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Abstract – Musical instruments are said to have a personality, which we notice in the sound that they
produce. The oscillation mechanism inside woodwinds is commonly studied, but the transmission from internal
waveforms to radiated sound is often overlooked, although it is musically essential. It is influenced by the
geometry of their resonators which are acoustical waveguides with frequency dependent behavior due in part
to the lattice of open toneholes. For this acoustically periodic medium, wave propagation theory predicts that
waves are evanescent in low frequency and propagate into the lattice above the cutoff frequency. These
phenomena are generally assumed to impact the external sound perceived by the instrumentalist and the
audience, however, a quantitative link has never been demonstrated. Here we show that the lattice shapes
the radiated sound by inducing a reinforced frequency band in the envelope of the spectrum near the cutoff
of the lattice. This is a direct result of the size and spacing between toneholes, independent of the generating
sound source and musician, which we show using external measurements and simulations in playing conditions.
As with the clarinet, the amplitude of the even harmonics increases with frequency until they match odd
harmonics at the reinforced spectrum region.
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1 Introduction

Woodwind instruments are complex objects with geome-
tries that have evolved through empirical experimentation
over centuries. The resonator bore can be predominantly
cylindrical or conical, and many instruments terminate in
a bell that has yet another cross section profile. The position
and size of the toneholes are chosen to balance intonation
and timbre, and each hole affects the influence of the others.
While these geometrical variations are often subtle, they
may have a strong influence on the sound of an instrument.

The playing frequency of a woodwind instrument is
largely determined by the distance between the reed and
the first open tonehole, and to a first approximation the
downstream toneholes are ignored. However, in many
instruments this “unused” lattice of toneholes acts as an
acoustic high pass filter, thereby modifying the response of
the resonator and, eventually, the radiated sound [1]. The
low frequency first hole approximation and the high fre-
quency lattice filtering are separated by the tonehole
lattice cutoff frequency fc, and is due to the pass and stop
bands of waves propagation in periodic media [2]. The exis-
tence of a cutoff frequency is a communality among many
different woodwinds including the clarinet, saxophone,

bassoon, and tárogató [1]. Some instruments, such as the
Kaval [3], even have additional toneholes that are never
closed during normal playing, which may have been intro-
duced to serve as a lattice for the lowest notes of the
instrument.

The cutoff frequency is generally assumed to influence
the sound that an instrument makes, possibly even map-
ping to certain adjectives used by musicians to describe
the “character” of a given instrument. However, there are
few quantitative links between the cutoff and radiated
sound [4, 5]. In his final article [6], Benade and Lutgen
published a study connecting room-averaged external spec-
tra across the first register of the saxophone, demonstrating
a frequency band with increased radiation centered at what
he calls the “break frequency.” For the saxophone, he asserts
that the break frequency in the spectra of the radiated
sound is related to the tonehole lattice cutoff. This interpre-
tation is complicated, however, because there is no rigorous
definition of the cutoff frequency of a real instrument.
Furthermore, a recent article demonstrates that, in contrast
to the clarinet, the cutoff frequency of the saxophone varies
considerably over the range of the first register [7].

Attempts to study the tonehole lattice cutoff of real
instruments generally fall either into empirical or analytic
methods, both of which have flaws. One empirical approach
is to define the cutoff frequency from an input impedance*Corresponding author: guillemain@lma.cnrs-mrs.fr

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acta Acustica 2020, 4, 18

Available online at:

�E. A. Petersen et al., Published by EDP Sciences, 2020

https://acta-acustica.edpsciences.org

https://doi.org/10.1051/aacus/2020018

SCIENTIFIC ARTICLE

https://creativecommons.org/licenses/by/4.0/
https://www.edpsciences.org/
https://actacustica.edpsciences.org
https://actacustica.edpsciences.org
https://doi.org/10.1051/aacus/2020018


measurement by identifying a perturbation in the modulus
or argument of the input impedance or reflection coefficient.
This is often done by human judgment, although it is also
possible to apply arbitrary thresholds, and both methods
have merits and drawbacks. Analytic approaches can be
adapted from the theory of wave propagation in periodic
media [8], although the finite and lossy nature of the res-
onators complicates the analogy. Furthermore, the lattices
of real instruments are not typically periodic, so it is neces-
sary to extend the theory in one of several ways by consid-
ering, for example, pairs of adjacent toneholes [9]. One form
of analysis may be more appropriate than another for a
specific family of instruments. An instrument with a high
degree of acoustical regularity, such as the clarinet [10],
seems more suitable for the analytic approach than an
instrument that is highly irregular, such as the bassoon.
Furthermore, some instruments have cutoffs that evolve
in conjunction with the changing notes of a chromatic scale,
such as the saxophone. In this case an empirical approach
may be more appropriate because the lattice is less periodic
(geometrically and acoustically) than a clarinet.

