xi} (i = 1 . . .N) where xi={xi1,xi2,xi3 . . .xid}
with d is the original dimension of the data. To extract
the principal components of X, we calculate the empirical
mean of X: x̄ = N−1

∑
N
i=1 xi and the mean-centered matrix

M. Each row vector of M is given as mi = xi − x̄. Then,
we compute the eigenvalue decomposition of the covariance
matrix V = N−1MT M to get the principal components. The
relationship between eigenvalues λ and eigenvectors U of
square matrix V satisfies equation (2)

V λ = λU (2)

In which, λ is a diagonal matrix, each value λi is the ith
eigenvalue corresponding eigenvector ui of matrix U . The
eigen decomposition of V is given by:

V = λUλ
−1 (3)

The principal components of matrix X are the first k vec-
tors of V that correspond to k largest eigenvalues. Vk =
{v1,v2, . . . ,vk}, which form a subspace close to the distri-
bution of the normalized data. To choose k, we can rely on
the amount of information retained in the new data point by
selecting the first k values of the eigenvalue that capture 90%
or 95% of the sum of the eigenvalues. In our experiment,
k = 9 is found to ensure capturing over 95% of the total sum
of the eigenvalues. New data with the reduced dimensions is
the coordinates of the data projected on the new space.

X
′
= MV T

k (4)

B. MULTI-ATTACK DETECTION MODULE
In this module, we deploy a Neural Network (NN) to detect
multiple types of attacks as shown in Fig. 4. Optimizing
the number of layers and the number of neurons per layer
is directly related to the algorithm complexity. Therefore,
in this study, we try to optimize the number of layers
and neurons per layer for the BoT-IoT data set to balance
complexity and accuracy performance for the multi-attack
classification problem. Fig. 4 illustrates the main components
of a NN. The function of NN is to perform complex mapping
and convert input information into outputs, which is defined
mathematically as F : Rk→ Rm.

The network input is x
′
i = {x

′
i1,x

′
i2 . . .x

′
ik} where k is the

dimension of data after being processed by the Feature
extraction and Dimension reduction Module and W j is the

VOLUME X, 2020 5

Page 5 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

FIGURE 4: Neural Network Architecture

weight value of jth layer (j = 1 . . . l) with l being the number
of hidden layers. The output of each hidden layer is obtained
by adding the bias with the products of each input and
its corresponding weight W j, then applying the activation
function f , as shown in (5) (define S0 = X)

S j = f (W jST
j−1 +b j) (5)

Non - linear activation function is required to make a NN
to work in case of complicated data such as videos, images,
speech. . . In our model, we choose the activation function in
hidden layers is ReLU for higher performance and faster con-
vergence [29] and softmax activation function for the Multi-
class classification problem. Their mathematical formulae
are shown as below:

ReLU f(x)=

{
0 x≤ 0,
x x≥ 0

Softmax σ(zi) =
ez j

∑
k
j=1 ez j

Accordingly, the input information X passes through each
layer and is transformed by (5) until it reaches the output
layer with the softmax activation function for the multi-class
problem, which is denoted as ŷ = so f tmax(W outST

l). This
process is called Forward propagation.

C. LOCKEDGE OPERATION
As mentioned above, the detection module is implemented at
the Edge in the IoT system to achieve faster detection near
attack sources thereby enabling quicker system response.
Detection at the edge also allows us to treat traffic within an
narrowed attacked zone locally without affecting other edge
zones with our security policies.

From the NN’s performance perspective, we propose to
optimize a parameter for the training process. The Loss Func-
tion, calculating the difference between the predicted value
ŷ and the actual value y will be used to adjust the training
process and learning efficiency of the neural network, so
that the model can best fit with the data used. In our design
we used the cross-entropy loss function (6) for multi-class
classification with c classes for c types of attack in the
Bot-IoT data set such as DoS – TCP, DDoS – TCP, OS –
Fingerprinting,. . .

L(ŷ,y) =−
c

∑
i=1

yilog(ŷi) (6)

In the training process, the network is trained by a set of
labeled data (xi,yi), which is used to reduce the average loss
value after each iteration. To get better learning efficiency by
adjusting weight (w) and bias (b) in the neural network, the
loss function (7) needs to be minimized.

J(w,b) =
1
N

N

∑
=1

L(ŷ(x
′
i),y(x

′
i)) (7)

In LocKedge, the Neural network algorithm at the edge can
be updated in either the centralized or the federated learning
manners. Each of the manners brings specific pros and cons
as we will describe in the next subsections.

