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), and we compute the second term explicitly. The main tool used in the proof is Mirzakhani's topological recursion formula, for which we provide a comprehensive introduction.

1 Introduction and statement of the results

First definitions and notations

Let g, n be two integers such that 2g -2 + n > 0. For any given length vector x = (x 1 , . . . , x n ) ∈ R n ≥0 , we define the moduli space M g,n (x) to be the set of isometry classes of surfaces X satisfying the following:

• X is a connected oriented hyperbolic surface of genus g with n labelled boundary components b 1 , . . . , b n ,

• for all i ∈ {1, . . . , n}, the boundary components b i is a closed geodesic of length x i if x i > 0, or a cusp if x i = 0.

This space is an orbifold of dimension 6g -6 + 2n. It is equipped with a natural symplectic form, the Weil-Petersson form ω WP g,n,x [START_REF] Weil | On the moduli of Riemann surfaces[END_REF][START_REF] William | The symplectic nature of fundamental groups of surfaces[END_REF], which canonically induces a volume form Vol WP g,n,x := 1 (3g -3 + n)! ω WP g,n,x ∧ . . . ∧ ω WP g,n,x 3g-3+n times .

The object under consideration in this article is the total volume of the moduli space, V g,n (x) := Vol WP g,n,x (M g,n (x)) < +∞.

By work of Mirzakhani, [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF], the volume V g,n (x) is a symmetric polynomial function in x 2 1 , . . . , x 2 n of degree 3g -3 + n, and can therefore be written as V g,n (x) = α 1 +...+αn ≤3g-3+n c g,n (α) n j=1 x 2α j j 2 2α j (2α j + 1)! for a family of coefficients (c g,n (α)) α1 .

Asymptotic expansions of Weil-Petersson volumes

We shall provide an asymptotic expansion of the quantity V g,n (x), true for a fixed n ≥ 1, any length vector x ∈ R n ≥0 , and as the genus g approaches infinity. The motivations for this question and this particular choice of setting are presented in Section 1.3.

Notations Let n ≥ 1 be an integer. We will use the 1 and ∞ norms on R n , denoted as | • | and | • | ∞ respectively. For any real number x, we define x := √ 1 + x 2 . We extend this definition to x ∈ R n by setting x := |x| . We let N 0 := {0, 1, 2, . . .} denote the set of non-negative integers. We write 0 n := (0, . . . , 0) ∈ N n 0 . For any 1 ≤ i ≤ n, δ i denotes the discrete derivation w.r.t. the i-th coordinate, acting on functions v : N n 0 → R by

δ i v(α) := v(α) -v(α 1 , . . . , α i-1 , α i + 1, α i+1 , . . . , α n ).
We will use the usual conventions for multi-indices α ∈ N n 0 , and notably:

(α 1 , . . . , αj , . . . , α n ) := (α 1 , . . . , α j-1 , α j+1 , . . . , α n ) ∈ N n-1 0 ∂ α := ∂ α 1 1 . . . ∂ αn n α I := (α i 1 , . . . , α ir ) for I = {i 1 < i 2 < . . . i r } ⊂ {1, . . . , n}.

We write A = O (B) if there exists a universal constant C > 0 such that, for any choice of parameters, |A| ≤ CB. If the constant depends on a parameter p, we rather write A = O p (B).

The function sinhc : R → R is defined by sinhc(x) := sinh x x if x = 0 1 otherwise.

State of the art

The value at zero of the Weil-Petersson volume, denoted as V g,n := V g,n (0 n ) = c g,n (0 n ) and which corresponds to the case where all boundary components are cusps, has been thoroughly studied. In [START_REF] Mirzakhani | Towards large genus asymptotics of intersection numbers on moduli spaces of curves[END_REF], Mirzakhani and Zograf have proved it admits a full asymptotic expansion of the form

V g,n = C V (2g -3 + n)!(4π 2 ) 2g-3+n
√ g 1 + e

(1) n g + . . . + e (N ) n

g N + O n 1 g N +1
,

where C V > 0 is a universal constant. Asymptotic expansions of other quantities, such as the coefficient c g,n (α) for a fixed α, are also provided. Unfortunately, for general length vectors x ∈ R n ≥0 , the best approximation of V g,n (x) in literature so far is the first-order approximation proved by Mirzakhani and Petri [MP19, Proposition 3.1]2 , which states that for any x,

V g,n (x) V g,n = n j=1 sinhc x j 2 + O n |x| g exp x 1 + . . . + x n 2 . ( 1 
)
This estimate plays a key role in [START_REF] Wu | Random hyperbolic surfaces of large genus have first eigenvalues greater than 3 16[END_REF][START_REF] Lipnowski | Towards optimal spectral gaps in large genus[END_REF], as we will see in Section 1.3. The aim of this article is to prove a similar result, with an error term decaying like 1/ g N +1 for arbitrarily large N rather than N = 0.

Statement of the main result The main result proved in this article is the following.

Theorem 1.1. For any integers g ≥ 0, n ≥ 1 such that 2g -2 + n > 0, there exists a family of n-variable even polynomial functions (P

(N,I ± ) g,n
) N,I ± , for N ≥ 0 and I + I -⊆ {1, . . . , n}, such that for any integer N ≥ 0 and any length vector

x ∈ R n ≥0 , V g,n (x) V g,n = F (N ) g,n (x) + O N,n x 3N +1 g N +1 exp x 1 + . . . + x n 2 (2) 
where F (N ) g,n (x) := I + I -⊆{1,...,n}

P (N,I ± ) g,n (x) 
i∈I + cosh x i 2 i∈I - sinhc x i 2 . (3) 
Furthermore, there exists constants D n,N , A N ≥ 0 such that the polynomial function P

(N,I ± ) g,n can be expressed as a polynomial of degree ≤ D n,N , and its coefficients can be written as linear combinations (independent of g) of the c g,n (α)/V g,n for multi-indices α such that |α| ∞ ≤ A N .

Remark 1.2. More precisely, our proof shows that degree of P (N,I ± ) g,n seen as a polynomial function of the variables (x i ) i∈I -∪I + is ≤ 2N , while as a polynomial function of x i for a i / ∈ I + ∪ I -it is strictly smaller than the constant a N +1 from Theorem 1.3, of size discussed below. In particular, one can take D n,N to be 2N + n(a N +1 -1). The value of A N provided by the proof is 2N + a N +1 .

It should be noted that, for any integer i, the dependency of the function F (N ) g,n (x) with respect to a large x i will be dominated by the terms I + I -⊆ {1, . . . , n} of the sum (3) for which i ∈ I + ∪ I -, because they behave exponentially rather than polynomially. As a consequence, the fact that our degree bound is weaker for indices i / ∈ I + ∪ I -has little to no consequences on the behaviour of F (N ) g,n (x) for large values of x.

Coefficient estimate and sketch of the proof The key technical step to prove Theorem 1.1 is an estimate for the discrete derivatives of α → c g,n (α).

Theorem 1.3. For any order N ≥ 0, there exists a constant a N ≥ 0 satisfying the following. For any integers g ≥ 0, n ≥ 1 such that 2g -2 + n > 0, and any multi-indices m, α ∈ N n 0 such that |m| ∈ {2N -1, 2N } and α i ≥ a N for every index i such that m i > 0,

δ m c g,n (α) = O n,N α N V g,n g N . (4) 
By a discrete Taylor-expansion result (Lemma 5.3), Theorem 1.3 implies that the coefficients c g,n (α) can be well-approximated by functions which are almost polynomial in α, and Theorem 1.1 then follows.

Interestingly, the fact that c g,n (α) can be approximated by functions which are almost polynomial in α had already been observed by Mirzakhani and Zograf in [MZ15, Lemma 4.8]. However, since the dependency on α of the coefficients c g,n (α) is not the main objective in [START_REF] Mirzakhani | Towards large genus asymptotics of intersection numbers on moduli spaces of curves[END_REF], the proof of this statement is only sketched, and presented as a technical lemma. To the contrary, thanks to our new idea of estimating the discrete derivatives of α → c g,n (α), our proof is fairly elementary. It only relies on one application of Mirzakhani's topological recursion formula [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF] and a few classic volume estimates from [START_REF] Mirzakhani | Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus[END_REF], all of which are carefully presented in Section 2.

The parameter a N present in Theorem 1.3 encapsulates the fact that the volume coefficients c g,n (α) take exceptional values for small multi-indices α. This phenomenon is already mentionned in [MZ15, Remark 4.3], where it is referred to as a 'boundary effect'. It is not an artefact of the proof, and can be observed in both Mirzakhani and Zograf's remark and our explicit formula for the second-order term, Theorem 1.5.

The constant a N provided by our proof grows like 2 N . This value is not optimal, and its exponential behaviour comes as a drawback of our new induction argument. In [MZ15, Lemma 4.8], a much smaller value a N = 2N is obtained, but we have unfortunately not been able to achieve a linear value using our method.

Expansion in negative powers of g Using the expansion of c g,n (α)/V g,n in negative powers of g for a fixed multi-index α proved by Mirzakhani and Zograf [MZ15, Theorem 4.1], we can straightforwardly deduce from Theorem 1.1 the following expansion, which is now uniquely defined.

Corollary 1.4. Let n ≥ 1 be an integer. There exists a unique family (f

(k) n ) k≥0
of functions such that for any integer N ≥ 0, any genus g ≥ 1 and any length vector

x ∈ R n ≥0 , V g,n (x) V g,n = N k=0 f (k) n (x) g k + O N,n x 3N +1 g N +1 exp x 1 + . . . + x n 2 . ( 5 
)
Furthermore, for any k ≥ 0, the function f

(k)
n can be expressed as

f (k) n (x) = I + I -⊆{1,...,n} Q (k,I ± ) n (x) i∈I + cosh x i 2 i∈I - sinhc x i 2 , (6) 
where

Q (k,I ± ) n
are uniquely defined even n-variable polynomial functions.

The symmetry of V g,n (x) implies that, for all k, f

n is symmetric, which in turn provides some relations between the Q (k,I ± ) n for I + I -⊆ {1, . . . , n}.

