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Abstract

While the design of always new metamaterials with exotic static and dynamic properties is at-
tracting deep attention in the last decades, little effort is made to explore their interactions with
other materials. This prevents the conception of (meta-)structures that can enhance metamateri-
als’ unusual behaviours and that can be employed in real engineering applications. In this paper,
we give a first answer to this challenging problem by showing that the relaxed micromorphic model
with zero static characteristic length can be usefully applied to describe the refractive properties of
simple meta-structures for extended frequency ranges and for any direction of propagation of the
incident wave. Thanks to the simplified model’s structure, we are able to efficiently explore different
configurations and to show that a given meta-structure can drastically change its overall refractive
behaviour when varying the elastic properties of specific meta-structural elements. In some cases,
changing the stiffness of a homogeneous material which is in contact with a metamaterial’s slab,
reverses the structure’s refractive behaviour by switching it from an acoustic screen (total reflection)
into an acoustic absorber (total transmission). The present paper clearly indicates that, while the
study and enhancement of the intrinsic metamaterials’ properties is certainly of great importance, it
is even more challenging to enable the conception of meta-structures that can eventually boost the
use of metamaterials in real-case applications.

Keywords: mechanical metamaterials, wave-propagation, metamaterials, meta-structure, relaxed mi-
cromorphic model.

1 Introduction

The last decade has seen the birth of a true research outburst on so-called mechanical metamaterials
which are able to show exotic mechanical properties both in the static and dynamic regime. Theoretical,
experimental and numerical studies have flourished all around the world providing new insights in the do-
main of material properties manipulation which, only few years ago, was thought far from being prone to
possible ground-breaking evolutions. We are today assisting to the conception and subsequent realization
of new materials which, simply thanks to their internal architecture, go beyond the materials’ mechanical
properties that we are used to know and which, for this reason, are called mechanical metamaterials.
Already in the late 1980s, it was proven that some foams with special internal architecture can give rise
to ‘negative Poisson’ effects, i.e., they fatten when stretched, contrarily to what happens to the great
majority of known materials which experience a reduction in the cross-section when submitted to tensile
loads [40]. More recently, the frontiers of metamaterials’ conception are rapidly moving forward, giving
rise to the manufacturing of always new metamaterials with more and more impressive properties. It is
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thus possible today to see 3D-printed pyramids connected by hinges giving rise to a block that is hard
like a brick on one side but soft like a sponge on the other [13], “unfeelability” cloaks hiding to the touch
objects put below them [35, 48], plastic cubes made out of smaller plastic cubes giving rise to bizarre
deformations when squeezed [22], or even metamaterials exploiting microstructural instabilities to change
their mechanical response depending on the level of externally applied load [37]. When considering the
dynamical behaviour of mechanical metamaterials, things become, if possible, even more impressive,
given the unusual responses that such metamaterials can provide when coming in contact with elastic
waves [8, 26, 34]. It is today possible to find researchers working on metamaterials exhibiting band-gaps
[12, 20, 27, 29, 38, 41, 66, 75], cloaking [18, 50, 51, 54], focusing [24, 30], channelling [14, 36, 49, 65, 67],
negative refraction [14, 42, 52, 61, 72, 75], etc., as soon as they interact with mechanical waves.

Notwithstanding the massive research efforts deployed to unveil new metamaterials’ performances,
researchers have just begun to understand the underlying mechanisms, so that “many designs so far have
relied on luck and intuition” [10].

In order to provide deeper theoretical insight into the mechanisms which allow to tailor metama-
terials’ mechanical properties, so-called homogenization techniques have been developed which provide
rigorous predictions of the macroscopic metamaterials’ mechanical behaviour, when knowing the prop-
erties of the base materials and their spatial distribution. Homogenization techniques have proven
their effectiveness for the description of metamaterials’ bulk behaviour in the static and quasi-static
regime [5, 9, 15, 19, 28, 31, 32, 46, 47, 56, 58, 64, 68] as well as, more recently, in the dynamic regime
[6, 7, 16, 21, 23, 33, 60, 62, 63, 69, 70, 71].

While homogenization methods are effective to describe bulk metamaterials’ behaviours, they are
intrinsically unsuitable to deal with metamaterials of finite size, because the ‘average operations’, on
which they are built, make strong use of projection functions (e.g., Bloch-Floquet ones) that are defined
in unbounded function spaces [59, 63].

As a result of this gap, the response of finite-size metamaterials’ structures is today mostly explored
via direct Finite Element (FEM) simulations that implement all the details of the involved microstruc-
tures (e.g., [39]). Despite the precise propagation patterns that these direct numerical simulations can
provide, they suffer from unsustainable computational costs. Therefore, it is impossible today to explore
large-scale meta-structures combining metamaterials and classical-materials bricks of different type, size
and shape.

A first answer to this problem has been given by the introduction of the so-called relaxed micromorphic
model without curvature contribution that has recently proven its effectiveness for the description of the
mechanical behaviour of a specific finite-size band-gap metamaterial with tetragonal symmetry [25].

When compared to other techniques, this micromorphic approach shows its advantages at the con-
sidered macroscopic scale. In particular, with respect to the direct finite element implementation, it
allows a rapid calculation (few hours vs. some weeks for the FEM simulation) of the metamaterials
slab’s refractive properties for all angles of incidence and considered frequency ranges. With respect to
dynamical and high-frequency homogenization, the presented approach allows to effectively deal with
the finite-size of the metamaterial’s slab thanks to the introduction of well posed interface conditions
guaranteeing the uniqueness of the searched solution.

Finally, other enriched continuum models such as couple stress or strain gradient models cannot de-
scribe band-gap metamaterials because they feature the same kinematics of a classical Cauchy continuum
(only the displacement field). This implies that they can at best describe some dispersion in the acoustic
curves, but cannot reproduce higher frequency optic modes.