1) Centralized Learning mode
For centralized learning, parameter optimization for NN is
carried by sending all data to the cloud to be computed, then
updating to the edges. This way, the cloud has an overview of
the overall system including multiple different edges. Hence,
the detection is potentially accurate. However, it is obvious
that it will make a big burden to the cloud to compute for a
huge bundle of data sent from the edge.

In fact, there are many techniques exist to optimize loss
function. [30] has proposed algorithms to implement this
optimization function. To fasten convergence in a deep neural
network - based model, we should use an adaptive learning
rate algorithm. In centralized mode, optimized by Adam’s
algorithm, the formulae (8) shows the rule to calculate and
update the parameter of Adam’s method described in [31].

w
′
= w−α

m̂t√
v̂t + ε

;b
′
= b−α

m̂t√
v̂t + ε

(8)

These values will be updated after each iteration, until the
value of loss the function reaches a minimum. And this
process is called backpropagation.

The pseudocode for Centralized Learning mode is stated
in Algorithm 1.

2) Federated Learning mode
Due to the distributed nature of the IoT ecosystem and the
unreliability of wireless transmission, sending all user data
to the cloud for model training may be costly and time
consuming. Furthermore, this approach will also have the
risk of exposing private or sensitive user data. All of this
can be solved by doing the detection as well as the training
phase in the edge. However, as each edge only has access
to its own data, which is often small and limited, and the
data between the edges can be very different, the quality of
the resulting edge-trained model may not be good enough.
Using Federated Learning, this problem can be mitigated as
the edges can "communicate" with each other through the
aggregated weights of the server, while still avoiding sending
data directly, saving bandwidth as well as protecting privacy.

Federated Learning is a distributed machine learning tech-
nique, in which the training process of a model as well
as the data involved is divided between multiple parties -

6 VOLUME X, 2020

Page 6 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

Algorithm 1: Centralized Learning LocKedge

Model training stage:
Computation at the Cloud:
Run PCA on archived data to get subspace matrix Vk
Initialize model weights w0
Collect data XN×d from all Edge gateways
Reduce data dimension to k using Equation 4
for t = 1 to e do

for each data batch do
Perform Forward Propagation to calculate loss
as in Equation 7

Perform Backpropagation to update weight
values with Adam Optimization as in
Equation 8

end for
end for
Send trained model weights we to all gateways
Detection stage:
Computation at the Edge:
Use trained model to detect attack
Return label L of new data

or "clients", and no client has access to the data of an-
other.Instead, clients only send the weight information of the
local model they train with their own data, either directly
with each other in their peer-to-peer model or through a
centralized aggregator server in a client-server model. In
this paper, we opt for the centralized model, as it has a
faster convergence time, as well as having a better fit for our
architecture.

In our client-server model, the server first decides the
Feature Extraction phase, as well as the hyper-parameters
and the initial weights of the neural network model, then
sends this information to all the clients. Then, each client will
train its model with its own data, using Stochastic Gradient
Descent for E local epochs. Afterwards, all clients will send
the updated weight of their model to the server, which will
then calculate the aggregated weight using the formula [14]:

wt =
K

∑
k=1

nk

n
wk

t (9)

Where K is the number of participating clients. The server
will then send the calculated weights for all clients to update
their model with, completing one communication round.
Repeating this process for C communication rounds (with
C sufficiently large) and all clients will end up with a well-
trained model which is generalized for all the local data, with
no data transmission required.

In federated learning mode, we used the traditional
Stochastic Gradient Descent optimizer, which can be written
as:

w′ = w−η∇wJ(w,b);b′ = b−η∇bJ(w,b); (10)

with the learning rate η = 0.01.

The pseudocode for the Federated Learning mode is stated
in Algorithm 2.

