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(Dated: November 27, 2020)

We study the phonon dynamics in lattices of optomechanical resonators where the mutually
coupled photonic modes are coherently driven and the mechanical resonators are uncoupled and
connected to independent thermal baths. We present a general procedure to obtain the effective
Lindblad dynamics of the phononic modes for an arbitrary lattice geometry, where the light modes
play the role of an effective reservoir that mediates the phonon nonequilibrium dynamics. We show
how to stabilize stationary states exhibiting directional heat currents over arbitrary distance, despite
the absence of thermal gradient and of direct coupling between the mechanical resonators.

Introduction — The emergence of persistent currents
in many-body systems is tightly bound to fundamental
concepts in classical and quantum physics. In classical
electrodynamics, any permanently magnetized object ex-
hibits persistent electronic currents [1]. A conducting
ring in the quantum coherent regime supports a perma-
nent electric current when pierced by an external mag-
netic field [2]. When pairing interactions are considered,
a superconductor cooled below critical temperature dis-
plays persistent currents, and a constant magnetic field
builds up through any continuous loop of the material
[3]. Systems with nontrivial topology can also give rise
to persistent edge currents [4].

These manifestations of persistent currents involve two
noticeable ingredients: (i) an external gauge field and (ii)
the presence of a significant coherence extending over the
entire sample [5]. Recently, it was shown that these in-
gredients are not strictly required, and that permanent
currents in rings can instead be generated by reservoir
engineering [5, 6], where specific many-body quantum
states with properties of interest are stabilized [7, 8].
More than a mere source of decoherence, the environ-
ment becomes then a tool to generate correlated phases,
sometimes with no equilibrium counterpart [9]. In this
context, the study of systems driven by nonlocal dissi-
pators has emerged, notably in relation to nonreciprocal
behaviors [6]. In several nonreciprocal realizations, a di-
rect coupling between two bosonic modes was engineered
through a common ancillary degree of freedom [10–12].
Very recently, the concept of engineered directionality
was theoretically scaled up to extended lattices, by tai-
loring ancilla-assisted interactions [5, 13–15].

Besides nonreciprocity, the coupling of independent
mechanical modes to commonly shared optical modes
was proposed to transport phonons between distant res-
onators [16], to model out-of-equilibrium quantum ther-
modynamics [17], and experimentally implemented to
phase-lock adjacent [18] and distant [19, 20] mechanical
resonators. Yet, many aspects of the nonlocal quantum
dynamics of extended lattices in optomechanics remain
to be explored despite their potentially uncommon fea-
tures.

In this work, we study analytically the effective dy-
namics of originally independent mechanical resonators
coupled to extended lattices of driven-dissipative optical

cavities. We express the general master equation of such
a reservoir-coupled system and compare our predictions
with a mean-field approach. Our study demonstrates
that rings of lattices of optically coupled optomechan-
ical resonators [21, 22] can exhibit permanent whirling
phonon currents. The latter are mediated by spatially
correlated quantum fluctuations of the optical fields, in
the absence of direct mechanical coupling, and triggered
by proper tuning of the phase of the optical drive. The
magnitude of the current is expressed analytically within
a Born-Markov approximation, while the heat flow per-
sists when mechanical resonators interact with indepen-
dent thermal baths, over a wide range of temperatures.

The existence of permanent phonon currents despite
the absence of thermal gradient and of direct coupling
between mechanical resonators is a novel phenomenon
with no counterpart in models studied so far.
Generic model — The system under consideration

consists of a network of L optomechanical resonators
whose optical modes are coherently driven by external
laser fields. Neighboring cavities are optically coupled
to one another, while mechanical modes are not. In a
specific implementation with optomechanical disk res-
onators, optical modes are whispering gallery modes of
adjacent resonators, while mechanical modes are radial
breathing modes of individual disks [23]. Such resonators
can be fabricated with ultralow site-to-site disorder [24].
One optomechanical cell is schematically illustrated in
Fig. 1 (a).

While in the following we focus on one-dimensional
(1D) chains, here for the sake of generality, we consider an
arbitrary network where the coupling between adjacent
photonic modes is fully specified by a L × L adjacency
matrix A where A``′ = 1 if the sites ` and `′ are coupled
and A``′ = 0 otherwise. In the frame rotating at the
driving frequency ωp, the unitary part of the dynamics
is described by the following Hamiltonian [25] (~ = 1):

Ĥtot =

L∑

`=1

[
−∆`â

†
` â` + F ?` â` + F`â

†
` − g`â

†
` â`(b̂` + b̂†`)

]

− J

2

L∑

`,`′=1

A``′ â
†
` â`′ +

L∑

`=1

ω(`)

m b̂
†
` b̂`, (1)

where â` and b̂` are, respectively, the photonic and
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FIG. 1. (a) Schematic representation of a single optomechan-

ical cell and its nearest-neighbor optical couplings. â` (b̂`) is
the optical (mechanical) mode of index `. (b) Ring of optome-
chanical disk resonators. Each site is optically driven with a
phase that varies as `φ, being ` the site number. Optical
modes are coupled while mechanical ones are not.

phononic annihilation operators of the `-th resonator,
∆` = ωp − ω(`)

c denotes the detuning of the driving laser
frequency with respect to the local bare cavity frequency

ω
(`)
c , F` is the (complex) amplitude of the coherent drive,
g` is the optomechanical vacuum coupling rate and J is
the hopping rate between connected optical cavities. In-
coherent processes associated to local photon losses (at a
rate γ(`)

c ) and phonon thermalization with their respec-
tive thermal baths (at a rate γ(`)

m ) are taken into account
by means of a master equation for the system density
matrix in the Lindblad form, which fully determines the
system evolution,

∂tρ̂(t) = Ltotρ̂(t) ≡ −i[Ĥtot, ρ̂(t)] +Dtotρ̂(t), (2)

where

Dtotρ̂ =

L∑

`=1

{
γ(`)

m

[
(n̄` + 1)D[b̂`]ρ̂+ n̄`D[b̂†`]ρ̂

]

+γ(`)

c D[â`]ρ̂
}
, (3)

with D[Ô]ρ̂ = Ôρ̂Ô† − 1
2{Ô†Ô, ρ̂} and n̄` the average

number of thermal bosons due to the `-th thermal bath.

