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Abstract

Reflections from hypersurfaces act by symplectomorphisms on the
space of oriented lines with respect to the canonical symplectic form.
We consider an arbitrary C∞-smooth hypersurface γ ⊂ Rn+1 that is
either a global strictly convex closed hypersurface, or a germ of hy-
persurface. We deal with the pseudogroup generated by compositional
ratios of reflections from γ and of reflections from its small deforma-
tions. In the case, when γ is a global convex hypersurface, we show that
the C∞-closure of the latter pseudogroup contains the pseudogroup of
Hamiltonian diffeomorphisms between domains in the phase cylinder:
the space of oriented lines intersecting γ transversally. We prove an
analogous local result in the case, when γ is a germ. The derivatives
of the above compositional differences in the deformation parameter
are Hamiltonian vector fields calculated by Ron Perline. To prove the
main results, we find the Lie algebra generated by them and prove its
C∞-density in the Lie algebra of Hamiltonian vector fields. We also
prove analogues of the above results for hypersurfaces in Riemannian
manifolds.

∗CNRS, France (UMR 5669 (UMPA, ENS de Lyon), UMI 2615 (ISC J.-V.Poncelet)).
E-mail: aglutsyu@ens-lyon.fr
†HSE University, Moscow, Russia
‡Kharkevich Institute for Information Transmisson Problems (IITP RAS), Moscow,

Russia
§The author is partially supported by Laboratory of Dynamical Systems and Applica-

tions, HSE University, of the Ministry of science and higher education of the RF grant ag.
No 075-15-2019-1931
¶Partially supported by RFBR and JSPS (research project 19-51-50005)

1



Contents

1 Main results: density of thin film planar billiard reflection
pseudogroup 3
1.1 Main density results: case of global hypersurface . . . . . . . 4
1.2 Main results in the local case . . . . . . . . . . . . . . . . . . 6
1.3 Case of germs of planar curves: density in symplectic vector

fields and maps . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Hamiltonian functions for vector fields vf and the Lie algebra

generated by them . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Case of hypersurfaces in Riemannian manifolds . . . . . . . . 12
1.6 Historical remarks and an open problem . . . . . . . . . . . . 13

2 The Lie algebra in the case or curves. Proof of Theorems
1.21, 1.22, 1.16, 1.10, 1.1, 1.8 13
2.1 Calculation of Poisson brackets . . . . . . . . . . . . . . . . . 13
2.2 Case, when γ is an interval. Proof of Theorems 1.21, 1.16, 1.10 15
2.3 Case of closed curve. Proof of Theorem 1.22 . . . . . . . . . . 15
2.4 Proof of Theorem 1.16 for closed curve . . . . . . . . . . . . . 22
2.5 Proof of Theorems 1.1, 1.8 and 1.10 for n = 1 . . . . . . . . . 23

3 The Lie algebra in higher dimensions. Proof of Proposition
1.15 and Theorems 1.20, 1.16, 1.1 23
3.1 Poisson brackets and their calculations for n ≥ 1. Proof of

Proposition 1.15 . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 The Lie algebra. Proof of Theorem 1.20 . . . . . . . . . . . . 29
3.3 Proofs of Theorems 1.16, 1.1 and 1.8 for n ≥ 2 . . . . . . . . 38

4 Density of pseudo-groups. Proofs of Theorems 1.5, 1.9, 1.11
and Corollary 1.7 38
4.1 Density in Hamiltonian symplectomorphism pseudogroup. Proofs

of Theorems 1.5, 1.9 and Corollary 1.7 . . . . . . . . . . . . . 39
4.2 Special case of germ of planar curve. Density in symplecto-

morphisms: proof of Theorem 1.11 . . . . . . . . . . . . . . . 42

5 Proof for hypersurfaces in Riemannian manifolds 44

6 Acknowledgements 45

2



1 Main results: density of thin film planar billiard
reflection pseudogroup

It is well-known that billiard reflections acting on the space of oriented
geodesics preserve the canonical symplectic form [1, 2, 6, 9, 10, 16]. However
only a tiny part of symplectomorphisms are realized by reflections. There is
an important open question stated in [14]: which symplectomorphisms can
be realized by compositions of reflections?

In the present paper we consider the case of billiards in Euclidean spaces.
Namely, we deal with a hypersurface γ ⊂ Rn+1: either a strictly convex
closed hypersurface, or a germ of hypersurface. We investigate compositional
ratios of reflections from γ and reflections from its small deformations. They
were introduced and studied by Ron Perline [13]. He had shown that their
derivatives in the parameter are Hamiltonian vector fields and calculated
their Hamiltonian functions. See Subsection 1.4 below.

We show that the Lie algebra generated by the above Hamiltonian vec-
tor fields is dense in the Lie algebra of all the Hamiltonian vector fields
(symplectic vector fields in the case, when γ is a germ of curve). We apply
this result to the pseudogroup generated by the above compositional ratios
of reflections. In the case of a strictly convex closed hypersurface we show
that the C∞-closure of the latter pseudogroup contains the pseudogroup of
Hamiltonian symplectomorphisms between open subdomains of the phase
cylinder: the space of oriented lines intersecting γ transversally. We prove
analogous statement for germs of hypersurfaces. The corresponding results
are stated in Subsections 1.1 and 1.2 respectively.

In the case of a germ of planar curve, when n = 1, we show that the
above pseudogroup coming from reflections is C∞-dense in the pseudogroup
of symplectomorphisms between simply connected subdomains of a small
region in the space of oriented lines. See the statements of the corresponding
results in Subsection 1.3.

The above results on C∞-closures of pseudogroups are proved in Section
4.

For the proof of main results we find the Lie algebra generated by the
above-mentioned Hamiltonian functions from [13] and prove its C∞-density
in the space of C∞-smooth functions. The corresponding results are pre-
sented in Subsection 1.4 and proved in Sections 2 and 3 in the cases, when
n = 1 and n ≥ 2 respectively.

In Subsection 1.5 we state analogues of Perline’s formula for Hamiltonian
function and of main results for hypersurfaces in Riemannian manifolds. We
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prove them in Section 5.
In Subsection 1.6 we present a brief historical survey and state an open

problem.

1.1 Main density results: case of global hypersurface

Here we deal with billiards in Rn+1, n ≥ 1: reflections from hypersurfaces,
which act on the space of oriented lines in Rn+1, see the next paragraph. It is
well-known that the space of all oriented lines is canonically diffeomorphic
to the tangent bundle of the unit sphere Sn, and it carries a canonical
symplectic form induced from the standard symplectic form on TSn. All the
reflections from hypersurfaces act symplectomorphically [1, 2, 6, 9, 10, 16].

Let γ ⊂ Rn+1 be a closed strictly convex hypersurface. Recall that the
reflection Tγ from γ acts on the space of oriented lines in Rn+1 as follows. If
a line L is either disjoint from γ, or tangent to it, then it is fixed by Tγ . If L
intersects γ transversally, then we take its last point A of intersection with
γ (in the sense of orientation of the line L). We set Tγ(L) to be its image
under reflection from the tangent hyperplane TAγ and orient it by a vector
in TARn+1 directed inside the compact domain bounded by γ.

Let now ~N be the exterior unit normal vector field on the hypersurface γ.
Let f : γ → R be a C∞-smooth function. Consider the following deformation
of the surface γ:

γε = γε,f := {x+ εf(x) ~N(x) | x ∈ γ}. (1.1)

We deal with reflections Tγ and Tγε = Tγε,f acting on oriented lines. Recall
that the phase cylinder is the domain

Π = Πγ := {the oriented lines intersecting γ transversally},

∆Tε = ∆Tε,f := T −1
γε ◦ Tγ , vf :=

d∆Tε
dε
|ε=0. (1.2)

For every compact subset K b Π the symplectic mapping ∆Tε is well-
defined on K, whenever ε is small enough dependently on K. Hence, vf
are symplectic vector fields on Π. They are Hamiltonian with Hamiltonian
functions given in [13, p.623], see also (1.6). We prove the following theorem.

Theorem 1.1 The Lie algebra generated by the vector fields vf , f ∈ C∞(γ),
is C∞-dense in the Lie algebra of Hamiltonian vector fields on Πγ: dense in
the topology of uniform convergence with all derivatives on compact subsets..
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Using Theorem 1.1, we prove density results for pseudogroups gener-
ated by the compositional differences ∆Tε. To state them, let us recall the
following well-known definitions.

Consider a collection of C∞-smooth diffeomorphisms between domains
on some manifold (e.g., the space of oriented lines in Rn+1). We consider
each diffeomorphism together with its domain of definition and all its restric-
tions to smaller domains. We will deal with those compositions of diffeomor-
phisms and of their inverses that are well-defined on some domains. Recall
that the collection of all the above compositions is called a pseudogroup.
(In the case when we take only compositions of mappings and not of their
inverses, the above collection of compositions is called a pseudo-semigroup.)

Definition 1.2 For a given sequence of domains Vn we say that the inter-
sections Vn ∩ V converge to V , if each compact subset K b V is contained
in Vn whenever n is large enough (depending on K). Let g be a C∞-smooth
diffeomorphism defined on a domain V : we deal with it as with the pair
(g, V ). Recall that a sequence gn of elements in a pseudogroup converges
to a mapping g on V in the C∞-topology, if g is well-defined on V , gn are
defined on a sequence of domains Vn such that Vn ∩ V → V , and gn → g
uniformly on compact subsets in V with all the derivatives. The C∞-closure
of a given pseudogroup consists of the mappings forming the pseudogroup
and the limits of the above converging sequences. (The latter closure is a
pseudogroup itself.)

For every positive-valued mapping δ : C∞(γ)→ R+ set

G(δ) := the pseudogroup generated by the collection of mappings (1.3)

{∆Tε,h | h ∈ C∞(γ), 0 ≤ ε ≤ δ(h)}.

Let us recall the following well-known definition.

Definition 1.3 Let M be a symplectic manifold, and let V ⊂M be an open
domain. A symplectomorphism F : V → V1 ⊂ M is (M -) Hamiltonian, if
there exists a smooth family Ft : V → Vt ⊂ M of symplectomorphisms
parametrized by t ∈ [0, 1], V0 = V , F0 = Id, F1 = F , such that for every
t ∈ [0, 1] the derivative dFt

dt is a Hamiltonian vector field on Vt. (In the case
when V = Vt = M , this definition coincides with the usual definition of
Hamiltonian diffeomorphism of a manifold [3, definition 4.2.4].)

Remark 1.4 Let M be a two-dimensional topological cylinder equipped
with a symplectic form, and let V ⊂ M be a subcylinder with compact
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closure and smooth boundary. Further assume that V is a deformation
retract of the ambient cylinder M . Then not every area-preserving map
F : V → U ⊂ M is Hamiltonian. A necessary condition for being Hamilto-
nian is that for every boundary component L of the subcylinder V the self-
intersecting domain bounded by L and by its image F (L) has zero signed
area. This follows from results presented in [3, chapters 3, 4]. The above-
defined M -Hamiltonian symplectomorphisms between domains in a sym-
plectic manifold form a pseudogroup: a composition of two M -Hamiltonian
symplectomorphisms U → V and V →W is M -Hamiltonian.

Theorem 1.5 For every mapping δ : C∞(γ) → R+ the C∞-closure of the
pseudogroup G(δ) contains the whole pseudogroup of Π-Hamiltonian diffeo-
morphisms between domains in Π. In other words, for every domain V ⊂ Π
and every Π-Hamiltonian symplectomorphism F : V → W ⊂ Π there exists
a sequence Fn of finite compositions of mappings ∆Tεj ,hj , 0 ≤ εj ≤ δ(hj),
Fn being defined on domains Vn with Vn ∩ V → V , such that Fn → F on V
in the C∞-topology.

Definition 1.6 We say that two hypersurfaces are (α, k)-close if the dis-
tance between them in the Ck-topology is no greater than α. This means
that the hypersurfaces are diffeomorphically parametrized by the same man-
ifold, and their parametrizations can be chosen so that the Ck-distance be-
tween them is no greater than α.

Corollary 1.7 For every α > 0 (arbitrarily small) and k ∈ N the C∞-
closure of the pseudogroup generated by reflections from hypersurfaces (α, k)-
close to γ contains the whole pseudogroup of Π-Hamiltonian symplectomor-
phisms between domains in Π.

Theorem 1.1 will be proved in Subsection 2.5 (for n = 1) and 3.3 (for
n ≥ 2). Theorem 1.5 and Corollary 1.7 will be proved in Section 4.

1.2 Main results in the local case

Here we consider the case, when γ is a germ of (not necessarily convex)
C∞-smooth hypersurface in Rn+1 at some point x0 and state local versions
of the above results.

Each function f : γ → R defines a deformation γε = γε,f of the germ
γ given by (1.1). Let ∆Tε, vf be the same, as in (1.2). Fix an arbitrary
small contractible neighborhood of the point x0 in γ, and now denote by
γ the latter neighborhood. It is a local hypersurface parametrized by a
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contractible domain in Rn. Fix an arbitrary domain Π = Πγ in the space
of oriented lines in Rn+1 such that each point in Π represents a line L
intersecting γ transversally at one point x = x(L). Let w = w(L) ∈ Txγ
denote the orthogonal projection to Txγ of the directing vector of L at x. We
identify all the tangent spaces Txγ by projecting them orthogonally to an
appropriate coordinate subspace Rn ⊂ Rn+1. For simplicity in the local case
under consideration we will choose Π to be diffeomorphic to a contractible
domain in R2n via the correspondence sending L to (x,w).