Algorithm 2: Federated Learning

Model training stage:
Computation at the Cloud:
Run PCA on archived data to get subspace matrix Vk
Initialize model weights w0
Send initialized model and subspace matrix to all
gateways

Each gateway reduce its data dimension to k using
Equation 4

for each communication round T = 1 to C do
for each gateway k ∈ {1, . . . ,K} in parallel do

ClientUpdate(k,T)
Send updated weights wk

T to server

end for
Aggregate weights using Equation 9
Send aggregated weights wT to gateways

end for
Detection stage:
Computation at the Edge:
Use trained model to detect attack
Return label L of new data
function ClientUpdate(k, T):

Initialize weights of local model with wT−1
received form server

for each local epoch i = 1 to E do
for each data batch do

Perform Forward Propagation to calculate
loss as in Equation 7

Update the weight value with Stochastic
Gradient Descent as in Equation 10

end for
end for

end function

V. PERFORMANCE EVALUATION
In this research, we use the BoT-IoT data set [28] to evaluate
our model. This data set was generated by designing a
realistic IoT network environment, with five IoT scenarios:
a weather station, a smart fridge, remotely activated, motion
activated lights and a smart thermostat [32]. We used version
5% extracted from the original data set proposed in [32]. It
includes 10 types of attacks: DDoS (HTTP, TCP, UDP), DoS
(HTTP, TCP, UDP), OS Fingerprinting, Server Scanning,
Keylogging and Data exfiltration attacks. The quantity of
each attack type is shown in Table 1.

In our test scenario, we will evaluate LocKedge in both
manners of centralized based learning and FL- Federated
learning (i.e. distributed). In fact, in terms of complexity (i.e
processing steps), centralized learning and federated learning

VOLUME X, 2020 7

Page 7 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

are similar because they process the same tasks which can be
assigned to the edge or cloud.

TABLE 1: Statistics of the BoT-IoT dataset

Types of Attack Number of samples
DoS-HTTP 1485
DoS-TCP 615800
DoS-UDP 1032975
DDoS-HTTP 989
DDoS-TCP 977380
DDoS-UDP 948255
OS Fingerprinting 17914
Server Scanning 73168
Keylogging 73
Data Theft 6
Normal 477
Totals 3668522

A. COMPLEXITY EVALUATION
In LocKedge, the first phase is the feature extraction done
by PCA, with given matrices X ,M ∈ RN×d ; V ∈ Rd×d . Two
most computationally intensive tasks are multiplying two
matrices with the size of N × d and d ×N (i.e computing
the covariance matrix), which has the complexity of O(Nd×
min(N,d)), and calculating the eigenvalue decomposition.
Given in [33], the computational complexity for eigenvalue
decomposition with square matrix size d×d is O(d3). Thus,
the time complexity of the PCA algorithm is given by:

O(Nd×min(N,d)+d3) (11)

And then, that data with the reduced dimension k is fed to
a neural network with only one hidden layer to optimize the
complexity. A neural network with three layers is enough to
represent an arbitrary function according to the [34]. Let h be
the number of neurons in the hidden layer and c is the number
of outputs or the number of classes. For the forward pass from
the input layer to the hidden layer, like in equation (5), we
have ShN = Whk×XT

Nk, where Whk is the weight matrix with
h rows and k columns. The time complexity for this matrix
multiplication is O(hkN), and O(hN) is the complexity of
applying the activation function. The total complexity of this
two-step is, therefore, given by:

O(hkN +hN) = O(hN(k+1)) = O(hNk)

Similarly, from the hidden layer to the output layer, the com-
plexity is given by O(ckN). so, in total, the time complexity
for the forward propagation process at each iteration is:

O(hNk+ chN) = O(N(kh+hc)) (12)

The backward propagation starts from the output layer to the
hidden layer by backward propagating the error matrix LcN
. Adjusting the weight matrix between these layers, we have
W
′
ch = Wch − LcN × ST

hN , which has the time complexity of
O(cNh). Similarly, backpropagating from the hidden layer to
the input layer has the complexity of O(hkN). In total, for one
iteration, the time complexity of the backward propagation

process is O(N(ch+ hk)), which is the same as (12). Thus,
we can determine the total time complexity of the forward
and backward propagation for one epoch is O(N(kh+ hc)).
If we train the neural network model with e epochs, the total
complexity is given by:

O(eN(kh+hc)) (13)

So, for a generic neural network with many hidden layers in
which hi is the number of neurons in hidden layer i, we can
determine the time complexity by the formula:

O(eN(dh1 +
l−1

∑
i=1

hihi+1 +hl−1c)) (14)

In the worst case, the total time complexity of LocKedge is:

O(Nd×min(N,d)+d3 + eN(kh+hc)) (15)

To achieve the goal of reducing the time complexity com-
pared to the original neural network, the following condi-
tion must be met: O(Nd×min(N,d)+ d3 + eN(kh+ hc)) <
eN(dh + hc) From then, it can be deduced that k must be
chosen so that:

k < d(1− min(N,d)
eh

− d2

eNh
) (16)

In reality, security data sets often have input data dimen-
sion that is much smaller than the number of samples, and
thus, min(N,d) = d. As h gets bigger, complexity will also
increase. With the condition d << N and the number of
epochs e is big enough for d, then d

eh −
d2

eNh in (16) will be
close to 0. Thus, (16) becomes k < d, in other words, the
time complexity of LocKedge will always be better than a
conventional NN. In general, we can consider the LocKedge
architecture to function as a Neural Network with a better
complexity.

