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Abstract

This paper combines negative capacitance (NC) with inductance (L) to enlarge low-

frequency bandgap width in locally resonant piezoelectric metamaterials. The studied

metamaterials are obtained by directly bonding patches on the surfaces of host struc-

tures, then connecting patches to shunts. Shunts with NC and L in series and in parallel

are both studied. Analytical expressions of the bandgap ranges are derived, which reveal

that the bandgap size is increased not simply because the NC enhancing the material’s

electro-mechanical coupling factor, but in a more complicated way. Parametric studies

are performed to analytically investigate the tuning properties of the LR bandgap by NC.

Results demonstrate that by modifying NC value, the LR bandgap size can be signifi-

cantly increased. Numerical simulations are done to verify the effects of the broadened

bandgap on vibration transmission and reveal the limitations of the used analytical model.

Practical implementation of the shunts are also discussed, recommendations on choosing

the shunt configurations and NC values are given. This paper gives a theoretical guideline

on designing piezoelectric metamaterials with bandgap effects at desired frequency ranges

for practical applications like low-frequency vibration and noise reduction or isolation.
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1. Introduction

In recent years, the emerging metamaterials based on local resonators provide new

ways to deal with low-frequency vibration and noise issues [1–6]. Metamaterials present

sub-wavelength bandgaps (at frequencies much lower than the first Bragg bandgap),

within which wave propagation is prohibited. Therefore, using the bandgaps, one can to-

tally remove the resonant modes or isolate vibration transmission. Metamaterials based

on passive resonators are first studied. However, they have narrow bandgaps and are

not adaptable to working condition or environment changes. These drawbacks limit they

applications in practice. Recently, piezoelectric materials with external shunting circuits

have been integrated into structures, results in so-called piezoelectric (smart) metamate-

rials [7–12]. In such metamaterials, the locations and widths of bandgaps can be easily

tuned by just varying the circuits, no modification is needed on the mechanical struc-

tures. Different shunting circuits, such as resonant shunts and negative capacitance (NC)

circuits, have been proposed to create and tune bandgaps in piezoelectric metamateri-

als. However, there are still challenges in creating wide and controllable bandgaps at low

frequencies in these metamaterials, because of the necessity of using large inductance or

lack of robustness. In this paper, we are going to demonstrate that combining resonant

shunts with NC could be an effective way to realize wide and tunable bandgaps at low

frequencies.

Piezoelectric shunt techniques are first proposed for vibration reduction of flexible

structures. Hagood and von Flotow [13] demonstrated that a piezoelectric patch con-

nected with an inductance (L) behaves like a mechanical resonator. This is because the

L and the intrinsic capacitance of the patch form a resonant shunt. Based on this fea-

ture, patches shunted with L are periodically bonded on a bar to create locally resonant

(LR) bandgaps in Thorp et al’s work [14]. It was shown that bandgaps are created in

the bar near the resonance frequency of the circuit at sub-wavelength frequencies. The

location of the bandgap can be tuned by varying the L value. Airoldi and Ruzzene [15]
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studied the effective bending stiffness of a periodic beam with distributed patches shunted

by L and resistance (R). They demonstrated that the beam’s effective bending stiffness

presents resonant feature near the resonance frequency of the circuit, just like the effective

mass of a metamaterial with mechanical resonators does near the resonance frequency.

Therefore, it was concluded that the periodic beam with patches shunted by L is an

electro-mechanical version of the locally resonant metamaterials. Following these works,

the conception of locally resonant piezoelectric metamaterial is expanded to plates [16–

20]. However, due to the resonance nature, bandgaps in these metamaterials are narrow.

To enlarge LR bandgaps in piezoelectric metamaterials, Wang et al. [21, 22] proposed

an amplifier-resonator feedback circuit to broad bandgaps. Numerical and experimental

results in their works demonstrate that the bandgap is broadened, but is still not wide

enough. The conception of varying shunts’ parameters gradually in space to create “rain-

bow traps” is explored in [23, 24]. This kind of design shows good effects in increasing

bandgap ranges, but the number of unit cells needed to realize a “rainbow trap” with

acceptable wave isolation level could be large. Shunts with multiple resonance frequen-

cies are also proposed. The multiple resonant effects could be realized using multi-branch

shunts [25] or digital circuits with properly designed control law [26, 27]. Limited by the

complexity of multi-branch shunts and processing speed in digital circuits, the number

of resonance frequency is within 3 at present. Except resonant shunts, NC circuits are

also proposed to control bandgaps in piezoelectric metamaterials [28–30]. NC can cancel

a part of the intrinsic capacitance of a patch, therefore to enhance the electro-mechanical

coupling effect [31, 32]. Recently, it is also shown that NC can increase or decrease the

effective static stiffness of the structure covered by the patches [33]. This property has

been explored to enlarge bandgaps in piezoelectric metamaterials. In these applications,

patches shunted with NC can be directly bonded on the surfaces of structures [34], the