In order to avoid the inherent ambiguity surrounding
the cutoff frequency of real instruments, the current work
starts with simplified resonators that have been analytically
designed with constant chosen cutoffs. This has the advan-
tage that external spectral characteristics are expected to
be directly linked to the cutoff frequency of the resonators.
However, because the cutoffs of the resonators used in these
experiments are strong and unambiguous, care must be
taken when extrapolating to real instruments, which may
have ambiguous or diffuse cutoffs as well as other compet-
ing behavior due to the conicity, the bell, and additional
geometric differences. Because it is difficult to design and
impractical to construct conical resonators with strong
cutoffs, the simplified resonators used in this study are
cylindrical, and the results are mainly applicable to instru-
ments in the clarinet family.

The basic theory of tonehole lattice cutoff frequencies is
reviewed in Section 2, and applied towards the design of
simplified resonators with known cutoffs. Experimental
results of external sound field measurements using the
simplified resonators are discussed in Section 3, with comple-
mentary simulations in Section 4. Application to a clarinet
recorded in anechoic conditions is treated in Section 5,
followed by concluding remarks in Section 6.

2 Basic theory
2.1 The tonehole lattice cutoff frequency

The cutoff frequency is determined by the geometry of a
constituent cell of the lattice, depending on the radius of
the main bore, the tonehole radius, chimney height, and
inter-hole spacing, shown in Figure 1. The geometry of a
lattice can be designed to have a desired cutoff frequency
[10–12]. While a true cutoff exists only for infinite, lossless
lattices [2], a strong cutoff behavior can exist for finite
resonators with at least two or three open toneholes.
Furthermore, the theory is developed for geometrically

regular lattices consisting of repeating, identical cells, which
is in contrast with the geometric irregularity of real
instruments. However, it has been shown that an acoustic
regularity may be achieved even for geometrically irregu-
lar lattices with no adverse impact of the cutoff of the
lattice, which reinforces the application of cutoff theory
to real instruments.1 It is convenient, though not necessary,
to design the acoustically regular lattice to also be geo-
metrically regular. In this case, the cutoff frequency of
the lattice is achieved if the constituent cell is designed
according to

fc ¼ c
2p

ffiffiffiffiffiffiffiffiffiffi
s

2‘hS

r
; ð1Þ

where c is the speed of sound in air, s = pb2 is the cross
section of the tonehole, S = pa2 that of the main bore, h
the height of the hole, and 2‘ the distance between two
subsequent holes. Equation (1) corresponds to the eigen-
frequency of the cell assuming rigid conditions at the
extremities of the main bore [11]. Variations of this
formula can be derived for more complicated geometries,
including conical resonators [7].

For the purposes of this study, a lattice with at least five
open toneholes designed following equation (1) is considered
to have a tonehole lattice cutoff, even though the theory is
derived under the assumption of an infinite, lossless lattice.
The resonators presented in Section 2.2 and analyzed in
Sections 3 and 4 follow this definition and are said to have
a strong cutoff, which can be clearly identified to reasonable
precision on measurable characteristics such as the input
impedance or reflection coefficient. Real instruments, how-
ever, do not generally respect equation (1), and may only
exhibit a weak or diffuse cutoff whose precise determination
is not obvious from measurement or theory, but still recog-
nizable as an effect of the lattice.

2.2 Resonators designed to have cutoffs at chosen
frequencies

Four resonators are designed and produced for this
study. The resonators are built using stiff, cylindrical
plastic tubing, three of which are pierced with toneholes,
resembling the geometry of a clarinet. The fourth resonator

Figure 1. Geometrical dimensions of a tonehole pair. When
repeated, this element forms a regular lattice with a cutoff
frequency provided by equation (1).

1 A geometrically regular lattice has geometrically identical cells
to form a periodic structure. An acoustically regular lattice is
formed by cells that all have the same acoustical response, but
that are not necessarily geometrically identical. Geometric
regularity is a subset of acoustic regularity.
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is a simple cylinder without toneholes. A clarinet mouth-
piece can be inserted at the upstream end of the resonators.
As for a real instrument, the portion of the duct upstream
from the lattice determines the playing frequency of the
highest note, and the lattice toneholes can be consecutively
closed to achieve lower notes. In contrast with a real clar-
inet, the size and location of the toneholes are not designed
to produce the notes of a specific musical scale, but rather
to present an acoustically periodic lattice that alters the
high frequency response of the resonator.