In the present paper, we want to move beyond these first encouraging results and show how the
relaxed micromorphic model without curvature contribution can be used to characterize many other
tetragonal band-gap metamaterials that can be used for acoustic applications. To this aim, we will
apply the inverse fitting procedure presented in [25, 53] to different metamaterials thus providing their
mechanical description via the relaxed micromorphic model without curvature contribution. 1 We will
then explore how the behaviour of these metamaterials can be profoundly changed by simply coupling
them to classical homogeneous materials, realizing what we will call meta-structures, which can have
very different mechanical properties when compared to those of the original metamaterial. The explo-
ration of these new meta-structures is made possible thanks to the simplified structure of the relaxed
micromorphic model without curvature contribution that allows quick computations of different struc-
tures obtained by embedding the selected metamaterial in different homogeneous materials. We show

1The relaxed micromorphic model can be used to qualitatively describe the mechanical response of 2D and 3D meta-
materials whose class of symmetry can be represented via fourth order elastic tensors. The only class of symmetry that is
currently excluded is the hexagonal one, for which the introduction of higher order elastic tensors will be needed.
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how the simple fact of changing the elastic properties of the external homogeneous material allows us
to switch the structure’s behaviour from total reflection to total transmission and vice-versa. It is clear
that this new possibility of exploring different combinations of finite-size metamaterials and classical-
materials opens concrete perspectives for the true employment of metamaterials in engineering design.
Indeed, metamaterials’ reflection and transmission properties have been analysed so far, always referring
to the particular arrangement of their internal architecture so as to modify the metamaterial’s reflec-
tion/transmission behavior when the metamaterial is embedded, e.g., in air. Although such approaches
can lead to the design of tunable interfaces allowing total transmission or total reflection depending on
the topological microstructure’s properties [55, 73, 74], they are not suitable to explore the behaviour
of the same metamaterials when they are used as building blocks of more complex structures that also
contain other metamaterials and/or classical-materials elements, especially when these structures are
widely extended in space.

As a matter of fact, these metamaterials that are conceived to act as perfect screens or perfect
absorbers, could drastically change their response when embedded in homogeneous media or combined to
other metamaterials. Little attention is given today to the need of exploring the response of ”combined”
classical-materials/metamaterials structures and this is preventing us from designing realistic meta-
structures that control elastic waves and recover energy. Many authors have recognized the interest of
studying the refractive behaviour of metamaterials when combined to homogeneous materials to enhance
unorthodox responses such as wave filtering [11] or negative refraction [17, 72]. In a similar spirit, we
present in this paper a simple meta-structure composed of a tetragonal metamaterial embedded in a
homogeneous medium and we explore its wave-filtering response. The generality of our approach would
allow us to study the response of the other structures cited so far [11, 17, 51, 68, 69, 72] and to highlight
how the structure’s response could be modified when modifying simple parameters like the outer medium
elasticity or the metamaterial’s characteristic size.

In this paper we show how the simple fact of assembling a finite-size metamaterial together with
blocks of classical-materials can dramatically change the response of the metamaterial itself in such
a way that the same structure may act as a complete absorber (total transmission) or a complete
screen (total reflection). This switch of the structure’s dynamical properties is obtained by keeping
the same geometry and the same metamaterial, while changing the homogeneous material in which the
metamaterial itself is embedded. These results have been made possible thanks to the use of the relaxed
micromorphic model without curvature contribution that, drastically reducing the computational time of
the associated numerical simulations, could open the effective exploration of these new meta-structures.
We clearly show that, while the interest of studying the intrinsic metamaterial’s properties by engineering
its microstructure is certainly of great importance, it is even more important to unveil the effects of its
interactions with other finite-size metamaterials and classical-materials bricks. It is indeed based on these
interactions that it is possible to unfold new meta-structures which can further enhance the properties
of the base metamaterials thus opening the way to realistic applications.

1.1 Notation

We recall here the notation that we will use throughout the paper. Let R3×3 be the set of all real 3× 3
second order tensors which we denote by capital letters. A simple and a double contraction between
tensors of any suitable order is denoted by · and : respectively, while the scalar product of tensors of
suitable order is denoted by 〈·, ·〉. 2 The Einstein sum convention is implied throughout this text unless
otherwise specified. The standard Euclidean scalar product on R3×3 is given by 〈X,Y 〉 = tr(X ·Y T ) and
consequently the Frobenius tensor norm is ‖X‖2 = 〈X,X〉. The identity tensor on R3×3 will be denoted
by 1; then, tr(X) = 〈X,1〉. We denote by BL a bounded domain in R3, by δBL its regular boundary
and by Σ any material surface embedded in BL. The outward unit normal to δBL will be denoted by ν
as will the outward unit normal to a surface Σ embedded in BL. Given a field a defined on the surface
Σ, we define the jump of a through the surface Σ as:

JaK = a+ − a−, with a− := lim
x∈B−

L \Σ
x→Σ

a, and a+ := lim
x∈B+

L\Σ
x→Σ

a, (1)

where B−L , B
+
L are the two subdomains which result from splitting BL by the surface Σ.

2For example, (A · v)i = Aijvj , (A ·B)ik = AijBjk, , (C ·B)ijk = CijpBpk, (C : B)i = CijpBpj , 〈v, w〉 = v ·w = viwi,
〈A,B〉 = AijBij , etc.
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Classical gradient ∇ and divergence Div operators are used throughout the paper.3 The subscript
, j indicates derivation with respect to the j−th component of the space variable, while the subscript , t
denotes derivation with respect to time. 4

Given a time interval [0, t0], the classical macroscopic displacement field is denoted by u(x, t) ∈ R3,
with x ∈ BL, t ∈ [0, t0]. In the framework of enriched continuum models of the micromorphic type,
extra degrees of freedom are added through the introduction of the micro-distortion tensor P denoted
by P (x, t) ∈ R3×3, with x ∈ BL, t ∈ [0, t0]. This tensor can be related to micro-deformation mechanisms
that take place at the scale of the unit cell and can account for dilation/compression-, shear- and rotation-
like vibration modes, when different frequency levels are considered.