Provided γc � 2g〈â†â〉1/2, as we assume in what fol-
lows, optical fluctuations are negligibly affected by the
mechanics and the coupled cavities can be regarded as
an extended optical reservoir which can safely be adi-
abatically eliminated in a wide range of the parameter
space [26]. By adjusting J/γc, one can tune the corre-
lation length of the reservoir going from the uncoupled
resonators local case (J/γc � 1) to that of a reservoir
with resolved spectrum (J/γc � 1) [16, 17].
Adiabatic elimination of an extended driven-dissipative

reservoir — By splitting the fields into their mean-field

value plus zero-mean fluctuations as â` = α`+ĉ` and b̂` =

β`+d̂`, we can expand the Hamiltonian and the dissipator
to second order in the fluctuations around mean field,

Ĥ ′tot '
L∑

`=1

[
− ∆̃`ĉ

†
` ĉ` −

J

2

∑
`′A``′ ĉ

†
` ĉ`′ + V̂` + ω(`)

m d̂
†
` d̂`

]
,

(4)

where ∆̃` ≈ ∆` + 2g2
` |α`|2/ω(`)

m (for a high mechanical

quality factor), V̂` = (G∗` ĉ` + G`ĉ
†
`)(d̂` + d̂†`), G` = g`α`,

and the mean fields {α`, β`} respect a self-consistency
relation [27] that exactly cancels all linear terms in the
fluctuation operators in the Hamiltonian. Both the am-
plitude and the phase of G` can be tuned through the
driving. The dissipator remains that of Eq. (3) substi-

tuting â`, b̂` → ĉ`, d̂`. In this displaced frame, it becomes
clear that finite-lived (τc = 1/γc) quantum optical fluctu-
ations are not externally driven but can enter the reser-
voir from the mechanics through the now linear optome-
chanical coupling (V̂`) and can then be scattered back
into some distant mechanical mode or be dissipated. We
formalize this intuition hereafter by looking at the re-
duced dynamics of the mechanical degrees of freedom.

Within the Born-Markov approximation, the lattice of
optical cavities can be adiabatically eliminated (see Sup-
plemental Material [28]) yielding the following effective
Hamiltonian and dissipator for the mechanical modes:

Ĥeff
m =

L∑

`=1

ω(`)

m d̂
†
` d̂` +

L∑

`,`′=1

(Ω(+)

``′ + Ω(−)

`′` )d̂†` d̂`′ , (5)

Deff
m ρ̂m =

L∑

`=1

γ(`)

m

[
(n̄` + 1)D[d̂`]ρ̂m + n̄`D[d̂†`]ρ̂m

]

+

L∑

`=1

(
Γ(+)

` D[β̂(↓)
` ]ρ̂m + Γ(−)

` D[β̂(↑)
` ]ρ̂m

)
, (6)

where ΩΩΩ(±) = 1
2i

(
S(±) − S(±)†) is the effective coherent

coupling, determined by the spectrum of the extended
reservoir:

S(±)

``′ = G?`

[
i1

±ω(`′)
m 1−B

]

``′
G`′ , (7)

with B = −J2 A−Diag({∆̃` + i
γ(`)
c

2 }). The nonlocal dis-
sipation rates are given by the eigenvalues of its Her-
mitian part, Diag({Γ(±)

` }) = U(±)(S(±) + S(±)†)U(±)†,
where U(±) are the associated diagonalizing unitary ma-
trices. Finally, the nonlocal jump operators are defined

as β̂(↓)
` =

∑L
`′=1 U

(+)

``′ d̂`′ , β̂
(↑)
` =

∑L
`′=1 U

(−)

``′ d̂
†
`′ (note that

in general β̂(+)

` 6= β̂(−)†
` ). These results can be extended to

continuous reservoirs and two-tone driven reservoirs gen-
erating multimode squeezing (see Supplemental Material
[28]).

In the case of a finite 1D chain with nearest-neighbors
coupling as henceforth considered, B takes the form of
a tridiagonal matrix and has thus explicit inverse ex-
pressions [29]. When |∆ ± ωm − iγc/2| / J/2, off-
diagonal elements have exponentially decreasing mag-
nitudes, |S(±)

`,`+p/S
(±)

`,` | ∼ (J/2)p/|∆ ± ωm − iγc/2|p, so
that the reservoir mainly couples neighboring mechan-
ical modes, as expected from the finite lifetime of the
optical fluctuations within the optical lattice. The range
of the effective interaction can thus be selected by tuning
J/γc. In contrast to previous works, where directional
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FIG. 2. Left panel: absolute value of the effective coherent
coupling rate J (+)

p between mechanical sites as a function of

their distance p and the nonlinear detuning ∆̃. The hatched
regions correspond to negative values. Three horizontal sec-
tion cuts (labeled as A, B, C) are plotted in the right panel.
Here J/γc = 2.

nearest-neighbors couplings at each edge 〈`, `′〉 are engi-
neered by having an independent ancillary mode coupled
exclusively to the sites ` and `′, we can simply rely on
the finite lifetime of the mediating photon fluctuations to
make the interaction short range when required.

