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We study rupture fronts propagating along the interface separating two bodies at the onset of frictional
motion via high-temporal-resolution measurements of the real contact area and strain fields. The strain
measurements provide the energy flux and dissipation at the rupture tips. We show that the classical
equation of motion for brittle shear cracks, derived by balancing these quantities, well describes the
velocity evolution of frictional ruptures. Our results demonstrate the extensive applicability of the dynamic
brittle fracture theory to friction.
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A system of two bodies in frictional contact, subject to
shear loading, is prone to lose stability and generate fric-
tional slip. The onset of this motion was shown to be
mediated by dynamically propagating fronts that rupture the
discrete contacts forming the frictional interface [1] and
separate the sticking and sliding regions [2–4]. Awide range
of rupture front velocities Cf have been observed. These
span from slow ruptures [1,3,5,6] propagating at a small
fraction of the Rayleigh wave speed, CR, to ruptures that
asymptotically approach CR [7]. Rupture fronts may also
surpass the shear wave speed,CS, and reach the longitudinal
speed of sound, CL [4,5,8,9].
Experiments [5,9] and simulations [10,11] have revealed

that rupture fronts increase their speed with increased shear
to normal stress ratios. Slow ruptures have received special
attention due to the recent observation of slow earthquakes
[12], and nontrivial constitutive laws of friction have been
invoked to explain their existence and stability [11,13–15].
Further experiments have shown that the elastic fields in

the tip vicinity of a frictional rupture are very well described
by the universal singular solutions obtained by linear elastic
fracture mechanics (LEFM), originally developed to
describe brittle shear cracks. This was shown for ruptures
propagating at Cf < CR along dry [4,7,16] as well as
boundary-lubricated interfaces [17]. In the LEFM frame-
work, crack propagation velocities are determined by the
balance between the energy flow to the crack tip and the
dissipated energy per unit area, Γ [18]. This “energy
balance” was successfully employed to predict the arrest
of frictional rupture fronts [19,20].
In this Letter, we experimentally investigate the dynamic

propagation of frictional ruptures below CR. The measure-
ments will show that the velocity and the acceleration of
these ruptures are described by the classical LEFM-based
equation of motion for shear cracks in a brittle material.
These experimental observations demonstrate the intimate
relation between friction and fracture.
The experiments are conducted by using two poly(meth-

ylmethacrylate) (PMMA) plates (ρ ≈ 1170 kg=m3) having

the same thickness. Rayleigh, shear, and longitudinal wave
speeds are, respectively, CR ≈ 1237 m=s, CS ≈ 1345 m=s,
and CL ≈ 2333 m=s (plane stress) [16]. The contacting
surfaces were cleaned by isopropyl alcohol and dried for
about 2 h (dry interfaces from here on). We also conduct
experiments in the boundary-lubrication regime where
contacting surfaces were coated by a thin layer of lubricant
(silicon oil with kinematic viscosity ν ∼ 100 mm2=s). The
two plates are carefully aligned and pressed together by an
external normal force, FN ≈ 5500N (5 MPa of nominal
pressure) [see Fig. 1(a)]. Afterwards, shear forces FS are
applied quasistatically until the desired values of elastic
energies are imposed. Slip events are subsequently
nucleated on demand by inducing a slight out of plane
shear (mode III) perturbation at x ≈ 0. The imposed quasi-
static force perturbations in the z direction [green arrows in
Fig. 1(a)] were generally 2–3 orders of magnitude belowFS.
During an event, a high-speed camera (580 000 frames=s)
was used to visualize the dynamic changes in the real area
of contact, Aðx; tÞ. Simultaneously, the three components
of the 2D strain tensor, εijðx; tÞ, are continuously measured
∼3.5 mm above the frictional interface, at multiple locati-
ons along the plate each 1 μs. εijðx; tÞ measurements at
discrete locations are converted to spatial profiles by taking
advantage of the high temporal resolution, εijðx; tÞ ¼
εijðx −

R
CfdtÞ [7]. Stresses σij are calculated from the

measured εij by using the viscoelastic constitutive law of
PMMA [19].
Figure 1(b) presents a typical measurement of Aðx; tÞ. As

the rupture propagates, the real area of contact is reduced,
with the position of the boundary between regions of intact
and reduced area of contact defining the rupture tip position
xtip. The rupture nucleates at x ≈ 0 and accelerates in the
positive x direction, with Cf asymptotically approaching
CR. The related shear stress σxy for xtip ¼ 105 mm is
plotted in Fig. 1(c) (green line). σ0xy denotes the initially
imposed shear. Residual stresses σrxy are measured at times
corresponding to x − xtip ¼ −40 mm, well beyond any
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dynamic stress variation associated with the rupture tip.
σrxy, therefore, reflects the frictional resistance during
sliding due to the nonzero residual value of Aðx; tÞ
after the rupture passage [Fig. 1(b)]. The difference
Δσxy ¼ σ0xy − σrxy, sometimes referred as the dynamic stress
drop, plays a crucial role in the rupture dynamics, as it
provides a measure for the amount of released elastic
energy. Figure 1(c) (blue line) shows an additional example
of a slow rupture (Cf ≈ 0.1CR), having a smaller Δσxy.
Note that σrxy slightly decreases with an increased rupture
velocity.
Three distinct profiles ofΔσxyðlÞ and CfðlÞ are plotted in