NCs are used to change the local stiffness therefore to tune the bandgaps induced by Bragg

scattering effects. In such a manner, the integrity of the structures is preserved. However,
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in order to obtain wide and low-frequency bandgaps, the NC needs to significantly reduce

the stiffness of the host structures, i.e., the NC need to work at the vicinity of its unstable

zone, which is impractical. In other studies [35–38], patches shunted with NC are used

to control the stiffness of local resonators in passive metamaterials, therefore to broaden

the bandgaps caused by passive resonators. In this way, it is more easy to obtain wide

bandgaps at low frequencies, however extra local resonators need to be added into the

system, increasing the total mass and volume or break integrity of the host structure,

which are strictly limited in many practical applications.

In this paper, L and NC are combined to realize low and wide bandgaps in piezoelectric

metamaterials. It should be noted that combining L and NC are previously studied for

vibration reduction of structural modes [39, 40], but few works are done to increase

bandgap size. The studied metamaterials are obtained by directly bonding patches on

the surfaces of a host structure, therefore to avoid adding too much extra mass and keep

the integrity of the original structure. A beam is used as the host structure in this study.

Note that the proposed conception in this paper can be naturally extended to other types

of structures, like plates and shells. Combining NC with L in the shunts remains the

resonant nature of the shunts. Therefore, LR bandgaps at low frequencies can still be

obtained in the proposed piezoelectric metamaterials. Effects of NC on the LR bandgap

are analytically and numerically studied in the following sections.

2. Theoretical analysis

2.1. Shunting configurations

NC could be connected with L in series or in parallel, as shown in Fig. 1. In these

figures, C0 indicates NC, the piezoelectric patch made of PZT is represented by a current

source Ieq(t) in parallel with a capacitance Cs
p . All these two shunting configurations and

the case with only L are studied in this paper. The impedance (Zsu) of these different

shunts are summarized in Table 1. In the table, j is the unit of complex number and ω is
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the angular frequency.

Figure 1: Different shunting configurations: (a) L in series with NC; (b) L in parallel with NC. C0

indicates NC. The piezoelectric patch made of PZT is represented by a current source Ieq(t) in parallel
with a capacitance Cs

p .

Table 1: Impedance of different shunts

only L
L and NC
in series

L and NC
in parallel

Zsu = jωL −ω2LC0+1
jωC0

jωL
(1−ω2LC0)

2.2. Governing equations

Figure 2 (a) shows the studied metamaterial beam with periodically distributed shunted

piezoelectric patches, a unit cell of it is illustrated in Fig. 2 (b).

Figure 2: (a) The studied piezoelectric metamaterial beam, (b) a unit cell of the metamaterial.

We consider the flexural waves in the metamaterial beam. The beam is slender, Euler-

Bernoulli beam theory could be used. Under harmonic excitation, the equations of the

transverse motion of the beam w(x) can be written as:
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∂2

∂x2
[D(x)

∂2w(x)

∂x2
]− ω2m(x)w(x) = 0 (1)

where, D(x) is the bending stiffness of the beam, m(x) is the mass per unit area. The

unit cell has a piece-wise configuration, the length of the period is lb, as shown in Fig.

2(b). The expressions for the piece-wise bending stiffness in a unit cell are:

D(x) =


D1 = Db +

Ep(ω)b[(hb + 2hp)
3 − h3b ]

12
, 0 ≤ x < lp

D2 = Db, lp ≤ x < lb

in which, Db = Ebbh
3
b/12 is the bending stiffness of the host beam, Eb is the Young’s

modulus of the host beam, Ep is the effective Young’s modulus of the shunted piezoelectric

patch [13], expression of it is:

Ep(ω) = Eoc
p (1− k231

1 + jωCs
pZsu(ω)

), (2)

in which, k31 = d31
√
Esc
p /ε

σ
3 is the extensional coupling factor of the patch [41], Eoc

p =

Esc
p /(1− k231) is the patch’s Youngs’ modulus under open-circuited (OC) condition, Cs

p =

CT
p (1 − k231) is the intrinsic capacitance of the patch under constant strain and CT

p =

Apε
σ
3/hp, with Ap the area of the electrode.