In this effective description, the lattice of cavities mod-
ifies the dynamics of the mechanical modes by adding co-
herent phonon-hopping processes between previously un-
coupled mechanical modes and acting as a thermal bath

for L extended phononic modes {β̂(↓)
` }.

Periodic 1D optomechanical lattice — We now exploit
the effective description derived above to study the emer-
gence of persistent directional heat currents in an exper-
imentally relevant model: a ring composed of L sites.
To this aim, the cavities are driven individually with the
same intensity but with a site-dependent phase such that
|F`| = F and Arg(F`) = `φ with φ = 2πn/L and n ∈ Z,
which creates a homogeneous phase gradient around the
ring [30, 31]. This situation is schematically illustrated
in Fig. 1 (b). Following Eqs. (5) and (6), the unitary part
of the mechanical effective dynamics is governed by:

Ĥeff
m =

∑

`

(ωm + J (+)

0 + J (−)

0 )d̂†` d̂`

+
∑
±

∑

1≤p<L

J (±)
p

2

∑

`

(
d̂†`+pd̂`e

∓iφ×p + H.c.
)
, (8)

where

J (±)

p =
∑

k

eikp

L

|G|2(±ωm + ∆̃ + J cos k)

(±ωm + ∆̃ + J cos k)2 + (γc/2)2
(9)

is the real-valued amplitude of the effective complex cou-
pling between p-distant modes. The second line involves
two sets of directional couplings, noted by ±. This can
be understood from second order perturbation theory
by examining the two mechanics-mechanics scattering
processes having finite overlap 〈f |V̂`+pV̂`|i〉 and preserv-

ing the total energy: 〈f |G?`+pĉ`+pd̂†`+p × G`ĉ
†
` d̂`|i〉 and

〈f |G`+pĉ†`+pd̂
†
`+p × G?` ĉ`d̂`|i〉. The magnitude of each of

these directional hopping channels, and thus the net ef-
fective flux of phonons, can be adjusted via the drive

−π −φ 0 +φ +π
k

0

2

4

Γ
±
k
(±
ω
m

)/
γ
m

J/γc = 0 J/γc = 1/6 J/γc = 1/3 J/γc = 1 J/γc = 8

FIG. 3. Gain Γ−k(−ωm) (dashed) and loss Γk(+ωm) rates

induced by the engineered reservoir for various J/γc. ∆̃ =

+ωm−J for the gain rate and ∆̃ = −ωm−J for the loss rate.

detuning ∆. This dependence is complex in general, as
shown in Fig. 2 for J (+)

p . For this figure, as for all the

following ones, parameters are L = 8, φ = 2π/L, |α|2 =
100, g/ωm = 2·10−3, γc/ωm = 1·10−1, γm/ωm = 1·10−3,
and n̄ = 100. The incoherent part of the effective dynam-

ics is given by Eq. (6) by substituting γ
(`)
m , n̄` → γm, n̄;

β̂(↓)
` , β̂(↑)

` → d̃k, d̃
†
−k; Γ

(+)
` ,Γ

(−)
` → Γk(+ωm),Γk(−ωm).

The Fourier modes being defined as d̃k = 1√
L

∑
`e
−ik`d̂`

with k ∈ {n× 2π/L}L−1
n=0 and

Γk(ω) =
|G|2γc

(ω + J cos(k + φ) + ∆̃)2 + (γc/2)2
. (10)

In contrast to the single resonator case [32], our system

has L Stokes sidebands at ∆̃(−)

k = ωm − J cos(k− φ) and

L anti-Stokes sidebands at ∆̃(+)

k = −ωm − J cos(k − φ),
that can be employed to respectively amplify or cool col-
lective mechanical modes. In Fig. 3 we show the k-space
asymmetry between the incoherent gain and loss rates
for φ 6= 0 around the lowest Stokes and anti-Stokes side-
bands. Depending on the detuning, the engineered opti-
cal reservoir acts onto the system either by absorbing col-
lective excitations with pseudomomentum k ∼ −φ (jump

operator d̃k) or by creating excitations with opposite mo-

mentum k ∼ +φ (jump operator d̃†−k). Let us stress that
this is not the result of the optical driving being at res-
onance with any particular k mode as it holds when the
dissipation rate is of the order of the width of the optical
lattice’s spectrum (J ∼ γc). In such a regime, the con-
cept of resonance has no longer any operative meaning.

Let us now investigate the steady state properties
of this effective model by diagonalizing the Liouvillian

in the Fourier mode basis as Ĥeff
m =

∑
kωkd̃

†
kd̃k and

Deff
m ρ̂m =

∑
k

(
Γ(↓)
k D[d̃k]ρ̂m + Γ(↑)

k D[d̃†−k]ρ̂m
)
, with

ωk = ωm +
∑
±

|G|2(±ωm + ∆̃ + J cos(k ± φ))

(±ωm + ∆̃ + J cos(k ± φ))2 + (γc/2)2
,

(11)

