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Thermal convection is numerically computed in three-dimensional (3D) fluid saturated isotropically fractured
porous media. Fractures are randomly inserted as two-dimensional (2D) convex polygons. Flow is governed by
Darcy’s 2D and 3D laws in the fractures and in the porous medium, respectively; exchanges take place between
these two structures. Results for unfractured porous media are in agreement with known theoretical predictions.
The influence of parameters such as the fracture aperture (or fracture transmissivity) and the fracture density on
the heat released by the whole system is studied for Rayleigh numbers up to 150 in cubic boxes with closed-top
conditions. Then, fractured media are compared to homogeneous porous media with the same macroscopic
properties. Three major results could be derived from this study. The behavior of the system, in terms of heat
release, is determined as a function of fracture density and fracture transmissivity. First, the increase in the output
flux with fracture density is linear over the range of fracture density tested. Second, the increase in output flux as
a function of fracture transmissivity shows the importance of percolation. Third, results show that the effective
approach is not always valid, and that the mismatch between the full calculations and the effective medium
approach depends on the fracture density in a crucial way.
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I. INTRODUCTION

For many years, the simulation of fluid flow and heat transfer
in natural media has attracted the attention of geoscientists
and mathematicians. Moreover, the increasing threat of a
worldwide energy crisis, which had begun in the 1970s, has
stimulated research in renewable energies, such as geothermal
energy. The process of thermal convection in a porous medium
is the driving mechanism in many geophysical situations where
heat is transferred to the earth’s surface from an energy source
deep below ground.

The first models assumed that the solid matrix is ho-
mogeneous with constant properties, nondeformable, and
chemically inert with respect to the fluid. The density of
the Newtonian fluid varies only with temperature; no heat
sources or sinks exist in the fluid, and thermal radiation and
viscous dissipation are negligible. Under these conditions, the
velocity and temperature distribution are described by the mass
conservation equation, the macroscopic Darcy law, and the heat
transfer equation as detailed in Sec. II (see also Ref. [1]).

Homogeneous isotropic porous media have been theoreti-
cally and experimentally addressed since the 1940s. The first
studied configurations were the closed box and the horizontally
infinite slab of porous medium, uniformly heated from below.
The onset of a convective movement in such systems was
studied analytically in Refs. [2,3]. If the Rayleigh number is
below a critical value Rac, the heat transfer is purely conductive
and it is characterized by the Nusselt number, Nu = 1. Hence,

*Corresponding author: cecile.mezon@upmc.fr

Rac represents the minimal value for which vertical fluid
motion is observed in the porous medium. When Ra is larger
than Rac, convection appears. The theoretical values for the
onset of convection are Rac = 4π2 in closed-top conditions
and 27.10 in open-top conditions [3,4]. These theoretical
analyses were followed by experimental studies (see, e.g.,
Refs. [5–7]); the first numerical solutions did not appear before
the mid-1960s [4,8].

The equations were solved by a finite difference scheme
[9,10] for Ra ranging from Rac to 350. The Galerkin technique
was used to treat the steady-state two-dimensional problem
for Rayleigh numbers as large as 10Rac in Ref. [11]. It has
been shown that when Ra increases, the system follows a
series of transitions between two-dimensional (2D) convec-
tion patterns, from steady structures, to periodic patterns, to
quasiperiodic ones, and, finally, to chaotic behavior. If Ra is
small, there are always stable convective patterns, and when
Ra > 380, stable unicellular regimes do not exist anymore
[11]. But steady-state pluricellular convection can be stable for
Ra > 380. The convection regime is stabilized by a reduction
of the lateral extension of the convection cells [10]. The
Galerkin approach is applied in Ref. [12] in order to study
the stability of multicellular convection patterns in square
domains; they found that one-cell regimes are stable up to
Ra ≈ 300−320, that two-cell solutions become unstable for
Ra ≈ 650−700, and that three-cell flows lose their stability
when Ra > 800−1000. The evolution of the Nusselt number
as a function of the Rayleigh number and of the aspect ratio
of the convection cell in a horizontal porous slab is detailed in
Ref. [10].
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However, heterogeneities are always present in natural
media. As a matter of fact, most geothermal reservoirs are
fractured, and the fluid, even if stored in the porous matrix,
tends to flow through the easiest paths, i.e., the fractures [13].
The problem of the representation of fractured reservoirs has
received considerable attention.

The first approach is the double-porosity model introduced
in Refs. [14,15], where two media overlap with exchanges
between them. This simplified approach has been followed
by many authors (e.g., [16–18]).

Another technique to include fractures in the medium is to
consider areas of higher permeability than the embedding ho-
mogeneous media. Many of these contributions were reviewed
in Ref. [19]. Among the late contributions using this technique,
one can cite Refs. [20–24]; some of these codes are still 2D and
use commercial software to discretize and solve the equations.
They are specific since they model a given site and study its
properties.