The linear mass is:

m(x) =


m1 = ρbbhb + 2ρpbhp, 0 ≤ x < lp

m2 = ρbbhb, lp ≤ x < lb

in which, ρb and ρp are the densities of the host beam and the patch, respectively.
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2.3. Transfer matrix method

The transfer matrix (TM) method is used to calculate the dispersion curves. The sate

vector y(x) is used in the TM method. Therefore, Eq. (1) is rewritten into the form:

∂y(x)

∂x
= C(x, ω)y(x) (3)

where, C(x, ω) is a periodic and piecewise function:

C(x, ω) =


C1(x, ω), 0 ≤ x < lp

C2(x, ω), lp ≤ x < lb

For the transverse motion, the state vector is y(x) = [w(x) θ(x) M(x) Q(x)]T , in

which, the slope is θ(x) = ∂w(x)/∂x, the bending moment is M(x) = −D(x)∂2w(x)/∂x2

and the shear force is Q(x) = −D(x)∂3w(x)/∂x3, and:

Ci(x, ω) =



0 1 0 0

0 0 − 1
Di(x)

0

0 0 0 1

−ω2mi(x) 0 0 0


, i = 1, 2 (4)

Equation (3) describes a 1D medium with periodic coefficients. Using the Floquet

theorem, the state vectors of the two ends of a unit cell are related through

y(x+ lb) = λy(x) (5)

in which, λ = ejklb is the Floquet multiplier, with k the wavenumber.
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The state vectors of the two ends can also be related through a TM T:

y(x+ lb) = Ty(x) (6)

Eqs. (5) and (6) together form an eigenvalue problem for the Floquet multiplier and

the state vector:

(T− λI)y(x) = 0 (7)

in which, I is a diagonal matrix with all terms equal to one.

For the TM between the two ends of the studied unite cell (Fig. 2(b)), considering

the continuities of displacement and force at the interface between the two segments, T

is given by:

T = T2T1 (8)

where, T1 relates the two state vectors at x = 0 and x = lp, while T2 relates the two

state vectors at x = lp and x = lb. T1 and T2 can be expressed as [15]:

T1 = elbC1 , T2 = e(lb−lp)C2 (9)

After obtaining the TM, the Floquet multiplier can be obtained by solving the eigen-

value problem in Eq. (7) when the frequency is given, the wavenumber is then deduced

according to λ = ejklb .

2.4. Analytical estimation of LR bandgap range

The bandgaps in passive locally resonant metamaterials are caused by negative pa-

rameters like negative density or bulk modulus [42]. In locally resonant piezoelectric

metamaterials, it has been mentioned that bandgaps for flexural waves are associated

with negative bending stiffness [43]. However, no analytical expressions have yet been
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given to directly estimate the ranges of bandgaps. Such expressions could be very useful

to analyze the influences of NC and other parameters on the bandgap sizes and locations.

Using the effective medium theory, the effective bending stiffness of the whole unit

cell can be approximately expressed as [15]:

Deff (ω) =
DADb

(1− χ)DA + χDb
(10)

in which, χ = lp/lb, it is the covering ratio of the patch, DA is the bending stiffness of the

part covered by patches, the expression of it is:

DA (ω) = Db +
Dsc
p

1− k231
− k231

1− k231
Dsc
p

1

1 + jωZsuCs
p

(11)

in which, Dsc
p = Esc

p b[(hb + 2hp)
3 − h3b ]/12 is the bending moment of the patches under

SC condition.

When the configuration of the shunt is given, namely, the expression of Zsu is de-

termined, according to Eqs. (10) and (11), one can easily deduce the expressions of the

effective bending stiffness and the range where the stiffness is negative. To make the anal-

ysis more general, the following non-dimensional parameters are used hereinafter along

with the previously defined χ = lp/lb:

γ = Db/D
sc
p , α = C0/C

s
p

α is a real number, it could be regarded as the non-dimensional NC value.

For the case with only L in the shunt, the frequency range where the effective bending

stiffness becomes negative is

ωLC

√
1− k231

γ(1− k231) + 1
< ω < ωLC

√
(γ + 1− χ)(1− k231)
γ(1− k231) + 1− χ

, (12)
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in which, ωLC = 1/
√
LCs

p is the resonance frequency of the circuit. Eq. (12) also gives

the bandgap range (which will be verified later in this section), it can be seen that the

lower boundary of the bandgap depends on the resonance frequency of the circuit (ωLC),

the ratio of the bending stiffness of the host beam to that of the short-circuited patch

(γ) and the extensional coupling factor (k31). The upper boundary not only depends on

the three factors listed above, but also depends on the covering ratio of the patch (χ).