Explicit expression for the first orders By [MP19, Proposition 3.1], the value of the first approximation f

(0) n is f (0) n (x) = n j=1 sinhc x j 2 .
We provide an explicit expression for the second-order approximation. In order to simplify the notations, we introduce the functions c, s defined by ∀x, c(x) := cosh x 2 and sc(x) := sinhc x 2 .

Then, the second-order expansion can be written as follows.

Theorem 1.5. For any n ≥ 1 and x ∈ R n ≥0 ,

f (1) n (x) = 1 π 2 n i=1 c(x i ) + 1 - x 2 i 16 + 2 sc(x i ) k =i sc(x k ) - 1 2π 2 1≤i<j≤n [c(x i ) c(x j ) + 1 -2 sc(x i ) sc(x j )] k / ∈{i,j} sc(x k ).
Another formulation of this statement, using the notations of Theorem 1.1, can be found as Theorem 3.1.

Example.

For n = 1, we obtain

π 2 f (1) 1 (x) = cosh x 2 + 1 - x 8 + 4 x sinh x 2 . ( 7 
)
For n = 2, in the special case where x 1 = x 2 (which often appears when using Mirzakhani's integration formula, see equation (9) for instance),

π 2 f (1) 2 (x, x) = 2 x sinh(x) - 12 x 2 sinh 2 x 2 -cosh 2 x 2 + 4 x sinh x 2 . ( 8 
)

Motivation to the study of random compact hyperbolic surfaces

The choice of the regime g 1 while n ≥ 1 is fixed is motivated by its great importance in the study of random compact hyperbolic surfaces of large genus.

This topic has gained increasing popularity in recent years -see [GPY11, Mir13, MP19, MT21, NWX20, WX21, LW21] for instance. In these articles, the surfaces are sampled using the Weil-Petersson probability measure P WP g , obtained by renormalising the Weil-Petersson volume form on the moduli space M g of closed hyperbolic surfaces of genus g. In particular, n = 0, which could appear to be contradictory since we assume in this article that n ≥ 1.

Actually, Weil-Petersson volumes V g,n (x) for n ≥ 1 and x = 0 n appear systematically when using Mirzakhani's integration formula [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF], the main tool available to compute expectations and probabilities in the Weil-Petersson setting. This is the reason why it is absolutely essential to understand such volumes in order to study compact hyperbolic surfaces. For instance,

E WP g   #    γ primitive simple closed geodesic, non-separating, such that a ≤ (γ) ≤ b      = b a V g-1,2 (x, x) 2 V g,0 x dx. (9) 
In [START_REF] Mirzakhani | Lengths of closed geodesics on random surfaces of large genus[END_REF], it is in order to estimate such quantities and prove the convergence of the number of primitive closed geodesics of length a ≤ ≤ b to a Poisson law of parameter λ a,b = b a 2

x sinh 2 x 2 dx as g → +∞, that Mirzakhani and Petri compute the first-order approximation of V g,n (x).

This first-order estimate has since then been used by Wu-Xue [WX21] and Lipnowski-Wright [START_REF] Lipnowski | Towards optimal spectral gaps in large genus[END_REF] in two independent proofs of the fact that the first non-zero eigenvalue λ 1 of the Laplace-Beltrami operator satisfies

∀ > 0, lim g→+∞ P WP g λ 1 ≥ 3 16 -= 1. ( 10 
)
Proving that (10) still holds if we replace the number 3 16 by 1 4 , which would then be optimal by [START_REF] Shiu-Yuen | Eigenvalue comparison theorems and its geometric applications[END_REF], is a very active topic. This was achieved very recently for random covers of non-compact surfaces by Hide and Magee [START_REF] Hide | Near optimal spectral gaps for hyperbolic surfaces[END_REF], but is still an open problem in the Weil-Petersson setting and for random covers of compact surfaces.

As explained in [Mon21, Section 6.1.2], replacing 3 16 by the 'natural' next step, 2 9 , requires amongst other things a second-order expansion such as Theorem 1.5. Ultimately, we believe that obtaining the optimal value 1 4 will require estimates with errors of size 1/g N for arbitrarily large N , and this is the core motivation behind this article.

Organisation of the paper

This article is organised as follows.

• In Section 2, we review the different classic tools that are required to study the Weil-Petersson volume V g,n (x). Notably, we provide a comprehensive introduction to the topological recursion formula satisfied by these functions proved by [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF], as well as a throughout proof of the first-order expansion from [START_REF] Mirzakhani | Lengths of closed geodesics on random surfaces of large genus[END_REF].

• In Section 3, we compute our new second-order expansion, Theorem 1.5. This allows us to introduce a few notations and ideas that are useful to the proof of the higher-order expansion.

• We then prove the estimate on the discrete derivatives δ m c g,n (α) of the volume coefficients, Theorem 1.3, in Section 4. The proof proceeds by induction on the absolute value of the Euler characteristic |χ| = 2g-2+n, and the use of Mirzakhani's topological recursion formula.

• Finally, we prove a shifted discrete Taylor expansion in Section 5. It allows us to approximate the coefficients c g,n (α) by functions almost polynomial in α, and hence conclude to Theorem 1.1 and Corollary 1.4.
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2 Preliminaries: Weil-Petersson volumes and Mirzakhani's topological recursion

In this section, we shall present some of the tools that are essential to the study of the total volume V g,n (x) of the moduli space of bordered hyperbolic surfaces M g,n (x). Notably, we will explain in detail Mirzakhani's topological recursion formula proved in [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF], which allows to compute the volumes V g,n (x) recursively.

Polynomial expression

By [Mir07a, Theorem 6.1], the function x → V g,n (x) is a polynomial function that can be written as

V g,n (x) = |α|≤3g-3+n c g,n (α) n j=1 x 2α j j 2 2α j (2α j + 1)! • (11) 
The polynomial V g,n (x) is symmetric in the variables x 1 , . . . , x n , and the coefficients c g,n (α) are therefore invariant by permutation of the multi-index α.

For convenience, we extend the definition of c g,n (α) to any multi-index α ∈ Z n , by setting it to be equal to zero unless it already defined by (11).

The expression of the Weil-Petersson volume polynomial is known for surfaces of Euler characteristic χ = -1, i.e. for the pair of pants (of signature (0, 3)) and the once-holed torus (of signature (1, 1)). Indeed, there is only one hyperbolic pair of pants with three boundary geodesics of prescribed lengths [Bus92, Theorem 3.1.7], and therefore M 0,3 (x) is reduced to an element and V 0,3 (x) is the constant polynomial equal to 1. Näätänen and Nakanishi proved in [START_REF] Näätänen | Weil-Petersson areas of the moduli spaces of tori[END_REF] that for all x ≥ 0,

V 1,1 (x) = π 2 6 + x 2 24 •
The choice of the normalisation by 2 2α j (2α j + 1)! in equation ( 11) is partly motivated by the fact that it allows to interpret the coefficients c g,n (α) as intersection numbers -see [START_REF] Mirzakhani | Weil-Petersson volumes and intersection theory on the moduli space of curves[END_REF]. It furthermore simplifies the topological recursion formula that the coefficients satisfy, which we shall now present.

Mirzakhani's topological recursion formula

Whenever the number of boundary components n is different from 0, the volume polynomial V g,n (x), and therefore its coefficients (c g,n (α)) α , can be computed using a topological recursion formula proved by Mirzakhani in [START_REF] Mirzakhani | Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces[END_REF].

More precisely, the coefficients (c g,n (α)) α of the volume V g,n (x) can be expressed as a linear combination of the coefficients of certain volumes V g ,n (x), with n ≥ 1 and |χ | = 2g -2 + n is strictly smaller than |χ| = 2g -2 + n. This ultimately allows the computation of all volume polynomials V g,n (x) with non-zero n, starting only with the expressions for the volumes V g,n (x) when |χ| = 1, which are already known.

Topological enumeration

In order to state the recursion formula, and the numerous terms it contains, let us first sketch out its topological interpretation. We consider a bordered hyperbolic surface X ∈ M g,n (x). Our objective is to 'construct' X using smaller pieces. One way to do so is the following. We focus on one boundary component of X: the first one, b 1 , for instance. We will try to remove a pair of pants containing the boundary component b 1 from the surface X. Since the Euler characteristic of the pair of pants is -1, the Euler characteristic obtained after removing the pair of pants will decrease in absolute value.

There are many topological types of embedded pairs of pants bounded by b 1 . They can be arranged in three categories.

(A) Pairs of pants with two boundary components from ∂X, the component b 1 and b j for a j ∈ {2, . . . , n}. Then, the signature of the surface obtained when removing this pair of pants is (g, n -1), with n -1 ≥ 1.

(B) Non-separating pairs of pants, that is to say pairs of pants delimited by the boundary component b 1 and two inner curves, and such that the surface obtained when removing the pair of pants is still connected. The signature of the complement is then always equal to (g -1, n + 1).

(C) Separating pairs of pants, that is to say pairs of pants delimited by the boundary component b 1 and two inner curves, and which separate the surface into two connected components. The topological situation can then be entirely described by the genus g of one of the components (the other genus being g -g ), and a partition (I, J) of the boundary components {2, . . . , n} of X. Note that the only cases which will appear are those for which 2g -2 + |I| + 1 > 0 and 2(g -g ) -2 + |J| + 1 > 0. Let I g,n denote the set of all these topological possibilities.

The formula The coefficients of the volume V g,n (x) can be expressed as a linear combination of the coefficients of all the embedded surfaces we encountered in this enumeration.

Theorem 2.1 ([Mir07a]

). The coefficients of the volume polynomial V g,n (x) can be written as a sum of three contribution, corresponding to the cases (A-C):

c g,n (α) = n j=2 A (j) g,n (α) + B g,n (α) + ι∈Ig,n C (ι) g,n (α). ( 12 
)
Each of these terms is a combination of coefficients of the volumes of the corresponding embedded surfaces:

A (j) g,n (α) = 8 (2α j + 1) +∞ i=0 u i c g,n-1 (i + α 1 + α j -1, α 2 , . . . , αj , . . . , α n ) (13) B g,n (α) = 16 +∞ i=0 k 1 +k 2 =i+α 1 -2 u i c g-1,n+1 (k 1 , k 2 , α 2 , . . . , α n ) (14) C (ι) g,n (α) = 16 +∞ i=0 k 1 +k 2 =i+α 1 -2 u i c g ,|I|+1 (k 1 , α I ) c g-g ,|J|+1 (k 2 , α J ), (15) 
where for any i ≥ 0,

u i = ζ(2i)(1 -2 1-2i ) when i > 0 1 2 when i = 0.
Note that all of the sums in the previous statement are finite because a coefficient c g ,n (β) is always equal to zero if |β| > 3g -3 + n , and therefore non-zero terms always satisfy i ≤ 3g -3 + n -|α|.