More recently, three-dimensional (3D) descriptions of
porous media containing discrete planar fractures were pro-
posed. Two subhorizontal geological layers including two sub-
vertical faults that cross both layers were simulated in Ref. [25];
the flow and the heat transfer were calculated for a horizontal
temperature gradient, considering four different permeabilities
(two for the faults and two for the geological layers). The model
of Ref. [26] was generated using the commercial software
PETREL (Schlumberger) and represents the Molasse Basin,
southern Bavaria, Germany. Numerical simulations of three-
dimensional media were undertaken in Ref. [27] to quantify
the effects of transmissivity of a single fault embedded in a
permeable matrix, in terms of fluid flow and heat transfer.
To carry out numerical simulations of coupled fluid and heat
transfer, the 3D mesh is imported in OpenGeoSys, which is a
finite-element-based numerical simulator for coupled thermal,
hydraulic, mechanical, and chemical (THMC) processes for
both fractured and nonfractured porous media [28]. They
showed that the permeability contrast between the fault and
the matrix should be strong (>102) for the faults to influence
the pressure and temperature fields.

The present work is based on a three-dimensional discrete
description of the fracture network and of the embedding
matrix (cf. Ref. [29] for an overview); therefore, it belongs
to the last class of models just mentioned. Isotropic fracture
networks are modeled, and the matrix is permeable. Another
important difference from the previous studies is that the
resulting code is not applied to a particular field. The first
objective of this paper is to provide quantitative information
about the influence of the network parameters such as the
dimensionless fracture transmissivity and the dimensionless
fracture density on the heat released by the whole system. The
second objective is to assess the validity of a homogeneous
approach.

In Sec. II, the main definitions and the governing equations
are provided. In Sec. III, the code is validated by benchmarks
made for homogeneous porous media. In Sec. IV, the influence
of the network parameters is studied; the effective permeability
is calculated for each network, as previously proposed in
Ref. [30]; and the results in fractured media and porous media
with the same macroscopic properties are compared. The
validity of the homogeneous approach is discussed in Sec. V.

FIG. 1. An isotropic 3D fracture network composed of hexagonal
fractures. The colors are only used to distinguish the various hexagons.

Finally, some concluding remarks end this paper and some
extensions to this work are proposed.

II. GENERAL

A. Theoretical framework

In the present work, convective heat transfer in fractured
porous media is addressed by direct numerical simulations of
discrete fracture models, as illustrated in Fig. 1. The porous
matrix is regarded as a continuous material of permeability
Km. Fractures are schematized as polygons inscribed in disks
of radius R; their aperture is constant and equal to b, and the
flow in these fractures is described by a two-dimensional form
of Darcy’s law. This section provides the governing equations.

1. Flow equations

The following equations are written in a quasisteady ap-
proximation, whereby it is assumed that the (very slow)
variations of the medium properties and those of the fluid can
be neglected. Since for liquids and gases the thermal expansion
coefficient ranges between 10−3 and 10−4 K−1, and thus is very
small, the Boussinesq approximation is usually introduced (see
Ref. [10], for example), which states that the variations in the
fluid density ρF are negligible except in the body force term;
it is valid when density changes remain small in comparison
to the reference density ρF0. No phase change occurs and the
medium is fully saturated by the fluid.

Flow is governed by the continuity equation supplemented
by Darcy’s law,

∇ · v̄ = 0, (1a)

v̄ = −Km

μ
(∇P − ρF g), (1b)
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where P is the pressure, v̄ the mean seepage velocity, μ the
viscosity, and g the gravity acceleration.

Similar equations are valid in the fractures [30,31]:

∇S · q + [v̄] · n = 0, (2a)

q = − 1

μ
σf [∇SP − ρF g · (I − nn)], (2b)

where Eq. (2a) is a continuity equation including fluid ex-
changes with the embedding matrix and Eq. (2b) the two-
dimensional form of Darcy’s law. I is the unit tensor. Here, ∇S

denotes the two-dimensional gradient operator in the fracture
plane, σf the fracture transmissivity, q the flow rate per unit
width (integral of flow velocity over the fracture aperture), n
the unit normal vector to the fracture, and [x] the difference
between a quantity x evaluated on the +n and −n sides of
the fracture. Fractures are assumed to be open channels that
offer no resistance to cross flows, and pressure is regarded as
constant across the fracture aperture, and equal to the pressure
in the matrix on both sides. This usual assumption does not
imply that there is no flow between the fracture and the matrix
since there generally exist pressure gradients on both sides of
the fracture.

2. Energy equations

Local equilibrium is assumed everywhere, which means
that in any volume element the fluid and the solid are at
the same temperature T . In typical conditions, with physical
parameters such as those in Table I and submillimeter pore
sizes and fracture apertures, the characteristic time scale for
local temperature equalization is at most a few seconds, i.e.,
quasi-instantaneous compared to all other processes.

When the compression work is neglected, the energy bal-
ance equation in the matrix reads [32]

∂

∂t
[ερF h∗

F + (1 − ε)ρSh
∗
S] + ∇ · (v̄ρF h∗

F ) − ∇ · (λm∇T )

= 0, (3)

where ε is the medium porosity, λm the effective conductivity
of the porous medium, ρS the solid matrix density, and (h∗

F ,
h∗

S) the specific enthalpies of the liquid and solid phases.
Fractures are assumed to have no thermal resistance to nor-

mal temperature gradients, and their temperature is considered
constant across the fracture aperture and equal to T in the
matrix on both sides. When the compression work is neglected,
the energy balance reads [33,34]

∂(bρF h∗
F )

∂t
+ ∇S · (qρF h∗

F ) − ∇S · (�∇ST )

+ [v̄ρF h∗
F − λm∇T ] · n = 0, (4)

where b is recalled to be the fracture aperture. Again the
last term corresponds to the exchanges with the surrounding
matrix.