Theorem 1.8 The Lie algebra of vector fields on Πγ generated by the fields
vf , f ∈ C∞(γ), see (1.2), is C∞-dense in the Lie algebra of Hamiltonian
vector fields on Πγ.

The definitions of pseudogroup G(δ) and (α, k)-close hypersurfaces for
local hypersurfaces (germs) are the same, as in the previous subsection.

Theorem 1.9 The statements of Theorem 1.5 and Corollary 1.7 hold in
the case, when γ is a local hypersurface: a C∞-smooth germ of hypersurface
in Rn+1.

Theorems 1.8 will be proved in Section 2.5 (for n = 1) and 3.3 (for
n ≥ 2). Theorem 1.9 will be proved in Section 4.

1.3 Case of germs of planar curves: density in symplectic
vector fields and maps

Let now γ be a C∞-smooth germ of planar curve in R2 at a point O. Let Π
be the same, as in the previous subsection.

Theorem 1.10 In the case, when γ is a germ of planar curve, the Lie
algebra generated by the fields vf is dense in the Lie algebra of symplectic
vector fields on Π.

Theorem 1.11 If γ is a germ of planar curve, then the statements of The-
orems 1.5 and Corollary 1.7 hold with density in the pseudogroup of sym-
plectomorphisms between simply connected domains in Π.

Theorem 1.10 is proved in Subsection 2.5. Theorem 1.11 is proved in Sub-
section 4.2.
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1.4 Hamiltonian functions for vector fields vf and the Lie
algebra generated by them

Let us recall a well-known presentation of the symplectic structure on Π
coming from the identification of the outwards directed unit tangent bundle
on γ with the unit ball bundle T<1γ ⊂ Tγ [1, 2, 6, 9, 10, 16]. To each
oriented line λ intersecting γ transversally we put into correspondence the
pair (x(λ), u(λ)), where x(λ) is its last intersection point with γ in the
sense of orientation of the line λ, and u = u(λ) ∈ Tx(λ)Rn+1 is the unit
vector directing λ. To a unit vector u ∈ TxRn+1, x ∈ γ, we put into
correspondence its orthogonal projection w := π⊥(u) ∈ Txγ to the tangent
hyperplane of γ at x; one has ||w|| ≤ 1. In the case, when γ is a strictly
convex closed hypersurface, the composition of the above correspondences
yields a diffeomorphism

J : Π 7→ T<1γ, λ 7→ (x(λ), w(λ)) ∈ T<1γ := {(x,w) ∈ Tγ | ||w|| < 1}.
(1.4)

In the case, when γ is a germ, J is a diffeomorphism of the corresponding
domain Π in the space of oriented lines onto an open subset J(Π) ⊂ T<1γ.
The tangent bundle Tγ consists of pairs (x,w), x ∈ γ, w ∈ Txγ, and carries
the Liouvillian 1-form α ∈ T ∗(Tγ) defined as follows: for every x ∈ γ,
w ∈ Txγ and v ∈ T(x,w)(Tγ) one has

α(v) =< w, π∗(v) >, π∗ = dπ, π is the projection Tγ → γ. (1.5)

The standard symplectic form on Tγ is given by the differential

ω := dα.

The above Liouville form α and symplectic form ω are well-defined on every
Riemannian manifold γ.

The above diffeomorphism J is known to be a symplectomorphism [1, 2,
6, 9, 10, 16]. In what follows we switch from Π to T<1γ; the images of the
vector fields vf under the symplectomorphism J are symplectic vector fields
on T<1γ, which will be also denoted by vf .

Remark 1.12 Consider the correspondence λ 7→ (x(λ), u(λ)) from the be-
ginning of the subsection between Π and a domain in the restriction to γ of
the unit tangent bundle of the ambient space Rn+1. For every function f
on γ the vector field vf on Π given by (1.2) is identified via the latter cor-
respondence with a well-defined vector field on the space of all pairs (x, u),
where x ∈ γ and u ∈ TxRn+1 is a unit vector transversal to γ. (See the
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next theorem and remark.) Therefore, the J-pushforward of the field vf is
a well-defined vector field on all of T<1γ, which will be also denoted by vf .
In what follows, whenever the contrary is not specified, we deal with vf as
with the latter vector field on T<1γ.

Theorem 1.13 [13, p.623] For every C∞-smooth function f : γ → R the
corresponding vector field vf is Hamiltonian with the Hamiltonian function

Hf (x,w) := −2
√

1− ||w||2f(x). (1.6)

Remark 1.14 The formula from [13, p.623] was given in the chart (x, u),
with the Hamiltonian function Hf (x, u) = −2 < u, ~N(x) > f(x). The latter

scalar product being equal to
√

1− ||w||2, w = π⊥(u), this yields (1.6).

Proposition 1.15 The vector space over R generated by the Poisson brack-
ets of the functions Hf (x,w) given by (1.6) for all f ∈ C∞(γ) is a Lie algebra
(under Poisson bracket), where each element can be represented as a sum
of at most 2n+ 1 Poisson brackets. It consists of the functions on T<1γ of
type η(w), where η is an arbitrary C∞-smooth 1-form on γ, and is identified
with the space of 1-forms. The Lie algebra structure thus obtained on the
1-forms is isomorphic to the Lie algebra of all C∞-smooth vector fields (with
Lie bracket) via the duality isomorphism T ∗γ → Tγ given by the metric.

Proposition 1.15 is proved in Subsection 3.1.

Theorem 1.16 Let γ be an arbitrary Riemannian manifold (neither nec-
essarily embedded, nor necessarily compact). Let H denote the Lie algebra
generated (under the Poisson bracket) by the Hamiltonian functions (1.6) on
T<1γ constructed from all f ∈ C∞(γ). The Lie algebra H is C∞-dense in the
Lie algebra of all the C∞-functions on the unit ball bundle T<1γ: dense in
the topology of uniform convergence with all derivatives on compact subsets.

Below we formulate more precise versions of Theorem 1.16, which give
explicitly the Lie algebra generated by functions (1.6) in different cases. To
obtain its simpler description, we deal with the following renormalization
isomorphism

Y : T<1γ → Tγ, (x,w) 7→ (x, y), y = y(w) :=
w√

1− ||w||2
∈ Txγ. (1.7)

This equips Tγ with the pushforward symplectic structure Y∗ω.
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Convention 1.17 Sometimes we rewrite functions in (x,w) ∈ T<1γ as
functions of (x, y) ∈ Tγ. By definition, the Poisson bracket of two functions
in (x, y) is calculated with respect to the pushforward symplectic form Y∗ω.
It coincides with the pushforward by Y of their Poisson bracket as functions
of (x,w), with respect to the canonical symplectic form ω on T<1γ.

Example 1.18 For every function f on γ the corresponding Hamiltonian
function Hf (x,w) of the vector field vf written in the new coordinate y is
equal to

Hf (x,w) = −2H0,f (x, y), H0,f (x, y) :=
f(x)√

1 + ||y||2
. (1.8)

This follows from (1.6) and (1.7).

Let Sk(T ∗γ) denote the space of those C∞-smooth functions on Tγ whose
restrictions to the fibers Txγ are homogeneous polynomials of degree k. For
every φ ∈ Sk(T ∗γ) we write φ = φ(y) as a polynomial in y ∈ Txγ with
coefficients depending C∞-smoothly on x ∈ γ. Set

Hk,φ :=
φ(y)√

1 + ||y||2
, Hk,φ ∈ C∞(Tγ), (1.9)

Λk := {Hk,φ | φ ∈ Sk(T ∗γ)}.

Example 1.19 Let n = 1 and let, for simplicity, γ be connected. Then γ
is either an interval, or a circle, equipped with a Riemannian metric. Let
s be the length element on γ. Then y is just one variable, each element in
Sk(T ∗γ) is a product φ = h(s)yk, h ∈ C∞(γ). In this case, when n = 1, we
will use simplified notations replacing φ by h and writing Hk,φ as Hk,h:

Hk,φ = Hk,h :=
h(s)yk√

1 + y2
; Λk = {Hk,h | h ∈ C∞(γ)}. (1.10)

In the case, when γ is a closed planar curve with induced metric, the phase
cylinder Π is indeed a cylinder: it is diffeomorphic to the product of a circle
and an interval via the following correspondence. To each oriented line L
intersecting γ transversally we put into correspondence its last intersection
point with γ (identified with its natural parameter s), running all of γ ' S1,
and the intersection angle θ ∈ (0, π). The above-defined symplectic form on
Π is equal to sin θds∧dθ (see [17, lemma 3.7]). The natural parameter yields
a canonical trivialization of the tangent bundle to γ. After this trivialization
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the corresponding vectors w and y become just real numbers that are equal
to

w = cos θ, y = cot θ. (1.11)

In the renormalized coordinates y the Lie algebra H admits the following
description.

Theorem 1.20 Let γ be the same, as in Theorem 1.16. If n = dim γ ≥ 2,
then one has

H = ⊕k≥0Λk. (1.12)

Theorem 1.21 Statement (1.12) remains valid in the case, when n = 1
and γ is an interval equipped with a Riemannian metric.

It appears, that in the case, when n = 1 and γ is a topological circle,
statement (1.12) is not true. To state its version in this special case, let
us introduce the following notations. Let d ∈ Z≥0, Hd,h be functions on
the phase cylinder Π given by formula (1.10), and let Λd be their space,
see (1.10). Let us consider that the length of the curve γ is equal to 2π,
rescaling the metric by constant factor. Set

Λd,0 := {Hd,h ∈ Λd |
∫ 2π

0
h(s)ds = 0}.

For every odd polynomial vanishing at zero with derivative,

P (y) =

k∑
j=1

ajy
2j+1, (1.13)

set

P̃ (x) := x−
1
2P (x

1
2 ) =

k∑
j=1

ajx
j . (1.14)

Theorem 1.22 Let n = 1 and γ be a topological circle equipped with a
Riemannian metric. The Lie algebra H generated by the functions H0,f ,
f ∈ C∞(γ), see (1.8) and (1.10), is

Gglob := Λ1 ⊕ (⊕d∈2Z≥0
Λd)⊕ (⊕d∈2Z≥1+1Λd,0)⊕Ψ, (1.15)

Ψ := { P (y)√
1 + y2

| P (y) is a polynomial as in (1.13) with P̃ ′(−1) = 0}.

(1.16)

Theorems 1.16, 1.20, 1.21, 1.22 will be proved in Sections 2 (for n = 1) and
3 (for n ≥ 2).
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1.5 Case of hypersurfaces in Riemannian manifolds

Let M be a complete Riemannian manifold. Let γ ⊂M be a closed strictly
convex hypersurface bounding a domain Ω ⊂ M homeomorphic to a ball.
Let for every geodesic Γ lying in a small neighborhood U = U(Ω) ⊂M the
intersection Γ ∩ Ω be either empty, or an interval bounded by two points
of transversal intersections with ∂Ω. The space of geodesics intersecting Ω
will be called the phase cylinder and denoted by Π. The billiard ball map
Tγ of reflection from γ acts on the space of oriented geodesics in the same
way, as in Subsection 1.1. This action is symplectic with respect to the
standard symplectic form on the space of oriented geodesics that is given
by symplectic reduction (Melrose construction, see [1, 2, 6, 9, 10, 16]). The
phase cylinder Π is a symplectic manifold symplectomorphic to the unit ball
bundle T<1γ equipped with the standard symplectic form, as in Subsection
1.4.

Let us repeat Perline’s thin film billiard construction. For every C∞-
smooth function f : γ → R consider the family of hypersurfaces γε consisting
of the points γε(x) defined as follows. For every x ∈ γ consider the geodesic
ΓN (x) through the point x that is orthogonal to γ and directed out of Ω. The
point γε(x) is obtained from the point x by shift of (signed) distance εf(x)
along the geodesic ΓN (x); one has γε(x) /∈ Ω, if f(x) > 0, and γε(x) ∈ Ω, if
f(x) < 0.

Theorem 1.23 Consider the following compositional ratio and its deriva-
tive

∆Tε = ∆Tε,f := T −1
γε ◦ Tγ , vf :=

d∆Tε,f
dε

|ε=0.

The derivative vf is a Hamiltonian vector field on the phase cylinder Π '
T<1γ with the same Hamiltonian function Hf (x,w) = −2

√
1− ||w||2f(x),

as in (1.6).

Theeorem 1.23 follows easily from its Euclidean version due to R.Perline
(Theorem 1.13 in Subsection 1.4).

We will deal not only with the global case, when γ is a closed hypersur-
face, as above, but also with the case, when γ is a germ of hypersurface.

Theorem 1.24 The statements of Theorem 1.5 and Corollary 1.7 hold for
any hypersurface γ as above and for any germ of hypersurface in any Rie-
mannian manifold.