2 Equilibrium equations, constitutive relations, and energy flux

2.1 Isotropic Cauchy continuum

The equilibrium equations for the Cauchy continuum are

ρ u,tt = Div [σ] , (2)

where σ is the Cauchy stress tensor. In the isotropic case, it takes the constitutive form σ = 2µ sym∇u+
λ tr (sym∇u)1, where λ and µ are the Lamé parameters and sym∇u is the strain tensor.

When dissipative phenomena can be neglected, the following flux equation must hold:

E,t + DivH = 0 , (3)

where E is the total energy of the system and H is the energy flux vector, whose explicit expression is
given by (see e.g. [1] for a detailed derivation)

H = −σ · u,t . (4)

2.2 Relaxed micromorphic continuum with zero static characteristic length

The equilibrium equations are obtained by looking for stationary points of the following action functional:

A =

∫ t0

0

∫
BL

(J −W ) dXdt (5)

where J is the kinetic energy density and W is the strain energy density of the considered micromorphic
continuum.

In particular, the expression of the kinetic energy density takes the form [25, 43, 44, 57]:5

J (u,t,∇u,t, P,t) =
1

2
ρ 〈u,t, u,t〉+

1

2
〈Jmicro symP,t, symP,t〉+

1

2
〈Jc skewP,t, skewP,t〉

+
1

2
〈Te sym∇u,t, sym∇u,t〉+

1

2
〈Tc skew∇u,t, skew∇u,t〉,

(6)

where u is the macroscopic displacement field, P ∈ R3×3 is the non-symmetric micro-distortion tensor,
ρ is the macroscopic apparent density, and Jmicro, Jc, Te, Tc are 4th order micro-inertia tensors whose
form will be specified in the following subsection.

The relaxed micromorphic continuum contains curvature terms connected to CurlP . Here, we use the
relaxed micromorphic continuum without curvature contribution. The expression of the strain energy

density without curvature contribution (
µL2

c

2 ‖CurlP‖2 = 0, Lc = 0) is [25, 43, 44, 57]:

W (∇u, P ) =
1

2
〈Ce sym (∇u− P ) , sym (∇u− P )〉+

1

2
〈Cmicro symP, symP 〉

+
1

2
〈Cc skew (∇u− P ) , skew (∇u− P )〉 ,

(7)

3The operators ∇, curl and Div are the classical gradient, curl and divergence operators. In symbols, for a field u of any
order, (∇u)i = u,i, for a vector field v, (curlv)i = εijkvk,j and for a field w of order k > 1, (Divw)i1i2...ik−1

= wi1i2...ik,ik .
4Being reserved to the time variable, the index t is treated separately and does not comply with Einstein notation.
5The presence of curvature terms is essential to catch size-effects in the static regime that are not the target of the

present paper.
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where Ce, Cmicro, and Cc are 4th order tensors whose characteristic will be given in Sec. 2.3.
The minimization of the Action functional, eq. (5), while using eq. (6)-(7) provides the following

equilibrium equations

ρ u,tt −Div (σ̂,tt) = Div (σ̃) , (Jmicro + Jc) P,tt = σ̃ − s, (8)

where
σ̂ := Te sym∇u+ Tc skew∇u, s := Cmicro symP,

σ̃ := Ce sym (∇u− P ) + Cc skew (∇u− P ) .
(9)

The flux equation for the relaxed micromorphic continuum is formally the same as eq. (3), but H has
now the following expression (see [3] for more details):

H = − (σ̃ + σ̂)
T · u,t . (10)

2.3 Particularization of the relaxed micromorphic model to plane strain and
tetragonal symmetry

We now focus on finding solutions in a plane strain framework. This means that we constrain the
displacement field u and the micro-distortion P to depend only on the first two components x1 and x2

of the space variable x:

u(x1, x2) =

u1(x1, x2)
u2(x1, x2)

0

 , P (x1, x2) =

P11(x1, x2) P12(x1, x2) 0
P21(x1, x2) P22(x1, x2) 0

0 0 0

 . (11)

Given the metamaterials targeted in this paper (see Section 4), we particularise the equilibrium
equations to the tetragonal case. This means that the elastic and micro inertia tensors appearing in
eq. (6)-(7) can be represented in the Voigt form as:

Ce =


λe + 2µe λe . . . •

λe λe + 2µe . . . •
...

...
. . .

• • µ∗e

 , Cc =

• •
. . .

...
• . . . 4µc

 ,

Cmicro =


λmicro + 2µmicro λmicro . . . •

λmicro λmicro + 2µmicro . . . •
...

...
. . .

• • µ∗micro

 ,

(12)

Jmicro = ρ


L2

3 + 2L2
1 L2

3 . . . •
L2

3 L2
3 + 2L2

1 . . . •
...

...
. . . •

• • • L∗
2

1

 , Jc = ρ

• •
. . .

...
• . . . 4L2

2

 ,

Te = ρ


L

2

3 + 2L
2

1 L
2

3 . . . •
L

2

3 L
2

3 + 2L
2

1 . . . •
...

...
. . .

• • L
∗2
1

 , Tc = ρ

• •
. . .

...