If χ = 1, which means the patches cover all the surfaces of the host beam, the upper

boundary is exactly equal to ωLC , this is the case studied in [44]. If χ < 1, namely, the

patches are shorter than the host beam in a unit cell, the upper boundary is lower than

ωLC .

Due to the active nature of NCs [29], they may cause stability issues in some cir-

cumstances, which must be avoided in applications. Therefore, before presenting the

expressions of bandgap ranges for the cases with NCs in the shunts, the stable zone for

the NC values are shown first. In this paper, the L and R values are not limited to be

positive, since one can obtain negative L and R using synthetic or digital circuits. There-

fore, the studied piezoelectric metamaterial beam is stable as long as a positive bending

stiffness of it is guaranteed when ω = 0. According to this, we can deduce the stable zone

for NC. It is found that the stable zone of NC is the same no matter it is in series or in

parallel with L. The stable zone is

α < − γ(1− k231) + 1

(γ + 1)(1− k231)
, or α > −1. (13)

The stable zone includes two sets, as shown graphically in Fig. 3. The limit of the left set

depends on γ, k31 and Cs
p (recall that α = C0/C

s
p), the limit of the right set only depends

on Cs
p .

When the shunts is composed of L in series with NC, the equivalent capacitance
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Figure 3: Graphical illustration of the stable zone in Eq. (13).

of the circuit becomes Ceq = αCs
p/(1 + α) (see Fig. 1 (a)). Consequently, the resonance

frequency of the circuit is ωLC = 1/
√
LCeq. If L is fixed, resonance frequency of the circuit

will change with the NC value. Usually, our interest is to obtain bandgaps at targeted

frequency ranges. Accordingly, in our studies, we assume that resonance frequency of the

circuit is fixed, which means L is varying according to the applied NC value. In this case,

the bandgap range becomes


ωLC

√
1− 1

1 + α

k231
γ(1− k231) + 1

< ω < ωLC

√√√√γ(1− k231) + (1− χ)(1− k231
1+α

)

γ(1− k231) + 1− χ
, α > −1

ωLC

√√√√γ(1− k231) + (1− χ)(1− k231
1+α

)

γ(1− k231) + 1− χ
< ω < ωLC

√
1− 1

1 + α

k231
γ(1− k231) + 1

, α < − γ(1− k231) + 1

(γ + 1)(1− k231)
(14)

From the above expressions, it can be seem that NC influences simultaneously the lower

and upper boundaries of the bandgap when χ < 1. For the critical situation with χ = 1,

only the lower or upper boundary (depends on the α value) will be modified by NC.

Comparing Eqs. (12) and (14), it is also observed that the effects of NC on the bandgap

boundaries are not simply due to the modification of the material eletro-mechanical cou-

pling factor (which becomes k31
√
α/(α + 1) when the NC is connected in series).

When L is in parallel with NC, the equivalent capacitance of the circuit becomes

Ceq = (1 + αp)C
s
p (see Fig. 1 (b)). In this case, the bandgap range is
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
ωLC

√√√√ (γ + 1)(1− k231)
γ(1− k231) + 1− k231

1+α

< ω < ωLC

√√√√ (γ + 1− χ)(1− k231)
γ(1− k231) + (1− χ)(1− k231

1+α
)
, α > −1

ωLC

√√√√ (γ + 1− χ)(1− k231)
γ(1− k231) + (1− χ)(1− k231

1+α
)
< ω < ωLC

√√√√ (γ + 1)(1− k231)
γ(1− k231) + 1− k231

1+α

, α < − γ(1− k231) + 1

(γ + 1)(1− k231)

(15)

It is also observed that NC modifies simultaneously the upper and lower boundaries if

χ < 1, and only one of the boundaries if χ = 1.

To verify the accuracy of Eqs. (12), (14) and (15), the negative bending stiffness

ranges predicted by them are compared with the bandgap ranges obtained using dispersion

curves, the results are shown in Figures 4. In these simulations, the host beam is made of

aluminum and the patches are made of PZT-5H, the geometric and material parameters

are described in Table 2. For the NC in series with L, α = −1.5 is used as an example,

and for the NC in parallel with L, α = −0.7 is used. The shadowed area in each figure

indicates the range where the effective bending stiffness is negative, it is obtained using

one of the expressions in Eqs. (12), (14) and (15). It can be observed that the bandgaps

completely overlap the negative bending stiffness ranges, which verifies the accuracy of

using Eqs. (12), (14) and (15) to predict the bandgaps. It is also observed that the NC

enlarges the negative bending stiffness ranges, therefore leading to wider bandgaps. More

details on how NC and other parameters of the piezoelectric metamaterial influence the

bandgap will be discussed later.