Proofs of Theorems 1.23 and 1.24 will be given in Section 5.
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1.6 Historical remarks and an open problem

In 1999 R.Peirone studied dynamics of billiard in thin film formed by a
hypersurface γ and its given deformation γε with small ε. He proved the
following transitivity result for small ε: for every two points p1, p2 ∈ γ there
exists a billiard orbit starting at p1 that lands at p2 after sufficiently many
reflections [12]. A series of results on dynamics in thin film billiard, including
results mentioned in Subsection 1.1 (calculation of the vector field vf and its
Hamiltonian function), together with relation to geodesic flow were obtained
in [13]. For other results and open problems, e.g., on relations to integrable
PDE’s, see [13, sections 8, 9] and references to [13].

Corollary 1.7 states that the C∞-closure of the pseudogroup generated
by reflections from hypersurfaces close to γ contains the whole pseudogroup
of Π-Hamiltonian diffeomorphisms between domains in the phase cylinder
Π = Πγ . That is, each Π-Hamiltonian diffeomorphism is the limit of a
sequence of compositions of reflections and their inverses.

Open Problem. Is it true that for every closed strictly convex hy-
persurface γ ⊂ Rn+1 the C∞-closure of the pseudo-semigroup generated by
reflections from the hypersurface γ and from its small deformations (without
including their inverses) contains the whole pseudogroup of Π-Hamiltonian
diffeomorphisms between domains in the phase cylinder Π?

2 The Lie algebra in the case or curves. Proof of
Theorems 1.21, 1.22, 1.16, 1.10, 1.1, 1.8

In the present section we consider the case, when γ is a connected curve
equipped with a Riemannian metric. We prove Theorems 1.21, 1.22 and
Theorem 1.16 for curves. To do this, first in Subsection 2.1 we calculate
Poisson brackets of functions of type Hd,h from (1.10). Then we treat sepa-
rately two cases, when γ is respectively either an interval (Subsection 2.2),
or a circle (Subsections 2.3, 2.4), and prove Theorems 1.21, 1.22, 1.16. Then
we deduce Theorems 1.1, 1.8, 1.10 in Subsection 2.5.

2.1 Calculation of Poisson brackets

We work in the space T<1γ = γ × (−1, 1) equipped with coordinates (s, w).
Here s is the natural parameter of the curve γ, and w ∈ (−1, 1) is the
coordinate of tangent vectors to γ with respect to the basic vector ∂

∂s . We
identify a point of the curve γ with the corresponding parameter s. Recall
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that the canonical symplectic structure of T<1γ is the standard symplectic
structure dw ∧ ds. Therefore the Poisson bracket of two functions F and G
is equal to

{F,G} =
∂F

∂w

∂G

∂s
− ∂F

∂s

∂G

∂w
. (2.1)

We write formulas for Poisson brackets of functions from (1.10) in the coor-
dinates

(s, y), y =
w√

1− w2
,

in which they take simpler forms. Recall that for every d ∈ Z≥0 and every
function h(s) we set

Hd,h(s, y) :=
yd√

1 + y2
h(s), H−1,h(s, y) := 0,

see (1.10), and for every function h(s) on γ the vector field vh on T<1γ is
Hamiltonian with the Hamiltonian function −2H0,h = H0,−2h, see (1.8).

Proposition 2.1 For every d, k ∈ Z≥0 and any two functions f(s), g(s)
one has

{Hd,f , Hk,g} = Hd+k−1,dfg′−kf ′g +Hd+k+1,(d−1)fg′−(k−1)f ′g. (2.2)

Proof For every m ∈ Z≥0 one has

ym√
1 + y2

=
wm

(
√

1− w2)m−1
,

∂

∂w

(
ym√
1 + y2

)
=

mwm−1

(
√

1− w2)m−1
+

(m− 1)wm+1

(
√

1− w2)m+1
= mym−1+(m−1)ym+1.

Substituting the latter expression to (2.1) yields

{Hd,f , Hk,g} =
(dyd−1 + (d− 1)yd+1)ykfg′ − (kyk−1 + (k − 1)yk+1)ydgf ′√

1 + y2
.

This implies (2.2). 2
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2.2 Case, when γ is an interval. Proof of Theorems 1.21,
1.16, 1.10

Recall that for every d ∈ Z≥0 Λd denotes the vector space of functions of the
type Hd,f , see (1.10), where f(s) runs through all the C∞-smooth functions
in one variable. Let

πk : ⊕+∞
d=0Λd → Λk

denote the projection to the k-th component.

Proposition 2.2 One has

{Λ0,Λ0} = Λ1, {Λ1,Λ1} ⊂ Λ1, (2.3)

{Λd,Λk} ⊂ Λd+k−1 ⊕ Λd+k+1 whenever (d, k) 6= (1, 1), (0, 0), (2.4)

πk+1({Λ0,Λk}) = Λk+1 for every k ≥ 1. (2.5)

Proof Inclusion (2.4) and the right inclusion in (2.3) follow immediately
from (2.2). Let us prove the left formula in (2.3). One has

{H0,f , H0,g} = H1,f ′g−g′f , (2.6)

by (2.2). It is clear that each function η(s) can be represented by an ex-
pression f ′g−g′f , since the functions in question are defined on an interval.
For example, one can take f =

∫ s
s0
η(τ)dτ and g ≡ 1. This proves the left

formula in (2.3). The proof of statement (2.5) is analogous. 2

Proof of Theorem 1.21. The Hamiltonians of the vector fields vf are
the functions −2H0,f . The Lie algebra H generated by them coincides with
⊕∞k=0Λk, by Proposition 2.2. This proves Theorem 1.21. 2

Proof of Theorem 1.16 for γ being an interval. Each function from
the direct sum H = ⊕∞k=0Λk is 1√

1+y2
times a polynomial in y with coeffi-

cients depending on s. The latter polynomials include all the polynomials
in (s, y), which are C∞-dense in the space of C∞ functions in (s, y) ∈ γ×R
(Weierstrass Theorem). Therefore, H is also dense. Theorem 1.16 is proved
in the case, when γ is an interval. 2

2.3 Case of closed curve. Proof of Theorem 1.22

Let Hd,h be functions given by formula (1.10); now h(s) being C∞-smooth
functions on the circle equipped with the natural length parameter s. Recall
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that we consider that its length is equal to 2π, rescaling the metric by
constant factor. Let Λd be the vector space of all the functions Hd,h. Set

Λd,0 := {Hd,h ∈ Λd |
∫ 2π

0
h(s)ds = 0}.

For every C∞-smooth function h : S1 = R/2πZ→ R set

ĥ :=
1

2π

∫ 2π

0
h(s)ds.

In the proof of Theorem 1.22 we use the following four propositions.

Proposition 2.3 For every d, k ∈ Z≥0 and every pair of smooth functions
f(s) and g(s) on the circle one has

{Hd,f , Hk,g} = Hd+k−1,hd+k−1(s) +Hd+k+1,hd+k+1(s),

(d+ k − 2)ĥd+k−1 = (d+ k)ĥd+k+1. (2.7)

Proof The first formula in (2.7) holds with

hd+k−1 = (d+k)fg′−k(fg)′, hd+k+1 = (d+k−2)fg′− (k−1)(fg)′, (2.8)

by (2.2). This together with the fact that the derivative (fg)′ has zero
average implies that the ratio of averages of the functions hd+k∓1 is equal
to d+k

d+k−2 and proves (2.7). 2

It is clear that the Lie algebra H is contained in the direct sum of the
subspaces Λj , by (2.2). Recall that for every j ∈ Z≥0 by πj we denote the
projection of the latter direct sum to the j-th component Λj .

Proposition 2.4 For every d, k ∈ Z≥0 one has

{Λd,Λk} ⊂ Λd+k−1 ⊕ Λd+k+1, (2.9)

πd+k+1({Λd,Λk}) = πd+k+1({Λd,0,Λk,0}) =


0 if d = k = 1,

Λd+k+1, if d+ k 6= 2,

Λ3,0, if {d, k} = {0, 2}.
(2.10)

In particular,
{Λ0,Λ0} = Λ1. (2.11)
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Proof For d = k = 1 formula (2.10) follows from (2.2). For d = 0, k = 2
one has π3({Λ0,Λ2}) ⊂ Λ3,0, by (2.7): the left-hand side in (2.7) vanishes,

hence, ĥd+k+1 = ĥ3 = 0. Let us prove that in fact, the latter inclusion is
equality and moreover,

π3({Λ0,0,Λ2,0}) = Λ3,0. (2.12)

Indeed, for every two functions f and g on the circle one has

{H0,f , H2,g} = H1,−2f ′g +H3,−(fg)′ ,

by (2.2). It is clear that every function h on the circle with zero average
is a derivative of some function −f on the circle (we choose f with zero
average). Hence, h = −f ′ = −(fg)′ with g ≡ 1. This already implies the
formula π3({Λ0,Λ2}) = Λ3,0, but not the above formula (2.12): the function
g ≡ 1 does not have zero average. To prove (2.12), let us show that every
function f with zero average can be represented as a sum

∑4
j=1 fjgj with

fj and gj being smooth functions of zero average. Indeed, f is the sum of
a linear combination f=1(s) = aeis + āe−is, a ∈ C, and a Fourier series f≥2

containing only eins with |n| ≥ 2. It is clear that f=1(s) = e3is(e−3isf=1(s))
and f≥2 = eis(e−isf≥2), and the latter are products of two complex functions
with zero average. Their real parts are obviously sums of pairs of such
products. Therefore, f can be represented as a sum of four such products.
This together with the above discussion implies that for every function h
with zero average the function H3,h is the π3-projection of a sum of four
Poisson brackets {H0,fj , H2,gj} with fj , gj being of zero average. This proves
(2.12) and the third formula in (2.10).

Let us now treat the remaining middle case: d + k 6= 2. To do this,
it suffices to show that every smooth function h(s) on the circle can be
represented as a finite sum

h =

N∑
l=1

hd+k+1,l, hd+k+1,l := (d− 1)flg
′
l − (k − 1)f ′lgl, (2.13)

see (2.7) and (2.2), where fl(s) and gl(s) are smooth functions on the circle
with zero average. Moreover, it suffices to prove the same statement for
complex-valued functions. Indeed, if (2.13) holds for a complex function
h(s) and a finite collection of pairs (fl(s), gl(s)) of complex functions, l =
1, . . . , N , then the similar equality holds for the function Reh(s) and the
collection of pairs (Re fl,Re gl), (− Im fl, Im gl) taken for all l. Let, say,
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d 6= 1. Let us write a complex function h(s) as a Fourier series

h(s) =
∑
n∈Z

ane
ins.

Set
f1(s) = eis, g1(s) =

∑
n∈Z6=1

bne
i(n−1)s.

Set hd+k+1,1 := (d− 1)f1g
′
1 − (k − 1)f ′1g1. One has

h(s)−hd+k+1,1(s) = a1e
is+

∑
n6=1

(an−ibn((d−1)(n−1)−(k−1)))eins. (2.14)

We would like to make the above difference zero. For each individual n 6= 1
one can solve the equation

an − ibn((d− 1)(n− 1)− (k − 1)) = 0

in bn, provided that (d − 1)(n − 1) 6= k − 1, i.e., n 6= n(d, k) := k−1
d−1 + 1.

Take bn found from the above equation for all n 6= 1, n(d, k). They yield a
converging and C∞-smooth Fourier series

g1(s) =
∑

n 6=1,n(d,k)

bne
i(n−1)s,

since so is h(s) =
∑

n∈Z ane
ins and bn = o(an), as n→∞. The correspond-

ing function hd+k+1,1, see (2.13), satisfies the equality

h(s)− hd+k+1,1(s) = a1e
is + an(d,k)e

isn(d,k). (2.15)

Now we set f2(s) = e(p+1)is with some p ∈ Z \ {0,−1, n(d, k) − 1}, and we
would like to find a function

g2(s) = c1e
−pis + c2e

i(n(d,k)−(p+1))s

such that h = hd+k+1,1 + hd+k+1,2, see (2.13). The latter equation is equiv-
alent to the equation

a1e
is + an(d,k)e

isn(d,k) = (d− 1)f2(s)g′2(s)− (k − 1)f ′2(s)g2(s), (2.16)

by (2.15). Its right-hand side divided by i equals c1(−p(d− 1)− (p+ 1)(k−
1))eis + c2((d− 1)(n(d, k)− (p+ 1))− (k− 1)(p+ 1))eisn(d,k). Therefore, one
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can find constant coefficients c1, c2 in the definition of the function g2 such
that equation (2.16) holds, if

(n(d, k)−(p+1))(d−1)−(p+1)(k−1) 6= 0, p(d−1)+(p+1)(k−1) 6= 0. (2.17)

The left-hand sides of inequalities (2.17) are linear non-homogeneous func-
tions in p with coefficients at p being equal to ∓(d + k − 2) 6= 0. Hence,
choosing appropriate p ∈ Z \ {0,−1, n(d, k) − 1} one can achieve that in-
equalities (2.17) hold and hence, equation (2.16) can be solved in c1, c2.
Finally, we have solved equation (2.13) with an arbitrary complex function
h and N = 2, in complex functions fl, gl, l = 1, 2 with zero averages. This
together with the above discussion finishes the proof of statement (2.10).
Statement (2.11) follows from the second statement in (2.10). 2

Proposition 2.5 The Lie algebra H contains the direct sum

Gglob,0 := Λ1 ⊕ (⊕d∈2Z≥0
Λd)⊕ (⊕d∈2Z≥1+1Λd,0).