• . . . 4L
2

2

 ,

(13)
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where only the coefficients involved in a plane strain problem are reported (the dots represent components
acting on out-of plane variables and are not specified here). 6

In the definition (13) of the micro-inertia tensors appearing in the kinetic energy (6), it is underlined
the fact that they introduce dynamic internal lengths that can be directly related to the dispersion
behaviour of the metamaterial at very small (in the limit vanishing) wavenumbers (Jmicro,Jc), as well as
at very large (in the limit infinite) wavenumbers (Te, Tc).

3 Boundary conditions for a finite-size relaxed micromorphic
slab embedded between two Cauchy half-spaces

Two half-spaces made up of a homogeneous Cauchy material are separated by a micromorphic slab of
finite width h. The three materials are in perfect contact with each other: the material on the top of
the first interface is a classical linear elastic isotropic Cauchy medium, the material in the middle is an
anisotropic relaxed micromorphic medium, while the material on the bottom of the second interface is
again a classical isotropic Cauchy medium (see Fig. 1).

q

x2

x1

+¥

-¥

+¥

-¥

k

h/2

h/2

Figure 1: Schematic representation of a wave with wavenumber k hitting at angle θ a relaxed micromor-
phic slab of thickness h embedded between two isotropic Cauchy media.

As it can be seen in [1, 2, 45] there are two boundary conditions which can be imposed at a
Cauchy/relaxed-micromorphic interface if the static characteristic length (Lc) is zero (our case here):
the continuity of displacement and continuity of generalized traction.

In the considered 2D case, there are then eight sets of scalar conditions, four on each interface. The
finite slab has width h and we assume that the two interfaces are positioned at x1 = −h/2 and x1 = h/2,
respectively (see Fig. 1). The continuity of displacement conditions to be satisfied at the two interfaces
of the slab are:

u−c = us, on x1 = −h
2
, us = u+

c , on x1 =
h

2
, (14)

where u−c and u+
c are the displacement of the “minus” (x1 < 0) and “plus”(x1 > 0) Cauchy half-space,

respectively. As for the continuity of generalized traction, we have:

t−c = ts, on x1 = −h
2
, ts = t+c , on x1 =

h

2
, (15)

where t±c = σ± · ν± are classical Cauchy tractions, ts = (σ̃ + σ̂) · ν is the generalized traction in the
relaxed micromorphic medium, with ν being the outward unit normal to the surface considered (see
[4, 25] and eq. (9) for details about the definitions of generalized tractions).

6When performing the calibration of the inertia parameters, we could establish that the characteristic lengths L1,
L2, L3, and L∗

1 are related to the high-frequency/large-wavelength metamaterial’s response, in particular they directly

intervene in the expressions of the cut-off frequencies. On the other hand, the characteristic lengths L1, L2, L3, and
L
∗
1 have a significant effect on the high-frequency/short-wavelength metamaterial’s response, since they visibly increase

dispersive behaviours associated to the asymptotic part of the dispersion curves.
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4 2D tetragonal microstructures for acoustic control

In view of the conception of meta-structures for applications in acoustic control, we consider here three
tetragonal unit cells which give rise to three different metamaterials at the macroscopic scale. These
metamaterials will then be characterised through the relaxed micromorphic model, thus widening the
set of tetragonal microstructures that have been characterised so far with this new model (see [4, 25] for
the characterization of an ultrasound microstructure). The selected microstrutures are shown in Fig. 2.
They all show band-gaps for relatively low frequencies, especially the one presented in Fig. 2(a) which
completely falls in the acoustic frequencies range (see dispersion curves Fig. 3–4). Given the particular
distribution of voids in the unit cells, these microstructures result to be by far stiffer in compression
than in shear. This can be observed in Fig. 3–4, by remarking that for a wave propagating along the
horizontal direction (θ = 0), the acoustic “pressure” wave is by far steeper than the “shear” wave (see
Fig. 3(a)). This difference is lost for other directions of propagation (see, e.g., Fig. 3(b)–3(c)).

All the simulations that are reported in this section and in the next one have been carried on with the
software Mathematica for what concerns the relaxed micromorphic semi-analytical solutions, and with
the software Comsol for the detailed discrete numerical solutions(see [4] for more details).
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Figure 2: (a) unit cell giving rise to the metamaterial 1, or in short MM1. (b) Table geometry and
material properties of the unit cell: ρTi, ETi, and νTi stand for the density, Young modulus and Poisson’s
ratio of titanium, respectively. (c) unit cell giving rise to the metamaterial 2, or in short MM2. (d)
Table geometry and material properties of the unit cell: ρTi, ETi, and νTi stand for the density, Young
modulus and Poisson’s ratio of titanium, respectively. (e) unit cell giving rise to the metamaterial 3, or
in short MM3. (f) Table geometry and material properties of the unit cell: ρSt, ESt, and νSt stand for
the density, Young modulus and Poisson’s ratio of steel, respectively.

8



4.1 Dispersion curves and calibration of the relaxed micromorphic elastic
parameters

In this section we provide the relaxed-micromorphic characterization of the three metamaterials previ-
ously introduced (Fig.2) by means of the fitting procedure developed in [25, 53]. This fitting procedure
is based on two different steps aimed at separately characterizing the metamaterial on the static and
dynamic regime [25, 53]. In particular, the static parameters are identified by remarking that the re-
laxed micromorphic model tends to a macroscopic equivalent Cauchy medium of stiffness λmacro, µmacro,
and µ∗macro, when considering the long-wave limit (small frequencies and small wave numbers). These
macroscopic parameters can be identified by classical numerical homogenization. They are obtained by
imposing periodic boundary conditions that mimic an infinitely extended structure [25, 53]. On the
other hand, the micro-parameters λmicro, µmicro, and µ∗micro are identified by imposing kinematic uniform
boundary conditions on different but equivalent and symmetry-preserving unit cells [53]. It is important
to underline that the micro-parameters so identified estimate is just a lower bound. The parameters λe,
µe, µ