Γ(↓)
k = γm(n̄+ 1) + Γk(+ωm) ; Γ(↑)

k = γmn̄+ Γk(−ωm).
(12)
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As can be seen in Eqs. (11) and (12), both the uni-
tary and the dissipative parts of the Liouvillian are no
longer even in k space for finite φ, as a result of having
explicitly broken the parity symmetry of the coupling to
the reservoir. In particular, with a driving laser operated

around the lowest anti-Stokes sideband (∆̃ ≈ −J − ωm)
and within the resolved sideband regime (γc � ωm), to
first order in J/γc the system has a noneven dispersion
relation of the form ωk = cst. + 4(|G|/γc)2J cos(k + φ)
with a ground state at finite momentum kGS = +φ.
Permanent cavity-mediated directional heat current —

The optical mean-field phase gradient yields a perma-
nent directional heat flow around the ring of disks. In-
deed, as discussed in the Supplemental Material [28],
the continuity equation satisfied by the phonon num-

ber operator i[Ĥeff
m , d̂†` d̂`] = −∑p(̂`→`−p+ ̂`→`+p), with

̂`→`+p = −∑±
J(±)
p

2i (d̂†`+pd̂`e
∓iφp−H.c.), induces the fol-

lowing definition for a net circulating current operator:

̂C =
∑L
`=1

∑
1≤p<dL/2e ̂`→`+p. In k space, it reads:

̂C = −
∑

k

∑

1≤p<dL/2e

∑

±
J (±)

p sin(p(k ± φ))d̃†kd̃k. (13)

The expectation value of this operator can be determined
experimentally by measuring the thermal populations

〈d̃†kd̃k〉, for example, via the mechanical noise spectrum
around the L collective mechanical frequencies ωk mea-
sured at the output of some local resonator. For exam-
ple in optomechanical disk resonators a secondary optical
mode, such as a higher-order whispering gallery mode of
the disk, could be used for that purpose. For our effective
model, we get:

〈̂C〉ss = −
∑

k

∑
1≤p<dL/2e

∑
±J

(±)
p sin(p(k ± φ))

Γ(↓)
k /Γ(↑)

−k − 1
. (14)

The net permanent heat current whirling around the ring
is thus simply QC = ωm〈̂C〉ss. The amount of this heat
transported over a phonon lifetime is shown in single

phonon energy units in Fig. 4 as a function of ∆̃/ωm and
J/γc. Its sign (propagation direction) depends crucially
on the detuning. Indeed, the effective coherent coupling
can be regarded as an optical spring effect in k space and,
as such, it changes sign when crossing a sideband.

In Fig. 5 (a), we show the behavior of contributions
Q`→`+p = ωm

∑
`〈̂`→`+p〉 to the total flow as a func-

tion of J when the detuning ∆̃ is adjusted to follow its
maximum (dash-dotted line of Fig. 4). Interestingly, QC
is nonmonotonic in J/γc. For J . γc, optical fluctua-
tion quanta mediating the heat transport are short lived
(τc . 1/J) and are thus destroyed before reaching sites
farther than their nearest neighbors. This implies that
the only sizable contribution is that flowing by local steps
in the clockwise direction. Conversely, for J & γc, op-
tical fluctuation quanta can be scattered farther across
the optical lattice before being destroyed by the cavity
losses and the permanent heat flow is supported on sup-
plementary directed graphs (see Fig. 5 (b)). In this case, a
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FIG. 4. Absolute value of the predicted net permanent heat
current |QC | in units of ωm × γm around a ring of cavity-
coupled optomechanical resonators as a function of the in-
tercavity coupling and the detuning. The hatched regions
correspond to negative values. The system is unstable in the
gray region.

0 5 10 15 20
J/γc

−100

0

100

200

Q
/ω

m
×
γ
−

1
m

Q`→`+1

QC

Q`→`+2

Q`→`+3

0 10 20
J/γc

0.0

0.5

1.0

1.5

|g
(1

)
`,
`+
p
|

p = 1 2 3 4

1

2
3

4

5

6
7

8

(a)

(b) (c)

FIG. 5. (a) Contributions Q`→`+p = ωm
∑
`〈̂`→`+p〉 and

net directional heat flow QC =
∑
p<dL/2eQ`→`+p along the

dash-dotted line of Fig. 4 as predicted by our effective theory
(lines) and mean field (circles). (b) Sketch of the two leading
contributions in (a). (c) Gradual triggering of off-diagonal

coherence g
(1)
`,`+p = 〈d̂†` d̂`+p〉/(〈d̂

†
` d̂`〉〈d̂

†
`+pd̂`+p〉)

1/2 along the

lowest anti-Stokes sideband ∆̃ = −J − ωm.

nonlocal anticlockwise flow contributes to the nonmono-
tonic dependence on J/γc of the net current. Fig. 5 (c)
shows how longer-range correlations get gradually trig-
gered as the J/γc ratio is increased following the lowest
anti-Stokes sideband (see arrow in Figure 4).
Conclusion — We have studied the emergence of spa-

tial correlations and permanent directional heat currents
across lattices of optomechanical resonators whose me-
chanical modes are originally uncoupled. In our picture,
quantum fluctuations of the optical fields mediate effec-
tive long-range interactions between mechanical sites of
both coherent and dissipative nature, whose range is tun-
able via the correlation length of the reservoir. A remark-
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able feature is the possibility to flow arbitrary phonon
streams in directions and topologies that seem to con-
tradict common thermodynamic intuition, for example,
a permanent phonon heat flow can be generated in the
absence of thermal gradient.

More generally, our investigation provides a first in-
stance of a broader class of physical situations for which
a weak coupling to an extended reservoir suffices to alter
dramatically the fate of an initially trivial set of inde-

pendent modes. The here presented effective description
introduces an analytical tool for understanding quan-
tum systems interacting via extended close-to-Markovian
reservoirs, a realm yet to be fully explored.