Proof The algebra H contains Λ0 and Λ1 = {Λ0,Λ0}, see (2.11). It also
contains Λ2, by the latter statement and since {Λ0,Λ1} ⊂ Λ0⊕Λ2, see (2.9),
and π2({Λ0,Λ1}) = Λ2, by (2.10). Hence, H ⊃ ⊕2

j=0Λj . Analogously one has
H ⊃ Λ3,0, by the latter statement, and (2.9), (2.10) applied to (d, k) = (0, 2).
Hence, H ⊃ (⊕2

j=0Λj)⊕ Λ3,0. One has H ⊃ Λ4, by the latter statement and
(2.9), (2.10) applied to (d, k) = (0, 3). Hence, H ⊃ (⊕0≤j≤4,j 6=3Λj) ⊕ Λ3,0.
Let us show that H ⊃ Λ5,0. Indeed, the bracket {Λ0,Λ4} is contained in
Λ3 ⊕Λ5, see (2.9). For every pair of functions f and g on the circle one has

{H0,f , H4,g} = H3,h3 +H5,h5 ,

where the ratio of averages of the functions h3 and h5 is equal to 2, see
(2.7). Therefore, if the average of the function h5 vanishes, then so does
the average of the function h3. This implies that the subspace of those
elements in {Λ0,Λ4} whose projections to Λ5 have zero averages coincides
with the subspace with the analogous property for the projection π3. Recall
that π5({Λ0,Λ4}) = Λ5, by (2.10). This together with the above statement
and the inclusion Λ3,0 ⊂ H implies that H contains Λ5,0. Applying the
above argument successively to Poisson brackets {Λ0,Λn}, n ≥ 5, we get
the statement of Proposition 2.5. 2

19



Proposition 2.6 The Lie algebra H is the direct sum of the subspace Gglob,0

and a vector subspace Ψ in

P = { P (y)√
1 + y2

| P is an odd polynomial , P ′(0) = 0}.

The corresponding subspace
√

1 + y2Ψ in the space of polynomials is gener-
ated by the polynomials

Rj(y) := jy2j−1 + (j − 1)y2j+1, j ∈ N, j ≥ 2. (2.18)

Proof The direct sum ⊕j≥0Λj ⊃ H is the direct sum of the spaces Gglob,0

and P, by definition. This together with Proposition 2.5 implies that H
is the direct sum of the subspace Gglob,0 and a subspace Ψ ⊂ P. Let us
describe the subspace Ψ. To do thus, consider the projection

πodd>1 : ⊕j≥0Λj → ⊕j∈2Z≥1+1Λj .

Claim 1. The projection πodd>1H lies in H. It is spanned as a vector
space over R by the subspace Λ3,0 and some Poisson brackets {Hd,a(s), Hk,b(s)}
with d+k ≥ 4 being even. All the above brackets with all the functions a(s),
b(s) with zero average lie in πodd>1H.

Proof The inclusion πodd>1H ⊂ H follows from the fact that πodd>1 is the
projection along the vector subspace Λ1⊕ (⊕j∈2Z≥0

Λj) ⊂ Gglob,0 ⊂ H. Each
element of the Lie algebra H is represented as a sum of a vector in Λ0 and a
linear combination of Poisson brackets {Hd,a, Hk,b}, by definition and (2.2).
The latter Poisson brackets lie in Λd+k−1⊕Λd+k+1, by (2.9), and thus, have
components of the same parity d+ k+ 1(mod 2). Note that if d+ k− 1 = 1,
then the above bracket lies in Λ1 ⊕ Λ3,0 ⊂ Gglob,0 ⊂ H, by (2.10), and its
πodd>1-projection lies in Λ3,0. The two last statements together imply the
second statement of the claim. If a(s) and b(s) have zero average, then
Hd,a, Hk,b ∈ Gglob,0 ⊂ H, thus, {Hd,a, Hk,b} ∈ H. Hence, the latter bracket
lies in πodd>1H, if d+ k is even and no less than 4. This proves the claim. 2

Taking projection πΨ of a vector w ∈ H to Ψ consists of first taking its
projection

πodd>1w =
k∑
j=1

H2j+1,fj(s) =
1√

1 + y2

k∑
j=1

fj(s)y
2j+1

and then replacing each fj(s) in the above right-hand side by its average f̂j :

πΨw =
1√

1 + y2
Pw(y), Pw(y) =

k∑
j=1

f̂jy
2j+1.
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If w = {Hd,a, Hk,b} with d + k = 2j ≥ 4, then Pw(y) = cRj(y), see (2.18),
c ∈ R, which follows from (2.7). This together with Claim 1 implies that
the vector space

√
1 + y2Ψ is contained in the vector space spanned by

the polynomials Rj . Now it remains to prove the converse: each Rj is

contained in
√

1 + y2Ψ. To this end, we have to show that one can choose
the above functions a and b with zero average so that Pw(y) 6= 0, i.e., so
that the above constant factor c be non-zero. This statement is implied by
the second equality in (2.10) and can be also proved directly as follows. Let
b(s) be an arbitrary smooth non-constant function on the circle with zero
average. Set a(s) = b′(s). Let d+ k = 2j ≥ 4. Then

w = {Hd,a, Hk,b} =
1√

1 + y2
(fj−1(s)y2j−1 + fj(s)y

2j+1),

fj−1 = 2j(b′)2 − k(b′b)′,

by (2.8). The function fj−1(s) has positive average, since so does its first
term, while its second term has zero average. Therefore, Pw = cRj , c > 0.
Proposition 2.6 is proved. 2

Lemma 2.7 The vector subspace generated by the polynomials Rj from
(2.18) coincides with the space of odd polynomials P (y) with P ′(0) = 0

such that the corresponding polynomial P̃ (x) = x−
1
2P (x

1
2 ) has vanishing

derivative at −1.

As it is shown below, the lemma is implied by the following proposition.

Proposition 2.8 An odd polynomial

Pk(y) =
k∑
j=1

ajy
2j+1 (2.19)

is a linear combination of polynomials R`(y), see (2.18), if and only if

k∑
j=1

(−1)jjaj = 0. (2.20)

Proof The polynomials (2.18) obviously satisfy (2.20). In the space of odd
polynomials P (y) with P ′(0) = 0 of any given degree d ≥ 5 equation (2.20)
defines a hyperplane. The polynomials (2.18) of degree no greater than d
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also generate a hyperplane there. Hence, these two hyperplanes coincide.
The proposition is proved. 2

Proof of Lemma 2.7. For every odd polynomial P (y) as in (2.19) one
has

P̃ (x) =
k∑
j=1

ajx
j .

Hence, equation (2.20) is equivalent to the equation P̃ ′(−1) = 0. Lemma
2.7 is proved. 2

Proof of Theorem 1.22. Theorem 1.22 follows from Proposition 2.6 and
Lemma 2.7. 2

2.4 Proof of Theorem 1.16 for closed curve

Theorem 1.16 is implied by Theorem 1.22 proved above and the following
lemma.

Lemma 2.9 The Lie algebra Gglob, see (1.15), is C∞-dense in the space of
smooth functions on T<1γ ' γs × Ry.

Proof Let us multiply each function from Gglob by
√

1 + y2; then each
function becomes a polynomial in y with coefficients being smooth functions
on a circle. All the polynomials in y with coefficients as above are C∞-dense
in the space of functions in (s, y) ∈ γ × R, by Weierstrass Theorem. The
polynomials realized by functions from Gglob in the above way are exactly
the polynomials that are represented in unique way as sums of at most four
polynomials of the following types:

1) any polynomial of degree at most 2;
2) any even polynomial containing only monomials of degree at least 4;
3) any odd polynomial of type P (y; s) =

∑k
j=1 aj(s)y

2j+1 with coeffi-
cients aj(s) being of zero average;

4) any odd polynomial of type P (y) =
∑k

j=1 bjy
2j+1 with constant coef-

ficients bj and P̃ ′(−1) = 0.
For the proof of Lemma 2.9 it suffices to show that the odd polynomials

of type 4) are C∞-dense in the space of odd polynomials in y with constant
coefficients and vanishing derivative at 0.

Take an arbitrary odd polynomial of type Q(y) =
∑k

j=1 bjy
2j+1. The

polynomial Q̃(x) := x−
1
2Q(x

1
2 ) =

∑k
j=1 bjx

k can be approximated in the
topology of uniform convergence with derivatives on segments [0, A] with
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A arbitrarily large by polynomials R̃(x) with R̃(0) = 0 and R̃′(−1) = 0.
Indeed, let us extend the restriction Q̃|{x≥0} to a C∞-smooth function on
the semi-interval [−1,+∞) with vanishing derivative at −1. Thus extended
function can be approximated by polynomials H̃n(x). One can normalize
the above polynomials H̃n to vanish at 0 and to have zero derivative at −1
by adding a small linear non-homogeneous function anx+ bn. Then the cor-
responding polynomials Hn(y) := yH̃n(y2) are of type 4) and approximate
Q(y). This together with the above discussion proves Lemma 2.9. This
finishes the proof of Theorem 1.16 for curves. 2

2.5 Proof of Theorems 1.1, 1.8 and 1.10 for n = 1

Theorems 1.1 and 1.8 follow from Theorem 1.16.
In the case, when γ is a germ of curve (a local curve parametrized by an

interval), the bundle T<1γ is a contractible space identified with a rectangle
in the coordinates (s, w). Therefore, each symplectic vector field on T<1γ
is Hamiltonian. This together with Theorem 1.8 implies density of the Lie
algebra generated by the fields vf in the Lie algebra of symplectic vector
fields. This proves Theorem 1.10.

3 The Lie algebra in higher dimensions. Proof of
Proposition 1.15 and Theorems 1.20, 1.16, 1.1

Here we consider the case, when n ≥ 2 (whenever the contrary is not speci-
fied). In Subsection 3.1 we give a formula for Poisson brackets of functions
Hk,φ with φ ∈ Sk(T ∗γ) and prove Proposition 1.15. Then in Subsection
3.2 we find the Lie algebra generated by the functions Hf (x,w) and prove
Theorem 1.20. In Subsection 3.3 we prove Theorems 1.16, 1.1 and 1.8.

3.1 Poisson brackets and their calculations for n ≥ 1. Proof
of Proposition 1.15

The results of the present subsection are valid for all n ∈ N.
Let γ be a n-dimensional Riemannian manifold, x ∈ γ. Fix some or-

thonormal coordinates z = (z1, . . . , zn) on Txγ. Recall that the normal coor-
dinates centered at x on a neighborhood U = U(x) ⊂ γ is its parametrization
by a neighborhood of the origin in Rnz ' Txγ that is given by the exponential
mapping: exp : Txγ → γ. It is well-known that in thus constructed normal
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coordinates z on U the Riemannian metric has the same first jet at x, as
the standard Euclidean metric dz2

1 + · · ·+ dz2
n.

Proposition 3.1 Fix arbitrary normal coordinates (z1, . . . , zn) centered at
x0 ∈ γ on a neighborhood U = U(x0) ⊂ γ. For every x ∈ U and every vector
w ∈ Txγ let (w1, . . . , wn) denote its components in the basis ∂

∂zj
in Txγ. This

yields global coordinates (z1, . . . , zn;w1, . . . , wn) on Tγ|U . At the points of
the fiber Tx0γ ⊂ Tγ the canonical symplectic form ω = dα coincides with
the standard symplectic form ωe :=

∑n
j=1 dwj ∧ dzj.

Proof Let α and αe :=
∑n

j=1wjdzj denote the Liouville forms (1.5) on
Tγ defined respectively by the metric under question and the standard Eu-
clidean metric dz2

1 + · · · + dz2
n. Their 1-jets at each point (x0, w) of the

fiber Tx0γ coincide, since both metrics have the same 1-jet at x0. Therefore,
ω = dα = dαe = ωe on Tx0γ. 2

Corollary 3.2 In the conditions of Proposition 3.1 for every two smooth
functions F and G on an open subset in π−1(U) ⊂ Tγ their Poisson bracket
at points of the fiber Tx0γ is equal to the standard Poisson bracket in the
coordinates (z, w):

{F,G} =
dF

dw

dG

dz
− dF

dz

dG

dw
on Tx0γ. (3.1)

Proof of Proposition 1.15. Fix a point x0 ∈ γ and a system of nor-
mal coordinates (z1, . . . , zn) centered at x0. Let (w1, . . . , wn) be the corre-
sponding coordinates on tangent spaces to γ introduced above. For every
f, g ∈ C∞(γ) one has

{f(z)
√

1− ||w||2, g(z)
√

1− ||w||2}|z=0

= −
√

1− ||w||2
∑
j

(
f
∂g

∂zj
− g ∂f

∂zj

)
wj√

1− ||w||2
(3.2)

= (gdf − fdg)(w) = (2gdf − d(gf))(w) :

the derivative in z of the function
√

1− ||w||2 vanishes at the points of the
fiber {z = 0}, since the metric in question has the same first jet at 0, as
the Euclidean metric (normality of coordinates). Thus, the latter Poisson
bracket is the function on T<1γ given by a 1-form.