Example. The coefficients that intervene when computing V g,n (x) for each (g, n) such that |χ| ≤ 3 are represented by the arrows in Figure 1. Sequence (u i ) i and first properties In order to use the topological recursion formula stated in Theorem 2.1, we need some information of the sequence (u i ) i that appears in it.

Lemma 2.2 ([Mir13, Lemma 3.1]). The sequence (u i ) i is increasing, converges to 1 as i approaches infinity, and there exists a constant

C > 0 such that ∀i, 0 ≤ u i+1 -u i ≤ C 4 i • (16) 
We can deduce from the monotonicity of the sequence (u i ) i the fact that the coefficients (c g,n (α)) α are decreasing functions of α in the following sense.

Lemma 2.3. We define the following partial order on multi-indices:

α ≤ α ⇔ ∀j ∈ {1, . . . , n}, α j ≤ αj .
Then, the coefficients (c g,n (α)) α decrease with the multi-index α ∈ N n 0 . In particular,

∀α ∈ N n 0 , 0 ≤ c g,n (α) ≤ V g,n . (17) 
Proof. By symmetry of the coefficients, we can reduce the problem to proving that for any multi-indices α and α = ( α1 , α 2 , . . . , α n ) such that α1 ≥ α 1 , c g,n (α) ≤ c g,n (α). More precisely, we will show that every single term in equation ( 12) is smaller for the index α than it is for α. The method being the same for every contribution, so we only detail the proof of the fact that B g,n (α) ≤ B g,n (α). By equation ( 14), if we use the convention u i = 0 for i < 0,

B g,n (α) -B g,n (α) = 16 k 1 ,k 2 ≥0 (u k 1 +k 2 +2-α 1 -u k 1 +k 2 +2-α1 ≥0 ) c g-1,n+1 (k 1 , k 2 , α 2 , . . . , α n ) ≥ 0.

Estimates of ratios of Weil-Petersson volumes

Let us now review known estimates on ratios of Weil-Petersson volumes in the large-genus limit. These properties have been established in [START_REF] Mirzakhani | Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus[END_REF] using several recursion formulas for Weil-Petersson volumes [Mir07a, DN09, LX09], amongst which the one presented in Section 2.2.

Same Euler characteristic Since two surfaces with the same Euler characteristic are at the same height in the recursion formula, one could expect the volumes V g,n and V g-1,n+2 to be of similar size. This is indeed the case: by [Mir13, Theorem 3.5], for all n ≥ 0, there is a constant C n > 0 such that for any integer g ≥ 0 satisfying 2g -2 + n > 0,

V g-1,n+2 V g,n -1 ≤ C n g • (18) 
Adding a cusp We can furthermore compare V g,n and V g,n+1 using [Mir13, Lemma 3.2]: for any g, n ≥ 0 such that 2g -2 + n > 0,

1 12 1 - π 2 10 < (2g -2 + n)V g,n V g,n+1 < π cosh(π) -sinh(π) 2π 2 • ( 19 
)
The fact that V g,n+1 grows roughly like (2g -2 + n)V g,n can be interpreted the following way: in order to sample a surface of signature (g, n + 1), we can start by sampling a surface of signature (g, n). We then need to decide where to add a cusp, by picking a point on the surface of area proportional to 2g -2 + n.

Cutting into two smaller surfaces Since we can cut surfaces of signature (g, n) into two surfaces of respective signatures (g 1 , n 1 +1) and (g 2 , n 2 +1) with

g 1 + g 2 = g and n 1 + n 2 = n, one could expect the product V g 1 ,n 1 +1 × V g 2 ,n 2 +1
to be of similar size as V g,n . Actually, these quantities are much smaller. Indeed, by [Mir13, Lemma 3.3], for any n ≥ 0, there exists a constant C n > 0 satisfying the following. For any integer g ≥ 0 such that 2g -2 + n > 0 and any integers n 1 , n 2 such that n 1 + n 2 = n,

g 1 +g 2 =g 2g i +n i >1 V g 1 ,n 1 +1 V g 2 ,n 2 +1 ≤ C n V g,n g • (20)
The presence of this decay in 1/ g is linked to the fact that typical surfaces of large genus are very well-connected, and therefore quite difficult to cut into smaller pieces -a concrete manifestation of this phenomenon can be found in the comparison of Theorem 4.2 and Theorem 4.4 in [START_REF] Mirzakhani | Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus[END_REF].

Cutting into more surfaces In this article, we will need a new version of equation ( 20) with additional powers of the genus.

Lemma 2.4. Let n, N 1 , N 2 ≥ 0 be integers. There exists a constant C n,N 1 ,N 2 satisfying the following. For any integer g ≥ 0 such that 2g -2 + n > 0 and any integers n 1 , n 2 such that n 1 + n 2 = n,

g 1 +g 2 =g 2g i +n i >N i +1 V g 1 ,n 1 +1 V g 2 ,n 2 +1 g 1 N 1 g 2 N 2 ≤ C n,N 1 ,N 2 V g,n g N 1 +N 2 +1 • (21)
We draw the reader's attention to the fact that the sum is only taken over the set of indices (g i , n i ) such that 2g i + n i > N i + 1. As we will see in the following proof, this is necessary and the result is false if we add a term with 1

< 2g i + n i ≤ N i + 1.
Proof. The proof is an induction on the integer N 1 +N 2 , the case N 1 = N 2 = 0 corresponding to equation (20).

Let N 1 , N 2 ≥ 0 such that N := N 1 + N 2 > 0. We assume the property at the rank N -1. By symmetry, we can assume that N 1 ≥ N 2 , and in particular N 1 > 0. Then, for any n 1 , n 2 such that n 1 + n 2 = n, the left hand side of equation ( 21) restricted to the terms where g 1 > 0 (which only exist if g > 0) satisfies

g 1 +g 2 =g 2g i +n i >N i +1 g 1 >0 V g 1 ,n 1 +1 V g 2 ,n 2 +1 g 1 N 1 g 2 N 2 = O n 1 g 1 +g 2 =g-1 2g 1 +n 1 >N 1 2g 2 +n 2 >N 2 +1 V g 1 ,n 1 +1 V g 2 ,n 2 +1 g 1 N 1 -1 g 2 N 2 since V g 1 ,n 1 +1 / g 1 = O n 1 (V g 1 -1,n 1 +2
) by equations ( 18) and ( 19), and thanks to the change of indices g 1 = g 1 -1, n 1 = n 1 + 1. By the induction hypothesis, this sum is

O n+1,N 1 -1,N 2 V g-1,n+1 g -1 N = O n,N 1 ,N 2 V g,n g N +1
by equations ( 18) and ( 19) again.

As a consequence, we are left to bound the term for which g 1 = 0. If such a term is present in the sum, then the integer n 1 = 2g 1 +n 1 satisfies n 1 > N 1 +1, and hence n -n 2 -1 ≥ N 1 + 1. Then, the term of the sum is

V 0,n 1 +1 V g,n 2 +1 0 N 1 g N 2 = O n V g,n g N 2 +n-n 2 -1 = O n V g,n g N +1
by equation (19) applied n -n 2 -1 times.

The leading term of the asymptotic expansion

Let us conclude this preliminary section by a detailed proof of the following first-order estimate. This will allow us to present a few ideas that will be used in the general case.

Proposition 2.5 ([MP19, Proposition 3.1]). For any n ≥ 1, g ≥ 0 such that 2g -2 + n > 0, and any length vector

x ∈ R n ≥0 , V g,n (x) V g,n = n j=1 sinhc x j 2 + O n |x| g exp x 1 + . . . + x n 2 .
This proposition comes as a consequence of the expression for the volume polynomials in terms of their coefficients (c g,n (α)) α , together with the following first-order estimate for the coefficients.

Lemma 2.6. For any n ≥ 1, g ≥ 0 such that 2g -2 + n > 0, and any multi-index α ∈ N n 0 ,

c g,n (α) = V g,n + O n |α| 2 V g,n g .
Remark 2.7. We insist on the fact that this estimate is true for any α and not only for multi-indices α such that |α| ≤ 3g -3 + n. Indeed, if |α| > 3g -3 + n, then the bound is trivial, because c g,n (α) = 0 and |α| 2 g 1.

We first prove Lemma 2.6 in Sections 2.4.1 and 2.4.2, and then deduce Proposition 2.5 from it in Section 2.4.3.

First-order estimate of the discrete derivative

Lemma 2.6 states that the coefficients c g,n (α) are almost constant, equal to the value V g,n = c g,n (0 n ). We will prove this by estimating the discrete derivatives of the coefficients c g,n (α).

Lemma 2.8. For any integers g ≥ 0 and n ≥ 1 satisfying 2g -2 + n > 0, and any multi-index α ∈ N n 0 ,

δ 1 c g,n (α) = O n α V g,n g .
Note that, by symmetry of the volume coefficients, this result is also true if we replace δ 1 by δ i for any i ∈ {1, . . . , n}.