All four resonators are designed to have the first impe-
dance peak at approximately 185 Hz when all toneholes
are open, and the three resonators with tonehole lattices
have cutoffs at 1.0, 1.5, and 2.0 kHz [12]. Each resonator,
except the simple cylinder, has 10 toneholes. The input
impedance and geometries of the resonators are shown in
Figure 2 and Table 1, respectively. The cutoff is evident
for the three resonators with lattices, seen as a change in
spacing and height of the impedance peaks. The regularly
spaced peaks characteristic of a quarter wavelength
resonator are seen for the simple cylinder.

In order to maintain a strong cutoff for different finger-
ings, at least five consecutive, downstream toneholes remain
open for all measurements. This results in six possible notes
per resonator with fundamentals ranging from 114 Hz to
154 Hz under playing conditions. Because the lattices are
acoustically regular, each of these six notes has a nearly
identical cutoff.

2.3 Radiation characteristics above and below
the tonehole lattice cutoff frequency

The radiation of a resonator with a tonehole lattice has
significant differences for frequencies below and above the
cutoff. Below the cutoff, the wave does not propagate into
the lattice, so the resonator predominantly radiates as a
monopole source from the first open tonehole. Above the
cutoff, the wave does propagate into the lattice and radiates
from subsequent toneholes and the termination of the
resonator. The wave also reflects back into the resonator
from the termination of the lattice [11, 13]. Above the
cutoff, the contributions from multiple radiating apertures
create complicated radiation properties, which can affect
the directivity and efficiency of the resonator.

At the cutoff, the phase speed within the resonator is
very high and the flow through the toneholes is nearly in
phase, creating a strong directivity lobe perpendicular to
the lattice. Above the cutoff, the flow through the toneholes
is no longer in phase and the radiation is characterized by
complicated directivity lobes. Frequencies well above cutoff
propagate in the lattice and only weakly radiate from the
toneholes, mainly reflecting and radiating from the termina-
tion of the resonator. For the simplified resonators, the
cutoff frequency is at a rapid transition between these
two frequency band behaviors, while the distinction is more
complicated for real instruments for which the inter-hole
spacing is not uniform and the different tonehole radii influ-
ence the radiation efficiency of each source.

3 External sound field measurements
of simplified resonators

3.1 Basis for measurement protocol

The methodology follows the protocol developed by
Benade to measure the radiated sound fields of woodwind
instruments, notably for the clarinet and saxophone
[6, 14]. In contrast with most acoustical measurement
requirements, Benade realized that it is informative to mea-
sure the spectral radiation characteristics of instruments in
musically appropriate environments. The defining sound
features of an instrument family are easily identified by
experienced listeners regardless of the room in which they
are played. Benade concludes that the spectral characteris-
tics that are relevant to human perception could also be
measured in “normal” rooms, i.e. not under anechoic condi-
tions, and that the results describe the instrument under
the same conditions for which an audience typically con-
sumes music. To avoid complications due to the strong
directivity of many instruments, the instrument and
microphone should be placed far apart, and both should
be slowly moving to introduce a type of “room averaging.”
The protocol and its implications are detailed in several
documents [15, 16].

Figure 2. Simulated input impedance modulus for (top to
bottom) resonators with fc = 1.0, 1.5, 2.0 kHz, and a cylinder
with no tonehole lattice, vertical offset for clarity. Normalized by
characteristic impedance zc of the duct.

Table 1. Geometrical dimensions of three resonators with the
same first impedance peak f1 and different cutoff frequencies fc.
First peak and cutoff frequencies in Hz, all other quantities in
mm. The first hole is located at Lþ ‘. Consider ‘ ¼ 0 for the
cylinder.

R f1 fc L h a b ‘

R1:0 185 1000 398.8 9.8 6.5 2.5 16.3
R1:5 185 1500 417.0 9.8 6.5 4.0 16.3
R2:0 185 2000 426.0 9.8 6.5 5.8 16.3
R‘ 185 – 450.0 – 6.5 – 0.0

E. A. Petersen et al.: Acta Acustica 2020, 4, 18 3



3.2 Details of measurements

The simplified resonators are outfitted with a clarinet
mouthpiece and a Plasticover (RICO-RP05BCL200)
strength 2 B[ clarinet reed in order to be played by a musi-
cian. The room is a medium sized lecture hall with 122 seats
on a steep incline and an approximate volume of 730 m3.
This room is chosen because it has light acoustic treatment
and is a reasonable example of a musically appropriate envi-
ronment. This is desirable because the purpose of the study
is to identify global spectral characteristics of the resonators
in realistic playing conditions.