Claim 1. The Poisson bracket (3.1) of any two 1-forms η1(w), η2(w)
considered as functions on Tγ is also a 1-form. The dual Poisson bracket
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on vector fields on γ induced via the duality isomorphism T ∗γ → Tγ given
by the metric is the usual Lie bracket.
Proof The result of taking Poisson bracket (3.1) of two 1-forms in normal
chart at the fiber Tx0γ is obviously a linear functional of w. This is true
for every x0 ∈ γ and the corresponding normal chart. In more detail, let
ηi(w) =

∑n
j=1 aij(z)wj . Then

{η1(w), η2(w)}|x=x0 =
n∑
s=1

(
a1s(0)

∂a2j

∂zs
(0)− a2s(0)

∂a1j

∂zs
(0)

)
wj . (3.3)

Thus, the bracket is linear on fibers, and hence, given by a 1-form. The
fact that the duality given by the metric transforms the Poisson bracket
on 1-forms to the Lie bracket on the vector fields follows from (3.3) and
coincidence of 1-jets of the given metric and the Euclidean metric at x0. 2

Claim 1 already implies that the space of functions on T<1γ given by
1-forms is a Lie algebra dual to the usual Lie algebra of vector fields.

Now it remains to show that each 1-form is a sum of at most 2n + 1
Poisson brackets (3.2). To do this, we use the next proposition.

Proposition 3.3 On every C∞-smooth n-dimensional manifold γ each smooth
1-form η can be represented as a finite sum

∑2n
`=1 g`df`, where f`, g` are

smooth functions on γ.

Proof Consider γ as an embedded submanifold in R2n
s1,...,s2n (the Whitney

Theorem). We would like to show that the form η can be written as the
restriction to γ of some differential 1-form η̃ on R2n. To do this, fix a
tubular neighborhood Γδ ⊂ R2n of the submanifold γ given by the Tubular
Neighborhood Theorem. Here δ = δ(x) > 0 is a smooth function,

Γδ := {p ∈ R2n | dist(p, x) < δ(x) for some x ∈ γ}. (3.4)

Each point p ∈ Γδ has the unique closest point x = πδ(p) ∈ γ, and the
projection πδ : Γδ → γ is a submersion. The projection πδ allows to extend
the form η to the pullback form η̂ := π∗δη on Γδ, which coincides with η on
γ. Take now an arbitrary smooth bump function β on Γδ that is identically
equal to 1 on γ and vanishes on a neighborhood of the boundary ∂Γδ. The
1-form η̃ := βη̂ extended by zero outside the tubular neighborhood Γδ is a
global smooth 1-form on R2d whose restriction to γ coincides with η. Taking
its coordinate representation η̃ =

∑2n
`=1 η̃`ds` and putting g` = η̃`, f` = s`

yields the statement of the proposition. 2
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Let now η be an arbitrary smooth 1-form on γ. Let f`, g` be the same,
as in Proposition 3.3. Set g2n+1 = 1, f2n+1 =

∑2n
`=1 g`f`. Then

2η = 2

2n∑
`=1

g`df` =

2n∑
`=1

(2g`df` − d(g`f`)) + (2g2n+1df2n+1 − d(g2n+1f2n+1)).

Therefore, 2η, and hence η can be presented as a sum of at most 2n + 1
Poisson brackets (3.2). This finished the proof of Proposition 1.15. 2

For every x ∈ γ let Symk(T ∗xγ) denote the space of symmetric k-linear
forms on Txγ: each of them sends a collection of k vectors in Txγ to a real
number and is symmetric under permutations of vectors. The union of the
latter spaces through all x ∈ γ is a vector bundle of tensors. The space
of its sections will be denoted by Symk(T ∗γ). Similarly, by Sk(T ∗xγ) we
will denote the space of degree k homogeneous polynomials as functions on
the vector space Txγ. The space Sk(T ∗γ) introduced before is the space
of sections of the vector bundle over γ with fibers Sk(T ∗xγ). It is well-
known that the mapping χsym : Symk(T ∗xγ) → Sk(T ∗xγ) sending a k-linear
form Φ(y1, . . . , yk) to the polynomial φ(y) := Φ(y, . . . , y) is an isomorphism,
which induces a section space isomorphism Symk(T ∗γ) → Sk(T ∗γ). The
notion of covariant derivative of a tensor bundle section Φ ∈ Symk(T ∗γ) is
well-known. For every x ∈ γ, ν ∈ Txγ, φ ∈ Sk(T ∗γ) the covariant derivative
∇νφ ∈ Sk(T ∗xγ) along a vector ν ∈ Txγ is

∇νφ := χsym(∇ν(χ−1
symφ)). (3.5)

Remark 3.4 For every φ ∈ Sk(T ∗γ) one has

Vk(φ)(y) := (∇yφ)(y) ∈ Sk+1(T ∗γ). (3.6)

Let z = (z1, . . . , zn) be normal coordinates on γ centered at x, and let
(w1, . . . , wn) be the corresponding coordinates on the fibers of the bundle
Tγ in the basis ∂

∂z1
, . . . , ∂

∂zn
. For every ν ∈ Txγ and every φ ∈ Sk(T ∗γ) con-

sidered as a polynomial in w with coefficients depending on z the covariant
derivative (3.5) is obtained from the polynomial φ by replacing its coeffi-
cients by their derivatives along the vector ν. This follows from definition,
since in normal coordinates the Christoffel symbols vanish.

Convention 3.5 Everywhere below for every φ ∈ Sk(T ∗γ), x ∈ γ and ν ∈
Txγ by

dyφ(y)
dν we denote the derivative of the polynomial φ(y) considered

as a function of y ∈ Txγ along the vector ν (treating ν as a tangent vector
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to Txγ at 0, identifying the vector space Txγ with its tangent spaces at all its

points by translations). For every function f ∈ C∞(γ) by
dyφ(y)
d∇f we denote

the above derivative calculated for ν = ∇f(x) at each point x ∈ γ. Note that
the latter derivative lies in Sk−1(T ∗γ), by definition.

Proposition 3.6 For every k,m ∈ Z≥0 and every φ ∈ Sk(T ∗γ), f ∈
Sm(T ∗γ) the Poisson bracket of the corresponding functions Hk,φ and Hm,f

from (1.9) (see Convention 1.17) lies in Λk+m−1 ⊕ Λk+m+1. In the case,
when m = 0, i.e., f = f(x) is a function of x, one has

{Hk,φ, H0,f} =

dyφ(y)
d∇f + (∇y(fφ))(y) + (k − 2)φ(y) < y,∇f >√

1 + ||y||2
. (3.7)

Here ∇f is the gradient of the function f(x) with respect to the metric of
γ, and ∇y(fφ) is the above-defined covariant derivative of the form fφ ∈
Sk(T ∗γ) along the vector y, see (3.5), (3.6).

Proof Let us prove the first statement of the proposition. Fix an arbitrary
x0 ∈ γ. It suffices to show that the restriction to Tx0γ of the Poisson
bracket is (

√
1 + ||y||2)−1 times a sum of two homogeneous polynomials in

y of degrees k + m − 1 and k + m + 1. Let us pass back to the initial unit
ball bundle T<1γ. Fix some normal coordinates (z1, . . . , zn) centered at z0

and the corresponding coordinates w = (w1, . . . , wn) on the fibers. One has

Hk,φ =
φ(w)

(
√

1− ||w||2)k−1
; (3.8)

here the squared norm ||w||2 is given by the metric and depends on the point
z ∈ γ. This follows by definition and since

||y||2 =
||w||2

1− ||w||2
, ||y||2 + 1 = (1− ||w||2)−1. (3.9)

Let us calculate the Poisson bracket {Hk,φ, Hm,f} at points in Tz0γ by for-

mula (3.1). The partial derivative
∂Hk,φ
dzj

is (
√

1− ||w||2)−(k−1) times a degree

k homogeneous polynomial in w obtained from the polynomial φ(w) by re-
placing its coefficients by their partial derivatives in zj . This follows from
definition and the fact that

√
1− ||w||2 has zero derivatives in zj at points

of the fiber Tx0γ. The latter fact follows from normality of the coordinates

zj . The partial derivative
∂Hk,φ
∂wj

is a sum of a degree k − 1 homogeneous
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polynomial in w divided by (
√

1− ||w||2)k−1 and a degree k + 1 homoge-
neous polynomial in w divided by (

√
1− ||w||2)k+1 (Leibniz rule). Finally,

the expression (3.1) for the above Poisson bracket is a sum of terms of the
two following types: 1) a degree k + m − 1 homogeneous polynomial in w
divided by (

√
1− ||w||2)k+m−2; 2) a degree k + m + 1 homogeneous poly-

nomial in w divided by (
√

1− ||w||2)k+m. The terms of types 1) and 2) are
homogeneous polynomials in y of degrees respectively k+m± 1 divided by√

1 + ||y||2, by (3.9). This implies the first statement of the proposition.
Let now f = f(x) be a function of x ∈ γ. Let us prove formula (3.7).

For z = 0 (i.e., x = x0) one has

∂Hk,φ

∂wj
= (
√

1− ||w||2)1−k ∂

∂wj
φ(w) +

(k − 1)φ(w)wj

(
√

1− ||w||2)k+1
,

∂H0,f

∂wj
= − wj√

1− ||w||2
f,

∂H0,f

∂zj
=
√

1− ||w||2 ∂f
∂zj

,

n∑
j=1

∂Hk,φ

∂wj

∂H0,f

∂zj
= (
√

1− ||w||2)2−k dwφ(w)

d∇f
+

(k − 1)φ(w) < ∇f, w >

(
√

1− ||w||2)k
,

(3.10)
n∑
j=1

∂Hk,φ

∂zj

∂H0,f

∂wj
= − f

(
√

1− ||w||2)k

n∑
j=1

wj
∂φ(w)

∂zj
= − (∇wφ)(w)f

(
√

1− ||w||2)k
,

(3.11)
which follows from Remark 3.4. Substituting formulas (3.10), (3.11) and the
formula < ∇f, w > φ(w) + (∇wφ)(w)f = (∇w(fφ))(w) to (3.1) yields

{Hk,φ, H0,f} =

dwφ(w)
d∇f

(
√

1− ||w||2)k−2

+
(k − 2)φ(w) < ∇f, w >

(
√

1− ||w||2)k
+

1

(
√

1− ||w||2)k
(∇w(fφ))(w),

which is equivalent to (3.7). Proposition 3.6 is proved. 2

Remark 3.7 Formula (3.7) remains valid for n = 1 and yields formula (2.2)
from Subsection 2.1 in the case, when k = 0 in (2.2). Indeed, in this case
φ = h(s)yd, f = f(s). The corresponding first term in the numerator in
(3.7) is equal to dhf ′yd−1. The second term equals (hf)′yd+1. The third
term equals (d − 2)hf ′yk+1. Thus, the numerator is equal to dhf ′yd−1 +
((d− 1)hf ′ + fh′)yd+1. This together with (3.7) yields (2.2).
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3.2 The Lie algebra. Proof of Theorem 1.20

Proposition 3.8 The Lie algebra H generated by functions Hk,φ for all
k ∈ Z≥0 and φ ∈ Sk(T ∗γ) with respect to the Poisson bracket is contained
in Λ := ⊕k≥0Λk, and the latter direct sum is a Lie algebra.

Proposition 3.8 follows from Proposition 3.6.
In what follows by πk we denote the projection πk : Λ→ Λk.
We will deal with the linear operators Vk given by (3.6):

Vk : Sk(T ∗γ) 7→ Sk+1(T ∗γ), φ(y) 7→ (∇yφ)(y).

Proposition 3.9 One has

πk+1{Λk,Λ0} =

Λk+1 for k 6= 2,
1√

1+||y||2
V2(S2(T ∗γ)) for k = 2.

(3.12)

Proof The higher order part of a Poisson bracket {Hk,φ, H0,f} is equal to

{Hk,φ, H0,f}k+1 =
1√

1 + ||y||2
((k − 2)φ(y) < ∇f, y > +(∇y(φf))(y)),

(3.13)
by (3.7). If either f ≡ 1, or k = 2, then the above expression in the brackets
is reduced to (∇y(φf))(y) = Vk(φf)(y). Moreover, if f ≡ 1, then the whole
numerator in (3.7) is reduced to Vk(φf)(y). Therefore, each element in

1√
1+||y||2

Vk(S
k(Tγ)) is realized by a Poisson bracket, and hence,

1√
1 + ||y||2

Vk(S
k(Tγ)) ⊂ {Λk,Λ0}. (3.14)

In particular, this implies the statement of the proposition for k = 2. To
treate the case, when k 6= 2, we use the following proposition.

Proposition 3.10 For every k ∈ Z≥1 the vector subspace in Sk+1(T ∗γ)
generated by all the products φ(y) < ∇f, y >= φ(y) dfdy with φ ∈ Sk(T ∗γ)

and f ∈ C∞(γ) coincides with all of Sk+1(T ∗γ). Moreover, each element in
Sk+1(T ∗γ) can be represented as a sum of at most 2n products as above.