Proof. The result is trivially true when |χ| = 2g -2 + n = 1, so we can assume that it is not the case and apply Mirzakhani's topological recursion formula, Theorem 2.1:

δ 1 c g,n (α) = n j=2 δ 1 A (j) g,n (α) + δ 1 B g,n (α) + ι∈Ig,n δ 1 C (ι) g,n (α).
We prove that each of these three terms is O n ( α V g,n / g ) separately thanks to their respective expressions, equations (13) to (15). Let us begin by the first sum. For a j ≥ 2, we write equation (13) for A (j) g,n (α) and A (j) g,n (α 1 + 1, α 2 , . . . , α n ), isolating the term i = 0 in the first sum and using a change of index on the sum over i ≥ 1. We obtain

δ 1 A (j) g,n (α) = 4 (2α j + 1) c g,n-1 (α 1 + α j -1, α 2 , . . . , αj , . . . , α n ) + 8 (2α j + 1) +∞ i=0 (u i+1 -u i ) c g,n-1 (i + α 1 + α j , α 2 , . . . , αj , . . . , α n ).
But we know by Lemma 2.3 that for any multi-index

β ∈ N n-1 0 , 0 ≤ c g,n-1 (β) ≤ V g,n-1 .
Then,

0 ≤ δ 1 A (j) g,n (α) ≤ 8(2α j + 1)V g,n-1 = O n α j V g,n g because +∞ i=0 (u i+1 -u i ) = lim u -u 0 = 1 -1 2 = 1
2 by Lemma 2.2, and thanks to equation (19). Since there are n -1 = O n (1) possible values for j,

n j=2 δ 1 A (j) g,n (α) = O n α V g,n g . ( 22 
)
We now look at the non-separating term δ 1 B g,n (α). Note that this term only appears whenever g ≥ 1. By the same method, this time applied to equation ( 14),

δ 1 B g,n (α) = 8 k 1 +k 2 =α 1 -2 c g-1,n+1 (k 1 , k 2 , α 2 , . . . , α n ) + 16 +∞ i=0 k 1 +k 2 =i+α 1 -1 (u i+1 -u i ) c g-1,n+1 (k 1 , k 2 , α 2 , . . . , α n )• By Lemma 2.3, for any multi-index β ∈ N n+1 0 , 0 ≤ c g-1,n+1 (β) ≤ V g-1,n+1 = O n V g,n g
thanks to equations ( 18) and ( 19). Then,

δ 1 B g,n (α) = O n α 1 V g,n g + +∞ i=0 (i + α 1 )(u i+1 -u i ) V g,n g = O n α 1 V g,n g (23) because the series i (u i+1 -u i ) and i i(u i+1 -u i ) converge.
Finally, for any configuration ι = (g , I, J) ∈ I g,n ,

δ 1 C (ι) g,n (α) = 8 k 1 +k 2 =α 1 -2 c g ,|I|+1 (k 1 , α I ) c g-g ,|J|+1 (k 2 , α J ) + 16 +∞ i=0 k 1 +k 2 =i+α 1 -1 (u i+1 -u i ) c g ,|I|+1 (k 1 , α I ) c g-g ,|J|+1 (k 2 , α J ) = O n α 1 V g ,|I|+1 V g-g ,|J|+1 .
As a consequence,

ι∈Ig,n δ 1 C (ι) g,n (α) = O n α 1 g 1 +g 2 =g n 1 +n 2 =n-1 2g i +n i >1 V g 1 ,n 1 +1 V g 2 ,n 2 +1
and therefore, by equations ( 19) and (20),

ι∈Ig,n δ 1 C (ι) g,n (α) = O n α 1 V g,n-1 g = O n α 1 V g,n g 2 . ( 24 
)
The conclusion follows from adding equations ( 22) to (24).

A discrete integration formula

In order to go from an estimate of discrete derivatives to an estimate on actual coefficients, we use the following discrete integration lemma.

Lemma 2.9. Let n ≥ 1 be an integer. For any v :

N n 0 → R, v(α) = v(0 n ) - n i=1 α i -1 k=0 δ i v(0 i-1 , k, α i+1 , . . . , α n ).
Lemma 2.6 then directly follows from this formula and our first-order estimate on the discrete derivatives, Lemma 2.8.

Proof of Lemma 2.9. We observe that for any index i, the sum over k is a telescopic sum:

S i := α i -1 k=0 δ i v(0 i-1 , k, α i+1 , . . . , α n ) = α i -1 k=0 v(0 i-1 , k, α i+1 , . . . , α n ) -v(0 i-1 , k + 1, α i+1 , . . . , α n ) = v(0 i , α i+1 , . . . , α n ) -v(0 i-1 , α i , α i+1 , . . . , α n ). As a consequence, n i=1 S i = v(0 n ) -v(α)
, which what was claimed.

From the coefficient estimate to the volume estimate

Let us finally prove that Lemma 2.6 implies Proposition 2.5.

Proof. Using the expression of sinhc as a power series, we can write

V g,n (x) -V g,n n j=1 sinhc x j 2 = α∈N n 0 α =0 n (c g,n (α) -V g,n ) n j=1 x 2α j j 2 2α j (2α j + 1)! •
As a consequence, by the triangle inequality and Lemma 2.6,

V g,n (x) -V g,n n j=1 sinhc x j 2 ≤ C n V g,n g α∈N n 0 α =0 n |α| 2 ∞ n j=1 x 2α j j 2 2α j (2α j + 1)! • (25)
We cut the sum over α in equation (25) depending on the index j for which

|α| ∞ = α j . Since α 2 j ≤ (2α j + 1)(2α j )/4, +∞ α j =1 α 2 j x 2α j j 2 2α j (2α j + 1)! ≤ +∞ k=0 x 2k+2 j 2 2k (2k + 1)! = 2x j sinh x j 2 ≤ |x| exp x j 2 .
Also, for any i,

+∞ α i =0 x 2α i i 2 2α i (2α i + 1)! ≤ +∞ k=0 x k i 2 k k! ≤ exp x i 2 .
This allows us to conclude.

An explicit second-order expansion

We now possess all the tools that are required to compute the second term of the asymptotic expansion of V g,n (x). We recall the notation c(x) = cosh x 2 and sc(x) = sinhc x 2 . Let us prove the following statement.

Theorem 3.1. For any integers g ≥ 0 and n ≥ 1 such that 2g -2 + n > 0, and any

x ∈ R n ≥0 , V g,n (x) V g,n = F (1) g,n (x) + O n x 3 g 2 exp x 1 + . . . + x n 2
where the functions F

(1) g,n is the function defined by:

F (1) g,n (x) = 1≤k≤n sc(x k ) + 8 V g-1,n+1 1 g≥1 V g,n n i=1 c(x i ) + 1 - x 2 i 16 + 2 sc(x i ) k =i sc(x k ) -4 V g,n-1 V g,n 1≤i<j≤n [c(x i ) c(x j ) + 1 -2 sc(x i ) sc(x j )] k / ∈{i,j} sc(x k ).
Theorem 1.5 can then be obtained by using the expansions proved in [START_REF] Mirzakhani | Towards large genus asymptotics of intersection numbers on moduli spaces of curves[END_REF]: for any g ≥ 1,

V g,n-1 V g,n = 1 8π 2 g + O n 1 g 2 V g-1,n+1 V g,n = V g-1,n+1 V g,n-1 V g,n-1 V g,n = 1 8π 2 g + O n 1 g 2 .
The key ingredient in the proof of Theorem 3.1 is the following approximation result for the volume coefficients (c g,n (α)) α up to errors of size V g,n / g 2 . Proposition 3.2. For any integers g ≥ 0 and n ≥ 1 such that 2g -2 + n > 0,

∀α ∈ N n 0 , c g,n (α) = ĉ(1) g,n (α) + O n |α| 4 V g,n g 2
where ĉ(1) g,n : N n 0 → R is the function defined by:

ĉ(1) g,n (α) = V g,n + 8V g-1,n+1 1 g≥1 n i=1 p 1 (α i ) + 1 α i =0 - p 2 (α i ) 4 -2 -4V g,n-1 1 n≥2 1≤i<j≤n p 1 (α i ) p 1 (α j ) + 1 α i =α j =0 -2 and p 1 (X) := 2X + 1, p 2 (X) := (2X + 1)(2X).
Similarly to the first-order case presented before, the proof of Proposition 3.2 spans over Sections 3.1 and 3.2, and we then deduce Theorem 3.1 from it in Section 3.3.

Second-order estimate of the discrete derivative

In order to expand the coefficients (c g,n (α)) α∈N n 0 , we first estimate the discrete derivative δ 1 c g,n (α). Lemma 3.3. For any integers g ≥ 0 and n ≥ 1, satisfying 2g -2 + n > 0,

∀α ∈ N n 0 , δ 1 c g,n (α) = ψ (1) g,n (α) + O n α 3 V g,n g 2
where ψ

(1) g,n : N n 0 → R is the function defined by:

ψ (1) g,n (α) =4 (4α 1 -1 + 2 1 α 1 =0 )V g-1,n+1 1 g≥1 + 4 n j=2 (4α j + 2 -1 α 1 =α j =0 )V g,n-1 1 n≥2 .
Proof. We apply the discrete derivation to Mirzakhani's recursion formula, Theorem 2.1:

δ 1 c g,n (α) = n j=2 δ 1 A (j) g,n (α) + δ 1 B g,n (α) + ι∈Ig,n δ 1 C (ι) g,n (α).
We then replace every term by the first-order approximation given by Lemma 2.6, which will allow us to estimate them up to errors of size V g,n / g 2 . We notice that the first term is zero if n = 1. Let us assume otherwise, and take j ∈ {2, . . . , n}. As in the first-order case, we can write

δ 1 A (j) g,n (α) = 4 (2α j + 1) c g,n-1 (α 1 + α j -1, α 2 , . . . , αj , . . . , α n ) + 8 (2α j + 1) +∞ i=0 (u i+1 -u i ) c g,n-1 (i + α 1 + α j , α 2 , . . . , αj , . . . , α n ) =: T 1 + T 2 .
• Estimate of the term T 1 :

-If α 1 = α j = 0, then α 1 + α j -1 < 0 and therefore T 1 = 0.

-Otherwise, by Lemma 2.6 applied to the coefficient in T 1 ,

T 1 = 4 (2α j + 1)V g,n-1 + O n (2α j + 1)|α| 2 V g,n-1 g = 4 (2α j + 1)V g,n-1 + O n α 3 V g,n g 2

by equation (19).