Each of the six notes with fundamentals ranging from
114 to 154 is played for approximately 20 s for both forte
and piano dynamics, subjectively determined by the
musician. In order to avoid inconsistencies due to strong
directivity lobes of the resonator, the musician slowly sways
the instrument back and forth with a period of about 4 s.
Four microphones are used to record the signal in the room:
a DPA-4099 instrument microphone attached to the res-
onator approximately 8 cm above the center of the lattice,
two stationary Neumann KM 184 (cardioid) microphones
at a distance 8 m and 12 m from the musician, and a
Neumann U87 (cardioid operating mode) at a distance of
approximately 4 m. The U87 is manually waved back and
forth with an approximate period of 4 s to provide some

spatial averaging in the room. Therefore, there are 152
distinct signals: 3 resonators with 6 notes each, plus the sim-
ple cylinder, each with two dynamics, measured by four
microphones. The data from the DPA is not used in the
analysis because, due to its position just above the lattice
and in a directivity lobe at cutoff, its data suggest a greater
effect than what is measured by the more distant
microphones.

Preliminary results are shown as spectrograms in
Figure 3. Resonators with fc = 1.0, 1.5, and 2.0 kHz are dis-
played from left to right, with forte playing levels on top
and piano playing levels on bottom. The measurements
from the Neumann U87 and two Neumann KM 184 are
combined into a composite signal. The steady state portions
of each note are extracted from each microphone channel,
highpass filtered at 100 Hz by the MATLAB highpass
function, which uses a minimum-order filter with a Kaiser
window resulting in a 60 dB stop band attenuation. The
signals are then normalized by their root-mean-square
value. These signals are available online as Supplementary
Material. The power spectral density is calculated for suc-
cessive Hann-windowed segments of 213 samples using a
50% overlap. The resulting spectra from the three micro-
phones are summed, normalized by the maximum value
at each time step, and plotted in decibel representation.

Figure 3. Spectrograms of six notes played in a descending scale using a clarinet mouthpiece. Top panels at forte and bottom panels
at piano playing levels for resonators with, from left to right, fc = 1.0, 1.5, 2.0 kHz. The analysis is performed on composite signals from
the Neumann U87 and two Neumann KM 184. Color map in decibels.
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These spectrograms demonstrate room averaged charac-
teristics of the sound field radiated by individual notes of
each resonator. The average spectral centroid for the
resonators with fc = 1.0, 1.5, and 2.0 kHz cutoffs is 0.55,
0.94, 1.12 kHz at forte playing levels, and 0.28, 0.22,
0.27 kHz at piano playing levels. This may be due to the
appearance of additional energy around the cutoff of
each resonator. This possible reinforced frequency region,
particularly in this representation, may be partially
hidden by the imparity between even and odd harmonics
characteristic to cylindrical resonators. Nonetheless, these
spectrograms are suggestive of an influence of the cutoff
on radiation, although additional processing is needed to
determine a quantitative link.

The data presented in Section 3.4 correspond to these
three resonators. However, in deference to the measurement
protocol proposed by Benade, only the Neumann U87 data
is included in the following analysis.

3.3 Data processing

The same signal treatment is used for three different
experiments in this study: in situ measurements of simpli-
fied resonators described in Section 3.2, the simulated
replication of these measurements in Section 4, and
anechoic recordings of a real clarinet in Section 5. Some pre-
liminary steps are necessary for the simulations and
anechoic recordings to reduce multiple channels of data into
a single channel. These additional procedures are outlined
in Sections 4.3 and 5. Once reduced, all the data are
processed as follows.

The data of a given resonator consists of separate audio
files, one for each note that is considered in the analysis. For
each note, the signal is truncated to include only the steady-
state portion of the tone to discard attack and decay
transients. Furthermore, each signal has considerable varia-
tion in sound pressure level and timbre due to the directiv-
ity of the resonator, movement of the player, movement of
the measurement microphone, and fluctuating control
parameters. Therefore, the signal is analyzed in 0.5 s
segments and treated with a Hann window of the same
duration. The spectra is generated using the built-in
MATLAB FFT, and handled to be proportional to units
[Pa2/Hz]. The harmonics in the spectra are then extracted
using a peak detection scheme. Because the quantity of
interest is the spectral envelope, an exact calibration is
not necessary and results are depicted in normalized repre-
sentations. This procedure is repeated for the remaining
notes for the resonator.

The basic data set for each resonator is now the
harmonic frequency and amplitude pairs at 0.5 s intervals
for multiple fingerings. To demonstrate the global radiation
characteristics of the resonator it is helpful to average the
data. Several different approaches are used and described
in the corresponding sections.