FIGURE 5: The complexity of two methods

In Fig. 5 we can see more neurons in the hidden layer. The
higher complexity of the algorithms, the much faster rate the

8 VOLUME X, 2020

Page 8 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

NN’s complexity increases. In fact, the complexity of NN is
always about 2 times higher than our architecture’s complex-
ity. Therefore, this architecture provides better efficiency in
optimizing the complexity than that of the traditional multi-
layer neural network.

FIGURE 6: Training time

As shown in Fig. 6, the training time of LocKedge is
lower than NN in the context of the BoT-IoT data set. This
is entirely consistent with the theory mentioned above. With
remarkable points in terms of time or low complexity, the
LocKedge mechanism is likely to be suitable for the dis-
tributed models on edge devices where processing capacity
is more limited than that of the centralized architecture.

B. DETECTION PERFORMANCE OF THE
CENTRALIZED-LEARNING LOCKEDGE
In the centralized scenario, all the data is gathered at the
cloud server for training and testing of the model. Thus, for
this evaluation, the dataset was used in one piece, without
being divided into smaller datasets, as is the case in the next
section.

Firstly, we compared the performance of the centralized
LocKedge with the pure Neural Network Model (NN) with-
out the feature processing in terms of Accuracy, Detection
rate and Complexity when performing a multi - attack clas-
sification. The number of neurons in the hidden layer h in
our experiment ranges from 6 to 46. The results are shown in
Fig. 7, where:
• Accuracy is the total number of correctly predicted

samples in all tests.
• Detection rate (DR) is the number of the actual positives

that are predicted as positive
In Fig. 7, we can see the Accuracy of the centralized
LocKedge is higher than NN. The accuracy remains stable
at about 0.999 for the centralized LocKedge while NN only
reaches about 0.997. Also, we can see that the accuracy tends

to increase and stabilize as the number of neurons in the
hidden layer increases. With the results shown in Fig. 7, the
accuracy of the centralized LocKedge is stable when h = 22
neurons and with NN is h = 17 neurons. This shows that we
do not need to use too many neurons in the hidden layer to
obtain optimal accuracy.

FIGURE 7: Accuracy comparison between NN and
LocKedge

In addition, we evaluate the average detection rate for all
values of h for each attack type between LocKedge, NN and
other Deep Learning (DL) method: DNN, Recurrent Neural
Network (RNN) and Convolutional Neural Network (CNN).
These results are taken from the study [35] done on the same
Bot-IoT data set. The results are shown in Table 2

TABLE 2: Detection Rate of LocKedge vs DNN, RNN,
CNN, NN

Attack type DNN RNN CNN NN LocKedge
DoS-HTTP 0.96699 0.96868 0.97512 0.76091 0.90862
DoS-TCP 0.96628 0.96772 0.97112 1 1
DoS-UDP 0.96525 0.96761 0.97112 0.99928 0.99928
DDoS-HTTP 0.96616 0.96564 0.97010 0.98662 0.98715
DDoS-TCP 0.96219 0.96650 0.97003 0.99941 0.99965
DDoS-UDP 0.96118 0.9666 0.97006 0.99946 0.99946
OS
Fingerprinting 0.96139 0.96762 0.97001 0.98887 0.99258

Server
Scanning 0.96428 0.96874 0.97102 0.99947 0.99973

Keylogging 0.96762 0.96999 0.98102 0.98780 0.99268
Data Theft 1 1 1 0.46341 0.56098

Moreover, we compare the centralized LocKedge with some
popular Machine Learning algorithms such as K-nearest
neighbors (KNN), Decision Tree (DT), Random Forest (RF)
and Support Vector Machine (SVM) shown in Table 3.
In general, the average detection rate of the centralized
LocKedge is higher than the other methods in most classes,

VOLUME X, 2020 9

Page 9 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

especially superior to the ML methods as seen in Table 3. The
centralized LocKedge provides a balanced and more uniform
detection rate between classes.