∗
e are uniquely identified as a combination of the macro- and micro- elastic parameters thanks to

the homogenization formulas derived in [25, 53]:

µe =
µmacro µmicro

µmicro − µmacro

, µ∗e =
µ∗macro µ

∗
micro

µ∗micro − µ∗macro

, κe =
κmacro κmicro

κmicro − κmacro

, with

 κi =
2µi + 3λi

3

i = {e, micro, macro}
. (16)

As for the dynamic parameters, four of them can be computed by considering the limiting case
k → 0 (vanishing wavenumbers). In particular, the parameters L1, L2, L3, and L∗1 can be determined by
imposing the cut-off of the relaxed micromorphic model to be equal to the corresponding numerical values
obtained, e.g., by Bloch-Floquet analysis. Indeed, the cut-offs frequencies of the relaxed micromorphic
model are found to be given by [25]:

ωr =

√
µc
ρL2

2

, ωs =

√
µe + µmicro

ρL2
1

, ω∗s =

√
µ∗e + µ∗micro

ρL∗
2

1

, ωp =

√
µe + λe + µmicro + λmicro

ρ (L2
1 + L2

3)
. (17)

The remaining dynamic parameters L1, L2,L3, and L
∗
1 are found to have a strong effect on the dispersion

curves when k → ∞ and they are determined by inverse approach to reach the best possible fitting of
the Bloch-Floquet dispersion curves [4, 25].

4.1.1 Relaxed micromorphic characterization of the metamaterial MM1

As a result of the fitting procedure briefly summarized before, the metamaterial MM1 (see Fig. 2(a))
results to be characterized via the relaxed micromorphic parameters give in Table 1 (a). Table 1 (b)
provides the corresponding values of the Cauchy medium obtained as the long wave limit of the relaxed
micromorphic medium of Table 1 (a).
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λe [Pa] µe [Pa] µ∗e [Pa]

1.00884× 108 2.52771× 109 1.25592× 106

λmicro [Pa] µmicro [Pa] µ∗micro [Pa]

1.832× 108 4.50125× 109 2.698× 108

L1 [m] L2 [m] L3 [m] L∗1 [m]

0.100 1.24908× 10−3 2.02572× 10−2 2.44985× 10−2

L1 [m] L2 [m] L3 [m] L
∗
1 [m]

4.5639× 10−4 2.28195× 10−3 1.44323× 10−3 4.84074× 10−3

ρ [kg/m3] µc [Pa]

3841 105

(a)

λmacro [Pa]

6.507× 107

µmacro [Pa]

1.619× 109

µ∗macro [Pa]

1.250× 106

(b)

Table 1: Panel (a) shows the values of the relaxed micromorphic static and dynamic parameters for
the metamaterial MM1 determined via the fitting procedure given in [4, 25]. The apparent density ρ is
computed based on the titanium microstructure of Fig. 2(a). Panel (b) shows the values of the equivalent
Cauchy continuum elastic coefficients corresponding to the long-wave limit of MM1 computed with the
procedure explained in [53].

(a)

(c)

(b)

Figure 3: Dispersion curves for the metamaterial MM1 corresponding to three different direction of
propagation (a) θ = 0◦, (b) θ = 45◦, and (c) θ = 60◦.

Figure 3 shows the comparison of the dispersion curves obtained via the relaxed micromorphic model
with those issued via Bloch-Floquet analysis, for three different directions of propagation.

4.1.2 Relaxed micromorphic characterization of the metamaterials MM2 and MM3

Following the aforementioned procedure, the metamaterials MM2 and MM3 are characterized through
the relaxed micromorphic parameters given in Table 2 and Table 3, respectively. The resulting fitting of
the dispersion curves is shown in Fig. 4.
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λe [Pa] µe [Pa] µ∗e [Pa]

6.35565× 107 4.96092× 109 1.13113× 107

λmicro [Pa] µmicro [Pa] µ∗micro [Pa]

6.553× 109 5.9× 109 5.984× 109

L1 [m] L2 [m] L3 [m] L∗1 [m]

0.0272027 0.000209403 0.021232 0.0258829

L1 [m] L2 [m] L3 [m] L
∗
1 [m]

0.0000368211 0 0.0000368211 0.0000260365

ρ [kg/m3] µc [Pa]

3840.77 100000

(a)

λmacro [Pa]

7.5424× 108

µmacro [Pa]

2.69493× 109

µ∗macro [Pa]

1.129× 107

(b)

Table 2: Panel (a) shows the values of the relaxed micromorphic static and dynamic parameters for the
metamaterial MM2 determined via the fitting procedures given in [4, 25]. The apparent density ρ is
computed based on the titanium microstructure of Fig. 2(c). Panel (b) shows the values of the equivalent
Cauchy continuum elastic coefficients corresponding to the long-wave limit of MM2 computed with the
procedure explained in [53].

λe [Pa] µe [Pa] µ∗e [Pa]

1.96607× 108 8.37313× 109 1.80302× 107

λmicro [Pa] µmicro [Pa] µ∗micro [Pa]

2.5× 109 17× 109 1.075× 1010

L1 [m] L2 [m] L3 [m] L∗1 [m]

0.0353782 3.62851× 10−7 0.0129766 0.028261

L1 [m] L2 [m] L3 [m] L
∗
1 [m]

9.30984× 10−8 4.16349× 10−8 9.30984× 10−8 0.0000294403

ρ [kg/m3] µc [Pa]

7595.26 0.473178

(a)

λmacro [Pa]

3.36× 108

µmacro [Pa]

5.61× 109

µ∗macro [Pa]

1.8× 107

(b)

Table 3: Panel (a) shows the values of the relaxed micromorphic static and dynamic parameters for the
metamaterial MM3 determined via the fitting procedures given in [4, 25]. The apparent density ρ is
computed based on the steel microstructure of Fig. 2(e). Panel (b) shows the values of the equivalent
Cauchy continuum elastic coefficients corresponding to the long-wave limit of MM3 computed with the
procedure explained in [53].
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(a) (b)

(c) (d)

Figure 4: Dispersion curves for the metamaterial MM2 (a)-(b) and MM3 (c)-(d) corresponding to two
direction of propagation (a)-(c) θ = 0◦ and (b)-(d) θ = 45◦.