3.3.1 Measurement averaging

The signal from the Neumann U87 microphone used in
Figure 4 is first treated following the protocol described in

Section 3.3. This results in approximately 240 “instances”
of the spectrum per resonator, calculated from six finger-
ings, each with 20 s of data divided into time frames of
0.5 s. In order to visualize the data, the statistical variation
of each harmonic is depicted using box plots. Each box
corresponds to the nth rank harmonic from all the finger-
ings, excluding outliers. For example, the left-most black
box in each panel depicts the amplitude variation of the
fundamental for all six fingerings, while the left-most red
box depicts the first even harmonics of all six fingerings.
The boxes are positioned at the average frequency of the
nth rank harmonic of the six fingerings. The lower and
upper limits of the boxes mark the 25th and 75th percentiles.
The median value of the odd and even harmonics are traced
in black and red, respectively. Because this plot represents
data with a large variation in amplitude, the upper contour
of the whiskers tend to match a naive inspection of the raw
data.

3.4 The reinforced spectrum region of the radiated
sound field

The external spectra for all three resonator cutoff
frequencies for both forte (top) and piano (bottom) dynam-
ics are depicted in Figure 4. Below the cutoff of each
resonator, the even harmonics are several decades weaker
than the odd harmonics, as is expected of a quarter wave
resonator. However, for the forte playing dynamic, the
envelope of the even harmonics increases with frequency
towards a maximum value near the cutoff of the resonator,
above which the even and odd harmonics are equally
strong. Although it is less obvious in this representation
of the data, odd harmonics are also reinforced, seen here
mainly by the envelope of the box plot whiskers. Figure 5,
which uses the averaging scheme described in Section 4.4,
shows more clearly that the reinforced spectrum region con-
sists of both even and odd harmonics.

The lower panels of Figure 4 show that the effect of the
cutoff is not as pronounced for piano playing dynamics,
although the cutoff of the resonator does influence the
shape of the spectral envelope. The slope of the envelope
is much steeper than for the forte data because a softly
played note is generally not as harmonically rich as one
that is played loudly, and most of the energy is contained
in the first several harmonics. Therefore, the reinforced
spectrum region is weaker because it falls in a frequency
range that does not have a lot of power in the internal
waveform.

Repeating the same measurements with a simple
cylinder (not depicted for brevity) demonstrates that the
reed resonance fr (see Sect. 4.2) may be a competing
mechanism that can influence the spectral envelope. In
particular, there is a convergence of even and odd harmon-
ics at approximately 1.5 kHz, despite no tonehole lattice.
Additional simulations suggest that this convergence is
due to the reed resonance. This could be developed as a
simple experimental method for coarsely estimating the
resonance of a reed. For real clarinets, the cutoff and reed
resonance occur at approximately the same frequency
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fc � fr � 1.5 kHz [17]. It is unclear how these parameters
evolved towards the same value, and to what degree this
is intentional. A future project could address how each
parameter impacts the playability of an instrument.

4 External sound field simulations of simplified
resonators

The external sound field of simplified resonators played
with a clarinet mouthpiece measured in Section 3 is
simulated by combining digital synthesis and a simplified
radiation model. The external sound field simulations are
implemented in two main stages. The first computes the
characteristics of the passive, linear resonators, yielding
the input impedance and transfer functions between the
input of the resonator and each tonehole. The input
impedance is then used with a digital synthesis code to
simulate the pressure and flow waveforms inside the
mouthpiece. The transfer functions calculated in the first
stage translate the flow waveform inside the mouthpiece

to the corresponding flow through each tonehole, which
radiate into the surrounding space.

4.1 From TMMI to external sound field simulations
of passive resonator

The resonators aremodeled as passive, linear waveguides
that can be characterized independent of the source signal.
As a first approximation, nonlinear effects due to high
internal sound pressure levels as well as nonlinear effects in
the toneholes are ignored. Although the simulation model
ignores the nonlinear effects in the toneholes, the qualitative
agreement between simulation and experiment is satisfac-
tory. While accounting for these nonlinear aspects would
likely improve the simulations, particularly at forte playing
levels, it is outside the scope of this article to develop the
nonlinear tonehole model, which is an open research topic.

First, the input impedance of the resonators is simulated
using the Transfer Matrix with External Interactions
(TMMI) [18], which is related to the transfer matrix
method but accounts for external interactions of toneholes

Figure 4. Measured external spectra, averaged over six notes played on each of three resonators with different cutoff frequencies.
Top panels depict forte dynamics and bottom panels depict piano dynamics. Each box plot is computed from the nth rank harmonic to
present an averaged spectra that is characteristic to the resonator across different fingerings with fundamentals ranging from 114 Hz
to 154 Hz, and is positioned at the average frequency of the respective nth rank harmonic. Data from manually waved microphone
(Neumann U87 4 m distance). Black: odd harmonics, red: even harmonics, vertical line: cutoff frequency of the resonator. Box plots
within hatched area have atleast one harmonic near cutoff. Solid black and red lines trace the median of each box plot. The median
amplitude of the fundamentals are normalized to 0 dB in each panel. Boxes span from 25th to 75th percentiles and thin lines show the
span of the data ignoring outliers.
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that radiate into the same space. Accounting for mutual
radiation impedance improves the simulation of the input
impedance, particularly above the cutoff.