3. Constitutive equations

The fluid- and solid-phase enthalpies and the fluid density
are linear functions of the temperature:

h∗
F = cF T , h∗

S = cST , ρF = ρF0[1 − αF (T − T0)], (5)

where cS and cF are the specific heat capacities of the solid
phase and of the fluid phase, respectively; αF is the coefficient
of thermal volume expansion of the fluid; and T0 is the
corresponding reference value.

The effective thermal conductivity λm of the porous medium
is approximated by the elementary mixture rule [1]

λm = ελF + (1 − ε)λS, (6)

where λF and λS are the thermal conductivities of the fluid and
solid phases, respectively.

The fractures are schematized as plane channels with an
equivalent aperture b. Therefore, the fracture thermal trans-
missivity � and the fracture hydraulic transmissivity σf are
given by

� = bλF , σf = b3

12
. (7)

4. Boundary and initial conditions

Consider a bounded three-dimensional volume L × W × H

of fractured porous medium heated from below (Fig. 1). The
vertical boundaries of dimensions W × H and L × H are
assumed adiabatic and impermeable:

x = 0,L : v̄x = 0, qx = 0; jx = 0, Jx = 0, (8a)

y = 0,W : v̄y = 0, qy = 0; jy = 0, Jy = 0. (8b)

The bottom of the box, z = 0, is always impermeable while
the top, z = H , could be impermeable or permeable. In open-
top cases, a constant pressure P0 is imposed, while in closed-
top cases a no-flow boundary condition is used. Open-top and
closed-top problems are investigated in homogeneous porous
media; in fractured porous media, only closed-top conditions
are tested. A constant temperature T0 is imposed at the top of
the box; the temperature at the bottom is fixed at T0 + 
T .
Therefore,

z = 0 : v̄z = 0, qz = 0; T = T0 + 
T, (9a)

z = H : v̄z = 0, qz = 0, or P = P0; T = T0. (9b)

The situations of a thermally insulating top boundary and
of transient stages are not considered here.

In most cases, simulations start from a homogeneous tem-
perature field and an immobile fluid:

t = 0 : v̄ = 0, q = 0, T = T0. (10)

However, other initial conditions can be used in order to induce
a specific flow pattern (see Sec. III B).

5. Dimensionless formulation

In order to reformulate the problem in dimensionless vari-
ables, consider the reference state, with uniform conduction
from the bottom to the top of the system without fractures
when the fluid is immobile. This elementary solution denoted
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TABLE I. Physical parameters for the simulations in a homogeneous porous medium. The value of 
T corresponds to Ra = 50 in the
reference case.

Density of the porous material ρS 3 × 103 kg m−3

Density of the fluid ρF0 1 × 103 kg m−3

Thermal conductivity of the fluid λF 0.6 W m−1 K−1

Thermal conductivity of the porous material λS 3.5 W m−1 K−1

Effective thermal conductivity of the porous medium,
ελF + (1 − ε)λS λm 2.6 W m−1 K−1

Porosity of the porous material ε 0.3
Permeability of the porous material Km 2 × 10−11 m2

Temperature difference 
T 76.2 K
Viscosity of the fluid μ0 10−3 Pa s
Specific heat of the porous material cS 0.9 × 103 J kg−1 K−1

Specific heat of the fluid cF 4.2 × 103 J kg−1 K−1

Thermal expansion coefficient αF 2.07 × 10−4 K−1

Gravitational constant g 9.81 m s−2

Box size H 10 m

by the subscript r can be written as

v̄r = 0, ρF = ρF0

[
1 − αF 
T

(
1 − z

H

)]
, (11a)

Tr = T0 + 
T

(
1 − z

H

)
,

Pr = P0 + ρF0g(H − z)

[
1 − 1

2
αF 
T

(
1 − z

H

)]
. (11b)

Except for the variations of ρF in Eqs. (1b) and (2b),
all the material and transport properties of the fluid and of
the porous matrix are considered constant. We introduce the
dimensionless variables

x = Hx ′, ∇ = 1

H
∇′, t = [ερF0cF + (1 − ε)ρScS] H 2

λm

t ′,

(12a)

v̄ = λm

ρF0cF H
v̄′, μ = μ0μ

′, (12b)

T = Tr + 
T T ′, P = Pr + μ0λm

ρF0cF Km

P ′. (12c)

Equations for the matrix, Eqs. (1a), (1b), and (3), can be
rewritten in dimensionless form as

∇′ · v̄′ = 0, v̄′ = −∇′P ′ + RaT ′ez, (13a)

∂T ′

∂t ′
− v′

z + ∇′ · (v̄′T ′) = ∇′2T ′, (13b)

where ez is the unit vector along the z direction and oriented
upwards (see Fig. 1) and μ′ = 1. The Rayleigh number Ra,
which compares the buoyancy forces to the viscous forces, is
defined as

Ra = αF ρ2
F0cF g
T KmH

μ0λm

. (14)

The dimensionless fracture equations derived from Eqs. (2a),
(2b), and (4) can be written as

∇′
S · q′ + 1

R′ [v̄
′] · n = 0,

q′ = σ ′
f [−∇′

SP
′ + RaT ′(ez − nzn)], (15a)

ω′ ∂T ′

∂t ′
− q ′

z

(
1 − n2

z

)1/2 + ∇′
S · (q′T ′) − �′∇′2

S T ′

+ 1

R′ [v̄
′T ′ − ∇′T ′] · n = 0, (15b)

with the following dimensionless parameters:

σ ′
f = σf

KmR
, ω′ = b ρF0cF

R [ερF0cF + (1 − ε)ρScS]
,

�′ = �

λmR
, R′ = R

H
, (16a)

together with the relation

q = λmR

ρF0cF H
q′. (16b)

Boundary conditions (8) and (9) become

x ′ = 0,L′ : v̄′
x = 0, q ′

x = 0; j ′
x = 0, J ′

x = 0, (17a)

y ′ = 0,W ′ : v̄′
y = 0, q ′

y = 0; j ′
y = 0, J ′

y = 0, (17b)

z′ = 0 : v̄′
z = 0, q ′

z = 0; T ′ = 1, (17c)

z′ = 1 : v̄′
z = 0, q ′

z = 0, or P ′ = 0; T ′ = 0, (17d)

where L′ = L/H and W ′ = W/H .
In order to characterize the heat transfer through the system,

the Nusselt number is introduced. The heat flux through the
bottom surface z = 0 is

QT =
∫ L

0
dx

∫ W

0
dyjz

∣∣∣∣
z=0

+
∑

f r∩{z=0}

∫
f r

dlJz

∣∣∣∣
z=0

, (18)

where the last term is the sum over all intersections of the
bottom plane z = 0 with fractures; the integral runs over the
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whole length of each intersection line. According to Eqs. (9),
QT can be written as

QT =−λm

∫ L

0
dx

∫ W

0
dy

∂T

∂z

∣∣∣∣
z=0

−�
∑

f r∩z=0

∫
f r

dl
∂Tf

∂z

∣∣∣∣
z=0

.

(19)

For pure conduction without any fracture [Eq. (11)], the heat
flux QT is

QT r = λm


T

H
WL. (20)

The Nusselt number is defined as the ratio between QT and
QT r :

Nu = QT H

λmWL
T
. (21)

Nu compares the real heat transfer to the one which would be
produced by pure conduction.

B. Numerical solution

The numerical solution consists of three major steps,
namely, meshing, discretization, and resolution by conjugate
gradients algorithms.

All the computations for fractured media are conducted
in cubic domains (L = W = H ). Two-dimensional square
domains (L = H ) are also considered for homogeneous media
in Sec. III A, for comparison purposes. The same simulation
tool is used, with a very small W .

1. Fracture generation and meshing

Fractures are inserted in the porous matrix according to the
procedure detailed by Ref. [35]. The fractures are modeled as
plane polygons inscribed in circles of radius R. The centers
of these polygons are uniformly distributed in space, and their
normals are isotropically distributed; fractures are hexagons of
a given size and characterized by a unique fracture aperture b.
They are characterized by the network density ρ, equal to the
number of fracture centers per unit volume. ρ ′ can be expressed
in a dimensionless form:

ρ ′ = ρVex, with Vex = 1

2
AP, (22)

where A is the fracture area, P its perimeter, and Vex the
excluded volume. The dimensionless density ρ ′ is also equal to
the average number of intersections per fracture for isotropic
networks. References [35,36] have shown that ρ ′ controls most
of the topological and hydraulic properties of the network.

Since the fractures intersect randomly, the most natural
discretization method is an unstructured triangulation, with
a maximal discretization length δM (see Ref. [36]). Each
fracture is tesselated by triangles. Triangulation starts from
fracture edges and fractures intersections, and fractures are
triangulated according to an advancing front technique; i.e.,
fracture contours and fracture intersections are discretized first
and progressively the rest of the fracture surface is triangulated,
adding a third point to an existing segment, at a distance δ not
exceeding a predefined discretization length δM (see Ref. [36]).

When the fracture network is totally triangulated, the space
between the fractures is meshed by tetrahedra with the same
maximal length δM .

2. Finite volume formulation

The finite volume method is used in order to discretize the
flow and energy balance equations (1a)–(4). The unknowns
(pressure and temperature) are determined at the nodes of the
tetrahedral mesh. The control volume �i around the node i is
simply one-fourth of the volume of each incident tetrahedron
to this node. Similarly to Ref. [37], nodes in fractures are
considered centers of common control volumes for the fracture
and for a neighbor portion of the porous matrix; hence, an
explicit evaluation of exchange terms in Eq. (16b) is not
necessary.

The linearized Darcy equation yields a linear system of
equations for pressure that is solved by an ordinary conjugate
gradient method. The velocity v̄ and q are subsequently derived
by using Eqs. (1b) and (2b) from the pressure field. The same
methodology is applied to the energy equation.

Since a quasisteady approximation is applied, ρF is re-
garded as constant during a time step and equal to the value
at the beginning of the time step. The same applies for the
flow velocities which appear in the energy balance equation.
Since flow is modified only as a consequence of the changes
in the material properties, its variations are ignored during
the solution of the latter. The flow problem is solved at the
beginning of the time step. The energy balance equations
are solved next. A time-implicit, first-order discretization is
applied. If the convective transport is described by a simple
upwind model, the problem can be solved directly by a
biconjugate gradient method. However, this method generates
numerical diffusion. A variant of the flux-corrected method
proposed in Ref. [38] for multidimensional transport problems
on unstructured grids is used in this work. When the flux
limiting scheme is used, the problem is nonlinear and it has
to be solved iteratively.