Proof Consider γ as an embedded submanifold in R2n
s1,...,s2n (the Whitney

Theorem); the embedding needs not be isometric.
Claim 3. Each φ ∈ Sk+1(T ∗γ) is the restriction to Tγ of some h ∈

Sk+1(T ∗R2n).
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Proof Let δ(x) > 0 be a smooth function on γ with δsup := sup δ � 1 that
defines a tubular neighborhood Γδ ⊂ R2n of the submanifold γ, see (3.4).
Let πδ : Γδ → γ be the projection, which is a submersion. Let us extend φ
to a form φ̃ := π∗δφ ∈ Sk+1(Γδ) as the projection pullback. Let ψ : Γδ → R
be a bump function that is identically equal to 1 on a neighborhood of
the submanifold γ and vanishes on a neighborhood of the boundary ∂Γδ.
Then the form h := ψφ̃ extended as zero outside the tubular neighborhood
Γδ becomes a well-defined form h ∈ Sk+1(T ∗R2n) whose restriction to Tγ
coincides with φ. 2

Let us consider the standard trivialization of the tangent bundle TR2n

given by translations to T0R2n. Let y = (y1, . . . , y2n) be the corresponding
coordinates on the fibers. Every h ∈ Sk+1(T ∗R2n) is a homogeneous poly-
nomial in y with coefficients being C∞-smooth functions on R2n. Therefore,
h can be decomposed as

h(y) =
2n∑
j=1

φj(y)yj =
2n∑
j=1

φj(y)dsj(y), φj ∈ Sk(T ∗R2n).

The restriction of the latter decomposition to Tγ together with Claim 3
yield the second (and hence, the first) statement of Proposition 3.10. 2

The statement of Proposition 3.9 for k 6= 2 follows from formula (3.13),
statement (3.14) and Proposition 3.10. 2

Corollary 3.11 The sum Λ0⊕Λ1⊕Λ2 and the subspace 1√
1+||y||2

V2(S2(T ∗γ))

in Λ3 are contained in the Lie algebra H. If Λ3 ⊂ H, then H = ⊕k≥0Λk.

Proof The first statement of the corollary follows from definition and the
statement of Proposition 3.9 for k = 0, 1, 2. Its second statement follows
from the statement of Proposition 3.9 for k ≥ 3. 2

Now for the proof of Theorems 1.20 it suffices to show that Λ3 ⊂ H. As
it is shown below, this is implied by formula (3.7) and the following lemma.

Lemma 3.12 Let n ≥ 2. For every k ∈ N consider two R-linear mappings

G+
k : Sk(T ∗γ)⊗R C

∞(γ)→ Sk+1(T ∗γ), φ⊗R f 7→ φ(y)
df

dy
, (3.15)

G−k : Sk(T ∗γ)⊗R C
∞(γ)→ Sk−1(T ∗γ), φ⊗R f 7→

dyφ(y)

d∇f
. (3.16)
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(In (3.15) for every x ∈ γ and y ∈ Txγ the derivative df
dy = df

dy (x) means
the derivative of the function f at x along the vector y.) For every even k,
e.g., k = 4, one has G−k (KerG+

k ) = Sk−1(T ∗γ): more precisely, there exists
a dk,n ∈ N, dk,n < (4n)k+1, such that for every h ∈ Sk−1(T ∗γ) there exists
a collection of dk,n pairs

(φj , fj), φj ∈ Sk(T ∗γ), fj ∈ C∞(γ), j = 1, . . . , dk,n,

such that ∑
j

φj(y)
df

dy
≡ 0,

∑
j

dyφj(y)

d∇fj
= h. (3.17)

Lemma 3.12 is proved below. In its proof we deal with γ as an em-
bedded submanifold in RN(s1,...,sN ) (the Whitney Theorem, in which one can

take N = 2n), equipped with its intrinsic Riemannian metric (not coincid-
ing with the restriction to Tγ of the standard Euclidean metric). Let us
trivialize the tangent bundle TRN by translation to the origin and denote
by y = (y1, . . . , yN ) the corresponding coordinates on the tangent spaces.
Let Pk = Pk(T ∗RN ) ⊂ Sk(T ∗RN ) be the subspace of degree k homogeneous
polynomials in y with constant coefficients. Let L ⊂ C∞(RN ) denote the N -
dimensional vector subspace over R generated by the coordinate functions
s1, . . . , sN .

Remark 3.13 The operator G+
k given by formula (3.15) extends as a well-

defined linear operator Sk(T ∗RN )⊗R C
∞(RN )→ Sk+1(T ∗RN ) by the same

formula, which will be also denoted by G+
k . For every h ∈ Sk(T ∗RN ) ⊗R

C∞(RN ) the restriction (G+
k h)|Tγ coinsides with the image of the restriction

h|Tγ ∈ Sk(T ∗γ) ⊗R C
∞(γ) under the operator G+

k acting on Sk(T ∗γ) ⊗R
C∞(γ). In particular, the restrictions to Tγ of elements of the kernel of the
operator G+

k in the space Sk(T ∗RN )⊗RC
∞(RN ) are contained in the kernel

of the operator G+
k acting on Sk(T ∗γ)⊗R C

∞(γ).

Step 1: finding basis of the kernel of G+
k in Pk ⊗ L := Pk ⊗R L.

Proposition 3.14 For every k ∈ N the kernel Kerkpol of the restriction to

Pk ⊗ L of the linear operator G+
k is the vector space with the basis

Qm,i,j := ym(yi ⊗ sj − yj ⊗ si), m = (m1, . . . ,mN ) ∈ ZN≥0, (3.18)

|m| :=
∑
`

m` = k − 1, i, j = 1, . . . , N, j > i,

j ≥ max ind(m) := max{` | m` > 0}.
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Proof It is obvious that G+
k Qm,i,j = 0. Let us show that the elements

Qm,i,j are linearly independent. Indeed, if there were a linear dependence,
then there would be a linear dependence between some Qm,i,j , for which
the corresponding monomial P := ymyiyj is the same: a fixed monomial.
All the Qm,`,µ corresponding to P have µ = j, by definition, while ` runs
through those indices less than j, for which P contains y`. It is clear that
these Qm,`,j are linearly independent, – a contradiction.

Fix an arbitrary Q ∈ Kerkpol:

Q =
∑
j,m

cj,my
m ⊗ sj ; |m| = k. (3.19)

Let us show that Q is a linear combination of elements Qm,i,j . In the proof
we use the formula

G+
k (ym ⊗ sj) = yjy

m for every m ∈ ZN≥0, |m| = k, (3.20)

which follows from definition. Without loss of generality we can and will
consider that i ≥ `0 := max ind(m) for every (i,m) with ci,m 6= 0. Indeed,
if the latter inequality does not hold for some (i,m), one can achieve it by
adding

ci,my
my−1

`0
(yi ⊗ s`0 − y`0 ⊗ si) = ci,mQm′,i,`0

to Q. This operation kills the (i,m)-th term and replaces it by an (`0,m
′)-th

term. Here m′ is obtained from m by replacing m`0 , mi by m`0−1 and mi+1
respectively. Let us show that Q = 0. Indeed, G+

k (ci,my
m ⊗ si) = ci,myiy

m

should cancel out with similar monomials coming from other (j, m̃) 6= (i,m),
since G+

k Q = 0. Therefore, there exist j 6= i and m̃ 6= m for which cj,m̃ 6= 0
and yjy

m̃ = yiy
m. Hence, ym is divisible by yj and j ≤ `0 = max ind(m).

On the other hand, j ≥ max ind(m̃), by the above assumption on all the
monomials in Q, and ym̃ is divisible by yi. Hence, `0 ≥ j > i ≥ `0, since
j 6= i, a contradiction. Therefore, Q = 0. The proposition is proved. 2

Step 2: proof of an Euclidean homogeneous version of Lemma 3.12. In
what follows by Pk0 ⊂ Pk we denote the subspace of polynomials with zero
average along the unit sphere.

Lemma 3.15 Let N ≥ 2. Consider the mapping g−k : Pk ⊗ L → Pk−1

acting by the formula

g−k : P (y)⊗ f 7→ dP (y)

d∇f
; f =

N∑
j=1

cjsj , cj = const, ∇f = (c1, . . . , cN ),

(3.21)
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i.e., the above gradient is taken with respect to the standard Euclidean met-
ric. One has g−k (Kerkpol) = Pk−1

0 . The latter image coincides with all of

Pk−1, if and only if k is even.

In the proof of Lemma 3.15 we will use the following equivariance and in-
variance properties of the operators G+

k , g−k and the kernel Kerkpol under the

actions of GLN (R) and O(N) on Pk and Pk ⊗ L:

H(P ) := P ◦H, H(P ⊗ s) := (P ◦H)⊗ (s ◦H)

for every H ∈ GLN (R), P ∈ Pk, s ∈ L.

Proposition 3.16 1) The restriction of the mapping G+
k to Pk⊗L is equiv-

ariant under the action of the linear group GLN (R) on the image and the
preimage:

G+
k (H(P ⊗ s))(y) = H(Pds)(y) = P (Hy)ds(Hy)

for every H ∈ GLN (R). In particular, the kernel Kerkpol is GLN (R)-invariant.

2) The mapping g−k is equivariant under action of the orthogonal group
O(N):

g−k (H(P ⊗ s)) = H((g−k )(P ⊗ s))

for every H ∈ O(N). In particular, the image g−k (Kerkpol) is O(N)-invariant.
3) The latter image is generated by derivatives of monomials ym, |m| =

k − 1, along the vector fields vij := yi
∂
∂yj
− yj ∂

∂yi
, i 6= j; each vij generates

the one-dimensional Lie algebra of the standard SO(2)-action on RN in the
variables (yi, yj).

Proof Statements 1) and 2) of the proposition follow by definition. The
image g−k (Kerkpol) is generated by the polynomials

g−k (Qm,i,j) = g−k (ym(yi⊗sj−yj⊗si)) = yi
∂ym

∂yj
−yj

∂ym

∂yi
, |m| = k−1, (3.22)

by Proposition 3.14. The latter right-hand side is the derivative of the
polynomial ym along the generator vij of the SO(2)-action on the variables
(yi, yj). This proves Proposition 3.16. 2

Proposition 3.17 The derivatives from Proposition 3.16, Statement 3), lie
in Pk−1

0 .
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Proof Averaging the derivative dym

dvij
along the SO(2)-action in the variables

(yi, yj) yields zero, analogously to the well-known fact that the derivative of
a function on a circle has zero average. Every function on the unit sphere in
RN having zero average along the above SO(2)-action has zero average on
the whole unit sphere as well, since the volume form of the sphere (foliated by
SO(2)-orbits) is the product of the family of length elements of the SO(2)-
orbits and a measure transversal to the foliation by SO(2)-orbits. This
proves Proposition 3.17. 2

Proof of Lemma 3.15. One has g−k (Kerkpol) ⊂ P
k−1
0 (Proposition 3.17 and

Proposition 3.16, Statement 3)). For even k one has Pk−1
0 = Pk−1, since

each odd degree homogeneous polynomial has zero average along the unit
sphere: the antipodal map changes the sign of such a polynomial. Therefore,
it suffices to prove that each polynomial in Pk−1

0 lies in g−k (Kerkpol). We prove
this statement by induction in the number N of variables.

Induction base: N = 2. A homogeneous polynomial in (y1, y2) has zero
average along the unit circle, if and only if it is the derivative of another ho-
mogeneous polynomial by the vector field v12 generating the SO(2)-action.
Indeed, writing the restriction to the unit circle of a homogeneous polyno-
mial of degree k − 1 as a trigonometric polynomial in φ = arctan(y2y1 ) of
the same degree reduces the above statement to the following well-known
one: a trigonometric polynomial of a given degree has zero average, if and
only if it is the derivative of another trigonometric polynomial of the same
degree. Therefore, the space Pk−1

0 of polynomials in (y1, y2) coincides with
g−k (Kerkpol), by Proposition 3.16 (Statement 3)) and Proposition 3.17.

Induction step. Let the statement Pk−1
0 = g−k (Kerkpol) be proved for all

N ≤ d, N ≥ 2. Let us prove it for N = d + 1. Fix an arbitrary P ∈ Pk−1
0 .

It can be represented as the sum

P = Q+R, Q has zero average along the SO(2) action in (y1, y2);

the polynomial R is SO(2)− invariant.

Namely, R is the average of the polynomial P under the above SO(2)-action.
Let us show that Q, R, and hence, P lie in g−k (Kerkpol). The polynomials
Q and R are homogeneous of the same degree k − 1. The polynomial Q
is a derivative, as above, see the proof of the induction base. Therefore,
Q ∈ g−k (Kerkpol), by Proposition 3.16, Statement 3). One has

R(y) =

[N
2

]∑
j=0

(y2
1 + y2

2)jRj(y3, . . . , yN ),
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Rj are homogeneous polynomials, degRj = N − 2j,

by SO(2)-invariance. For every j ∈ N the SO(2)-average of the monomial
y2j

2 is equal to cj(y
2
1 + y2

2)j , cj > 0. Set

R̃(y) :=

[N
2

]∑
j=0

c−1
j y2j

2 Rj(y3, . . . , yN ).

The difference R̃−R has zero average along the SO(2)-action, by construc-
tion. Therefore, it lies in g−k (Kerkpol), see the above argument. Now it

remains to show that R̃ ∈ g−k (Kerkpol). The polynomial R̃ has zero average

along the unit sphere in RN , by assumption. On the other hand, it is a poly-
nomial of N−1 variables y2, . . . , yN . Therefore, it has zero average along the
(N − 2)-dimensional unit sphere in RN−1

y2,...,yN
. Hence, it lies in the g−k -image

of the kernel Kerkpol from the space Pk ⊗ L in variables (y2, . . . , yN ), by the
induction hypothesis. The induction step is over. Lemma 3.15 is proved. 2

Step 3: proof of Lemma 3.12 in the general case. Recall that Sk(T ∗γ)
is the space of sections of a smooth vector bundle Ek whose fiber over each
point x ∈ γ is the space of degree k homogeneous polynomials on the tangent
space Txγ. The bundle Ek is isomorphic to the k-th symmetric power of
the cotangent bundle T ∗γ, see the discussion before Remark 3.4. To prove
Lemma 3.12, we show that for every even k each section of the bundle Ek−1 is
a finite linear combination of the restrictions to Tγ of elements of the image
G−k (Kerkpol) with C∞-smooth coefficients. To this end, we will show that the
latter image spans the space of degree k − 1 homogeneous polynomials at
each point x ∈ γ: see the following definition.