In order to simulate the radiated sound field, the TMMI
algorithm has been modified to compute the frequency
domain pressure Pn (x) and flow Un (x) at the n

th aperture
(tonehole and termination of the resonator) resulting from
an arbitrary source pressure Ps(x) or flow Us(x) at the
input. Therefore, the passive response of the resonator
can be described by a set of transfer functions between
the input of the resonator and all radiating apertures:

HnðxÞ ¼ UnðxÞ=UsðxÞ: ð2Þ
The far field external pressure at an observation point O is
the superposition of the contribution of each source term
Un(x)

POðxÞ ¼
XN
n¼1

jxq
HnðxÞUsðxÞ

4prn
ejðxt�krnÞ; ð3Þ

where rn is the distance between O and the nth source, x is
the angular frequency, k the wave number, c and q the
speed of sound and density of air. Each source term is

treated as a monopole and diffraction due to the resonator
is ignored. This development can be used to simulate the
radiation properties of the resonators regardless of the
driving source.

4.2 Digital sound synthesis

Digital synthesis is used to simulate the pressure and
flow inside the mouthpiece in the discrete time domain. In
this simulation, the action of the musician is represented
by two dimensionless control parameters [19], defined by

c ¼ pm
pM

; f ¼ wHzc

ffiffiffiffiffiffiffiffiffi
2

qpM

s
; ð4Þ

where pm is the pressure inside the mouth of the musician,
pM is the reference pressure necessary to close the reed
channel completely, w and H are the width and height
of the reed channel at rest, and zc is the characteristic
impedance of the resonator. The variables of the model
discussed in this work are the reed displacement x and
the acoustic pressure ps and flow us at the input of the res-
onator, given in dimensionless form by

x ¼ x̂
H
; ps ¼ p̂s

pM
; us ¼ zc

ûs

pM
; ð5Þ

where the hat notation signals the variable’s physical
value. The time-domain synthesis scheme follows previous
work [20].

In order to accurately represent the high frequency
behavior of the resonator, a reflection function formalism
[21] is preferred over a truncated modal representation.
The reflection function r links the reflected wave
p� ¼ ðps � usÞ=2 to the outgoing wave pþ ¼ ðps þ usÞ=2
through the relation

p� ¼ r�pþ; ð6Þ
where * denotes the convolution product. Note that r is
deduced from the input impedance as the inverse Fourier
transform of the reflection coefficient. In the discrete form,
it is truncated to the first 0.1 s, long enough to accurately
represent low frequencies which have the longest response
due to weak losses.

The reed is modeled by a damped single degree-of-
freedom oscillator. Its dimensionless displacement from
equilibrium follows the form

1

ð2pfrÞ2
€xþ qr

2pfr
_xþ x ¼ p � cþ F cðxÞ; ð7Þ

where fr is the reed eigenfrequency and qr its damping
coefficient. The force Fc, accounting for the contact with
the mouthpiece lay [22], is defined by

F cðxÞ ¼ Kc
xþ 1� jxþ 1j

2

� �2

ð1þ b _xÞ; ð8Þ

with nonlinear stiffness Kc and a damping coefficient b.
The nonlinear characteristic derived from Bernoulli’s
law that determines the flow through the reed channel is

Figure 5. Comparison between measured (solid) and simulated
(dashed) external spectra in a decibel representation for three
resonators with cutoffs fc = 1.0, 1.5, 2.0 kHz at forte playing
conditions. Odd harmonics are depicted in black and even
harmonics in red. Synthesis control parameters provided in
Section 4.2.
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us ¼ f
xþ 1þ jxþ 1j

2

� �
sign ðc� psÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc� psj

p
: ð9Þ

The nonsmooth functions in equations (8) and (9) are reg-
ularized: the absolute values |�| are replaced by

ffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ g

p
[23]. The value of the parameters used to obtain the simu-
lation are summarized in Table 2.