• To estimate of the term T 2 , we replace the volume coefficients appearing in T 2 by their first-order approximation and obtain: 

T 2 = 8 (2α j + 1) +∞ i=0 (u i+1 -u i ) V g,n-1 + O n (i + |α|) 2 V g,
T 2 = 4 (2α j + 1)V g,n-1 + O n α 3 V g,n g 2 .
As a conclusion, we have proved that

δ 1 A (j) g,n (α) =    4 V g,n-1 + O n α 3 Vg,n g 2 if α 1 = α j = 0 8 (2α j + 1)V g,n-1 + O n α 3 Vg,n g 2 otherwise.
We rewrite this expression as

δ 1 A (j) g,n (α) = 4 (4α j + 2 -1 α 1 =α j =0 )V g,n-1 1 n≥2 + O n α 3 V g,n g 2 .
By the same process, we prove that, when g ≥ 1,

δ 1 B g,n (α) = 4 (4α 1 -1 + 2 1 α 1 =0 )V g-1,n+1 1 g≥1 + O n α 3 V g,n g 2 .
Indeed,

δ 1 B g,n (α) = 8 k 1 +k 2 =α 1 -2 c g-1,n+1 (k 1 , k 2 , α 2 , . . . , α n ) + 16 +∞ i=0 k 1 +k 2 =i+α 1 -1 (u i+1 -u i ) c g-1,n+1 (k 1 , k 2 , α 2 , . . . , α n ) =: T 1 + T 2 .
• On the one hand, T 1 is equal to zero if α 1 = 0, and otherwise,

T 1 = 8 (α 1 -1)V g-1,n+1 + O n α 3 V g,n g 2 because V g-1,n+1 = O n (V g,n / 
g ) by equations ( 18) and (19).

• On the other hand,

T 2 = 16 +∞ i=0 (α 1 + i)(u i+1 -u i )V g-1,n+1 + O n α 3 V g-1,n+1 g -1 = 4 (2α 1 + 1)V g-1,n+1 + O n α 3 V g,n g 2 because, as before, +∞ i=0 (u i+1 -u i ) = 1 2 , and also +∞ i=0 i(u i+1 -u i ) = 1 4 by [MZ15, Lemma 2.1].
Finally, we observe that, when computing the first order term, we have proved in equation ( 24) that ι∈Ig,n

δ 1 C (ι) g,n (α) = O n α V g,n g 2 .
As a consequence, the separating term (C) does not contribute to the secondorder approximation of δ 1 c g,n (α). Summing the different terms δ 1 A (j) g,n for j ∈ {2, . . . , n} and δ 1 B g,n (α) leads to the claim.

Discrete integration of the second-order estimate

We can now prove Proposition 3.2 using Lemma 3.3 and discrete integration. Proof. By the discrete integration lemma (Lemma 2.9) and by symmetry of the volume coefficients,

c g,n (α) = V g,n - n i=1 α i -1 k=0 δ 1 c g,n (k, 0 i-1 , α i+1 , . . . , α n ).
We then apply Lemma 3.3 to deduce

c g,n (α) = V g,n - n i=1 α i -1 k=0 ψ (1) g,n (k, 0 i-1 , α i+1 , . . . , α n ) + O n α 4 V g,n g 2 .
This can be rewritten as

c g,n (α) = V g,n -4V g-1,n+1 1 g≥1 T 1 -4V g,n-1 1 n≥2 T 2 + O n α 4 V g,n g 2 (26)
where the quantities T 1 and T 2 are defined by

T 1 := n i=1 α i -1 k=0 (4k -1 + 2 1 k=0 ) T 2 := n i=1 α i -1 k=0   (i -1)(2 -1 k=0 ) + n j=i+1 (4α j + 2 -1 k=α j =0 )   .
• On the one hand, we observe that for a fixed i, the term 1 k=0 contributes to the sum at most once, and this occurs if and only if α i > 0. Hence, when we perform the sum over k, we obtain

T 1 = n i=1 2α 2 i -3α i + 2 1 α i >0 .
We reorder the sum according to the dependency over α, and use the fact that

1 α i >0 = 1 -1 α i =0 , to obtain T 1 = n i=1 -2(2α i + 1) -2 1 α i =0 + (2α i + 1)(2α i ) 2 + 4 .
• On the other hand, by the same method,

T 2 = n i=1   (i -1)(2α i -1 α i >0 ) + n j=i+1 (4α i α j + 2α i -1 α i >0 1 α j =0 )   = 4 i<j α i α j + 2(n -1) n i=1 α i + i>j (1 α i =0 -1) + i<j (1 α i =0 -1)1 α j =0 = i<j (2α i + 1)(2α j + 1) + 1 α i =α j =0 -2 .
This allows us to conclude, by equation (26).

From the coefficient estimate to the volume estimate

In order to conclude the proof of Theorem 3.1, we need to compute

α∈N n 0 ĉ(1) g,n (α) n j=1
x 2α j j 2 2α j (2α j + 1)! where ĉ(1) g,n (α) is the approximation of the coefficient c g,n (α) from Proposition 3.2. We have expressed ĉ(1) g,n in terms of polynomials p 1 (X) = 2X + 1 and p 2 (X) = (2X + 1)(2X) in order to make this computation easier.

Since this will be useful for the general case, let us set some notations.

Notation. For any integer k ≥ 0, we set

p k (X) = k-1 j=0 (2X + 1 -j) = (2X + 1)(2X)(2X -1) . . . (2X + 2 -k),
with the convention that the empty product is equal to one so that p 0 (X) = 1.

Since the polynomials (p k ) k≥0 are a basis of the set of polynomials, we will be able to express any polynomial function as a linear combination of these polynomials. The following simple observation is our motivation for the introduction of these polynomials.

Lemma 3.4. Let k ≥ 0 be an integer. For any x ∈ R,

+∞ α=0 p k (α) x 2α 2 2α (2α + 1)! = x k 2 k sinhc x 2 if k is even x k-1 2 k-1 cosh x 2 if k is odd.
We can now finish the proof of Theorem 3.1.

Proof. By Proposition 3.2 and the expression of V g,n (x) in terms of (c g,n (α)) α ,

V g,n (x) V g,n = F (1) g,n (x) + O n     V g,n g 2 α∈N n 0 α =0 n |α| 4 ∞ n j=1 x 2α j j 2 2α j (2α j + 1)!    
where

F (1) g,n (x) = α∈N n 0 ĉ(1) g,n (α) V g,n n j=1 x 2α j j 2 2α j (2α j + 1)! •
We replace ĉ(1) g,n by its expression from Proposition 3.2, and find the claimed expression by Lemma 3.4. The remainder is

O n V g,n g 2 x 3 exp x 1 + . . . + x n 2
because for all y ≥ 0,

+∞ k=1 k 4 y 2k 2 2k (2k + 1)! ≤ y 2 + +∞ k=2 p 4 (k) y 2k 2 2k (2k + 1)! = O y 3 exp y 2 .
4 Proof of Theorem 1.3

The aim of this section is to prove Theorem 1.3, i.e. that for any order N ,

δ m c g,n (α) = O n,N α N V g,n g N ,
for any m ∈ N n 0 such that |m| ∈ {2N -1, 2N } and any large enough multiindex α. The proof relies on Mirzakhani's recursion formula, Theorem 2.1. In order to be able to apply the discrete differential operator δ on its terms ( 14) and ( 15), we will use the following lemma.

Lemma 4.1. Let (c k 1 ,k 2 ) k 1 ,k 2 ≥0
be a family of real numbers, and v : N 0 → R be the function defined by

∀k ≥ 0, v k := k 1 +k 2 =k k ,k 2 ≥0 c k 1 ,k 2 .
Then, for any integers m ≥ 1 and k ≥ 0,

δ m v k = k 1 +k 2 =k k 1 ≥k 2 δ m 1 c k 1 ,k 2 + k 1 +k 2 =k k 1 <k 2 δ m 2 c k 1 ,k 2 - m 1 +m 2 =m-1 δ m 1 1 δ m 2 2 c k+1 2 , k 2 +1 .
Proof. We prove the formula by induction on the integer m. The initialisation at m = 0 is trivial. For m ≥ 0, let us assume the property at the rank m.

Let k ≥ 0 be an integer; we assume that k = 2p + 1 is an odd number (the proof when k is even is the same). By definition of the operator δ and thanks to the induction hypothesis,

δ m+1 v k =δ m v k -δ m v k+1 = k 1 +k 2 =2p+1 k 1 ≥k 2 δ m 1 c k 1 ,k 2 - k 1 +k 2 =2p+2 k 1 ≥k 2 δ m 1 c k 1 ,k 2 + k 1 +k 2 =2p+1 k 1 <k 2 δ m 2 c k 1 ,k 2 - k 1 +k 2 =2p+2 k 1 <k 2 δ m 2 c k 1 ,k 2 - m 1 +m 2 =m-1 (δ m 1 1 δ m 2 2 c p+1,p+1 -δ m 1 1 δ m 2 2 c p+1,p+2 ) =: S 1 -S 2 + S 3 -S 4 -S 5 .
Let us perform a change of indices k 1 = k 1 -1 in the sum S 2 , singling out the term of S 2 for which k 1 = k 2 = p + 1, so that we sum over the same set of indices as S 1 . We obtain:

S 1 -S 2 = k 1 +k 2 =2p+1 k 1 ≥k 2 δ m+1 1 c k 1 ,k 2 -δ m 1 c p+1,p+1 .
There is no boundary term when we do the same to S 3 and S 4 , now changing the index k 2 :

S 3 -S 4 = k 1 +k 2 =2p+1 k 1 <k 2 δ m+1 2 c k 1 ,k 2 .
We then observe that δ m 1 c p+1,p+1 + S 5 is equal to

δ m 1 c p+1,p+1 + m 1 +m 2 =m-1 δ m 1 1 δ m 2 +1 2 c p+1,p+1 = m 1 +m 2 =m δ m 1 1 δ m 2 2 c p+1,p+1
which leads to the claimed expression for δ m+1 v k .

We can now proceed to the proof of Theorem 1.3, which we restate here for convenience.

Theorem 4.2. There exists an increasing sequence of integers (a N ) N ≥0 satisfying the following. For any integers g ≥ 0, n ≥ 1 such that 2g -2 + n > 0, any multi-indices m, α ∈ N n 0 such that:

• |m| = m 1 + . . . + m n ∈ {2N -1, 2N } • ∀i, (m i = 0 ⇒ α i ≥ a N ),
we have:

|δ m c g,n (α)| ≤ C n,N α N V g,n g N
where C n,N > 0 is a constant that depends only on n and N .