2.5. Tuning characteristics of LR bandgap by NC

In this section, first, the influences of NC value on bandgap ranges are studied. Then,

effects of NC on the wave attenuation ability within bandgaps are analyzed. The bandgap

ranges are predicted using Eqs. (14) and (15), the wave attenuation properties within

bandgaps are obtained using the TM method.

In the simulations to study the tuning characteristics of bandgap ranges, γ = 0.23
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(a) (b)

(c)

Figure 4: Dispersion curves of the flexural waves in the piezoelectric metamaterial beam for three different
shunts: (a) shunt with only L, (b) shunt with L and NC in series, α = −1.5 and (c) shunt with L and
NC in parallel, α = −0.7. Shadowed area in each figure corresponding to the frequency range where the
negative effective bending stiffness is negative, predicted using one of the expressions in Eqs. (12), (14)
and (15).
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Table 2: Geometric and material parameters of the unit cell

Beam Piezoelectric patch

Length lb=60 mm lp=50 mm
Width b=50 mm b=50 mm
Thickness hb=3 mm hp=0.5 mm
Young’s modulus Eb=70 Gpa Esc

p =60.6 Gpa
Density ρb=2700 kg/m3 ρp=7500 kg/m3

Coupling constant \ d31=-2.74e-10 C/N
Relative permittivity
under constant stress

\ εσ3=3400

and k31 = −0.39 are used, they are corresponding to the dimensional parameters listed

in Table 2. For the parameter χ, three different values of it are used, they are χ = 0.5,

χ = 0.7 and χ = 1, the aim of using 3 different χ values is to reveal the influences of it

on the tunable features of bandgap. Recall that, the stable zone of NC includes two sets,

namely, the left set α < −[γ(1− k231) + 1]/(γ + 1)(1− k231) and the right set α > −1, as

shown in Fig. 3. Accordingly, influences of NC will be analyzed separately in these two

sets.

The cases with L and NC in series are first analyzed. Figure 5 (a), (b) and (c) show

the variation of bandgap boundaries along with α in the left set of its stable zone for

the covering ratios χ = 0.5, χ = 0.7 and χ = 1. The shadowed areas are the bandgap

regions. The required L values for different α are also illustrated in these figures, the

value is divided by L0, which is the required inductance when no NC is connected with

L. Figure 5 (d) illustrates the corresponding bandgap size variation along with α. From

Figs. 5 (a) and (b), it can be seen that for the situations with χ < 1, NC decreases

simultaneously the upper and lower boundaries of the LR bandgap. The lower boundary

drops faster than the upper one as |α| decreases, therefore, the bandgap size enlarges.

As χ gets larger, the upper boundary becomes less sensitive to α, and the bandgap is

broadened more in these situations. The bandgap can be enlarged the most when χ = 1

since the upper boundary becomes immune to α. From Figs. 5(a), (b) and (c), it is also
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(a) (b)

(c) (d)

Figure 5: Variation of the bandgap boundaries (a-c) and size (d) along with α in the left set of its stable
zone for the covering ratios (a) χ = 0.5, (b) χ = 0.7 and (c) χ = 1 when the NC is in series with the
L. The shadowed areas indicate the bandgap regions. The required L values for different α are also
illustrated in Figs. 5(a), (b) and (c), L0 is the required inductance when no NC is connected with L.

seen that the required inductance value decreases as the bandgap enlarges. This makes

the circuit become more easy to be realized in practice since large analog inductance is

difficult to obtain. Note that if the shunts are realized using digital techniques, large

inductance value is no longer a problem [24].

Figure 6 shows the variation of bandgap boundaries and size along with α in the right

set of its stable zone. It can be observed that increasing the |α| results in increase of the

upper and lower boundaries if χ < 1. Basically, the upper boundary gains fast than the

lower one, leading to enlargement of the bandgap size. The lower boundary becomes less

sensitive to α as χ gets larger. Consequently, the bandgap size can be improved more
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(a) (b)

(c) (d)

Figure 6: Variation of the bandgap boundaries (a-c) and size (d) and size along with α in the right set
of its stable zone for the covering ratios (a) χ = 0.5, (b) χ = 0.7 and (c) χ = 1 when the NC is in series
with the L. The shadowed areas indicate the bandgap regions. The required L values for different α are
also illustrated in Figs. 6(a), (b) and (c), L0 is the required inductance when no NC is connected with L.

for larger χ. For the special situation with χ = 1, the upper boundary is left unchanged

by NC, the largest bandgap can be achieved. The equivalent capacitance is negative in

these circumstances, therefore, negative inductance values are also required according to

L = 1/ω2
LCCeq. It is also shown that inductance with a larger absolute value is needed to

have wider bandgaps.