The control parameters, corresponding to pressure
inside the mouth c and musicians lips f, are slowly varied
to approximate a real musician. A simultaneous variation
of c and f over a T = 10 s signal follows the form

cðtÞ ¼ cc þ ca sinð2p � t=T Þ ð10Þ

fðtÞ ¼ fc þ fa sinð4p � t=T Þ; ð11Þ
where cc, ca, fc, and fa are constants, summarized in
Table 3 for forte and piano playing levels [24, 25]. The
static portion of the control parameters are chosen to
create beating conditions for the forte playing level and
to be near the threshold of oscillation for the piano
playing level [26, 27]. The control parameters are varied
slightly around static values using trigonometric functions
because they are smooth, real valued, periodic, and well-
known. This is intended to mimic the measurement
conditions for which there was some variation in musician
control due to the slow movement required by the
measurement protocol.

4.3 Combining digital synthesis and radiation models

The external sound field of the instrument under play-
ing conditions is simulated through the linear transforma-
tions of the waveforms inside the mouthpiece computed
by digital synthesis. The acoustic flow usðtÞ in the mouth-
piece produced by digital synthesis is transformed to the
frequency domain UsðxÞ, and the resulting flow through
each tonehole is calculated using HnðxÞ. The pressure pðtÞ
at an observation point O is calculated as the inverse
Fourier transform of PO(x), provided by equation (3).

Because each source term is treated as a monopole, the
resonator is considered to radiate symmetrically about its
axis. Therefore, the external sound field is simulated in
two dimensions, with observation points O laying on a
plane that includes the axis of the resonator. The first open
tonehole defines the origin and 100 equally spaced observa-
tion points are defined along a circle with a 10 m radius
centered at the origin.

This configuration is treated as an approximation of the
sound power of the source in an anechoic environment. The
waveforms PO as simulated at each position O are summed
directly to produce a single composite waveform, which is
processed as described in Section 3.3. This approximates
the spatial averaging of the measurements, and helps avoid
inadvertently favoring or neglecting frequency ranges that
correspond to strong directivity lobes of the resonator.

4.4 Comparison between measurements and simulation

The simulation results for the three simplified res-
onators are presented in Figure 5, which also includes the

measurements from Section 3. The simulated results use
the synthesis parameters in Table 2 and musician control
parameters corresponding to a forte dynamic in Table 3.
The odd and even harmonics have been averaged using
MATLAB function movmean with a five point window,
and then smoothed. This averaging allows considerable
structure of the spectrum to remain in the plots while
suppressing the clutter of raw data points or box plots,
making it easier to compare the four overlaying curves.

The most successful feature of the simulated curves is
the increase in amplitude of the even harmonics as they
approach the cutoff. The reinforced spectrum region is
not evident in the simulated odd harmonics, although this
could be due to the choice of control parameters. The odd
and even harmonic parity above 3.0 kHz (and continuing
off the graph), is accurately simulated, although the total
energy at high frequencies is underpredicted compared to
the measurements. This could be due to the model of
mutual radiation impedance between neighboring holes,
which is known to influence the total radiation of an
acoustic source.

The simulations for the piano playing dynamic (not
shown) do not correspond to the measurements as well,
although this could be due to inaccurate choice of musician
control parameters. However, the scope of this article is to
investigate the effect of the cutoff frequency on radiated
sound, which has a greater effect at forte playing levels.
Therefore, the threshold for appropriate control parameters
for a piano dynamic is not pursued.

5 Radiated spectra of a clarinet

To contextualize the academic results of Sections 3
and 4, a similar analysis is applied to a Herbert Wurlitzer
Solistenmodell B[ clarinet using measurements from a
publicly available data base [28]. The data used in the cur-
rent study consists of a 32 channel microphone array in an
anechoic environment, with each note of the instrument
held for approximately 3 s at a forte playing dynamic. As
with the simulations in Section 4, the total radiation of
the instrument of a given note is approximated by the
sum of signals from different measurement locations, in
this case 32 channels in a sphere around the clarinet.

Table 2. Digital sound synthesis parameters pertaining to reed
dynamics. All unitless except fr, in Hz.

Notation fr qr Kc b g

Value 1500 0.4 100 5E-4 0.01

Table 3. Dimensionless control parameters used for digital
synthesis following equations (10) and (11).

Dynamic cc ca fc fa

forte 0.70 0.05 0.40 0.05
piano 0.50 0.05 0.40 0.05
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This composite signal of each note is processed following the
procedure described in Section 3.3.

The results for portions of three registers of the clarinet
are shown in Figure 6. The lowest notes of each register are
neglected to ensure at least two open toneholes in the
lattice. The notes included in the analysis are, from panels
top to bottom, E3–E4 (165–330 Hz), B4-A]5 (494–932 Hz),
and D6-A]6 (1175–1865 Hz).