C. The dimensionless parameters

It might be useful at the end of this section to provide a
complete list of dimensionless parameters. In principle, any
quantity such as the Nusselt number is a function of these
parameters. For the sake of clarity, they can be divided into
several classes:

overall geometrical parameters L′, W ′, (23a)

overall thermal parameter Ra, (23b)

parameters characterizing the fractures ρ ′,R′,σ ′
f ,�′,ω′,

(23c)

numerical parameters δ′
M = δM/H. (23d)

The realistic ranges for parameters (23c), for fractures
a few meters in size with apertures ∼0.1 to ∼1 mm, can
be deduced from the typical values of the fluid, solid, and
porous matrix coefficients given in Table I. The hydraulic
transmissivity σ ′

f of the fractures ranges from ∼10−1 to ∼10.
Their thermal transmissivity is very small (�′ < 10−3), as
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well as their thermal inertia compared to that of the matrix
(ω′ < 10−3). Fracture networks with density ρ ′ = 0.5−10,
ranging respectively far below and far above the percolation
threshold, are considered with constant geometrical parameters
L′ = W ′ = 1 and R′ = 0.2, and Rayleigh numbers up to 300
(homogeneous media) or 150 (fractured media). Finally, the
discretization parameter δ′

M is set small enough to eliminate
most of its influence on the result.

Note that given the fluid, solid, and porous matrix prop-
erties, σ ′

f , �′, and ω′ are not independent if the fractures
are plane open channels, since they result from only two
additional parameters, namely, b and R. However, they can
change independently if other hypotheses are made for the
fractures, such as rough walls or partial filling, or if the material
properties are modified. Nevertheless, �′ � 1 and ω′ � 1 are
expected to apply in any realistic situation.

III. THERMAL CONVECTION IN HOMOGENEOUS
POROUS MEDIA

To the main features of thermal convection in a homoge-
neous porous medium which were briefly recalled in Sec. II,
a few remarks on 2D and 3D convection should be added. In
3D confined systems, stable convective regimes are observed
for 4π2 < Ra < 240−300; only transient regimes exist above
these values [1]. 3D convection in cubic boxes is studied
numerically in Ref. [39], where it was observed that 2D
convection flows have larger Nu than 3D convection flows for
Ra � 97 and that two-dimensional cells can develop as well as
3D steady patterns, depending on the initial conditions without
any particular physical preference for either one. A sequence
of transitions between flow regimes is discussed in Ref. [40]:
at Ra = 550, the system evolves from a symmetric steady
convection regime to a nonsymmetric one; for Ra > 575,
the flow becomes oscillatory with a single frequency; then
the flow becomes quasiperiodic for Ra larger than 650–680;
up to Ra ∼ 725 a single frequency exists; and for Ra > 725
the regime becomes again quasiperiodic. The interested reader
could also refer to Ref. [1] and references therein for more
information.

This section is divided into two parts. The first part is
a detailed analysis of the establishment of convection in a
thin square vertical slab of porous medium. In the second
part, results for stable steady-state two-dimensional and three-
dimensional convection in a cubic box are benchmarked for
Ra up to 300.

A. Reference case

One of the simplest situations consists of a homogeneous
porous medium fully saturated by a single fluid. Vertical walls
are impermeable and adiabatic. Horizontal walls are imperme-
able and their temperature is kept constant over the simulation.
The simulation is started with a uniform temperature in the
medium, equal to the temperature at the top of the box.

An essentially two-dimensional reference case (L′ = 1,
W ′ = 0.025) with Ra = 50 is examined in detail. For illustra-
tion, a set of representative physical parameters that correspond
to this situation is provided in Table I.

FIG. 2. Evolution of the temperature field in a vertical cross
section of a pseudo-two-dimensional box (1 × 1 × 0.025). Ra = 50,
δ′
M = 0.0167. (a) The simulation starts from a uniform temperature

field. (b) A conductive temperature field is established. (c) Because of
the overcritical Ra, the conductive temperature field is destabilized.
(d) Steady-state 2D convection for Ra = 50.

Unstructured tetrahedral grids with discretizations δ′
M =

0.05, 0.033, 0.025, and 0.017 are used for the numerical
solutions. The time step t ′step is set accordingly, so that the
temperature field does not change significantly over one time
increment. Diffusive and advective characteristic time scales
are associated with the grid resolution, namely, τ ′

cond = δ′2
M and

τ ′
adv = δ′

M/v′
max, where v′

max is the largest velocity observed in
the system. The time step is set to the smallest of these two
values, which in practice is always τ ′

cond.
Figure 2 shows the evolution of the temperature field

in a two-dimensional box. Ra = 50 is slightly larger than
the critical value 4π2 which explains the establishment of a
conductive pattern of temperature distribution in a first stage
[Fig. 2(b)]. Then, the conductive temperature field is destabi-
lized [Fig. 2(c)]. Finally, the system reaches a convective steady
state [Fig. 2(d)]. The cellular motion of the fluid is indicated
by the arrows displayed in Fig. 2(d).

Figure 3 represents the evolution of Nu for three different
grid sizes δ′

M = 0.033, 0.05, and 0.017. As seen in Fig. 2,
the first step is the establishment of a conductive temperature
field which is subsequently destabilized; finally, the steady-
state temperature field is reached. Hence, the evolution of
Nu follows the same steps. As long as Nu < 1, conduction
controls the establishment of the temperature field. This field
is destabilized when Nu > 1, and the steady-state temperature
field is established when Nu is constant with time. During
the simulations, the destabilization was observed to occur at
different times depending on the grid resolution (see Fig. 3).