For the cases with L and NC in parallel, Figs 7 and 8 show the results corresponding

to α inside the left set and the right set of its stable zone, respectively. Comparing to the

case with L and NC in series, it is observed that in this case, the bandgap boundaries are

oppositely increased within the left set and decreased within the right set. The trends
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(a) (b)

(c) (d)

Figure 7: Variation of the bandgap boundaries (a-c) and size (d) and size along with α in the left set of
its stable zone for the covering ratios (a) χ = 0.5, (b) χ = 0.7 and (c) χ = 1 when the NC is in parallel
with the L. The shadowed areas indicate the bandgap regions. The required L values for different α are
also illustrated in Figs. 7(a), (b) and (c), L0 is the required inductance when no NC is connected with L.

of enlargement of bandgap size in Figs 7 and 6 are similar but not exactly the same, the

obvious difference is that in Figs 7, the NC has little effect on the lower boundary of the

gap even though the covering ratio is far smaller than 1. Comparing the results in Figs 8

and 5, it can be observed that the boundaries have similar variation pattern along with

α. However, it is noticed in Figs 8(d) that, the gap size varies non-linearly with α when

χ < 1, a maximum value appears before α reaches the stable zone limit.

Results in Figs. 5, 6, 7 and 8 give the conclusion that, to enlarge the LR bandgap,

NC can either be in series or in parallel with L, the NC value can be chosen from one

of the two sets of its stable zone. Consequently, to design a bandgap covering a desired
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(a) (b)

(c) (d)

Figure 8: Variation of the bandgap boundaries (a-c) and size (d) and size along with α in the right set of
its stable zone for the covering ratios (a) χ = 0.5, (b) χ = 0.7 and (c) χ = 1 when the NC is in parallel
with the L. The shadowed areas indicate the bandgap regions. The required L values for different α are
also illustrated in Figs. 8(a), (b) and (c), L0 is the required inductance when no NC is connected with L.
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frequency rang, one have 4 different choices in terms of shunt configurations and NC

values. To avoid tedious discussions on similar results, in the following studies, only the

cases using NC in series with L are considered, the NC values are limited within the left

set of its stable zone.

The tuning characteristics of bandgap size by NC for different γ and k31 values are

studied in Fig. 9. The right limit of the left set of the stable zone depends on γ and k31

(see Eq. (13)). Therefore, in Fig. 9 (a) and (c), α ∗ (γ + 1)(1 − k231)/[γ(1 − k231) + 1] is

used as the horizontal axis to eliminate the influences of the shifting of the stable zone’s

boundary. From Fig. 9 (a), it can be seen that the enlargement trend of the gap size

caused by the varying of α is independent on γ. Considering γ itself, from Fig. 9 (b) it is

observed that the gap size varies non-linearly as γ increases, the gap size enlarges in the

beginning then decreases after a maximum. There is an optimal value for γ in order to

have the largest bandgap size, this value is independent on the NC value. The influences

of k31 are studied in Fig. 9 (c) and (d). k31 varies when different piezoelectric material is

used in the metamaterial. Therefore, knowing the effects of k31 can help us in choosing

the most suitable piezoelectric material in practice. Fig. 9 (c) shows the variation pattern

of the gap size when α changes for different k31 values. Absolute value of k31 (its value is

usually negative) is within 0.5 for typical piezoelectric ceramics in market. Accordingly,

|k31| changes from 0.1 to 0.5 in Fig. 9 (c-d). It can be seen that k31 also does not change

the enlargement trend of the gap size when α varies. Besides, it is observed that for larger

|k31|, the gap size is less sensitive to the changing of α near the stable zone boundary,

which makes the system more robust in practice.

Influences of NC on the imaginary part of wavenumber are studied in Fig. 10. To

avoid singularity during the dispersion curve calculation, a small resistance (R = 50 Ω) is

introduced into the circuit in series with L and NC. The imaginary part of wavenumber

is linked to the attenuation of waves within the bandgap. A larger absolute value of

imaginary part means stronger wave attenuation effect. From Fig. 10 it is observed
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(a) (b)

(c) (d)

Figure 9: Influences of (a-b) γ and (c-d) k31 on the tuning characteristics of bandgap size by NC: (a)
χ = 0.8, k31 = −0.39, (b) χ = 0.8, k31 = −0.39, (c) χ = 0.8, γ = 0.23 and (d) χ = 0.8, γ = 0.23.
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Figure 10: Influences of NC on the wave attenuation ability within the bandgap.

that NC broadens the bandgap size, but degenerates the wave attenuation ability. The

degeneration is due to the enhancement of damping in the circuit by NC, since damping

weakens the resonant behavior of the circuit. Nonetheless, the degeneration is mild, the

wave attenuation effects are strong within these bandgaps, as will be seen from the forced

responses of the metamaterial beam in the following section.