Proof. The proof is an induction on the integer N . The case N = 0 is trivial: indeed, by Lemma 2.3,

∀α ∈ N n 0 , |c (g,n) α | ≤ V g,n .
In order to be able to use Mirzakhani's recursion formula, we observe that the result is trivial when 2g -2 + n = 1, for any N > 0. Indeed,

• if (g, n) = (0, 3), then δ m c 0,3 (α) = 0 for any m, α ∈ N 3 0 such that α = 0 3 • if (g, n) = (1, 1), then δ m c 1,1 (α) = 0 for any m ≥ 0 and any α ≥ 2.

As a consequence, provided that a N ≥ 2 for N ≥ 1, the result is automatic.

For an integer N ≥ 0, let us assume the result to hold at the rank N , and prove it at the rank N +1. Let us consider integers g, n such that 2g-2+n > 1. Let m, α ∈ N n 0 be multi-indices, such that:

• |m| = m 1 + . . . + m n = 2N + 1 • ∀i, (m i = 0 ⇒ α i ≥ a N +1 ),
where a N +1 is an integer that will be determined during the proof. By symmetry of the volume coefficients, we can assume that m 1 > 0.

Let us write the coefficient δ m c (g,n) α using Mirzakhani's topological recursion formula, Theorem 2.1. We obtain:

|δ m c g,n (α)| ≤ n j=2 |δ m A (j) g,n (α)| + |δ m B g,n (α)| + ι∈Ig,n |δ m C (ι) g,n (α)| =: (A) + (B) + (C).
We shall estimate these different contributions successively, keeping in mind that the aim is to establish a decay for each term at the rate α N +1 Vg,n g N +1 .

Estimate of the term (A). The term (A) is equal to zero if n = 1, and then there is nothing to be proved. Otherwise, let j ∈ {2, . . . , n}. By equation (13),

A (j) g,n (α) = 8 (2α j + 1) +∞ i=0 u i c g,n-1 (α (i) )
where α(i) := (i + α 1 + α j -1, α 2 , . . . , αj , . . . , α n ). By a change of variable in the sum, if we set u -1 = 0, then

δ 1 A (j) g,n (α) = 8 (2α j + 1) +∞ i=0 (u i -u i-1 ) c g,n-1 ( α(i) ).
• Let us first treat the case when m j = 0. By applying the discrete derivatives δ m 1 -1 1 and δ m i i for i / ∈ {1, j}, we observe that

δ m A (j) g,n (α) = 8 (2α j + 1) +∞ i=0 (u i -u i-1 ) δ mc g,n-1 (α (i) )
for m = (m 1 -1, m 2 , . . . , mj , . . . , m n ). Then, the bound on u i -u i-1 from Lemma 2.2 implies the existence of a universal constant C > 0 such that

|δ m A (j) g,n (α)| ≤ C α +∞ i=0 4 -i |δ mc g,n-1 (α (i) )|.
We now want to use the induction hypothesis to bound δ mc g,n-1 (α (i) ), for every i ≥ 0. We observe that | m| = |m| -1 = 2N , and decide to choose the parameter a N +1 so that a N +1 > a N . Then,

i + α 1 + α j -1 ≥ α 1 -1 ≥ a N ,
and the multi-indices m, α(i) therefore satisfy the hypotheses of the theorem at the rank N . Hence,

|δ mc g,n-1 (α (i) )| ≤ C n-1,N α(i) N V g,n-1 g N •
By equation ( 19), this implies that

δ mc g,n-1 (α (i) ) = O n,N α N i N V g,n g N +1 ,
from which we deduce that, as soon as m j = 0,

|δ m A (j) g,n (α)| = O n,N α N +1 V g,n g N +1 +∞ i=0 4 -i i N = O n,N α N +1 V g,n g N +1 ,
which is precisely our claim.

• Now, if m j > 0, we need to be more careful when applying the derivative δ j because of the dependance in α j of A (j) g,n (α). We prove by a simple induction that

δ m A (j) g,n (α) = 8 (2α j + 1) +∞ i=0 (u i -u i-1 ) δ mc g,n-1 (α (i) ) -16 m j +∞ i=0 (u i -u i-1 ) δ mc g,n-1 ( α(i+1) )
where m is as before and m := (m 1 + m j -2, m 2 , . . . , mj , . . . , m n ). We observe that | m| = 2N -1, and this allows us to apply the induction hypothesis to this additional term. The same computation as in the case m j = 0 leads to the same bound, since m j = O N (1).

We sum up the n -2 = O n (1) contributions for j ∈ {2, . . . , n} and conclude that

n j=2 |δ m A (j) g,n (α)| = O n,N α N +1 V g,n g N +1 . ( 27 
)
Estimate of the term (B). Let us first observe that this term only appears whenever g ≥ 1. As in the case (A), we start by writing that by equation ( 14),

δ 1 B g,n (α) = 16 +∞ i=0 k 1 +k 2 =i+α 1 -2 (u i -u i-1 ) c g-1,n+1 (α (k 1 ,k 2 ) )
where α(k 1 ,k 2 ) = (k 1 , k 2 , α 2 , . . . , α n ). However, this time, the dependency on α 1 is more complex, and we need to use Lemma 4.1 to apply the operator δ m 1 -1 1 to the equation. We obtain:

|δ m B (g,n) α | ≤ C +∞ i=0 k 1 +k 2 =i+α 1 -2 k 1 ≥k 2 4 -i |δ m 1 -1 1 δ mc g-1,n+1 (α (k 1 ,k 2 ) )| (28) + C +∞ i=0 k 1 +k 2 =i+α 1 -2 k 1 <k 2 4 -i |δ m 1 -1 2 δ mc g-1,n+1 (α (k 1 ,k 2 ) )| (29) + C µ 1 +µ 2 =m 1 -2 +∞ i=0 4 -i |δ µ 1 1 δ µ 2 2 δ mc g-1,n+1 (α ( i+α 1 -1 2 , i+α 1 2 ) )|, (30) 
where m = (0, 0, m 2 , . . . , m n ) ∈ N n+1 0 , and the universal constant C > 0 comes once again from Lemma 2.2. We estimate each term successively, using the induction hypothesis.

• Let us assume that the parameter a N +1 is ≥ 2a N + 2. Then, by hypothesis, α 1 ≥ 2a N + 2, and therefore for any i ≥ 0 and any k 1 , k 2 in the i-th term of the sum (28),

k 1 ≥ k 1 + k 2 2 = i + α 1 -2 2 ≥ a N .
We can then apply the induction hypothesis to (m 1 -1, 0 n ) + m, of 1 -norm 2N , and α(k 1 ,k 2 ) . This yields

|δ m 1 -1 1 δ mc g-1,n+1 (α (k 1 ,k 2 ) )| ≤ C n+1,N α(k 1 ,k 2 ) N V g-1,n+1 g -1 N = O n,N α(k 1 ,k 2 ) N V g,n g N +1
since g ≥ 1, and by equations ( 18) and ( 19). We then use the fact that

+∞ i=0 k 1 +k 2 =i+α 1 -2 k 1 ≥k 2 4 -i α(k 1 ,k 2 ) N = O N α N +1 , (31) 
to conclude that if a N +1 ≥ 2a N + 2, then the term (28) is

O n,N α N +1 V g,n g N +1 .
• By symmetry of the coefficients, the term (29) is equal to

+∞ i=0 k 1 +k 2 =i+α 1 -2 k 2 >k 1 4 -i |δ m 1 -1 1 δ mc g-1,n+1 (α (k 2 ,k 1 ) )|
is therefore smaller than the term (28).

• For the term (30), we observe that since α 1 ≥ 2a N + 2, for all i ≥ 0,

i + α 1 2 ≥ i + α 1 -1 2 ≥ α 1 -2 2 ≥ a N .
Furthermore, for any integers such that µ 1 + µ 2 = m 1 -2, the norm of (µ 1 , µ 2 , 0 n-1 ) + m is equal to 2N -1, and therefore, by the induction hypothesis,

|δ µ 1 1 δ µ 2 2 δ mc g-1,n+1 (α ( i+α 1 -1 2 , i+α 1 2 ) )| ≤ C n+1,N α( i+α 1 -1 2 , i+α 1 2 
) N V g-1,n+1 g -1 N , and (30) hence satisfies the same bound as the other terms.

As a conclusion, provided that a

N +1 ≥ 2a N + 2, (B) = |δ m B g,n (α)| = O n,N α N +1 V g,n g N +1 .
Estimate of the term (C). For the term (C), similarly, by equation ( 15), for every configuration ι = (g 1 , I, J) where g 1 + g 2 = g and I J = {2, . . . , n}, if we denote n 1 = |I| and n 2 = |J|,

δ 1 C (ι) g,n (α) = 16 +∞ i=0 k 1 +k 2 =i+α 1 -2 (u i -u i-1 ) c g 1 ,n 1 +1 ( α(k 1 ) I ) c g 2 ,n 2 +1 (α (k 2 ) J )
where α(k 1 )

I = (k 1 , α I ) and α(k 2 ) J = (k 2 , α J ).
As before, we prove that

|δ m C (ι) g,n (α)| (32) ≤ C +∞ i=0 k 1 +k 2 = i+α 1 -2 k 1 ≥k 2 4 -i |δ (m 1 -1,m I ) c 1 ,n 1 +1 ( α(k 1 ) I )||δ (0,m J ) c g 2 ,n 2 +1 (α (k 2 ) J )| (33) + C +∞ i=0 k 1 +k 2 = i+α 1 -2 k 1 <k 2 4 -i |δ (0,m I ) c g 1 ,n 1 +1 (α (k 1 ) I )||δ (m 1 -1,m J ) c g 2 ,n 2 +1 (α (k 2 ) J )| (34) + C µ 1 +µ 2 =m 1 -2 i≥0 |δ (µ 1 ,m I ) c g 1 ,n 1 +1 (α ( i+α 1 -1 2 ) I )||δ (µ 2 ,m J ) c g 2 ,n 2 +1 (α ( i+α 1 2 ) I )|. (35)
We now estimate the term (33) using the induction hypothesis on the two terms δ (m 1 -1,m I ) c g 1 ,n 1 +1 (α