TABLE 3: Detection Rate of LocKedge vs. KNN, DT, RF,
SVM.

Attack type KNN DT RF SVM LocKedge
DoS-HTTP 0.81690 0.84507 0.76056 0.74647 0.90862
DoS-TCP 1 0.99752 1 1 1
DoS-UDP 0.99851 0.99926 0.99926 0.99554 0.99928
DDoS-HTTP 0.96774 0.82258 0.96774 0.97581 0.98715
DDoS-TCP 0.99173 0.97746 0.99248 0.99624 0.99965
DDoS-UDP 0.99217 1 1 0.96784 0.99946
OS
Fingerprinting 0.93478 0.93478 0.89130 0.78261 0.99258

Server
Scanning 0.97826 1 1 0.98913 0.99973

Keylogging 1 0.3 0.9 1 0.99268
Data Theft 0 0 0 0 0.56098

Fig. 8 and Fig. 9 present the overall performance of the
centralized LocKedge and some popular Machine Learning
algorithms in terms of Precision and F1-score in the classifi-
cation of multi-attacks detection. As we can see, the precision
of the centralized LocKedge are always highest compared
to other solutions for each type of attacks. Hence it means
that our proposed solution can minimize the false positives
compared to the mentioned approaches.In terms of F1-score,
we also observe that F1-scores of LocKedge are better than of
other solutions in most of attack types. It proves to be a good
scheme for taking both false positives and false negatives into
account.

FIGURE 8: Precision of LocKedge vs. other solutions

Finally, we examine the multiclass micro-averaging and
macro-averaging ROC Curves for LocKedge in the central-
ized mode as illustrated in Fig.10. Micro-averaging is plotted
by treating each element of the label indicator matrix as a
binary prediction, while macro-averaging simply gives equal

FIGURE 9: F1-Score of LocKedge vs. other solutions

weight to the classification of each label. We can see that the
AUC values in both cases are equal to 1, which is the most
ideal result. This shows that the centralized mode LocKedge
has uniformity in classifying different labels, a conclusion
supported by other measures such as Precision and F1-score.

FIGURE 10: Micro-averaged ROC curve in centralized mode

C. DETECTION PERFORMANCE OF FEDERATED
LEARNING LOCKEDGE
As stated before, Federated Learning helps to cope with the
fact that detection and training can be done at the edge, near
the attack source so attack detection can be more quickly
detected and attack sources are more localized. However,
training at the edge with a small set of local data may result in
lower performance in abnormal detection. Therefore, in this
subsection, we will study the detection performance of the
Federated Learning too if it can be acceptable in trade off for
its own benefits for the IoT network environment.

10 VOLUME X, 2020

Page 10 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

In our test scenario, we divide the BoT-IoT dataset [32]
into four smaller client datasets according to the source IP
address in order to simulate an IoT network with 4 different
zones where data from clients are sent to four IoT gateways.
There are four attacking sources in the BoT-IoT testbed,
with their IP addresses ranging from 192.168.100.147 to
192.168.100.150, so we assume that each source attacks a
different gateway. All other source IP addresses are treated
as normal or victim devices in one of the four zones.

Each dataset is then divided into a training and testing
set, so we will have 4 train sets and 4 test sets. The feature
extraction phase (PCA) is performed using all 4 training sets
together, then the detection model will be trained by the train-
ing sets separately using the federated learning approach.
After each communication round, the resulting global model
will be evaluated using the 4 different test sets.

Fig. 11 and Fig. 12 show the accuracy and the loss after
1000 communication rounds of the test. The number of local
epochs was set to 1, after empirical testing showed that this
greatly reduces the training time.

FIGURE 11: Accuracy of test sets, 1000 communication
rounds

FIGURE 12: Loss values on test sets, 1000 communication
rounds

As we can see, the accuracy stops increasing and the
loss stops decreasing much after about 350 communication

rounds, so this can be a good cut-off point. The accuracy also
reaches close to 100% for Client 1,2 over 90% for Client
4, and about 80% for Client 3; comparable to that of the
centralized approach.