Qualitatively, the trends pertaining to the simplified res-
onators are also present for the real clarinet for the first and
second registers. The even harmonics increase towards a
local maximum between 1.0 and 2.0 kHz, the nominal cutoff
frequency of a clarinet. This appears more clearly in the
second register, possibly because the reinforced spectrum
region is produced by low ranking harmonics. The cutoff
frequency is approximately the same for the first two regis-
ters because the sound is filtered by essentially the same
lattice. For the third register, the notes have fundamental
frequencies that are near the cutoff frequency of the lattice,
so there is no consistent evolution towards a reinforced
spectrum region at the cutoff frequency.

Although the results of the clarinet are generally similar
to the simplified resonators, it is not appropriate to make a
direct comparison because a clarinet is not an acoustically

(or geometrically) regular resonator, so an exact lattice
cutoff frequency does not exist. For example, unlike the
simplified resonators, the even harmonics of the first
register continue to increase after the nominal cutoff, to a
maximum at approximately 2.3 kHz. This may be due to
the bell of the clarinet, which has a resonance at 2.1 kHz
and is not included on the simplified resonators.

The results from the real clarinet shown in Figure 6 are
consistent with those reported by Benade and Kouzoupis
(Figs. 6–10) [14]. The coherence between these results
demonstrates the robustness of his measurement protocol,
which is considerably easier to implement compared with
a multiple channel anechoic measurement. Furthermore,
the reinforced spectrum region in the radiated sound field
of the clarinet for both in situ and anechoic measurements
provides justification for the anechoic simulation conditions
in Section 4.

6 Conclusion

Simplified clarinet-like cylindrical resonators radiate
with a reinforced spectrum region that appears near the
cutoff frequency of the tonehole lattice. The reinforced spec-
trum emerges as the even harmonics grow in amplitude to
become equally strong as the odd harmonics at the cutoff.
This effect on the external sound field is a result of the
geometry of the lattice, and provides a direct link between
the tonehole lattice and spectral characteristics of the
radiated sound. The phenomenon is more pronounced at
loud playing dynamics, but also affects the spectral envel-
ope for soft dynamics. Digital synthesis coupled with a
radiation model is sufficient to reproduce the measurement
results through simulation. Results from a real clarinet,
recorded in playing conditions in an anechoic chamber,
demonstrate that a reinforced spectrum region also exists
near the nominal cutoff of a real clarinet.

A similar evolution of even harmonics in the external
sound field was demonstrated by Benade for the clarinet,
along with the related break frequency for the saxophone.
However, because the saxophone is an acoustically irregular
lattice, the link between the tonehole lattice cutoff
frequency and the region of reinforced spectrum is not
conclusive. Furthermore, because the saxophone is conical,
the reinforced spectrum appears as the odd and even
harmonics both increase towards the approximate cutoff,
in contrast with the current study of cylindrical resonators,
for which the increase is primarily observed for the even
harmonics. The effects of conical instruments on reinforced
spectrum has also been studied for another conical instru-
ment, the bassoon [29].

As suggested by Benade, the tonehole lattice cutoff
frequency is generally assumed to influence the character
of a woodwind instrument. This study provides one quanti-
tative link between the cutoff and external spectral charac-
teristics that are measurable in musically appropriate
environments. While a musician can manipulate the timbre
of a note by adjusting the blowing pressure and lip contact
with the reed, the reinforced spectrum at cutoff is a

Figure 6. Radiated spectra of a real clarinet measured in
anechoic conditions played at a forte level. Portions of the first
(E3–E4), second (B4-A]5), and third (D6-A]6) registers are
plotted from top to bottom. Raw data depicted by dark grey and
light grey circles, plus their moving average by black and red
lines, for odd and even harmonics, respectively. Data accessed
through a publicly available data base [28].
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consequence of the resonator’s geometry, which is decided
by the manufacturer. This allows the possibility of using
the cutoff as a design parameter for new instruments.
Future work could involve mapping the cutoff to perceptual
descriptions of timbre.
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Supplementary material

Supplementary material to the below is available at
https://acta-acustica.edpsciences.org/10.1051/aacus/2020018

Two audio files from the in situ recordings are provided
to demonstrate the perceptual differences between the three
academic resonators. Both files are from the U87 micro-
phone and have been processed with the same 100 Hz high
pass filter and root-mean-square processing used in
Figure 3:
1. Demo1_ScaleByRes.wav: Uses short sections of each

note of a resonator to make a rapid scale. Scales from
all three resonators play one after the next within the
same file. This allows for a rapid comparison of the
perceptual differences between resonators and across
the range of the fingerings.

2. Demo2_CompositeByRes.wav: Has three sound
events, one for each resonator, each of which is the
superposition of all the notes for the given resonator.
The purpose of this is to hear the timbre effect of
the aggregate sound: it is an approximation to a
“choir” of resonators with a given cutoff frequency.
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