(k 1 ) I
) and δ (0,m J ) c g 2 ,n 2 +1 (α

(k 2 ) J ). Let us set N 1 := m 1 + |m I | 2 ≤ N and N 2 := |m J | + 1 2 ≤ N so that m 1 -1 + |m I | ∈ {2N 1 -1, 2N 1 } and |m J | ∈ {2N 2 -1, 2N 2 }.
Then, we observe that under the hypothesis a N +1 ≥ 2a N + 2, for any term in equation (33), k 1 ≥ a N ≥ a N 1 . We can therefore apply the induction hypothesis at the rank N 1 and obtain

δ (m 1 -1,m I ) c g 1 ,n 1 +1 ( α(k 1 ) I ) = O n 1 ,N 1 α(k 1 ) I N 1 V g 1 ,n 1 +1 g 1 N 1 .
We also have that

δ (0,m J ) c g 2 ,n 2 +1 ( α(k 2 ) J ) = O n 2 ,N 2 α(k 2 ) J N 2 V g 2 ,n 2 +1 g 2 N 2
(note that there is no condition on the index k 2 because there is no derivative w.r.t. the first variable in δ (0,m J ) ). We obtain by the same method as before that the term (33) is

O n,N 1 ,N 2 α N 1 +N 2 +1 V g 1 ,n 1 +1 V g 2 ,n 2 +1 g 1 N 1 g 2 N 2 . ( 36 
)
We then wish to apply Lemma 2.4 in order to bound the sum over all configurations. This lemma implies that ι∈Ig,n

2g i +n i >N i +1 V g 1 ,n 1 +1 V g 2 ,n 2 +1 g 1 N 1 g 2 N 2 = O n,N V g,n-1 g N 1 +N 2 +1 = O n,N V g,n g N +2 , (37) 
by equation ( 19) since n 1 + n 2 = n -1 for any ι ∈ I g,n , and because

N 1 + N 2 = m 1 + |m I | 2 + |m J | + 1 2 ∈ {N, N + 1}.
As a consequence, in order to conclude, we need to be able to restrict the sum over ι ∈ I g,n to the configurations such that 2g i + n i > N i + 1 for i ∈ {1, 2}. This is achieved by adding a new constraint on the parameter a N +1 : we assume that a N +1 ≥ 3(2N + 1). Thanks to this additional hypothesis, we can prove that, for all configuration ι ∈ I g,n ,

• either 2g i + n i > N i + 1 for i = 1 and 2;

• or 2g 1 + n 1 ≤ N 1 + 1, in which case δ (m 1 -1,m I ) c g 1 ,n 1 +1 (α (k 1 ) I ) = 0 for any integers k 1 ≥ k 2 such that k 1 + k 2 ≥ α 1 -2; • or 2g 2 + n 2 ≤ N 2 + 1, in which case δ (0,m J ) c g 2 ,n 2 +1 (α (k 2 ) J ) = 0 for any integer k 2 ≥ 0.
Provided this claim is proved, we can then say that the sum over all configurations ι of the term (33) is equal to the sum over all ι such that 2g 1 +n i > N i +1, which then is

O n,N α N +2 V g,n g N +2
by equations ( 36) and (37). This implies that the sum (33) satisfies the claimed estimate for any α such that |α| ≤ 3g -3+n. Otherwise, because of the degree of V g,n (x), the sum (33) is equal to zero and the estimate trivially holds.

Let us now prove our claim.

• First, if 2g 1 +n 1 ≤ N 1 +1, then for any k 1 ≥ k 2 such that k 1 +k 2 ≥ α 1 -2, on the one hand,

k 1 + |α I | ≥ k 1 + k 2 2 + |α I | ≥ α 1 + |α I | 2 -1 ≥ a N +1 2 #{i ∈ {1} ∪ I : m i = 0} -1
by hypothesis on α. On the other hand,

#{i ∈ {1} ∪ I : m i = 0} ≥ m 1 + |m I | |m| ∞ ≥ 2N 1 2N + 1 •
We use the hypothesis a N +1 ≥ 3(2N + 1) to deduce that

k 1 + |α I | ≥ 3N 1 -1 ≥ 6g 1 + 3n 1 -4 > 3g 1 -3 + (n 1 + 1),
because 3g 1 +2n 1 > 2. The latter quantity is the degree of the polynomial V g 1 ,n 1 +1 (x) in the variables x 2 1 , . . . , x 2 n 1 +1 , and therefore the previous inequality implies that δ (m 1 -1,m I ) c g 1 ,n 1 +1 (k 1 , α I ) = 0.

• Similarly, we prove that for any k 2 ≥ 0,

k 2 + |α J | ≥ a N +1 |m J | |m| ∞ ≥ 3(2N 2 -1)
and therefore if 2g 2 + n 2 ≤ N 2 + 1, then

k 2 + |α J | ≥ 12g 2 + 6n 2 -9 > 3g 2 -3 + (n 2 + 1)
and hence δ (0,m J ) c g 2 ,n 2 +1 (k 2 , α J ) = 0.

The estimate of the term (35) is the same: we apply the induction hypothesis to δ (µ 1 ,m I ) c g 1 ,n 1 +1 (α

( i+α 1 -1 2 ) I
) and δ (µ 2 ,m J ) c g 2 ,n 2 +1 (α

( i+α 1 2 ) I
), at the admissible ranks

N 1 := µ 1 + |m I | + 1 2 and N 2 := µ 2 + |m J | + 1 2 .
We observe that N 1 + N 2 = N , and this therefore yields the claimed result.

As a conclusion, we have proved that under the hypotheses a N +1 ≥ 2a N +2 and a N +1 ≥ 3(2N + 1), for any multi-index m of norm |m| = 2N + 1 and any multi-index α such that ∀i,

(m i = 0 ⇒ α i ≥ a N +1 ), |δ m c g,n (α)| ≤ (A) + (B) + (C) ≤ C n,N +1 α N +1 V g,n g N +1 •
This implies the result for any multi-index m of norm 2N + 2 too, simply because for any sequence (v(α)) α , if m 1 > 0 for instance, then for all α,

|δ m v(α)| ≤ |δ (m 1 -1,m 2 ,...,mn) v(α)| + |δ (m 1 -1,m 2 ,...,mn) v(α 1 + 1, α 2 , . . . , α n )|.
This concludes the induction.

5 Proof of Theorem 1.1

Discrete Taylor expansion

Theorem 1.3 states that the function α → c g,n (α) has small derivatives for large enough values of α. Had we proved that the derivatives are small for any α, we could have used a discrete version of the Taylor-Lagrange formula, such as the one below, to conclude that α → c g,n (α) is well-approximated by polynomial functions.

Lemma 5.1 (Discrete Taylor-Lagrange formula). Let n ≥ 1 and f : N n 0 → R. We assume that there exist a real number M ≥ 0 and integers K, p ≥ 0 such that, for any multi-index m of norm

|m| = K + 1, ∀α ∈ N n 0 , |δ m f (α)| ≤ M α p .
Then, there exists a polynomial function

f (K) : N n 0 → R of degree at most K such that ∀α ∈ N n 0 , |f (α) -f (K) (α)| ≤ M n K+1 α p+K+1
. Furthermore, the coefficients of the polynomial function f (K) can be expressed as linear combinations of the derivatives δ m f (0 n ), for multi-indices m ∈ N n 0 of norm |m| ≤ K.

Proof. We proceed by induction on the integer K.

For K = 0, we observe that by Lemma 2.9, for all α,

|f (α) -f (0 n )| ≤ n i=1 α i -1 k=0 |δ i f (0 i-1 , k, α i+1 , . . . , α n )| ≤ M n α p+1 ,
so the result holds if we take f (0) to be the constant function equal to f (0 n ).

Let us now assume the result at a rank K -1 for a K ≥ 1, and deduce the result at the rank K. For any integer i ∈ {1, . . . , n}, the function δ i f satisfies the induction hypothesis at the rank K -1. Hence, there exists a polynomial function f (K-1)

i of degree at most K -1, and whose coefficients can be expressed as linear combinations of the

δ m δ i f (0 n ) for |m| ≤ K -1, such that ∀α ∈ N n 0 , |δ i f (α) - f (K-1) i (α)| ≤ M n K α p+K .
Inspired by the discrete integration formula (Lemma 2.9), we define

f (K) (α) := f (0 n ) - n i=1 α i -1 k=0 f (K-1) i (0 i-1 , k, α i+1 , . . . , α n ).
We notice that f (K) is a polynomial of degree at most K, and its coefficients are linear combinations of f (0 n ) and the coefficients of ( fi ) i , and therefore linear combinations of the δ m f (0 n ) for |m| ≤ K. By Lemma 2.9, for any multi

-index α ∈ N n 0 , |f (α) -f (K) (α)| ≤ n i=1 α i -1 k=0 |δ i f (0 i-1 , k, α i+1 , . . . , α n ) - f (K-1) i (0 i-1 , k, α i+1 , . . . , α n )| ≤ M n K+1 α p+K+1 ,
and the conclusion follows.

However, we can expect from the second-order approximation, Proposition 3.2, that the function α ∈ N n 0 → c g,n (α) is not well-approximated by polynomial functions, but rather by a combination of polynomial functions and indicator functions, correcting the values of the function for small α. The aim of the following section is to define such a class of functions, and prove a shifted Taylor-Lagrange estimate in this new setting.

Functions ultimately polynomial in each variable

Lemma 5.2 (and Definition). For any integers n ≥ 1 and K, a ≥ 0, the two following families of functions

N n 0 → R, • functions of the form α → i∈I α k i i i / ∈I 1 α i =β i where I ⊆ {1, . . . , n}, k = (k i ) i∈I is a multi-index of norm |k| ≤ K, and β = (β i ) i / ∈I satisfies |β| ∞ < a; • functions of the form α → i∈I α k i i 1 α i ≥a i / ∈I 1 α i =β i
where I, k and β are defined the same way as in the first point;

generate the same linear subspace of the space of functions N n 0 → R. We denote this space as P n,K,a , and call its elements polynomials (of degree at most K) in each variable greater than a.