The system is supposed to reach steady state when the output
flux at the bottom and at the top of the box are equal (within
five significant digits), after the onset of convection. Then, the
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FIG. 3. The Nusselt number as a function of time for Ra = 50 in
a square unit box. Data for δ′

M = 0.033 (solid red line), 0.025 (dashed
blue line), and 0.017 (dotted green line).

simulation is stopped when this flux remains constant over a
dimensionless period of time at least equal to 1.

B. Comparison with previous studies

Other values of Ra are considered now, in cubic boxes. This
work only addresses stable steady-state convection and does
not consider transient regimes.

In order to obtain accurate results, the mesh size needs to
be chosen as a function of Ra. A sufficiently high level of
mesh refinement is necessary in order to avoid oscillations that
can be generated in areas with steep temperature gradients.
Therefore, the discretization length depends on Ra and on the
required accuracy.

It is observed that the Nusselt number decreases when
the spatial resolution in the simulations is refined [Fig. 4(a)].
Therefore, using the data for various δ′

M , Nuref is calculated
as the extrapolation of Nu for δ′

M → 0. Figure 4(b), where

Nu = |Nu − Nuref |/Nuref is displayed as a function of Ra,
illustrates the convergence of Nu with the discretization.
For example, for Ra � 150, Nu is known with a precision
better than 2% if δ′

M � 0.033. It is also observed that a finer
discretization is required to reach a prescribed precision when
Ra increases.

Let us now analyze the convection behavior in order to find
the conditions where the fluid starts circulating. It is found that
the numerical value of the critical Rayleigh number Rac in
closed-top conditions ranges between 39.41 and 39.67, values
that agree with the theoretical value of 4π2 
 39.48. Then,
in order to obtain steady-state convection patterns of various
intensities, Ra is varied from Rac to Ra = 300.

As discussed at the beginning of Sec. III, steady-state
convection can be stable for several types of two-dimensional
flow patterns, namely one-, two-, and three-cell convection
[39]. In some cases, in order to obtain a particular flow pattern,
one has to start from a nonuniform initial state or to increase
progressively the temperature. For example, when Ra = 100,
after an instantaneous and symmetric heating, the system spon-
taneously evolves to a two-cell convection, with Nu 
 2.15.
Nevertheless, when unusual initial conditions are imposed,
such as perturbations causing a nonsymmetric distribution of
the temperature field at t ′ = 0, a stable steady-state one-cell
convection is achieved, with Nu 
 2.64 (see Table II).

FIG. 4. (a) The Nusselt number as a function of the dimensionless
mesh size δ′

M . Ra = 50. Black dots correspond to simulations; the red
star is the extrapolated value Nuref , for δ′

M = 0. (b) The deviation

Nu = |Nu − Nuref |/Nuref between our simulations for various δ′

M ,
and the extrapolated Nuref . Data for δ′

M = 0.05 (red dots), 0.033 (blue
squares), 0.025 (black triangles), and 0.017 (green diamonds). The
grey area corresponds to errors smaller than 2%.

Our results for 2D convection patterns obtained in cubic
boxes with closed-top conditions and Ra up to 300 are
compared to the numerical data published in Refs. [39,41]
in Table II, for one- and two-cell convection. Results for
3D circulations are shown in Table III and compared with
Ref. [39].

Note that only one form of three-dimensional circulation
is stable in our realizations, as it was previously highlighted
in Ref. [39]. Two upflowing plumes are located along two
opposite edges of the cube, and two downflowing plumes are

TABLE II. The Nusselt number for 2D steady-state convection in
closed-top conditions for the current study, compared to the data of
Refs. [39,41]. The numerical data are the extrapolated Nusselt values
for δ′

M → 0. Two-cell convection is indicated by an asterisk; other
values are for one-cell convection.

Nu

Ra This study Ref. [39] Ref. [41]

50 1.451 1.450
100 2.643 2.651 2.647
100 2.146*
150 3.315 3.320 3.324
150 3.251* 3.245*
200 3.805 3.808 3.801
200 3.992* 3.986*
300 4.512 4.510 4.519
300 5.024* 5.005*
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TABLE III. The Nusselt number for 3D steady-state convection
in closed-top conditions for the current study (data are extrapolations
of Nu for δ′

M → 0) and Ref. [39].

Nu

Ra This study Ref. [39]

100 2.646
200 4.377 4.41
300 5.38 5.43

located along the two other edges. Isotherms present an axial
symmetry with respect to the vertical axis passing through
the center of the box. The occurrence of this circulation is
highly dependent on initial conditions. At least for Ra up
to 300, if the heating is instantaneous and distributed over a
horizontal plane, the steady-state convection in a cubic box
of homogeneous porous medium is two dimensional (i.e.,
isotherms are perfectly horizontal along the x or y direction).

In open-top conditions, Rac ranges between 26.79 and
27.12, which is in agreement with the theoretical prediction
of 27.10 derived in Refs. [3,4].

Since the numerically obtained Nusselt numbers compare
well with those of Refs. [39,41], the current numerical ap-
proach is assumed to provide accurate solutions to the closed-
top problem for Ra up to 300.