5 Metastructure’s refractive behaviour

In this section we will show how the relaxed micromorphic model can be suitably used to describe the
reflective properties of a metamaterial’s slab embedded in a homogeneous material (see Fig. 5). In what
follows, we will restrict ourselves to the microstructure defined in Fig. 2(a), since the results for the other
microstructures are analogous.

We will start by considering the simpler case in which the external homogeneous material is the same
as the one used for the metamaterial MM1 (see Fig. 2(a) for its elastic characteristics) and we will then
explore how the reflective metamaterial’s behaviour changes when changing the outer Cauchy material
properties. As we will see, this will allow us to explore the effect of the wavelength of the incident wave
on the performances of the relaxed micromorphic model. We will then study how the meta-structure’s
behaviour as well as the performances of the relaxed micromorphic model vary when increasing the
number of unit cells in the metamaterial’s slab.

q

x2

x1

+¥

-¥

+¥

-¥

k

h/2

h/2

Figure 5: Schematic representation of a wave with wavenumber k hitting at angle θ a microstructured
material slab of thickness h embedded between two isotropic Cauchy media.
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5.1 Dependence of the metastructure’s reflective behaviour on the elastic
properties of the outer Cauchy materials

We will show in this subsection that the refractive behaviour of the used metamaterial can be drastically
modified by simply changing the elastic properties of the outer Cauchy materials. More precisely, the
simple fact of changing the properties of the external material can actually “reverse” the metamaterial
slab’s refractive behaviour (from total reflection to total transmission and vice-versa). This drastic change
can be engineered for an extended range of frequencies and angles of incidence. In order to drive the
exploration of the more performing structures, we took advantage of the computational performance of
the relaxed micromorphic model that allowed us to test different structures in an otherwise unreachable
limited time. We show in Fig. 6 the acoustic dispersion curves of the internal metamaterial, as compared
to those of three different “outer” Cauchy materials.

(a) (b)

Figure 6: Acoustic curves of the metamaterial MM1 (continuous lines) as compared to the dispersion
curves of three different Cauchy materials (dotted lines). It is highlighted that two dispersion curves
coincide since cp2 = cp3 , while a third one is almost superimposed since its value cs2 is close to cp2 and
cp3 (see Tables 5-7-6 for numerical values of these speeds).

We can see from Fig. 6 that, in all considered cases, the external Cauchy material is relatively stiffer
than the internal metamaterial in the long-wave limit, especially with the reference to the shear modulus.
This can be inferred by recalling that the slope of the acoustic curves at the origin represents the speed
of propagation (cp and cs) of the corresponding waves (see Table 4) and that these speeds are directly
related to the metamaterial’s elastic properties in the long wave limit (see Table 1).

Macro wave speed of MM1 [m/s]

c0p =

√
λmacro + 2µmacro

ρmacro

c0s =

√
µ∗macro

ρmacro

c45
p =

√
λmacro + µmacro + µ∗macro

ρmacro

c45
s =

√
µmacro

ρmacro

927.28 [m/s] 18.04 [m/s] 662.36 [m/s] 649.20 [m/s]

Table 4: Wave speed expressions for the Cauchy material which is the long-wave limit of MM1. The
expressions for the pressure and shear waves are explicitly given for the two directions of propagation
θ = 0 and θ = π/4. Such speeds are the slopes of the tangents at the origin of the acoustic dispersion
curves in Fig. 3(a) and Fig. 3(b) and are computed based on the macro parameters given in the table in
Fig. 2(a).
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Wave speed of CM1 (Titanium) [m/s]

cp1 =

√
λTi + 2µTi

ρTi

cs1 =

√
µTi

ρTi

6259.18 3081.84

Table 5: Wave speed expressions for the
Cauchy material CM1.

Wave speed of CM2 [m/s]

cp2 =

√
λNeg + 2µNeg

ρTi

cs2 =

√
µNeg

ρTi

1735.98 1730

Table 6: Wave speed expressions for the
Cauchy material CM2.

Wave speed of CM3 [m/s]

cp3 =

√
λTi + 2µTi

13ρTi

cs3 =

√
µTi

13ρTi

1735.98 854.75

Table 7: Wave speed expressions for the
Cauchy material CM3.

The three outer Cauchy materials have been chosen starting from the same material as the one
constituting the metamaterial MM1 (titanium) and then lowering the propagation speeds cp and cs so
as to widen the range of frequencies for which the relaxed micromorphic model gives quantitatively good
results. 7 Indeed, with reference to Figs. 7-8-9, we can remark that the frequency interval for which the
relaxed micromorphic model is predictive of the microstructure’s reflective behaviour is larger for the
“softer” outer Cauchy material CM3 (Fig. 9). Indeed, the fact of considering a “softer” outer material
is equivalent to say that, at any given frequency, the corresponding wavelength of the travelling incident
wave is smaller than the one of the wave propagating in the “stiffer” material. It is known that, as far
as a homogenized model is concerned, its accuracy for the study of a problem of the type presented in
this paper, may depend on three different characteristic lengths, namely:

• the wavelength of the travelling incident wave;

• the thickness of the metamaterials’s slab;

• the characteristic size of the unit cell.