In summary, studies in this section reveal how NC affects the bandgap when the

piezoelectric metamaterial beam has different geometrical and material parameters. These

results can be used as guidelines to design bandgaps at desired frequency ranges.

3. Numerical simulations

The main tuning characteristics of bandgap by NC are verified using finite element

(FE) simulations. The simulations are done in commercial software COMSOL. The FE

beam model has 10 unit cells, a harmonic boundary force is applied on the left end of the

beam, the right end of the beam is free. Transmission function between the displacement

of the right end and the excitation force will be studied during the discussions. Two

different unit cell lengths are used, they are lb = 52 mm and lb = 100 mm, the aim is to

verify the influences of the covering ratio on the effects of NC. The other geometric and

material parameters are the same as in Table 2. NC is in series with L in these simulations.

In practice, resistance of the circuit is inevitable. Therefore, a small resistance R = 50 Ω
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is also included in the shunt in series with the other parts.

First of all, accuracy of the FE models is checked and improved to be acceptable. The

patches are kept OC to take into account the electro-mechanical coupling effects in these

simulations. Natural frequencies of the first 10 non-rigid modes are used to check the

convergence of the simulations. The meshes of FE models are refined until the simulated

natural frequencies vary no more than 1% when the degrees of freedom are doubled.

Secondly, the intrinsic capacitance value of the patch in the FE models is estimated.

This capacitance value is necessary in order to find the required inductance value when

ωLC is designated. In the analytical studies, Cs
p is involved in the process to determine

inductance values (for example, through L = 1/ω2
LCC

s
p). However, this analytical Cs

p can

not be directly used in the FE simulations to deign the L values, because it overestimates

the capacitance of the patch in the FE model. To demonstrate this, the same L value is

used in both the analytical and FE simulations, the analytically predicted bandgap range

and the gap observed in the finite metamaterial beam are compared in Fig. 11 for the case

with LR shunts. The analytical bandgap range (calculated using Eq. (12)) is indicated

by the shadow in Fig. 11. The transmission function curve obtained in the FE simulation

using the same parameters as those in the analytical calculation is labeled with “original”,

the frequency range with relatively low response level is the bandgap. It can be seen that

the gap observed in the FE result is at higher frequency range than the analytical one,

which verifies that the analytical Cs
p overestimates the capacitance value of the patch in

the FE model, leading to a smaller L than the required one. Therefore, the capacitance

in the FE simulation is corrected to be Cs∗
p = 0.84Cs

p . Using this corrected capacitance,

the corrected L value for the FE simulation is obtained. The curve with label “corrected”

in Fig. 11 is the FE result corresponding to the corrected L value. One can see that the

gap in the FE simulation now has good coincidence with the analytical one.

After the above procedures, it is able to verify the effects of NC on the bandgaps.

4 shunts with different NC and L parameters are studied for each of the two unit cell
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Figure 11: Transmissibility at the right end of the metamaterial beam when a boundary transverse force
is applied at the left end for the case with LR shunts. Shadowed area indicates the analytically predicted
gap region using Eq. (12), results corresponding to the original and corrected L are both shown in the
figure.

lengths, the parameters of shunts are listed in Table 3 (shunt 1 to 4). The case with LR

shunts is used as reference, the corresponding shunting parameters are also given in Table

3. Recall that, Cs∗
p in the table is the corrected capacitance of the patch in the FE model.

fLC is the resonance frequency of the circuit in Hz. Figure 12 shows the transmission

function curves for different studied cases. The predicted bandgap locations using Eqs.