We thank D. Rossini for discussions. This work was
supported by ERC via Consolidator Grants NOMLI No.
770933 and CORPHO No. 616233, and by ANR via the
project UNIQ.
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and P. Zoller, Nat. Phys. 4, 878 (2008).

[9] J. Jin, A. Biella, O. Viyuela, L. Mazza, J. Keeling,
R. Fazio, and D. Rossini, Phys. Rev. X 6, 031011 (2016).

[10] K. Fang, J. Luo, A. Metelmann, M. H. Matheny, F. Mar-
quardt, A. A. Clerk, and O. Painter, Nat. Phys. 13, 465
(2017).

[11] S. Barzanjeh, M. Aquilina, and A. , Phys. Rev. Lett.
120, 060601 (2018).

[12] H. Xu, L. Jiang, A. A. Clerk, and J. G. E. Harris, Nature
(London) 568, 65 (2019).

[13] M. Schmidt, S. Kessler, V. Peano, O. Painter, and
F. Marquardt, Optica 2, 635 (2015).

[14] A. McDonald, T. Pereg-Barnea, and A. A. Clerk, Phys.
Rev. X 8, 041031 (2018).

[15] J. P. Mathew, J. del Pino, and E. Verhagen, (2018),
arXiv:1812.09369.

[16] A. Xuereb, C. Genes, G. Pupillo, M. Paternostro, and
A. Dantan, Phys. Rev. Lett. 112, 133604 (2014).

[17] A. Xuereb, A. Imparato, and A. Dantan, New J. Phys.
17, 055013 (2015).

[18] M. Zhang, S. Shah, J. Cardenas, and M. Lipson, Phys.
Rev. Lett. 115, 163902 (2015).

[19] M. Bagheri, M. Poot, L. Fan, F. Marquardt, and H. X.
Tang, Phys. Rev. Lett. 111, 213902 (2013).

[20] E. Gil-Santos, M. Labousse, C. Baker, A. Goetschy,
W. Hease, C. Gomez, A. Lemâıtre, G. Leo, C. Ciuti,
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C. Gomez, G. Leo, and I. Favero, Nat. Commun. 8,
14267 (2017).

[25] M. Ludwig and F. Marquardt, Phys. Rev. Lett. 111,
073603 (2013).

[26] When this is not the case the resulting effective master
equation is dynamically unstable.

[27] Namely, F` − ∆̃`α` − i γ
(`)
c
2
α` − J

2

∑
`′A``′α`′ = 0, and

β` = g`|α`|2

ω
(`)
m −iγ(`)m /2

. This insures that so long as the sys-

tem remains dynamically stable (ĉ`(t � 1/γc) ≈ 0 and,
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Supplemental Material: Permanent directional heat currents in lattices of
optomechanical resonators

I. ADIABATIC ELIMINATION OF EXTENDED DRIVEN-DISSIPATIVE RESERVOIRS

A. Discrete reservoir

Let us consider some generic system S whose dynamics is governed by a Liouvillian LS and a reservoir R described
by a Liouvillian LR. The corresponding two sets of degrees of freedom are weakly coupled via a Hamiltonian term of
the form V̂ = λ

∑
i R̂i ⊗ Ŝi where λ is a scale bookmark and where {R̂i}i and {Ŝi}i act respectively on the reservoir

and on the system Hilbert spaces. We associate sets of ladder operators {âi}i and {b̂i}i to the reservoir and the system,
respectively. The vacuum is then displaced to a stable mean-field solution {αi, βi}i towards which the reservoir is

driven (ρ̂ 7→ D̂†ρ̂D̂, L • 7→ D̂LD̂† • with D̂ = exp(αiâi + βib̂i − H.c.)) and the resulting Liouvillians are expanded
to second order in the reservoir’s ladder operators. By construction, the reservoir becomes thermal-like, in the sense
that all its correlation functions decay exponentially in time, and can be traced-out by means of the Born-Markov
procedure [33]. We first perform a Born approximation, by assuming that the state of the reservoir and the system,
initially ρ̂(t0) = ρ̂R(t0) ⊗ ρ̂S(t0), remains separable upon time-evolution ρ̂(t) ≈ ρ̂R(t) ⊗ ρ̂S(t). This yields first the
following non-Markovian master equation for the reduced density matrix of the system ρ̂S(t) = TrR[ρ̂(t)] [38]

∂tρ̂S(t) = TrR[LRρ̂(t) + LSρ̂(t)− i[V̂ , ρ̂(t)]] ≡ LSρ̂S(t) + δLSρ̂S(t), (S1)

δLSρ̂(t) = −λ2
∑

ij

∫ t−t0

0

dτ
{
〈R̂i(t− t0)R̂j(t− t0 − τ)〉R[Ŝi, e

LSτ (Ŝj ρ̂S(t− τ))] + H.c.
}

t0→−∞−−−−−→ −λ2
∑

ij

∫

R+

dτ
{
Gij(τ)[Ŝi, e

LSτ (Ŝj ρ̂S(t− τ))] + H.c.
}
, (S2)

where it was assumed for simplicity that 〈V̂ 〉(t→ +∞) = 0 (e.g. V̂ normal-ordered in {âi}i) and where

Gij(τ) = lim
t→+∞

〈R̂i(t)R̂j(t− τ)〉R. (S3)

The limit in the last line is taken as we only aim at describing the dynamics at a timescale larger than the relaxation
time of the reservoir. For consistency, we also assume that the system was weakly coupled to its environment so
that λ2 exp(LSτc) • ≈ λ2 exp(−i[ĤS , • ]τc). We then perform a Markov approximation by neglecting the effect of the
reservoir on the system on times of the order of the reservoir’s correlation time τc, yielding

δLSρ̂(t) ≈ −λ2
∑

ij

∫

R+

dτ
{
Gij(τ)[Ŝi, e

−iĤSτ Ŝje
+iĤSτ ρ̂S(t)] + H.c.