Figs. 2(a) and 2(b), respectively. l denotes the rupture
length (as ruptures are nucleated at x ≈ 0, l ¼ xtip and

Cf ¼ _l). Lower values of Δσxy are associated with slower
ruptures, while the Cf accelerates towards CR more rapidly
when Δσxy is higher. Different ΔσxyðlÞ profiles result from
our controlled rupture initiation procedure; the system was
first sheared to an initial stress level σ0xyðxÞ, and rupture
nucleation was precipitated by applying a small out of

plane (mode III) shear stress perturbation [Fig. 1(a)]. By
controlling the nucleation, we were able to systematically
change the initial stress state of the interface and generate
large variations of rupture velocity profiles. This is in contrast
to Refs. [5,7], where large Cf variations resulted from
uncontrolled spontaneous rupture nucleation. Our results,
however, are independent of the nucleation procedure.
How does LEFM predict CfðlÞ? LEFM predicts that the

stress fields at the tip of a propagating shear crack (mode II)
are described by the universal singular form

σijðθ; rÞ ¼
KIIffiffiffiffiffiffiffiffi
2πr

p ΣII
ijðθ; CfÞ; ð1Þ

where ΣII
ijðθ; CfÞ is a known universal function and KII is

known as the stress intensity factor. Recent work [7,16,17]
has shown that precisely this singular form describes the
fields at the tip of frictional ruptures. LEFM relates KII to
the energy flow to the crack tip per unit area (known as the
energy release rate), GII ¼ K2

IIfIIðCfÞ=E, where fIIðCfÞ is
a known universal function and E is the Young’s modulus
[18]. For a crack to propagate energy balance, Γ ¼ GII
should hold.
For a shear crack subjected to time-independent loading

in an infinite medium, GII ¼ GS
IIðl;ΔσxyÞgIIðCfÞ, where

all information about the loading is incorporated in
GS

IIðl;ΔσxyÞ, the static energy release rate. GS
II is a weighted

FIG. 2. Determining rupture velocity scaling. Colors represent
the analysis of three rupture events that include the examples in
Fig. 1(c). l: Rupture length. (a) Solid dots are measured Δσxy.
Δσxy near x ¼ 0 are extrapolated to Δσxy ¼ 0 at x ¼ 0 [21].
(b) Measured rupture velocity profiles CfðlÞ. (c) The profiles of
Δσxy yield static energy release rates GS

IIðl;ΔσxyÞ (see Ref. [21]
for details). Dashed line: The measured fracture energy profile Γ.
Slow rupture fronts (blue line) are associated with GS

II ≈ Γ, while
ruptures rapidly accelerate towards CR (green line) onceGS

II ≫ Γ.
(d) CfðlÞ profiles collapse to a single functional form CfðGS

II=ΓÞ,
given by (black line) the classical equation of motion for shear
cracks, Eq. (2).

(a)

(b) (c)

FIG. 1. The experimental system and definition of the dynamic
stress drop. (a) Two identical PMMAblocks are used in a stick slip
friction experiment. The elastic medium is considered to be 2D
with a quasi-1D frictional interface, as the 5.5 mm width of the
blocks is smaller than any other system dimensions. Full 2D
tensorial strains are measured every 1 μs at 16–19 locations by
miniature Rosette strain gauges mounted ∼3.5 mm above the
interface (blue squares). Slip events are nucleated by applying
minute out of plane perturbations at x ≈ 0 (green arrows). (b) The
evolution of the real area of contact, Aðx; tÞ, for a typical rupture
front propagating along dry interface (see the text). Nucleating at
x ≈ 0, the front rapidly accelerates towards the Rayleigh wave
speed, CR ≈ 1237 m=s, leaving in its wake a reduced area of
contact. (c) Shear stresses σxy plotted relative to the rupture tip
position xtip ¼ 105 mm. Green line: Rupture event in (b), propa-
gating with the local rupture velocity Cf ≈ 0.95CR. Blue line: A
slow rupture propagating at Cf ≈ 0.1CR. σ0xy is the initial stress
level, prior to the rupture arrival, while σrxy denotes the residual
stress measured at times corresponding to x − xtip ¼ −40 mm.
Their differenceΔσxy ¼ σ0xy − σrx defines the dynamic stress drop.
Smaller Δσxy accompany slower ruptures.
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integral functional of ΔσxyðxÞ which can be explicitly
calculated, if the ΔσxyðxÞ are known [21]. For example,
for homogeneous loading, where ΔσxyðxÞ is independent
of x, GS