Having fixed the unit cell’s dimensions for applications in acoustic control, we do not discuss here the
influence of the third characteristic length. As for the influence of the thickness of the metamaterial’s
slab, we refer to Section 5.2.

Here, we limit ourselves to remark that, given the intrinsic simplifications associated to a continuum
model, a threshold value `t for the wavelength of the incident wave exists, below which the model starts
loosing its predictive capabilities. For the meta-structures of Fig. 7-8 this threshold value is reached
already for frequencies slightly higher than the metamaterial’s band-gap. When considering the “softer”
outer Cauchy material CM3, the wavelength of the incident wave remains lower than the threshold `t
for a larger frequency range that exceeds the band-gap (see Fig. 9). Being aware of the existence of such
threshold `t is essential for a correct use of enriched continuum models over the appropriate frequency
ranges.

7We lowered the propagation speeds cp and cs by directly changing the values of the the stiffness of the outer meta-
material or equivalently by increasing the density as shown in Tables 5-6-7 so as to meet these propagation speeds. This
means that different materials CM1, CM2, and CM3 can be found that have the same speeds as in Tables 5-6-7. All these
materials would give rise to the meta-structure’s behaviours presented in this section.
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(a) (b)

(c) (d)

Figure 7: Comparison of the microstructure’s (black line) and micromorphic (red line) reflection coeffi-
cient as a function of frequency for a 20 unit cells slab of MM1 and embedded in CM1. (a) “pressure”
normal incident wave with respect to the slab’s interface. (b) “pressure” 45◦ incident wave with respect
to the slab’s interface. (c) “shear” incident wave normal to the slab’s interface. (d) “shear” 45◦ incident
wave with respect to the slab’s interface.

(a) (b)

(c) (d)

Figure 8: Comparison of the microstructure’s (black line) and micromorphic (red line) reflection coeffi-
cient as a function of frequency for a 20 unit cells slab of MM1 and embedded in CM2. (a) “pressure”
normal incident wave with respect to the slab’s interface. (b) “pressure” 45◦ incident wave with respect
to the slab’s interface. (c) “shear” incident wave normal to the slab’s interface. (d) “shear” 45◦ incident
wave with respect to the slab’s interface.
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(a) (b)

(c) (d)

Figure 9: Comparison of the microstructure’s (black line) and micromorphic (red line) reflection coeffi-
cient as a function of frequency for a 20 unit cells slab of MM1 and embedded in CM3. (a) “pressure”
normal incident wave with respect to the slab’s interface. (b) “pressure” 45◦ incident wave with respect
to the slab’s interface. (c) “shear” incident wave normal to the slab’s interface. (d) “shear” 45◦ incident
wave with respect to the slab’s interface.

5.2 Dependence of the metamaterial’s reflective behaviour on the thickness
of the slab

In this subsection, we show to which extent the reflective behaviour of the metamaterial’s slab is influ-
enced by the thickness of the slab itself. At the same time, we are able to show that the performances
of the relaxed micromorphic model increases when increasing the thickness of the slab.

Indeed, by comparison of Fig. 10 with Fig. (7), it is possible to infer that the fact of increasing
the slab’s thickness mainly acts on the number and amplitude of oscillations that occur in the reflection
coefficient for frequencies lower and higher than the band-gap. Moreover, it can be seen from these figures
that the performances of the relaxed micromorphic model is improved when increasing the number of
unit cells constituting the metamaterial slab embedded in the Cauchy material CM1. Nevertheless, some
mismatch can still be observed for frequencies higher than the band-gap, also for relatively high number
of unit cells. This high-frequency mismatch is related to the fact that the wavelength of the incident
wave exceeds the threshold value `t as discussed before in Subsection 5.1.

To improve the higher-frequency micromorphic description of the structure in this case, a substantial
constitutive extension of the relaxed micromorphic model is needed so as to account for higher frequency
modes that presumably play an important role in this frequency range. Similar arguments are valid
for the slab embedded in the Cauchy material CM2, as shown by Fig. 11 and Fig. 8. As for the slab
embedded in the Cauchy material CM3, we already observed in Fig. 9 that its reflective behaviour is
better caught by the relaxed micromorphic model than in the previous case, even at higher frequency.

This means that, for this structure, the relaxed micromorphic model presented is sufficient for its
correct description in the considered frequency range and that its generalization can be avoided in this
case, also for relatively high frequencies. Indeed, in this last case, the fact of increasing the number of
unit cells does not significantly improve the description of the slab’s refractive behaviour (see Fig. 12).
The slight differences between the reflection patterns obtained via the relaxed micromorphic model and
those obtained via the full simulations (see Fig. 12) can hence be attributed uniquely to a constitutive
enhancement of the relaxed micromorphic model to include extra degrees of freedom and higher modes.
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(e) (f)

(g) (h)

(a) (b)

(c) (d)

Figure 10: Comparison of the microstructure’s (dashed black line) and micromorphic (red line) reflection
coefficient as a function of frequency for a 30 (a)-(b)-(c)-(d) and a 60 (e)-(f)-(g)-(h) unit cells slab of
MM1 and embedded in CM1. (a) and (e) “pressure” normal incident wave with respect to the slab’s
interface for a 25 and 30 cells respectively. (b) and (f) “pressure” 45◦ incident wave with respect to the
slab’s interface for a 25 and 30 cells respectively. (c) and (g) “shear” incident wave normal to the slab’s
interface for a 25 and 30 cells respectively. (d) and (h) “shear” 45◦ incident wave with respect to the
slab’s interface for a 25 and 30 cells respectively.
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(a) (b)

(c) (d)

Figure 11: Comparison of the microstructure’s (black line) and micromorphic (red line) reflection coef-
ficient as a function of frequency for a 30 unit cells slab of MM1 and embedded in CM2. (a) “pressure”
normal incident wave with respect to the slab’s interface. (b) “pressure” 45◦ incident wave with respect
to the slab’s interface. (c) “shear” incident wave normal to the slab’s interface. (d) “shear” 45◦ incident
wave with respect to the slab’s interface.