Simulation results are represented in Fig. 5 for the range
40 � Ra � 150 together with the polynomial fits

Nu = −1.59 × 10−9 Ra4 + 1.31 × 10−6 Ra3

−4.07 × 10−4 Ra2 + 6.56 × 10−2 Ra − 0.981, (24a)

Nu = −3.14 × 10−10 Ra4 + 3.76 × 10−7 Ra3

−1.83 × 10−4 Ra2 + 5.04 × 10−2 Ra − 0.903, (24b)

where Eqs. (24a) and (24b) correspond to two- and three-
dimensional circulation, respectively.

Hence, at higher Rayleigh numbers, 3D Nu is higher than
2D Nu, while the opposite is true at low Ra. This result
has been highlighted by others authors, such as in Ref. [39].

FIG. 5. The Nusselt number as a function of the Rayleigh
number Ra. Red squares and blue dots are for simulations of
two-dimensional and three-dimensional convection in homogeneous
porous media, respectively. Red squares denote two-dimensional
convection [Eq. (24a)], and blue circles denote three-dimensional
convection [Eq. (24b)].

FIG. 6. The Nusselt number as a function of the matrix Rayleigh
number Ram. The solid line is the interpolation (24b). Data for ρ ′ =
2 σ ′ = 1 (purple triangles), ρ ′ = 3 and σ ′ = 5 (green stars), ρ ′ = 4
and σ ′ = 1 (red dots), and ρ ′ = 7 and σ ′ = 2 (blue squares).

It was proposed in Ref. [42] that three-dimensional motion
consists of a superposition of orthogonal rolls, suggesting that
two-dimensional circulation transfers more heat for Rayleigh
numbers close to Rac, but there has been no rigorous demon-
stration of this suggestion.

IV. THERMAL CONVECTION IN FRACTURED
POROUS MEDIA

In this section, the influence of a fracture network on the
magnitude of thermal convection is studied in cubic boxes with
R′ = 0.2. The magnitude of the convection obviously depends
on the Rayleigh number in the matrix Ram [the subscript m is
a reminder that Ram is evaluated with the matrix permeability
Km in Eq. (14)] and on the characteristics of the fracture
network.

According to simulations in homogeneous porous media
(see Sec. III B), the precision of the results improves with
decreasing δ′

M [cf. Eq. (23d)]. It has been numerically observed
that the same is verified for fractured media. The value δ′

M =
1/30 was chosen as a trade-off between computation time
and Ra range; therefore, all computations where Ra > 160
(Nu � 4 for three-dimensional flow patterns) are excluded. For
the same practical reasons, the maximum values ofρ ′ andσ ′ are
10; ρ ′ > 10 implies large computation times, while σ ′ > 10
necessitates grid resolution better than the value of δ′

M used in
this study in order to provide accurate results.

As discussed in Sec. II C, �′ � 1 and ω′ � 1 in all cases.
In other words, owing to the moderate contrast of the fluid
and solid thermal properties and to their very small volume
fraction, the fractures have a negligible impact on the thermal
conduction and inertia. Hence, the fracture contribution is
mostly convective and their influence on the heat released by
the system primarily depends on σ ′ and ρ ′.

In Fig. 6, Nu is displayed as a function of Ram for four
different fracture networks with various ρ ′ and σ ′. The Nusselt
number for stable steady-state three-dimensional convection in
cubic homogeneous porous media [Eq. (24b)] is also plotted.
The heat transfer in fractured porous media is enhanced relative
to that in homogeneous porous media for the same boundary
conditions due to the presence of fractures. The output flux
characterized by Nu strongly depends on the structural and
hydraulic properties ρ ′ and σ ′.
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FIG. 7. The temperature field in the two orthogonal vertical midplanes at steady state for three different dimensionless fracture
transmissivities: (a), (d) σ ′ = 0.1; (b), (e) 1; and (c), (f) 5. Data for ρ ′ = 4 and Ram = 41.5.

Figure 6 shows that the data for each network vary smoothly
with Ram, with a trend similar to that for the homogeneous
porous medium. An equivalent Rayleigh number Raeq is
defined as the Rayleigh number for which the unfractured
porous medium releases the same thermal flux.

The rest of this section is divided into three parts. The
two first ones address the influence of the dimensionless
transmissivity and of the dimensionless fracture density on the
heat released by an isotropically fractured system. The third
part discusses the calculation of the effective permeability of
a fractured medium and compares the output fluxes generated
by the discrete fractured approach and the associated effective
medium approach.

A. Influence of the dimensionless fracture transmissivity

The influence of σ ′ on the natural thermal convection in a
cubic box is illustrated by vertical cross sections of steady-state
temperature fields (Fig. 7) in a given fractured porous medium
with ρ ′ = 4. The matrix Rayleigh number Ram is kept constant
and equal to 41.5.

In order to schematize the results, the flow will often be
said to be two dimensional when the mean x component of the
velocity is about one order of magnitude lower than the y and
z components. This is clearly approximate since when random
fractures are present, the flow is necessarily three dimensional.

In accordance with Rayleigh’s theory, if Ra is larger than
Rac, convection occurs with the formation of at least one
convection cell [39]. As noticed in Sec. III, for an instanta-
neous and horizontally distributed heating from below, the
steady-state convection in a homogeneous porous medium
is two dimensional, at least for Ra < 300. If the medium
is fractured, this is no longer true since the medium is not
homogeneous anymore. However, for small fracture conduc-
tivities [e.g., σ ′ = 0.1 in Figs. 7(a) and 7(d)], the convection
patterns have a pronounced two-dimensional structure, with
perfectly horizontal isotherms along the x direction. In that
case, fractures do not significantly perturb the medium and the

steady-state temperature field indeed presents a pronounced
two-dimensional structure.