}
. (S4)

By decomposing the coupling operators in the eigenoperator basis of ĤS as Ŝi =
∑
α ŝi(ωα), where the {ŝi(ω)}i are

such that [ĤS , ŝi(ω)] = −ωŝi(ω) and {ωα}α denotes the set of all possible transition energies between eigenstates of

the system Hamiltonian ĤS , and, by neglecting counter-propagating terms (consistent with the assumption made in
the previous paragraph), one finally gets

δLSρ̂(t) ≈ −λ2
∑

i,j,α

S(α)

ij

[
ŝ†i (ωα),

[
ŝj(ωα)ρ̂S(t)

]]
+ H.c. (S5)

with S
(α)
ij =

∫
R+

dτGij(τ)eiωατ . Its Lindblad form can be made explicit by identifying the Hermitian and anti-

Hermitian components of the reservoir spectrum

S(α) + S(α)† = U(α)†Diag({Γ(α)

i })U(α), with U(α)† = U(α)−1 (S6)

ΩΩΩ(α) =
1

2i

(
S(α) − S(α)†), (S7)

in terms of which Eq. (S5) reads:

δLS = λ2
{
− i[∑ijαΩ(α)

ij ŝ
†
i ŝj , • ] +

∑
iΓ

(α)

i D[U (α)j
i ŝj ]

}
. (S8)



2

Assuming that the reservoir fluctuations remain Gaussian, for any choice of {R̂i}i, S(α) can be computed from the
covariance matrix:

C(τ ≥ 0) =
〈
Â(τ) ÂT (0)

〉
= e−iBτC(0), (S9)

where Â = [. . . , âi, â
†
i , . . .]

T and B is the Bogoliubov operator defined by the Bogoliubov-like equation i∂tÂ = BÂ.

In particular, for some generic linear form R̂i = t?i âi + H.c. as in the main text, one obtains:

S(α) = TT i1

ωα1−B
C(0)T, (S10)

where T is given by the direct matrix sum T = Diag
(
. . . ,

[
t?i
ti

]
, . . .

)
. In the main text, no squeezing of the reservoir’s

fluctuations on top of mean-field was considered so that G(τ) = TTC(τ)T = TT (C′(τ)⊗ [ 0 1
0 0 ])T = (t t†)�C′(τ) =

(t t†)� e−iB′τC′(0), with C ′ij(0) = δij , and then S(α)

ij = t?i tj
[

i
ωα1−B′

]
i,j

, where the simpler Bogoliubov operator was

such that i∂tâi = B′ij âj .

B. Continuous reservoir

The same procedure can be applied to continuous reservoirs. For example, let us consider the case of some
translational-invariant reservoir defined by the squeezed Gaussian fluctuations of a free condensate around its mean-
field solutions:

Ĥ =

∫
drdr′Ψ̂†(r)H(r− r′)Ψ̂(r′) , D =

∫
drγcD[ψ̂(r)], (S11)

where the modes Ψ̂(r) = [ψ̂(r), ψ̂†(r)]T satisfy some Bogoliubov equation i∂tΨ̂(r) =
∫

dr′B(r− r′)Ψ̂(r′) [36], where
the Bogoliubov operator typically carries some dependence on the mean fields accounting for the nonlinearity of the
model. This continuous set of degrees of freedom is put in contact with some discrete set of mechanical modes via an
interaction Hamiltonian

V̂ = λ
∑

i

R̂(ri)⊗ Ŝi, (S12)

with some general choice of local coupling R̂(r) = tT (r) · Ψ̂(r).
Under the above-discussed approximations, the system’s effective master equation has the same expression as in the

previous subsection, the only difference being the expression of the reservoir spectrum S(α)

ij =
∫
R+

dτeiωατG(ri, rj ; τ),

which here takes the form of the following convolution:

S(α)

ij = tT (ri)C̃(ri − rj ;ωα)t(rj), (S13)

C̃(ri − rj ;ω) =

∫
dr

∫
dk

(2π)d
ieik·(ri−rj−r)

ω1− B̃(k)
C(r; 0). (S14)

The covariance C(r; 0) = 〈Ψ̂(r)Ψ̂T (0)〉 is to be evaluated from the steady-state mean-field solution and B̃(k) =∫
dre−ik·rB(r).

II. BENCHMARKING THE EFFECTIVE DESCRIPTION

In order to benchmark our effective description, we compute the exact steady-state covariance matrix of both
optical and mechanical fluctuations for the linearised model described by Eq. (4) and extract the exact mean-field

single-particle density matrix σmn = 〈d̂†md̂n〉ss as given by:

σMF
`,`′ = lim

t→+∞

〈
φ̂(t) φ̂T (t)

〉
L+2`,L+2`′−1

, (S15)

where φ̂(t) = [ĉ1(t), ĉ†1(t), . . . , d̂1(t), d̂†1(t), . . .]T , and compare it to the single-particle density matrix of the effective
description given explicitly by

σeff
``′ =

1

L

∑

k

e−ik(`−`′)

Γ(↓)
k /Γ(↑)