Definition 3.18 Let γ be a C∞-smooth manifold (not necessarily com-
pact). Let π : E → γ be a C∞-smooth finite-dimensional vector bundle. A
(finite or infinite) collection of its sections (fi)i∈I is called generating (for
the bundle E), if for every x ∈ γ the vectors fi(x) ∈ E(x) span the fiber
E(x) over x.

Proposition 3.19 Let k be an even number. The sections from the image
G−k (Kerkpol) generate the vector bundle Ek−1.

Proof Fix an arbitrary point x ∈ γ. We consider that the origin in RN is
distinct from x and the line connecting x with the origin is transversal to
Txγ. One can achieve this by translation. Let us choose a Euclidean scalar
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product on RN and orthonormal coordinates (s1, . . . , sN ) centered at 0 so
that

- the vector subspace parallel to Txγ be the coordinate subspace Rns1,...,sn ;
- the translation pushforward of the Riemannian metric on Txγ to Rns1,...,sn

be the standard Euclidean metric given by ds2
1 + · · ·+ ds2

n;
- the radius vector of the point x be orthogonal to Txγ.
One can achieve this by applying a linear transformation and choos-

ing appropriate scalar product. These operations change neither the space
Pk ⊗ L, nor Kerkpol (Proposition 3.16, Statement 1)). Let us equip the tan-

gent spaces to RN with the coordinates y1, . . . , yN obtained from s1, . . . , sN
by translations. This identifies the tangent subspace Txγ with Rny1,...,yn . For

every Q ∈ Pk⊗L containing only sj and yj with j ≤ n the image G−k (Q|Tγ)
coincides on the fiber Txγ with the restriction to it of the form g−k (Q), by
construction. The g−k -image of the subspace in Kerkpol consisting of polyno-

mials in y1, . . . , yn coincides with the similar subspace in Pk−1, i.e., with
the fiber at x of the bundle Ek−1, by Lemma 3.15. This proves Proposition
3.19. 2

Proposition 3.20 Let γ and π : E → γ, be as in the above definition. Let
f1, . . . , f` be a finite generating collection of sections of the bundle E. Then
every C∞-smooth section of the bundle E is a linear combination of the
sections f1, . . . , f` with coefficients being C∞-smooth functions on γ.

The author is sure that this proposition is well-known to specialists, but he
did not find a reference.
Proof Set d = dimE. Each point of the manifold γ has a neighborhood
U such that there exists a collection of distinct indices j1, . . . , jd for which
the values fj1(x), . . . , fjd(x) are linearly independent at every x ∈ U . Each

section F on such a neighborhood is a linear combination F =
∑d

i=1 ηifji ,
where ηi are C∞-smooth functions on U . If F has compact support in U ,
then so do ηi.

Now fix a locally finite at most countable covering of the manifold γ
by open subsets Uα as above and the corresponding partition of unity con-
sisting of functions ρα compactly supported in Uα. Let F be an arbitrary
C∞-smooth section of the bundle E. Each function ραF is compactly sup-
ported in Uα and hence ραF =

∑d
i=1 ηi,αfji,α , where ηi,α are compactly

supported in Uα. Writing F =
∑

α(ραF ) and replacing ραF by the latter
linear combinations yields that F is a linear combination of the sections fj
with C∞-smooth coefficients. The proposition is proved. 2
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Proof of Lemma 3.12. Each element h ∈ Sk−1(T ∗γ) is a linear combina-
tion of the images G−k (Qm,i,j |Tγ) with coefficients ηm,i,j ∈ C∞(γ), by Propo-
sitions 3.14, 3.19 and 3.20; Qm,i,j = ymyi⊗ sj − ymyj ⊗ si, |m| = k− 1. The
elements hm,i,j := (ηm,i,jy

myi)⊗sj−(ηm,i,jy
myj)⊗si ∈ Sk(T ∗γ)⊗RC

∞(γ) lie
in KerG+

k , by construction. One has G−k hm,i,j = ηm,i,jG
−
k (Qm,i,j |Tγ), since

the operator G−k is C∞(γ)-linear in the first tensor factor: G−k (ηφ ⊗ f) =
ηG−k (φ ⊗ f) for every η ∈ C∞(γ), by definition, see (3.16). Therefore,
h = G−k (

∑
m,i,j hm,i,j). This proves Lemma 3.12 for the number dk,n be-

ing equal to the number of elements Qm,i,j with |m| = k − 1, N = 2n:
dk,n < (2N)k+1. 2

Proposition 3.21 The space Λ3 is contained in {Λ4,Λ0}.

Proof The Poisson bracket space {Λ0,Λ4} is contained in Λ3⊕Λ5 (Propo-

sition 3.6). Fix an arbitrary A = h(y)√
1+||y||2

∈ Λ3; h ∈ S3(T ∗γ). Let us show

that A ∈ {Λ4,Λ0}. To do this, fix an element

X :=

d∑
i=1

φi ⊗ fi ∈ S4(T ∗γ)⊗R C
∞(γ), X ∈ KerG+

4 , G
−
4 (X) = h.

It exists by Lemma 3.12. Set

Hi :=
φi(y)√

1 + ||y||2
∈ Λ4, Fi :=

fi(x)√
1 + ||y||2

∈ Λ0, B :=
d∑
i=1

{Hi, Fi} ∈ Λ3⊕Λ5.

One has

π3(B) = A, π5(B) =
(∇yφ)(y)√

1 + ||y||2
, φ :=

d∑
i=1

fiφi ∈ S4(T ∗γ), (3.23)

by construction and (3.7). Now replacing B by

B̃ := B − { φ(y)√
1 + ||y||2

,
1√

1 + ||y||2
}

we cancel the remainder π5(B) in π5 without changing π3 and get that
π5(B̃) = 0, π3(B̃) = B̃ = A ∈ {Λ4,Λ0}. The proposition is proved. 2

Proof of Theorems 1.20. Theorems 1.20 follows from Corollary 3.11 and
Proposition 3.21. 2
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3.3 Proofs of Theorems 1.16, 1.1 and 1.8 for n ≥ 2

Proposition 3.22 Let U ⊂ γ be a local chart identified with a contractible
domain in Rn. The restrictions to (Tγ)|U of functions from the space Λ :=
⊕∞k=0Λk are C∞-dense in the space of C∞-functions on (Tγ)|U .

Proof Let z = (z1, . . . , zn) be the coordinates of the chart U . The re-
stricted tangent bundle (Tγ)|U is the direct product Rny × Uz. The restric-

tions to (Tγ)U of functions from the space
√

1 + ||y||2Λ are polynomials in
y with coefficients C∞-smoothly depending on z. They include all the poly-
nomials with coefficients being functions compactly supported in U . The
latter polynomials are C∞-dense in the space of C∞-smooth functions on
(Tγ)|U . Indeed, the polynomials in (y, z) are dense (Weierstrass Theorem).
Multiplying them by bump functions in z compactly supported in U we
get polynomials of the above type and conclude their density. Therefore,√

1 + ||y||2Λ is dense there, and hence, so is Λ. 2

Proof of Theorem 1.16. Fix a locally finite covering of the manifold
γ by local contractible charts U`. Let (ρ`)`=1,2,... be a partition of unity,
supp ρ` b U`. Fix an arbitrary h ∈ C∞(Tγ). For every ` the function hρ` has
support projected inside a compact subset in U`. Its restriction to (Tγ)U` is a
C∞-limit of the restrictions to (Tγ)|U` of functions hk,` ∈ Λ, by Proposition
3.22. For every ` fix an arbitrary function α`(z) compactly supported in
U` that is identically equal to 1 on a neighborhood of π(supp(hρ`)). The
functions h̃k,` := α`(z)hk,` lie in Λ and converge to hρ`, as k → ∞, in the
C∞-topology of the space of functions on Tγ, by construction. The sums∑m

`=1 h̃k,` lie in Λ for every k and m and C∞-converge to h, as k and m
tend to infinity, by construction and local finiteness of covering. Finally, Λ
is C∞-dense in C∞(Tγ).

Recall that the Lie algebra H consists of functions on T<1γ. It is identi-
fied with Λ by the diffeomorphism T<1γ → Tγ, (x,w) 7→ (x, y := w√

1−||w||2
),

by Theorem 1.20. This together with density of the algebra Λ implies density
of the algebra H in the space C∞(T<1γ) and proves Theorem 1.16. 2

Theorems 1.1 and 1.8 follow immediately from Theorems 1.16 and 1.13.

4 Density of pseudo-groups. Proofs of Theorems
1.5, 1.9, 1.11 and Corollary 1.7

Let γ be either a global strictly convex closed hypersurface in Rn+1, or a
germ of hypersurface in Rn+1. It is supposed to be C∞-smooth. In what
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follows Π will denote an open subset in the space of oriented lines in Rn+1

where the reflection from the curve γ is well-defined: it is either the phase
cylinder, as in Subsection 1.1, or diffeomorphic to a contractible domain in
R2n, as in Subsection 1.2. First we prove Theorems 1.5, 1.9 and Corollary
1.7. Then we prove Theorem 1.11.

4.1 Density in Hamiltonian symplectomorphism pseudogroup.
Proofs of Theorems 1.5, 1.9 and Corollary 1.7

Definition 4.1 Let M be a manifold, V ⊂ M be an open subset, v be a
smooth vector field on M , and t ∈ R, t 6= 0. We say that the time t flow map
gtv is well-defined on V , if all the flow maps gτv with τ ∈ (0, t] (τ ∈ [t, 0), if
t < 0) are well-defined on V , that is, the corresponding differential equation
has a well-defined solution for every initial condition in V for all the time
values τ ∈ (0, t] (respectively, τ ∈ [t, 0)).

Recall that H denotes the Lie algebra of functions on Π generated by the
space Λ0 of functions of type Hf (x,w) = −2f(x)

√
1− ||w||2 with respect

to the Poisson bracket for all f ∈ C∞(γ).

Proposition 4.2 Let F denote the pseudogroup generated by flow maps
(well-defined on domains in the sense of the above definition) of the Hamil-
tonian vector fields with Hamiltonian functions from the Lie algebra H. For
every mapping δ : C∞(γ) → R+ the C∞-closure G(δ) of the corresponding
pseudogroup G(δ), see (1.3), contains F .

Proof Let L0 denote the space of Hamiltonian vector fields with Hamil-
tonian functions from the space Λ0. The Lie algebra of Hamiltonian vector
fields with Hamiltonians in H consists of finite linear combinations of suc-
cessive commutators of vector fields from the space L0.

Claim 1. The well-defined flow maps (on domains) of each iterated com-
mutator of a collection of vector fields in L0 are contained in G(δ).
Proof Induction in the number of Lie brackets in the iterated commutator.

Base of induction. The space L0 consists of the derivatives vh := d
dε∆Tε,h,

∆Tε,h = T −1
γε,h
◦ Tγ , for all C∞-smooth functions h on γ. Fix an arbitrary

function h ∈ C∞(γ), a domain W ⊂ Π and a t ∈ R \ {0}, say t > 0,
such that the flow map gtvh is well-defined on W . Note that the mapping

Fε := (∆Tε,h)[ t
ε
] converges to gtvh , as ε→ 0, whenever it is defined. Since gtvh

is well-defined on W , we therefore see that Fε is well-defined on a domain
Wε ⊂ Π such that Wε∩W →W , as ε→ 0, and Fε converges to gtvh on W in
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the C∞ topology. Note that Fε ∈ G(δ) for ε ≤ δ(h). Hence, gtvh |W ∈ G(δ).

Thus, the flow maps of the vector fields in L0 are contained in G(δ).
Induction step. Let v and w be vector fields on Π such that their well-

defined flow maps lie in G(δ). Let us prove the same statement for their
commutator [v, w]. Note that for small τ the flow maps gτv , gτw, gt[v,w] are

well-defined on domains in Π converging to Π, as τ → 0. Let t ∈ R \ {0},
say t > 0, and a domain D ⊂ Π be such that the flow map gt[v,w] be well-

defined onD. Then gt[v,w]|D ∈ G(δ), by a classical argument: the composition

(g
t
N
v ◦g

t
N
w ◦g

− t
N

v ◦g−
t
N

w )N
2

is well-defined on a domain WN with WN∩D → D,
as N → ∞; it belongs to G(δ) and converges to gt[v,w] on D in the C∞-
topology. The induction step is done. The claim is proved. 2

Claim 2. Let well-defined flow maps of vector fields v and w lie in G(δ).
Then well-defined flow maps of all their linear combinations also lie in G(δ).
Proof It suffices to prove the claim for the sum v+w, since gtcv = gctv . The

composition (g
t
N
v g

t
N
w )N obviously converges to gtv+w on every domain where

the latter flow map is well-defined. This proves the claim. 2

Claims 1 and 2 together imply the statement of Proposition 4.2. 2

Recall the following well-known notion.