The ROC curves of the Federated mode are presented in
Fig.13 and Fig.14. In Fig.13, the macro-averaging AUC is
a bit lower when compared to the centralized mode. This
can be explained by the different distribution of the data at
different nodes, as well as the fact that some nodes may not
have all the labels. The micro-averaging evaluation results for
each node are shown in Fig.14. Save for node 3 with the AUC
of 0.99, all AUC values are equal to 1.

FIGURE 13: Averaged ROC curve in the Federated learning
mode

FIGURE 14: ROC curve for each edge gateway in the Feder-
ated learning mode

We also performed a small comparison between LocKedge
in the centralized and federated learning mode in terms of F1-
score, detection rate and precision. The results are shown in

VOLUME X, 2020 11

Page 11 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

Fig. 15, 16 and 17, respectively. We can see that in some types
of attacks such as DoS-HTTP, DDoS-HTTP and theft-data,
the result in federated learning mode is inferior to its cen-
tralized mode counterpart, but remains acceptable (greater
than 65%). This can be explained that due to the uneven
data distribution among clients, the number of samples with
these types of attacks may be small or none at all in some
nodes, which will affect the training process. In practice, with
federated learning mode this is quite normal since different
clients will have their own source of data, and thus some zone
may not have enough labels.

FIGURE 15: Compare Detection Rate of FL and CL mode

FIGURE 16: Compare Precision of FL and CL mode

D. EVALUATION OF EDGE COMPUTING CAPACITY
To evaluate the edge-cloud architecture, we measure the
CPU and RAM usage of the Edge smart gateway which

FIGURE 17: Compare F1-Score FL vs CL mode

deploys the detection module of LocKedge in different attack
volumes. This evaluation helps us to have more insight into
computing performance of the edge that shares the comput-
ing task with the cloud distributively.

1) Experiment setting
In our testbed, we use a Raspberry Pi 3B+ to implement the
Edge gateway due to its popularity in low power consumption
and small size. The the Raspberry Pi 3B+ features a 1.4GHz
ARM-based quad-core processor with 400% CPU usage at
maximum, and 1GB RAM. The Raspberry Pi OS is installed;
and our detection solution is programmed with Python 3.

2) Performance evaluation
To investigate the CPU usage of the PI3 while deploying the
detection module, we load traffic of 400 to 2400 samples
per second to the PI3. Fig.18 describes the CPU usage of a
core of PI3 under attack rates from 400 to 2400 samples per
second. We can see that the rate of 2400 samples per second
reaches 100% of the CPU usage of a core among a quad-core.

Over time, the CPU usage goes up and down for each
attack rate represented by each line in Fig.18. If we calculate
an average of the CPU usage for each line, and then compare
the CPU usages of each different rates, then the behavior of
the core is represented in Fig.19. It can be seen that the CPU
usage increases exponentially as the attack rate increases and
get saturated by the attack rate of 2400 samples per second.
It can be deduced that for the whole quad-core, the Pi3-based
edge can tolerate the attack rate of 9.600 samples per second.

As the attack rates grow, the memory usage of the PI3
also increases as illustrated in Fig.20. In fact, incoming
packets must go through a parser which converts information
captured from those packets into a new data structure (i.e.
samples) that is the input for the Neural network-based detec-

12 VOLUME X, 2020

Page 12 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

0 10 20 30 40 50 60

Time (s)

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 u

s
a

g
e

 (
%

)

400

800

1200

1600

2000

2400

FIGURE 18: CPU usage of a core under rate of 400 to 2400
samples per second

0 500 1000 1500 2000 2500

Number of samples per second

60

65

70

75

80

85

90

95

100

C
P

U
 u

s
a

g
e

 (
%

)

FIGURE 19: CPU usage of a core under rate of 400 to 2400
samples per second

0 500 1000 1500 2000 2500

Number of samples per second

465

470

475

480

485

490

495

500

505

510

R
A

M
 u

s
e
d
 (

M
B

)

FIGURE 20: RAM usage with different attack rates

tion module. We observe that, when the sample rate increases
up to below the threshold of 1800 samples per second, RAM
usage also increases with the whole detection computing at
the Edge, as demonstrated in Fig.20. However, from more
than 1800 samples per second, the processing speed of the
PI3 is not as fast as incoming sample rates. Hence, samples
are accumulated gradually at the Parser. Therefore, as long
as the sample rate is equal or higher than 1800 samples per
second, up to a certain time, the RAM of the PI3 will be
consumed all.