II is an increasing function of the crack length:
GS

II ∝ ðΔσxyÞ2l. The dynamic correction to the energy flux
is given by gIIðCfÞ, a universal monotonic function that is
unity at the limit Cf → 0 and zero at Cf ¼ CR. Under these
conditions, the equation for crack motion for arbitrary
stress configurations is implicitly given by

Γ ¼ GII ¼ GS
IIðl;ΔσxyÞgIIðCfÞ: ð2Þ

The finite value of Γ together with gIIðCfÞ → 0 asCf → CR

imply that the limiting crack velocity CR can be reached
asymptotically only when GS

IIðl;ΔσxyÞ → ∞ [18]. In par-
ticular, even in homogeneous loading, ruptures will accel-
erate asymptotically to CR with an increasing length.
In our experiments, as we nucleate ruptures at x ≈ 0, the

medium is not infinite and the effect of plate edges should
be taken into account. The exact dynamic solution for this
geometry is a formidable task. We find, via finite element
simulations (as described in Ref. [16]), that dynamic crack
propagation in our geometry can still be well approximated
by Eq. (2) when the value of GS

II for an infinite geometry is
replaced by GS

IIðl;ΔσxyÞ corresponding to an edge crack
(Fig. S1 [21]).
To validate the equation of motion [Eq. (2)], we need to

independently measure both Γ and GS
II. Γ is obtained as

follows. The dynamically measured stresses are fitted with
Eq. (1), where KII is the sole free parameter. The obtained
values of KII are then related to Γ [7,16] (see Ref. [21] for
details). Γ is roughly independent of Cf, and inhomogene-
ities of the system are reflected in the ∼40% variation of Γ
along the frictional interface (Fig. S3 [21]). GS

IIðl;ΔσxyÞ is
calculated explicitly by using the measured Δσxy [Fig. 2(a)],
when Δσxy values for small l are extrapolated [21]. The
corresponding profiles of GS

IIðl;ΔσxyÞ and Γ are shown in
Fig. 2(c). We note that, while Γ was obtained by the
measurement of the dynamic singular fields (near fields)
at the rupture tip, GS

II was calculated using solely the stress
drops Δσxy ahead of the rupture tip (far fields).
We now compare our velocity measurements of frictional

ruptures, shown in Fig. 2(b), with the dynamic predictions
embodied in gIIðCfÞ. Figures 2(b) and 2(c) demonstrate that
slow ruptures (blue line) propagate when the elastic energy
released by a unit advance of the crack is nearly balanced
by the dissipated energy, GS

II ≈ Γ. Loading conditions that
result in excess elastic energy, GS

II ≫ Γ, generate a rapid
acceleration to CR (green line).
Figure 2(d) shows that CfðlÞ, when plotted with respect

to GS
IIðl;ΔσxyÞ=Γ, collapse to the single functional form

predicted by Eq. (2). The applicability of the shear crack
equation of motion to frictional ruptures is further

demonstrated in Fig. 3(a), where we have supplemented
the three typical events discussed in Fig. 2 with numerous
other rupture events. These all had the same value of Γ but
were generated under numerous different applied stress
profiles.
We demonstrate the generality of our results by further

examining ruptures in the boundary-lubrication regime,
which were recently shown [17] to be described by the
same singular form [Eq. (1)] as for dry interfaces but with
significantly larger Γ. Figure 3(b) shows that ruptures
propagating along lubricated interfaces also obey Eq. (2),
in this case for a significantly larger Γ. Measurements of Γ
and Δσxy profiles are provided in Figs. S3 and S4 [21].
Finally, we compare our experiments with the predic-

tions of Eq. (2) at the limit of large GS
II=Γ, where Cf

asymptotically approaches CR and variations of Cf cannot
be experimentally distinguished. To this end, we make use
of the evolution of the material velocity amplitudes, _uxðlÞ
(ux is the x component of the displacement field), measured
at y ¼ 3.5 mm [7]. Figure 4 (left) presents _uxðlÞ measure-
ments during the rupture events shown in Fig. 3. Near the
crack tip, _ux is dominated by the universal singular form of
the stress and strain fields. We compare measurements with
different values of Γ by normalizing _ux amplitudes by

ffiffiffi
Γ

p
,

following the scaling of the singular fields [17]. Figure 4
(right) demonstrates that all _uxðlÞ=

ffiffiffi
Γ

p
collapse perfectly to

the single curve, predicted by LEFM, as a function of
GS

IIðl;ΔσxyÞ=Γ. At the limit of large GS
II=Γ, while Cf

asymptotically approaches CR (Fig. 3), _ux does not reach
a finite limit but progressively increases. This unlimited
growth of _ux is a direct consequence of the strain fields’