−k − 1
(S16)
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by computing the error δ = ‖σeff − σMF‖2/‖(σeff + σMF)/2‖2.
As shown in Fig. 5 (a) and (c) of the main text, and Fig. S1, the analytical results obtained from the effective theory

match the numerical solution of the linearised dynamics in a wide regime of parameters.
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FIG. S1. Imaginary part of the steady-state single-particle density matrix predicted by the effective theory as given by Eq. S16

for L = 8, φ = 2×2π/L, |α|2 = 100, ∆̃ = −J −ωm, g/ωm = 1 ·10−2, γc/ωm = 1 ·10−1, γm/ωm = 1 ·10−3, n̄ = 10 and J/γc = 1
(a) and J/γc = 5 (b). Relative errors δ are 1.0% (a) and 0.7% (b). (c) δ as a function of the effective optomechanical coupling

and the inter-cavity coupling for L = 8, φ = 2π/L, |α|2 = 100, ∆̃ = −J − ωm − γc/2, γc/ωm = 1 · 10−1, γm/ωm = 1 · 10−3 and
n̄ = 100. δ ≥ 5% in the dashed region. (d) Relative error δ associated to the Fig. 4 of the main text.

III. ADDITIONAL REMARKS ON THE PECULIAR FEATURES OF OUR PROPOSED
OPTOMECHANICAL CONFIGURATION AND THEORETICAL EFFECTIVE DESCRIPTION

In our letter, we have examined peculiar heat transport properties mediated by correlated fluctuations of a lattice of
optical modes. We have shown that the weak coupling of initially-uncoupled modes to a common Markovian reservoir
with finite correlation length, a situation relevant beyond the specific optomechanical system hereby described, induces
dissipative as well as coherent processes that drastically alter the fate of the system. In particular, in a ring geometry,
we identify permanent gauge currents whirling around the ring of optomechanical resonators. This result is original as
the generation of these currents happens in the absence of any direct coupling between resonators and in the presence
of thermal relaxation with local baths at non-cryogenic temperatures. In this scenario, the action of the extended
reservoir is twofold: it builds coherence between distant thermal modes and allows for parity-breaking scattering
events between distant modes. In this section, we discuss more details concerning the differences of this configuration
with respect to previous interesting works in the literature.

The coupling of N independent mechanical modes to N−1 independent optical ones was considered in Refs. [16, 17]
and shown to allow one to generate reconfigurable interactions between distant resonators with great flexibility. In this
setup, each “reservoir” optical mode couples to all mechanical ones with the same phase. The engineered interaction

between the various mechanical modes is thus symmetric, Ĥeff =
∑
ij Sij b̂

†
i b̂j , with Sij = Sji ∈ R, and thus generates

no gauge heat currents, which are the central point of our work.
Ref. [13] proposes two methods, namely (i) to time-modulate the coherent mechanical populations of local mechan-

ical modes or (ii) to implement a wavelength conversion scheme in order to generate a synthetic gauge field for a
lattice’s photons instead of phonons. Apart from the difference in the nature of the bosonic carriers, approach (i) is
completely different from our configuration that does not require modulation of the populations. Both approaches
(i) and (ii) in Ref. [13] would require the presence or the engineering of two-site direct couplings between the optical
modes of the lattice in order to generate a photon current. In contrast, in this work no direct mechanical coupling is
involved in phonon transport.

In Ref. [5], the authors give a detailed description of persistent currents across spin chains. In that reference, in
contrast to our model, the effect is achieved through a proper reservoir engineering of two-site non-reciprocal couplings
[6] between adjacent lattice sites.

In Ref. [31], the authors examine singular transport properties across an open chain of optomechanical resonators
with a gradient of optical mean-field phases similar to the one of our letter but with nearest-neighbor coupling between
both optical and mechanical modes. In that work there is a direct phonon-phonon coupling, which is responsible for
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the peculiar tilting of the band structure of the chain. In their setup nonreciprocal transport properties show a crucial
dependence on the asymmetric gaps of the system, around which excitations have a hybrid phonon-photon nature, as
opposed to the system described in our letter where the gap is not resolved (|gα| < γc) and the transported excitations
are of pure phononic nature.

Furthermore, the theoretical method we have applied for the proposed configuration differs significantly from
Refs. [5, 13, 31] by introducing the concept of extended reservoir. Indeed, we have first provided a general description
of the effective dynamics of a set of system modes in local contact with an extended reservoir (a situation that is not
restricted to optomechanics) in terms of nonlocal coherent interaction terms as well as nonlocal dissipative processes.
We have shown the generality of the approach in Section V of the present SM by deriving an effective many-mode
squeezing Liouvillian for initially uncoupled mechanical modes from the elimination of a two-tone driven lattice of
optical cavities. This description allows us to derive the analytical expression of the current circulating around the
ring as a function of the optical phase gradient and the system parameters.

IV. CONTINUITY EQUATION IN A GENERAL SETTING

In the effective model discussed in the main text, all sites are potentially mutually coupled via the reservoir so the
current operators are to be carefully defined.

To do so, let us consider a lattice system as defined by some graph G = (Σ, E) with vertices Σ, edges E and one of
its subsystems G[Ω] defined as the subgraph supported on some subset of vertices Ω ⊆ Σ. Furthermore, let us denote

ÔΩ =
∑
i∈Ω Ôi some extensive observable Ô. Then, ÔΩ must satisfy a continuity equation of the form

∂tÔΩ = −
∑

(i,j)∈∂Ω

̂Oi→j + σ̂OΩ = L†ÔΩ, (S17)

where the boundary ∂Ω of the subsystem G[Ω] was defined as the set of edges ∂Ω = {(i, j) ∈ E : i ∈ Ω, j /∈ Ω} directed
from the subsystem to the rest of the system. σ̂OΩ is a source term and L† is the adjoint Liouvillian [33] driving the
operator dynamics.