(12) and (14) are also indicated in these figures through the horizontal colorful slats. For

the tuning trend of the bandgap size and location caused by NC, it can be seen from the

transmission curves in Fig. 12(a) that, when the covering ratio of the patch is close to

one, NC decreases the lower boundaries of the gap, and has little influence on the upper

ones, therefore, leading to a wider bandgap, just as illustrated in Figs. 5(c); when the

covering ratio is far from one, the results in Fig. 12(b) clearly show that NC decreases

simultaneously the upper and lower boundaries of the gap, the lower boundary drops

faster, therefore, shifting as well as enlarging of the bandgap are both observed, which is

coincident with the results in Figs. 5(a). From Fig. 12, it can also be seen that, with

regard to the values of the bandgap sizes and locations, the FE and analytical results have

obvious differences when there are NCs in the shunts, which indicates that the analytical

model based on Euler-Bernoulli beam theory and sub-wavelength homogenization theory

can not precisely capture the bandgap’ features.
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Table 3: Resonance frequency of the circuit and the corresponding electrical parameters used in the FE
simulations

L (H) R (Ω) C0/C
s∗
p fLC (Hz)

reference 12.00 50 \ 100
shunt 1 4.00 50 −1.5 100
shunt 2 2.40 50 −1.25 100
shunt 3 2.00 50 −1.2 100
shunt 4 1.57 50 −1.15 100

In conclusion of this section, the FE results clearly verify the tuning characteristics of

the bandgap observed in the analytical studies, therefore, the analytical model could be

used to predict the tuning trend of the bandgap, however, to precisely calculate the size

and location of a bandgap, FE simulations are more suitable.

4. Discussions

To implement shunts with L and NC in practice, one can use analog circuits to synthe-

size negative capacitance and large inductance. In this way, it is recommended to use L in

series with NC and choose the NC value from the left set of stable zone. This choice could

avoid using simultaneously negative capacitance and negative inductance in the shunts,

it also benefits from the smaller inductance needed for wider bandgaps (see Figs. 5). The

required inductance and negative capacitance can be realized using the circuits in Fig. 13

(a) and (b), respectively [22, 29]. The synthesized inductance and negative capacitance

are respectively

L =
R1R3R4

R2

C, C0 = −R3

R2

C.

A more advanced way to realize shunts with L and NC is using programmable digital

circuits [24]. A digital circuit usually is composed of voltage measuring block, digital

signal processing (DSP) block and voltage controlled current source block. Digital circuit

measures the voltage on the electrodes of PZT patches and feeds back current to the same

patches, therefore desired impedance is established between the terminals of patches.
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(a)

(b)

Figure 12: Transmission function curves for different patch covering ratios and shunts with different
parameters: (a) lb = 52 mm, lp = 50 mm and (b) lb = 100 mm, lp = 50 mm. The horizontal colorful
slats in each figure indicate the predicted bandgap locations using Eqs. (12) and (14). The used shunting
parameters in different simulations are listed in Table 3.
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Figure 13: (a) Antoniou’s circuit to synthesize inductance and (b) typical circuit to synthesize negative
capacitance.

To simulate behaviors of shunts with L and NC, the inverse expression of the shunt’s

impedance is programmed in the DSP block in Laplace domain as a transfer function.

Since the impedance is realized digitally, no limitation is constrained on the inductance

value and the configurations of L with NC, namely, the L and NC could either in series or

in parallel, and it is free to choose NC value within the whole stable zone, as long as the

implemented transfer function in the DSP block is causal and the whole system is stable.

The above discussed synthetic and digital circuits both need power supply in practice.

One possible solution is introducing energy harvesting circuits into the system, the har-

vested energy maybe used to power low-powered electron devices in the circuits. Future

work will be done to verify this idea.

5. Conclusions

In this paper, piezoelectric metamaterials shunted with combined L and NC are analyt-

ically and numerically studied. The metamaterial is obtained by periodically distributing

piezoelectric patches on the surfaces of a host structure. A slender beam is used as host

structure in this paper as an representative. Shunts with NC and L in series and in

parallel are both studied. Major conclusions of this paper are:

(1) NC enlarges the frequency regions of negative stiffness caused by resonant shunts,

therefore leading to wider bandgaps;
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(2) NC enlarges the LR bandgap size and also shifts the bandgap to lower or higher

frequency range when the host beam is not fully covered by the patches. As the covering

ratio of the patches increases, the gap size becomes even wider but the shifting effect of

the bandgap location weakens;

(3) Except the covering ratio of patches, other geometric and material parameters of

the metamaterial do not change the enlargement trend of the bandgap size caused by NC.

(4) The analytical model based on the Euler-Bernoulli beam theory and effective

medium theory is useful to predict the tuning characteristics of bandgaps by NC. However,

it can not precisely predict the sizes and locations of bandgaps, for such demand, FE

models are more suitable.

In the next step, experiments will be done to study the influences of real NC and L

circuits on the bandgaps and to reveal the limitations of such piezoelectric metamaterials

under practical constrains.
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