Definition 4.3 We say that a symplectomorphism F of a symplectic man-
ifold M has compact support if it is identity outside some compact subset.
We say that it is Hamiltonian with compact support, if it can be connected
to the identity by a smooth path Ft in the group of symplectomorphisms
M →M , F0 = Id, F1 = F , such that the vector fields dFt

dt are Hamiltonian
with compact supports contained in one and the same compact subset.

Proposition 4.4 The group of Hamiltonian symplectomorphisms with com-
pact support is C∞-dense in the pseudogroup of M -Hamiltonian symplecto-
morphisms between domains in the ambient manifold M .

Proof Consider the Hamiltonian vector fields dFt
dt on domains Vt from the

definition of a M -Hamiltonian symplectomorphism V → U ⊂M (Definition
1.3); let gt : Vt → R denote the corresponding Hamiltonian functions. We
identify Vt with V by the maps Ft and consider gt as one function g on
V × [0, 1]t. We can approximate it by functions gn with compact supports,
gn → g in the C∞-topology: the convergence is uniform with all derivatives
on compact subsets. For every n the approximating function yields a family
of globally defined functions gt,n : M → R with supports lying in the same
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compact subset: the image of supp gn b V × [0, 1] under the map (x, τ) 7→
Fτ (x). Let vn,t denote the Hamiltonian vector fields with Hamiltonians gt,n.
Then the time 1 map of the non-autonomous differential equation defined
by vt,n converges to F on V in the C∞-topology, as n→∞. 2

Proposition 4.5 The whole group of Hamiltonian symplectomorphisms Π→
Π with compact support lies in the C∞-closure of the pseudogroup generated
by well-defined flow maps of Hamiltonian vector fields with Hamiltonian
functions from the Lie algebra H.

Proof Consider a Hamiltonian symplectomorphism F : Π→ Π with com-
pact support, let v(x, t) = dFt

dt be the corresponding family of Hamiltonian
vector fields with compact supports. The map F is the C∞-limit of compo-
sitions of time 1

n flow maps of the autonomous Hamiltonian vector fields

v(x,
k

n
), k = 0, . . . , n− 1,

as n → ∞. Each of the above Hamiltonian vector fields v(x, kn) can be
approximated by Hamiltonian vector fields with Hamiltonians in H, by The-
orems 1.1 and 1.8. Then F becomes approximated by products of their
flows. This implies the statement of Proposition 4.5. 2

Proof of Theorem 1.5: global and local cases. Each Π-Hamiltonian
symplectomorphism between domains in Π is a limit of a converging se-
quence of Hamiltonian symplectomorphisms Π→ Π with compact supports
in the C∞-topology, by Proposition 4.4. The latter symplectomorphisms
are, in their turn, limits of compositions of well-defined flow maps of vector
fields with Hamiltonians from the algebra H, by Proposition 4.5. For every
mapping δ : C∞(γ) → R+ the flow maps under question lie in G(δ), by
Proposition 4.2. This proves Theorem 1.5 in global and local cases. 2

Proof of Corollary 1.7 and Theorem 1.9: global and local cases.
Let us first consider the global case: γ is compact. Fix some α > 0 and
k ∈ N. We can choose a mapping δ : C∞(γ) → R+ so that for every
h ∈ C∞(γ) and every ε ∈ [0, δ(h)) the hypersurface γε,h, see (1.1), is (α, k)-
close to γ. Then the statement of Corollary 1.7 follows immediately from
Theorem 1.5. In the case, when γ is local, we apply the above argument for
functions h with compact support. This proves Theorem 1.9. 2
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4.2 Special case of germ of planar curve. Density in sym-
plectomorphisms: proof of Theorem 1.11

To prove Theorem 1.11, which states similar approximability of (a priori non-
Hamiltonian) symplectomorphisms in the case, when γ is a germ of planar
curve, we use the following three well-known propositions communicated to
the author by Felix Schlenk.

Proposition 4.6 Let M be an oriented manifold. Let V ⊂ M be an open
subset with smooth boundary, whose closure is compact and C∞-smoothly
diffeomorphic to a closed ball B

n
. Then every C∞-smooth orientation-

preserving diffeomorphism F : V → F (V ) b M extends to a C∞-smooth
diffeomorphism F : M →M isotopic to identity with compact support. The
isotopy can be chosen C∞-smooth and so that its diffeomorphisms coincide
with the identity outside some (one and the same) compact subset.

Proof (Felix Schlenk). Step 1. It suffices to show that

Lemma 4.7 The space of smooth orientation-preserving embeddings ϕ : B
n →

M is connected.

Indeed, given V as in the proposition, choose a diffeomorphism ϕ : B
n →

V . By the lemma, we find a smooth family ϕt : B
n → M of smooth em-

beddings, t ∈ [0, 1], with ϕ0 = ϕ and ϕ1 = F ◦ ϕ. Consider the vector field
v(x, t) = d

dtϕt(x) that generates this isotopy. The vector field v is defined on

the compact subset
{

(x, t) | x ∈ ϕt(B
n
)
}

of M × [0, 1]. Choose any smooth
extension ṽ of v to M × [0, 1] that vanishes outside a compact set. Then the
flow maps of ṽ, t ∈ [0, 1], form the desired isotopy.

Step 2. Proof of the lemma.

Let ϕ0, ϕ1 : B
n → M be two smooth orientation-preserving embeddings of

the closed unit ball B
n

= B
n
1 . Take a smooth isotopy gt, t ∈ [0, 1], of M

that moves ϕ0(0) to ϕ1(0). Choose ε > 0 such that

g1

(
ϕ0(B

n
ε )
)
⊂ ϕ1(B

n
).

Consider the smooth family of embeddings B
n
1 →M defined by

ϕs0(x) = ϕ0(sx), s ∈ [ε, 1]. (4.1)

By definition, ϕ1 is the restriction of a smooth embedding ϕ̃1 of the open
ball Bn

1+δ. We now have two smooth orientation-preserving embeddings g1 ◦
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ϕε0, ϕ1 : B
n
1 → ϕ̃1(Bn

1+δ). Since ϕ̃1(Bn
1+δ) is diffeomorphic to Rn, the classical

Alexander trick shows that the embeddings g1 ◦ϕε0, ϕ1 can be connected, see
e.g. [15, Appendix A, formula (A.1)]. Since g1 ◦ ϕε0 is connected to ϕε0
by gt ◦ ϕε0, and since ϕε0 is connected to ϕ0 by (4.1), the lemma and the
proposition are proven. 2

Proposition 4.8 Let M be a two-dimensional symplectic manifold, and let
V ⊂ M be an open subset with compact closure and smooth boundary. Let
V be C∞-smoothly diffeomorphic to a disk. Then every C∞-smooth sym-
plectomorphism F : V → F (V ) b M can be extended to a C∞-smooth
symplectomorphism F : M → M with compact support. Moreover, F can
be chosen isotopic to the identity via C∞-symplectomorphisms with compact
supports contained in one and the same compact subset in M .

Proof (Felix Schlenk). Consider an arbitrary extension G of F to a diffeo-
morphism G : M →M with compact support that is isotopic to the identity
through diffeomorphisms Gs : M →M with compact supports contained in
a common compact subset K ⊂ M , K ⊃ (V ∪ F (V )); s ∈ [0, 1], G0 = Id,
G1 = G. It exists by Proposition 4.6. Set W := M \K. Let ω be the sym-
plectic form of the manifold M . Consider its pullback α := G∗(ω), which
is a symplectic form on M . The forms αt := tα + (1 − t)ω, t ∈ [0, 1], are
also symplectic: they are obviously closed, and they are positive area forms,
since M is two-dimensional. This is the place we use two-dimensionality.
The forms αt are cohomologous to ω, the corresponding areas of the man-
ifold M are equal, and αt ≡ ω on V ∪ W . One has α0 = ω, α1 = α.
There exists a family of diffeomorphisms St : M → M , t ∈ [0, 1], S0 = Id,
such that S∗t (αt) = ω and St coincide with the identity on the set V ∪W ,
where ω = αt. This follows from the relative version of Moser’s deforma-
tion argument [7, exercise 3.18]; see also [11], [5, p.11]. The composition
Φ := G ◦ S1 : M → M preserves the symplectic form ω and coincides with
G on V ∪W . Hence, Φ|V = F , Φ|W = Id.

Applying the above construction of the symplectomorphism Φ to the
diffeomorphisms Gs instead of G yields a smooth isotopy Φs of the symplec-
tomorphism Φ = Φ1 to the identity via symplectomorphisms with supports
in K. (But now Gs is not necessarily symplectic on V , and (Φs)|V is not
necessarily the identity.) The proposition is proved. 2

Proposition 4.9 Every symplectomorphism with compact support of an
open topological disk equipped with a symplectic structure is a Hamiltonian
symplectomorphism with compact support.
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Proof Let ω denote the symplectic form. Every symplectomorphism in
question is isotopic to the identity via a smooth family Ft of symplec-
tomorphisms with compact support, by Proposition 4.8. The derivatives
Xt := dFt

dt form a t-dependent family of symplectic vector fields. Hence,
LXtω = d(iXtω) = 0, by Cartan’s formula. Thus, iXtω is a closed 1-form
and hence, exact, iXtω = dHt, since the underlying manifold is a topological
disk. Therefore, the vector fields dFt

dt are Hamiltonian with compact support.
This proves the proposition. 2

Remark 4.10 Proposition 4.9 is a part of the following well-known fact:
the group of compactly-supported symplectomorphisms of an open symplectic
topological disk is contractible and path-connected by smooth paths. The
same statement holds for symplectomorphisms of R4 (Gromov’s theorem
[8, p.345, theorem 9.5.2]). In higher dimensions it is not known whether a
similar statement is true. For every k ∈ N there exists an exotic symplectic
structure on R4k admitting a symplectomorphism R4k → R4k with compact
support that is not smoothly isotopic to the identity in the class of (not
necessarily symplectic) diffeomorphisms [4, theorem 1.1].

Proof of Theorem 1.11. Let γ be a germ of planar curve. Let V ⊂ Π
be an arbitrary simply connected domain. Let us show that each symplec-
tomorphism F : V → F (V ) ⊂ Π can be approximated by elements of the
pseudogroup G(δ) for every δ. Consider an exhaustion V1 b V2 b . . . of
the domain V = V∞ by simply connected domains with compact closures
in V and smooth boundaries. Each restriction F |Vn extends to a symplec-
tomorphism Π → Π with compact support, by Proposition 4.8. The latter
extension is Hamiltonian with compact support, by Proposition 4.9. The
elements of the pseudogroup G(δ) accumulate to the restrictions to V of
all the Hamiltonian symplectomorphisms Π → Π, by Theorems 1.5, 1.9.
Therefore, some sequence in G(δ) converges to F on V in the C∞-topology.
This proves the analogue of Theorem 1.5 with density in the pseudogroup
of symplectomorphisms between simply connected domains in Π. The proof
of similar analogue of Corollary 1.7 repeats the proof of Corollary 1.7 with
obvious changes. Theorem 1.11 is proved. 2

5 Proof for hypersurfaces in Riemannian mani-
folds

Here we prove Theorems 1.23 and 1.24.
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Proof of Theorem 1.23. Fix a point x ∈ γ. Let V (x) be its neighborhood
in M equipped with normal coordinates centered at x for the metric of
the ambient manifold M . We deal with two metrics on V : the metric of
the manifold M (which will be denoted by g) and the Euclidean metric
in the normal coordinates (which will be denoted by gE). Consider the
reflections Tγε with ε ∈ [0, δ] as mappings acting on compact subsets in
the unit ball bundle T<1γ (after identification (1.4), see Subsection 1.4).
The mapping T of reflection from γ in the metric g has the same 1-jet, as
the reflection from γ in the metric gE , at each point of the fiber over x:
at each point (x,w), w ∈ Txγ, with ||w|| := ||w||g = ||w||gE < 1. This
holds, since the metrics in question have the same 1-jet at x. Similarly, the
mappings Tγε constructed for both metrics have the same 1-jets at points
(x,w, 0) as functions on (T<1γ) × [0, δ]. Therefore, the derivatives vf =
d∆Tε
dε |ε=0 calculated for both metrics coincide at all points (x,w) with w ∈

Txγ, ||w|| < 1. This together with Theorem 1.13 applied to the Euclidean
metric gE implies that vf coincides with the Hamiltonian vector field of the

Hamiltonian function Hf (x,w) = −2
√

1− ||w||2f(x) at each point (x,w) as
above. Hence, the field vf calculated for the given metric g coincides with
the latter Hamiltonian vector field everywhere, since the choice of the point
x was arbitrary. Theorem 1.23 is proved. 2

Proof of Theorem 1.24. The Lie algebra generated by the Hamiltonian
functions Hf (x,w) of the above vector fields vf on T<1γ is dense in the
space of all the C∞-smooth functions on T<1γ (Theorem 1.16). Therefore,
the Lie algebra generated by the vector fields vf is dense in the Lie algebra
of Hamiltonian vector fields on Π (in both cases, when γ is either a closed
hypersurface, as above, or a germ). Afterwards the proof of Theorem 1.24
repeats the arguments from Section 4. 2
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