Now let us split the adjoint Liouillian as L† = LO†C +LO†NC into a part conserving the total amount of Ô (LO†C ÔΣ) and

the rest LO†NC = L† −LO†C . By definition, ∂Σ = {∅} so the current contribution vanishes for Ω→ Σ (∂tÔΣ = 0 + σ̂OΣ ).
Therefore, ∀Ω ⊆ Σ:

L†CÔΩ = −
∑

(i,j)∈∂Ω

̂Oi→j , L†NCÔΩ = σ̂OΩ . (S18)

For the model discussed hereby, once linear terms are absorbed into a static coherent displacement, the Louvillian

conserving the total internal energy ÛΣ =
∑
i∈Σ ωmd̂

†
i d̂i is the effective Hamiltonian LU†C • = i[Ĥeff

m , • ] while the
effective dissipator acts as a source/sink. From

LU†C Û` = −
∑

1≤p<L

(̂U`→`+p + ̂U`→`−p), (S19)

one obtains the definition of heat current used in the main text ̂U`→`+p = ωm̂`→`+p = −∑±
J(±)
p

2i (d̂†`+pd̂`e
∓iφp −H.c).

Moreover, if LUNCρ̂m(t → +∞) = 0, as is the case in the main text, then limt→+∞ Tr[ρ̂mLU†C Û`] = 0, i.e. either
〈̂U`→`±p〉t→∞ = 0 (no permanent current) or 〈̂U`→`+p〉t→∞ = −〈̂U`−p→`〉t→∞ (permanent current). To discriminate

between these two cases, one can define a directional circulating current ̂UC = ωm
∑L
`=1

∑
1≤p<dL/2e ̂`→`+p as done

in the main text which only vanishes in the absence of permanent currents, thus serving as a witness of existence of
permanent currents.

V. EFFECTIVE MULTI-MODE SQUEEZING FROM A TWO-TONE-DRIVEN EXTENDED
RESERVOIR

Let us consider the general Liouvillian defined in Eqs. (1) and (3) of the main text. By a two-tone driving of the

cavities so as to have αi(t) = α(+)

i e−iω
(i)
m t + α(−)

i e+iω(i)
m t (in the frame rotating at ωp) as optical mean-field solutions,
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in the spirit of reference [37], the coupling Hamiltonian in Eq. (4) reads in the interaction picture of the mechanical
modes:

V̂i = −
(
G(+)

i d̂i +G(−)

i d̂†i
)
ĉi + H.c.−

(
G(+)

i d̂†ie
+2iω(i)

m t +G(−)

i d̂ie
−2iω(i)

m t
)
ĉi + H.c., (S20)

where subdominant terms (O(gĉ†ĉd̂)) were neglected. As in the above reference, we define G(±)

i = giα
(±)

i and take

|G(±)

i | = G(±), ∀i. By neglecting the rapidly varying last term and defining mechanical Bogoliubov modes β̂i =

cosh reiθi d̂i + sinh reiϕi d̂†i , where r = G(+)/G(−), θi = Arg(G(+)

i ) and ϕi = Arg(G(−)

i ), the effective coupling becomes

−η ĉiβ̂†i + H.c. with η =
√
G(−)2 −G(+)2.

By using the result of the main text, one gets the following effective Liouvillian by tracing out the optical degrees
of freedom:

Ĥeff
m =

∑

ij

Ωij β̂
†
i β̂j , (S21)

Deff
m =

∑

i

γ(i)

m

(
(n̄i + 1)D[d̂i] + n̄iD[d̂†i ]

)
+
∑

i

ΓiD[U j
i β̂j ], (S22)

with

S + S† = U†Diag({Γi})U ; ΩΩΩ =
1

2i

(
S− S†

)
(S23)

and

S = −iη2B−1 ; B = −J
z

A−Diag({∆̃i + i
γ(i)
c

2 }). (S24)

By defining αij = Arg(Ωij), θij = (θi − θj)/2 and ϕij = (ϕi − ϕj)/2, Θij = (θi + θj)/2 and Φij = (ϕi + ϕj)/2, one
can rewrite:

Ĥeff
m =

∑

i

Ωiiβ̂
†
i β̂i +

∑

i>j

2|Ωij |
(

sinh2 r cos(ϕij + θij − αij)ei(ϕij−θij) + 1
2e
iαij−i(θi−θj)

)
d̂†i d̂j + H.c.

+
∑

i>j

2|Ωij |ei(Θij−Φij) cosh r sinh r cos(θij + ϕij − αij)d̂†i d̂†j + H.c. (S25)

For instance, by having J / γc so that next-to-nearest-neighbors terms can be dropped (see Fig. S1 (a)) and choosing
the phase of the drives so as to have θ`+1 − θ` = ϕ`+1 − ϕ` = α`+1,` [2π] and θ` − ϕ` = ν, we obtain:

Ĥeff
m =

∑

i

Ωiiβ̂
†
i β̂i +

∑

i

[
2|Ωi+1,i|

(
sinh2 r + 1

2

)
d̂†i+1d̂i + 2|Ωi+1,i| cosh r sinh r eiν d̂†i+1d̂

†
i + H.c.

]
. (S26)

The system is thus subject to multi-mode squeezing as long as the system remains stable. By combining this with
the engineered complex tight-binding interaction, one could in principle obtain a dissipative version of the bosonic
Kitaev-Majorana described in reference [14].