FIG. 3. Generality of the equation of motion. CfðlÞ profiles, in
experiments with dry (a) and boundary-lubricated interfaces (b),
having significantly different values of Γ and spanning the whole
sub-Rayleigh regime. All rupture events follow the LEFM
prediction (black curves) given by energy balance [Eq. (2)] for
brittle cracks (right).
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divergence as Cf → CR (see Fig. S3 [21] and Ref. [7]).
This extreme sensitivity of _ux on Cf enables us to provide a
high-resolution quantitative comparison with the fracture
mechanics theory [28] in the vicinity of CR.
Our measurements have shown that the evolution of

CfðlÞ is governed by energy balance, as determined by the
LEFM singular fields [Eq. (2)]. Whereas a specific material
(with both dry and boundary-lubricated interfaces) was
considered in this study, the results are general so long as
several necessary conditions are satisfied. First, a region in
the rupture tip’s vicinity should exist where σij ∼ r−1=2.
Typically, this condition is satisfied when the rupture length
is large with respect to the process zone, the region where
the stress singularity is regularized (< 3 mm in the current
experiments; see Fig. S2 [21]). Furthermore, LEFM is
applicable when, as is the case in our experiments, there
is no significant variation of σrxy after the passage of the
rupture tip. In this case, σrxy can be subtracted, due to
linearity of the elastic equations, and frictional ruptures can
be mapped to simple cracks with traction-free faces.
Some comments are in order. As Fig. 1(c) shows, there

are slight variations of σrxy with Cf (and therefore also with
the slip velocity). These were taken into account in
calculating ΔσxyðlÞ. Predicting CfðlÞ based on the knowl-
edge of Γ and σ0xyðlÞ alone, without the need for direct
measurements of σrxy, would be possible if a constitutive
law for σrxy were formulated. Additionally, while in our
experiments Γ is roughly independent of Cf, the fracture
theory can be applied to more complicated constitutive
friction laws if these could be mapped to ΓðCfÞ [28,29].
Finally, Eq. (2) can be used to predict CfðlÞ only if
GS

IIðl;ΔσxyÞ can be explicitly calculated for the considered
geometry. Our results are generic, at all times prior to the
arrival of waves reflected from the sample’s horizontal
boundaries to the rupture tip [18]. In the case that we
consider, the infinite medium approximation (with only the

boundaries at x ¼ 0 taken into account) is valid. When the
rupture strongly interacts with the boundaries, e.g., in a
strip geometry, a different approach should be adopted [30],
and, while energy balance should still be valid, a different
equation of motion would be observed.
We have shown that the brittle fracture theory is in

excellent quantitative agreement with our measurements
for a large range of rupture velocities 0.04CR < Cf < CR

(ruptures that surpass CS [5,8] are beyond the scope of this
work). Experimental observations [1,3,5–7] of the slow
rupture regime, Cf ≪ CR, have drawn much attention, and
their driving mechanism is still under debate. It has been
suggested that slow ruptures emerge as a result of a
crossover from a velocity weakening of friction at slow
slip to velocity strengthening at higher slip rates [13–15].
Alternatively, slow ruptures have been observed in sto-
chastic multiscale simulations [11]. While nontrivial fric-
tion laws might be a key mechanism for stabilizing slow
ruptures, our current measurements suggest that slow
ruptures may also emerge from any nontrivial stress
distribution that would retain the “static” energy balance
defined by GS

II ≈ Γ, along the propagation path. Such a
scenario was also suggested in Ref. [31]. One could argue
that Fig. 3(b) suggests that ruptures may also propagate
even for GS

II < Γ. We believe that our measurement
uncertainties preclude this conclusion; more precise mea-
surements would be required.
Let us now consider rupture initiation. In the framework

of brittle fracture, cracks lose their stability when they reach
a critical length lc (the Griffith length), where GS

IIðlcÞ ¼ Γ.
While rupture propagation (Fig. 3) and arrest [19,20] are
dictated by the brittle fracture theory, the question of
rupture nucleation is more subtle. For the Griffith criterion
to apply, a singular crack should first exist. The sponta-
neous formation of a seed crack along the frictional
interface which is needed for the nucleation process is
an issue under debate [14,32–34]. In this work, the rupture
nucleation was controlled by inducing a very slight
perturbation of the out of plane stresses (mode III) at
x ≈ 0. It is conceivable that such an extreme sensitivity to
local out of plane perturbations could be relevant to natural
fault geometries with qualitatively similar aspect ratios
(fault length/fault thickness).
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