(a) (b)

(c) (d)

Figure 12: Comparison of the microstructure’s (black line) and micromorphic (red line) reflection coef-
ficient as a function of frequency for a 30 unit cells slab of MM1 and embedded in CM3. (a) and (e)
“pressure” normal incident wave with respect to the slab’s interface for a 25 and 30 cells respectively. (b)
and (f) “pressure” 45◦ incident wave with respect to the slab’s interface for a 25 and 30 cells respectively.
(c) and (g) “shear” incident wave normal to the slab’s interface for a 25 and 30 cells respectively. (d)
and (h) “shear” 45◦ incident wave with respect to the slab’s interface for a 25 and 30 cells respectively.
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5.3 Reflection coefficient of the tetragonal metamaterial slab as a function
of the angle of incidence θ and of the wave-frequency

Since the predictive capability of the relaxed micromorphic model here proposed has been assessed in
the previous sections, in this subsection, we show the behaviour of the reflection coefficient as a function
of the frequency of the incident wave and the angle of incidence for the structure of Fig. 2(a) with outer
Cauchy material CM1.

We start noticing that for the case of an incident “pressure” wave the structure’s refractive behaviour
is relatively unaffected by the value of the angle of incidence (see Fig. 13(a) and (c)).

In particular, when considering fewer unit cells in the metamaterial slab (Fig. 13(a)), we can observe
almost total reflection occurring in a wide frequency range (extending outside the band-gap) and for all
angles of incidence. Few frequencies can be identified around which total transmission occurs. When
increasing the number of cells in the metamaterial slab, the frequencies around which total transmis-
sion occurs increase in number. We can thus remark that the simple fact of considering a finite-size
metamaterial with a different number of unit cells modifies the structure’s behaviour in a significant way.

(a) (b)

(c) (d)

Figure 13: Simulation of the reflection coefficient with the obtained relaxed micromorphic model for a 20
(a)-(b) and a 100 (c)-(d) unit cells thick slab made up of MM1 material and embedded in CM1 Cauchy
as function of the angle of incidence and of the wave-frequency - (a) and (c): incident pressure wave; (b)
and (d) incident shear wave.

Things are even more interesting when considering “shear” incident waves, since the structure’s
behaviour starts being significantly affected by the angle of incidence of the travelling wave.

In particular, a critical angle exists (see Fig. 13(b) and (d)) such that all waves hitting the interface
with an angle included between normal incidence and this critical value are almost completely reflected
for any frequency (even outside the band-gap). For angles beyond the critical value the structure’s
behaviour becomes similar to that observed for incident “pressure” waves.
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We analyse the same meta-structure of Fig. 2(a) by now considering the material CM2 as “outer”
Cauchy material. By direct comparison of Figs. 14 with Figs. 13, it can be easily inferred that the
meta-structure’s behaviour is somehow reversed with respect to the previous structure.

First of all, we can identify a “critical angle region” for incident “pressure” waves instead than for
“shear” ones. Moreover, we can remark that an almost total transmission occurs for angles smaller than
this critical value instead than a total reflection in the previous case.

For “shear” incident waves the behaviour is still different because different zones are identified de-
pending on the value of the incident angle. In particular, two critical angles exist in this case such that
total transmission occurs between these two critical values, while total reflection occurs otherwise.

In summary, we can see how the fact of simply changing the properties of the “outer” Cauchy
material reverses the meta-structure’s behaviour in specific frequency and angle-of-incidence ranges,
both for “pressure” and “shear” incident waves.

(a) (b)

(c) (d)

Figure 14: Simulation of the reflection coefficient with the obtained relaxed micromorphic model for a 20
(a)-(b) and a 100 (c)-(d) unit cells thick slab made up of MM1 material and embedded in CM2 Cauchy
as function of the angle of incidence and of the wave-frequency - (a) and (c): incident pressure wave; (b)
and (d) incident shear wave.

6 Conclusions

In this paper we use the relaxed micromorphic model to characterize three different 2D tetragonal
metamaterials that can be used for applications in acoustic control. The reduced structure of the relaxed
micromorphic model allows us to efficiently explore different meta-structural configurations in which a
metamaterial’s slab is embedded in a homogeneous Cauchy material. As a result, we are able to show
that the metamaterial’s refractive behaviour can be drastically changed by simply acting on the stiffness
of the homogeneous material. In this way, the same structure can be adapted so as to act as a total
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screen or a total absorber in specific frequency and angle-of-incidence ranges. The results presented so
far, clearly show that the study of the mechanical behaviour of metamaterials cannot be disjoined by
the study of their interactions with other materials, if one wants to enable the realistic conception of
new engineering meta-structures. By presenting our results, we also outline that, as any model, also
enriched models have limitations that have to be identified ”a priori” to avoid their inappropriate use.
In particular, we underline that the model’s performances may depend on three characteristic lengths
that are related to i) the unit cell’s size, ii) the metamaterial’s slab thickness and iii) the wavelength
of the travelling wave. Depending on the relative proportions of these three characteristic lengths the
relaxed micromorphic model will be more or less efficient in the description of the meta-structure’s
behaviour over an extended frequency range. Indeed, while the relaxed micromorphic model will always
be predictive of this behaviour in the long wave limit, more or less marked differences may emerge
for higher frequencies and lower wavelengths. This calls for the formulation of a new enriched model,
including extra degrees of freedom and suitable dynamic internal lengths, so as to extend its efficiency
to higher-frequency/smaller-wavelength regions for a wide panel of external excitations.
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