Damien Pellier
email: damien.pellier@imag.fr

Humbert Fiorino
email: humbert.fiorino@imag.fr

Totally and Partially Ordered Hierarchical Planners in PDDL4J Library

In this paper, we outline the implementation of the TFD (Totally Ordered Fast Downward) and the PFD (Partially ordered Fast Downward) hierarchical planners that participated in the first HTN IPC competition in 2020. These two planners are based on forwardchaining task decomposition coupled with a compact grounding of actions, methods, tasks and HTN problems.

Introduction

The TFD (Totally Ordered Fast Downward) and PFD (Partial ordered Fast Downward) hierarchical planners are based on forward-chaining task decomposition used by the SHOP2 planner [START_REF] Nau | SHOP2: an HTN planning system[END_REF]) coupled with a compact grounding of actions, methods, tasks and HTN problems. Both planners accept as input HDDL (Hierarchical Domain Description Language) proposed by [START_REF] Höller | HDDL: an extension to PDDL for expressing hierarchical planning problems[END_REF] and are implemented on top of the PDDL4J library [START_REF] Pellier | PDDL4J: a planning domain description library for java[END_REF]. In this short paper we present first the compact representation used by TFD and PFD as well as the grounding procedure implemented. Finally, we conclude with a brief presentation of the search strategy implemented in both planners.

Grounding technique

Most modern planners work with grounded representations of the planning problem. However, planning domains are commonly defined with a lifted description language such as PDDL [START_REF] Ghallab | PDDL: The Planning Domain Definition Language[END_REF] or HDDL [START_REF] Höller | HDDL: an extension to PDDL for expressing hierarchical planning problems[END_REF]). Thus, planning systems have to generate a grounded representation of the lifted domain in a preprocessing step, the objective of which is to generate the most compact grounded representation possible without removing any action, method or fluent needed for a solution plan. The more compact the grounded representation is, the more efficient is the search for a solution plan as reducing the size of the search space speeds up search and heuristic value computation. In practice, computing a grounded representation from a lifted representation is quite straightforward. All possible Copyright c 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. instantiations of ground predicates, primitive actions, abstract tasks and methods must be computed, and appropriately replaced by their ground versions in the lifted representation.

In the context of classical (non hierarchical) planning, the planners FF [START_REF] Hoffmann | The FF planning system: Fast plan generation through heuristic search[END_REF] and FastDownward (Helmert 2006) have implemented techniques for transforming lifted to ground planning representation that are still used in many planners today. Regarding hierarchical planning, [START_REF] Ramoul | Grounding of HTN planning domain[END_REF]) inspired from [START_REF] Koehler | Handling of inertia in a planning system[END_REF] have been the first to propose an efficient grounding preprocessing, and it was successfully applied to the planners proposed by [START_REF] Schreiber | Tree-rex: SAT-based tree exploration for efficient and high-quality HTN planning[END_REF]. Recently, [START_REF] Behnke | On succinct groundings of HTN planning problems[END_REF]) has proposed novel techniques.

In the TFD and PFD planners, the grounding combines the approches proposed by [START_REF] Ramoul | Grounding of HTN planning domain[END_REF]) and [START_REF] Behnke | On succinct groundings of HTN planning problems[END_REF]

Search procedures

The non-deterministic TFD procedure for solving a HTN planning problem is given in Algorithm 1. This procedure is based directly on the recursive definition of a solution plan for HTN planning problems.

The TFD procedure takes as input a problem P = (s 0 , T, A, M) where s 0 is the initial state, T = t 1 , t 2 , ..., t k is a list of tasks, A the set of actions, and M the set of methods, all in their ground representation. First, the procedure tests if the list of tasks T is empty (line 2). In this case, no task has to be executed, thus the empty plan is returned. Then the procedure gets the first task t 1 of the list T . Two cases must be considered depending on the type of t 1 : Case 1. If t 1 is primitive (line 3) then the procedure computes the set of all the ground actions that accomplishes t 1 and that are applicable in s 0 (line 4). If there is no action (line 5), the procedure fails because no action accomplishes the goal task t 1 . Then the procedure nondeterministically chooses an action that accomplishes the task (line 6), and calls itself recursively on the planning problem P = (γ(s 0 , a 1), T -{t 1 }, A, M) (line 7). Finally, if the recursive call to the procedure fails to find a plan π, it returns failure (line 8); otherwise it returns the plan that is the concatenation of a and π (line 9). Case 2. If t 1 is non-primitive (line 10) then the procedure computes the set of ground decompositions that accomplish t 1 and that are applicable in s 0 (line 11). If there is no decomposition to accomplish t 1 (line 12) then the procedure returns failure. Otherwise the procedure nondeterministically chooses a decomposition d that accomplishes the task t 1 (line 13), and recursively returns the solution plan for the problem P = (s 0 , subtasks(d) ⊕ t 2 , . . . , t k , A, M) (line 14). Practically non-deterministic choices are made by systematically choosing the task networks with the least amount of non-decomposed tasks. In the case where several networks have the same number of tasks remaining to be decomposed, the task network containing the least number of actions is chosen.

The search procedure implemented in PFD is almost similar. The main difference is no longer to choose the first t 1 task in the task network but to choose the first task that does not have any predecessor task in the task network. In addition, each time case 2 applies, it is necessary to check the consistency of the ordering constraints of the task network in order to generate a-cyclic task networks. This check is performed before line 14 by calculating the transitive closure of the ordering constraints. The computation of the transitive closure is based on Warshall algorithm. The complexity is O(n) where n is the number of tasks of the task network.

A ← the set of relevant actions for t 1 and applicable in s 0

 choose an action a ∈ RA 7 π ← T F D(γ(s 0 , a), t 2 , . . . , t k , A, M) 8 if π = failure then return failure 9 else return a ⊕ π 10 else if t 1 is a non-primitive task then 11 M ← the set of relvant methods for t 1 and applicable in s 0 12 if M = ∅ then return failure 13 non-deterministically choose a decomposition m ∈ M