In our test scenario, in each edge zone, we measure the
sample rates of DDoS-TCP, DDoS-UDP, DoS-TCP, DoS-
UDP attack types 3.950, 5086, 1.927, 2.605 samples per
second respectively, that are below the attack rate that the
PI3 can tolerate during attack detection. Therefore, we can
see that it depends how big should an edge zone be organized
to distributively monitor traffic of different local areas.For
better deploy an edge-cloud architecture, more powerful edge
nodes should be chosen to have enough RAM and better
clock speed and RAM. For example, Raspberry Pi 4 has a
faster 1.5GHz processor, and RAM of 2GB which could work
better right at the edge

VI. CONCLUSION AND FUTURE WORK
In this paper, we introduced an edge-cloud architecture
with a low complexity attack detection mechanism –
LocKedge,which is suitable for deployment on edge devices.
LocKedge can detect multi attacks faster and make use of
the resources of the edge layer. The evaluation in terms of
complexity, detection rate and accuracy, using real traffic data
set “BoT-IoT” showed that LocKedge not only decreases the
complexity and increase the accuracy but also outperforms
the recent machine learning models and deep learning mod-
els. It gives a balanced detection between classes for eleven
types of attacks. In future work, we will study to improve the
detection rate of Theft-Data-typed attacks by getting more
data samples and getting some insights into it.

ACKNOWLEDGMENT
We thank our students: Mr. Nguyen Minh Dan, Mr. Le Anh
Quang, and Mr. Le Khanh Nam for providing the testbed
construction and performance measurement.

REFERENCES
[1] H. Haddadpajouh and R. Parizi, “A survey on internet of things security:

Requirements, challenges, and solutions,” Internet of Things, p. 100129,
11 2019.

[2] McKinsey, Growing opportunities in the Internet of Things, 2020 (ac-
cessed June 21, 2020). http://www.mckinsey.com/industries/private-
equity-and-principalinvestors/ our-insights/growing-opportunities-in-the-
internet-of-things.

[3] M. A. Amanullah, R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani,
E. Ahmed, A. Nainar, N. Akim, and M. Imran, “Deep learning and big
data technologies for iot security,” Computer Communications, vol. 151,
02 2020.

VOLUME X, 2020 13

Page 13 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Author et al.: LocKedge: Low-Complexity Cyberattack Detection in IoT Edge Computing

[4] S. Kraijak and P. Tuwanut, “A survey on internet of things architecture,
protocols, possible applications, security, privacy, real-world implementa-
tion and future trends,” pp. 26–31, 10 2015.

[5] O. Flauzac, G. Carlos Javier, and F. Nolot, “New security architecture
for iot network,” Procedia Computer Science, vol. 52, pp. 1028–1033, 12
2015.

[6] K. Sha, T. Yang, W. Wei, and S. Davari, “A survey of edge computing
based designs for iot security,” Digital Communications and Networks,
vol. 6, 09 2019.

[7] K. Sha, R. Errabelly, W. Wei, T. Yang, and Z. Wang, “Edgesec: Design of
an edge layer security service to enhance iot security,” pp. 81–88, 05 2017.

[8] T. Markham and C. Payne, “Security at the network edge: a distributed
firewall architecture,” vol. 1, pp. 279–286 vol.1, 02 2001.

[9] M. Wu, T.-J. Lu, F.-Y. Ling, J. Sun, and H. Du, “Research on the
architecture of internet of things,” vol. 5, pp. V5–484, 09 2010.

[10] R. Doshi, N. Apthorpe, and N. Feamster, “Machine learning ddos detection
for consumer internet of things devices,” pp. 29–35, 05 2018.

[11] J. Canedo and A. Skjellum, “Using machine learning to secure iot sys-
tems,” pp. 219–222, 12 2016.

[12] Y. Soe, Y. Feng, P. Santosa, R. Hartanto, and K. Sakurai, “Rule generation
for signature based detection systems of cyber attacks in iot environments,”
Bulletin of Networking, Computing, Systems, and Software, vol. 8, no. 2,
2019.

[13] I. T. Jolliffe, Principal Component Analysis. New York, NY: Springer,
2002.

[14] H. McMahan, E. Moore, D. Ramage, and B. Agüera y Arcas, “Federated
learning of deep networks using model averaging,” 02 2016.

[15] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and
A. Sadeghi, “DÏot: A federated self-learning anomaly detection system
for iot,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS), pp. 756–767, 2019.