Proof. The equivalence of these two definitions comes from the simple observation that for any integers a, α ≥ 0,

1 = 1 α≥a + a-1 β=0 1 α=β .
Then, elements of P n,K,a are exactly the kind of functions we imagine the coefficients α → c g,n (α) to be well-approximated by: since the derivatives vanish for large enough α, beyond a few small values, the functions are approximated by polynomials.

Shifted discrete Taylor expansion

Let us prove the following shifted Taylor-Lagrange lemma.

Lemma 5.3. Let n ≥ 1 be an integer and f : N n 0 → R. We assume that there exists a real number M ≥ 0 and integers K, a, p ≥ 0 satisfying the following. For any multi-indices m, α ∈ N n 0 such that:

• |m| = K + 1, • ∀i, (m i = 0 ⇒ α i ≥ a), we have |δ m f (α)| ≤ M α p .
Then, there exists a function f (K) ∈ P n,K,a such that

∀α ∈ N n 0 , |f (α) -f (K) (α)| ≤ C n,a,p,K M α p+K+1
where C n,a,p,K = 2 p 2 +n a n 2na p n K+1 . The coefficients of f (K) can be expressed as linear combinations of the values δ m f (α) for multi-indices α, m ∈ N n 0 such that |α| ∞ ≤ a and |m| ≤ K.

Proof. The idea is to decompose N n 0 into subsets on which all of the variables are greater than a. More precisely, we notice that 1 = I⊂{1,...,n}

(β i ) i / ∈I |β|∞<a i∈I 1 α i ≥a i / ∈I 1 α i =β i .
Then, we can rewrite the function f as

f (α) = I⊂{1,...,n} ={i 1 <...<ir} (β i ) i / ∈I |β|∞<a g I,β (α i 1 -a, . . . , α ir -a) i∈I 1 α i ≥a i / ∈I 1 α i =β i (38)
where g I,β : N r 0 → R is defined by setting, for α ∈ N r 0 , g I,β (α) := f (α) where ∀i,

α i := αk + a if i = i k for a k ∈ {1, . . . , r} β i if i / ∈ I.
We wish to apply Lemma 5.1 to the function g I,β . In order to do so, we need to prove an estimate on the derivatives δ mg I,β (α) for any m, α ∈ N r 0 such that | m| = K + 1. This will follow from the hypothesis on the function f . Indeed, we observe that, to any multi-index m ∈ N r 0 of norm K + 1, we can associate a multi-index m ∈ N n 0 also of norm K + 1 by setting ∀i,

m i := mk if i = i k for a k ∈ {1, . . . , r} 0 if i / ∈ I.
Then, for any multi-indices m, α ∈ N r 0 , the corresponding multi-indices m, α automatically satisfy:

∀i, (m i = 0 ⇒ i ∈ I ⇒ α i ≥ a),
and therefore, by hypothesis on f ,

|δ mg I,β (α)| = |δ m f (α)| ≤ M α p ≤ M 2 p 2 2na p α p
because |α| = |α| + ra + |β| ≤ 2na + |α| and for any x, y, x + y ≤ √ 2 x y . We can therefore apply Lemma 5.1 to g I,β , and deduce the existence of a polynomial g(K) I,β in r variables, of degree at most K, such that

∀α ∈ N r 0 , |g I,β (α) - g(K) I,β (α)| ≤ M 2 p 2 2na p n K+1 α p+K+1 . (39) 
Let us now define an element f (K) of P n,K,a by the formula

f (K) (α) := I⊂{1,...,n} ={i 1 <...<ir} (β i ) i / ∈I |β|∞<a g(K) I,β (α i 1 -a, . . . , α ir -a) i∈I 1 α i ≥a i / ∈I 1 α i =β i .
(40) By equations ( 38) and (40) together with the bound (39), for any α ∈ N n 0 ,

|f (α) -f (K) (α)| ≤ M 2 p 2 +n a n 2na p n K+1 α p+K+1
because there are 2 n terms in the sum over the I ⊆ {1, . . . , n}, and always less than a n possible choices for β. This is the claimed inequality. The coefficients of f (K) are linear combinations of the coefficients of the g(K)

I,β . By Lemma 5.1, these are themselves linear combinations of the values δ mg I,β (0 r ) for multi-indices m of norm | m| ≤ K. By definition of g I,β , these derivatives are derivatives of the form δ m f (α) for multi-indices m, α such that |α| ∞ ≤ a and |m| ≤ K.

Proof of Theorem 1.1

We can now conclude with the proof of the asymptotic expansion, Theorem 1.1.

Proof. Let g ≥ 0, n ≥ 1 be integers such that 2g -2 + n > 0. Let N ≥ 0 be a fixed order. By Theorem 1.3, there exists constants C n,N +1 , a N +1 such that We can control this remainder by writing that α 3N +2 = O n,N 1 + |α| 3N +2 ∞ and singling out an index i such that α i = |α| ∞ . Since, for any D, the polynomials (p i ) 0≤i≤D introduced in Section 3.3 are a basis of the set of polynomials of degree ≤ D, we can express α 3N +2 i as a linear combination of p k (α i ) for integers k ≤ 3N + 2. Using Lemma 3.4, we obtain V g,n (x)

V g,n = F (N ) g,n (x) + O n,N

x 3N +1 g N +1 exp

x 1 + . . . + x n 2 .

Let us now prove that x → F 

x k i i 2 k i sinhc x i 2 i∈I k i odd x k i -1 i 2 k i -1 cosh x i 2 i / ∈I x 2β i i 2 2β i (2β i + 1)! •
We therefore observe that F Note that the implied constant in the previous equation a priori depends on the multi-index α, but since |α| ∞ ≤ A N we can bound it uniformly with a constant depending only on N . Then, P (N,I ± ) g,n can be rewritten as We now observe that, for any fixed x, the previous equation is an asymptotic expansion of V g,n (x)/V g,n in powers of g, and its coefficients are therefore uniquely defined. In particular, for any N < N and any k ∈ {0, . . . , N }, f (k,N ) 

P (N,I ± ) g,n (x) = N k=0 Q(k,N,I ± ) n (x) g k + O n,N   x 2N g N +1 i / ∈I + ∪I - x i a N +1   , (42) 

Figure 1 :

 1 Figure1: Dependency of the coefficients of the volume polynomials V g,n (x) when |χ| = 2g -2 + n ≤ 3. Note that all the coefficients for which n = 0 can therefore be computed thanks to the coefficients for which |χ| = 1.
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  |δ m c g,n (α)| ≤ C n,N +1 α N +1 V g,n g N +1for any multi-indices m, α ∈ N n 0 such that|m| = 2N + 1 and ∀i, (m i = 0 ⇒ α i ≥ a N +1 ).This is exactly the hypothesis of Lemma 5.3, for the parameters K := 2N ,p := N + 1, a := a N +1 and M := C n,N +1 V g,n / g N +1 .As a consequence, there exists an element c(K) g,n of P n,K,a such that for all α ∈ N n 0 ,|c g,n (α) -c(K) g,n (α)| ≤ C n,a,p,K M α p+K+1or, in other words,c g,n (α) = c(2N) g,n (α) + O n,N α 3N +2 V g,n g N +1 .(41)Let us now define, for all x ∈ R n ≥0 , a good candidate for the approximating function, 2α i (2α i + 1)! • Then, by equation (41) and the definition of V g,n (x) and F (N ) g,n (x),V g,n (x) V g,n = F (N ) g,n (x) + O n,N

  (x) has the claimed form. Note that by definition of the set P n,K,a , we can express the function α → c(K) g,n (α) as a linear combination of functions of the formg I,β,k (α) = i∈I p k i (α i ) i / ∈I 1 α i =β i ,where |k| ≤ K and |β| ∞ < a N +1 . By Lemma 3.4,

  I + and I -are disjoint subsets of {1, . . . , n}, and m = (m 1 , . . . , m n ) is a multi-index containing only even entries, which was our claim.In order to bound the degree, we furthermore observe thati∈I + m i + i∈I - (m i + 1) ≤ K = 2N and ∀i / ∈ I + ∪ I -, m i < a N +1 .The coefficients are linear combinations of the derivatives δ m c g,n (α)/V g,n for multi-indices m, α such that |m| ≤ K and |α| ∞ ≤ a N +1 , which can therefore also be expressed in terms of the c g,n (α)/V g,n for |α| ∞ ≤ a N +1 + 2N .We now conclude by proving how Theorem 1.1 implies Corollary 1.4.Proof. Let us first prove the existence of the asymptotic expansion. For any I + I -⊂ {1, . . . , n}, the coefficients of the approximating polynomial P (N,I ± ) g,n can be written as linear combinations of the c g,n (α)/V g,n with |α| ∞ ≤ A N . By [MZ15, Theorem 4.1], for any such α, we can write c g,n (α) V g,n = g k + O n,N 1 g N +1 .

  where Q(k,N,I ± ) n are polynomial functions independent of g. The dependency of the remainder w.r.t. x in the previous expression is obtained by the bound on the degrees of P (N,I ± ) g,n presented in Remark 1.2. We then define, for each integer k, the function f (k,N ) n (x) := I + I -⊂{1,...,n} Q(k,N,I ± ) n (x)

  does not depend on the order of approximation N and can be denoted more simply as f(k) n (x). Finally, the decomposition (6) of f (k)n is uniquely defined because the family of functions of the formx ∈ R n ≥0 → x m 1 1 . . . x m 1 , .. . , m n ≥ 0 and I + I -⊆ {1, . . . , n} is free.

For the sake of readability, our notation differs from the usual notation [τα 1 . . . τα n ]g,n from intersection theory (see[START_REF] Mirzakhani | Weil-Petersson volumes and intersection theory on the moduli space of curves[END_REF]).

Actually, the factor |x| in the remainder is missing in[START_REF] Mirzakhani | Lengths of closed geodesics on random surfaces of large genus[END_REF]. This minor error has no implication for the purposes of Mirzakhni and Petri's article, or the further applications [WX21, LW21], but would have contradicted our second-order expression (Theorem 1.5).