[16] Y. Zhao, J. Chen, D. Wu, J. Teng, and S. Yu, “Multi-task network
anomaly detection using federated learning,” in Proceedings of the Tenth
International Symposium on Information and Communication Technol-
ogy, SoICT 2019, (New York, NY, USA), p. 273–279, Association for
Computing Machinery, 2019.

[17] R. Fantacci and B. Picano, “A federated learning framework for mobile
edge computing networks,” CAAI Transactions on Intelligence Technol-
ogy, 11 2019.

[18] J. Lin, M. Du, and J. Liu, “Free-riders in federated learning: Attacks and
defenses,” 2019.

[19] S. Li, Y. Cheng, Y. Liu, W. Wang, and T. Chen, “Abnormal client behavior
detection in federated learning,” 2019.

[20] M. M. A.-R. S. Thien Duc Nguyen, Phillip Rieger, “Poisoning attacks on
federated learning-based iot intrusion detection system,” in Workshop on
Decentralized IoT Systems and Security (DISS) 2020, 2020.

[21] A. Fu, X. Zhang, N. Xiong, Y. Gao, and H. Wang, “Vfl: A verifiable
federated learning with privacy-preserving for big data in industrial iot,”
2020.

[22] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain and
federated learning for privacy-preserved data sharing in industrial iot,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 6, pp. 4177–
4186, 2020.

[23] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205–1221, 2019.

[24] R. Zeng, S. Zhang, J. Wang, and X. Chu, “Fmore: An incentive scheme of
multi-dimensional auction for federated learning in mec,” 2020.

[25] L. U. Khan, S. Pandey, W. Saad, Z. Han, M. Nguyen, C. S. Hong, and
N. Tran, “Federated learning for edge networks: Resource optimization
and incentive mechanism,” 11 2019.

[26] T. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and A.-
R. Sadeghi, “DÏot: A federated self-learning anomaly detection system for
iot,” pp. 756–767, 07 2019.

[27] N. Sharma and K. Saroha, “Study of dimension reduction methodologies
in data mining,” in International Conference on Computing, Communica-
tion Automation, pp. 133–137, 2015.

[28] N. Moustafa, The Bot-IoT dataset, 2020 (accessed February 25, 2020).
http://dx.doi.org/10.21227/r7v2-x988.

[29] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural net-
works,” vol. 15, 01 2010.

[30] S. Ruder, “An overview of gradient descent optimization algorithms,”
2017.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2017.

[32] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull vol. 100,
pp. 779–796, 2018.

[33] D. Kressner., Numerical methods and software for general and structured
eigenvalue problems. Berlin: Ph.D Thesis, TU Berlin, 2004.

[34] R. Hecht-Nielsen, “Kolmogorov”s mapping neural network existence the-
orem,” 1987.

[35] M. A. Ferrag, L. Maglaras, S. Moschoyiannis, and H. Janicke, “Deep
learning for cyber security intrusion detection: Approaches, datasets, and
comparative study,” Journal of Information Security and Applications,
vol. 50, 12 2019.

TRUONG THU HUONG received the B.Sc.degree
in electronics and telecommunicationsfrom the
Hanoi University of Science and Technology
(HUST), Vietnam, in 2001, the M.Sc. degree in
information and communication systems from the
Hamburg University of Technology, Germany,in
2004, and the Ph.D. degree in telecommunications
from the University of Trento, Italy, in 2007.
She came back to work for Hanoi University of
Science and Technology as a Lecturer, in 2009,

and became an Associate Professor, in 2018. Her research interests are
oriented toward network security, artificial intelligence, traffic engineering
in next generation networks, QoE/QoS guarantee for network services, green
networking, and development of the Internet of Things ecosystems and
applications.

TA PHUONG BAC received the B.Sc.degree
in Electronics and Telecommunications from the
Hanoi University of Science and Technology
(HUST), Vietnam, in 2020. He has been also a Re-
search Assistant in the Future Internet Laboratory,
School of Electronics and Telecommunications
since 2018. His research interests include network
security, artificial intelligence and the Internet of
Things ecosystems and applications.

DAO M. LONG is a senior student of the talented
program in Electronics and Telecommunications
Engineering,School of Electronics and Telecom-
munications, Hanoi University of Science and
Technology. Long has been a research assistant
at the Future Internet Laboratory for 1 year. His
research interest includes IoT, network security,
machine learning/AI and its application.

14 VOLUME X, 2020

Page 14 of 16

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