The temperature fields shown for σ ′ = 1 and 5 in Figs. 7(b)–
7(f) correspond to three-dimensional convective regimes. For
σ ′ = 1 [Figs. 7(b) and 7(e)], the temperature field at steady
state presents a symmetry around the z axis passing through
the center of the box, which reminds one of three-dimensional
convection in a cubic box of homogeneous porous medium (see
Sec. III B). For larger σ ′ [Figs. 7(c) and 7(f)], the steady-state
temperature field is highly influenced by the fracture location.

Obviously, the flow patterns in a given fracture network
vary with the fracture transmissivity. For example, consider
the fractures with white dashes in Figs. 7(a)–7(f). As one can
notice by comparing the temperature field surrounding these
fractures, some upflowing fractures turn into downflowing
fractures when their transmissivity is increased.

The variations of the output flux are illustrated in Fig. 8,
where Nu is plotted as a function of σ ′, for Ram = 41.5 and
four individual networks with densities ρ ′ = 1, 4, and 8.

FIG. 8. The Nusselt number as a function of the dimensionless
fracture transmissivity σ ′. Data for ρ ′ = 8 (red circles), 4 (blue
diamonds and green triangles), and 1 (black squares); Ram = 41.5.
Solid and dashed lines correspond to small and large Nu increments,
respectively. The error bars correspond to ±2σd , σd being the standard
deviation observed over a set of 18 realizations (Fig. 10).
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FIG. 9. The temperature field in two perpendicular vertical midplanes at steady state for (a), (d) ρ ′ = 2, (b), (e) ρ ′ = 6, and (c), (f) ρ ′ = 10.
Data for σ ′ = 1 and Ram = 41.5.

The trend of Nu as a function of σ ′ depends on the fracture
networks. Data for Nu > 4 are obtained with a relatively
low precision (error � 2%). As seen in Fig. 8, two different
behaviors are depicted for σ ′ varying from 0.1 to 10. In
networks with small densities (e.g., ρ ′ = 1), the increase of
Nu is very limited for large σ ′, which is not true for large-
density networks (e.g., ρ ′ = 8). For moderate densities such
as ρ ′ = 4, both trends can be observed. A similar behavior
was observed for the permeability of a fracture network as a
function of σ ′ [29]. More precisely, when the fracture network
does not percolate, the fluid has to flow through the porous
matrix. Therefore, an increase in σ ′ has a limited effect on the
effective permeability. In the opposite case, when the network
percolates, the effective permeability of the medium increases
proportionally to σ ′. However, because of the low precision,
the existence of a plateau for low ρ ′ and large σ ′ cannot be
demonstrated.

One can suppose that a similar mechanism determines the
convective behavior of fractured media. If the permeability
of the matrix is fixed, and the fracture network does not
percolate, increasing the permeability of the fractures enhances
convection in a limited way, because the fluid has to flow
through the matrix. However, the concept of percolation for
thermal convection in closed boxes should be different from
that for a linear flow, because the fluid follows the pattern of
the convection cell, not only circulating from one face of the
box to the opposite one.

Nevertheless, these behaviors could not be checked for σ ′ >

10 because a better discretization is necessary.

B. Influence of the dimensionless fracture density ρ ′

The influence of ρ ′ on the natural thermal convection in a
cubic box is illustrated in Fig. 9 by steady-state temperature
fields obtained for various ρ ′ and fixed values of Ram = 41.5
and σ ′ = 1.

Structural transitions of the convective circulation are ob-
served. For a low-density fracture network [Figs. 9(a) and
9(d)], which does not percolate, the observed convection does

not differ significantly from that in homogeneous porous
media. The slope of the isotherms along the x and y directions
is small. Whenρ ′ is increased, the convection structure changes
[Figs. 9(b) and 9(e)]. The convection patterns present inclined
isotherms along the y direction, and a central upflowing plume
is visible along the xz plane. In the dense fracture network
displayed in Figs. 9(c) and 9(f), the flow pattern is almost two
dimensional, with a well-defined upflowing plume along the
yz plane, and with quite flat isotherms along the xz plane.
A strong difference in convection strength differentiates low-
and high-density networks, since the lateral extension of the
upflowing plume is thinner when ρ ′ is increased.

In Fig. 10, Nu is displayed as a function of ρ ′, for a fixed Ram

and two different fracture transmissivities, namely, σ ′ = 1 and
2. The data are statistical means over 18 different networks.
The standard deviations represented by the error bars increase
with increasing ρ ′; they are approximately equal to 20% of the
mean Nu.

The two transmissivities, σ ′ = 1 and 2, are not sufficiently
large to observe different behaviors according to the percolat-
ing character of the networks tested (see Fig. 8). The trend of

FIG. 10. The average Nusselt number as a function of the dimen-
sionless fracture density ρ ′ for σ ′ = 1 (blue circles), σ ′ = 2 (green
squares), and Ram = 41.5 (the red star represents Numat). Solid and
broken lines are the linear fits [Eqs. (25a) and (25b)].
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Nu as a function of ρ ′ is quite linear for the ranges of ρ ′ and
σ ′ tested. Tentative approximation fits yield

Nu = 1.19 + 0.285ρ ′ for σ ′ = 2, r = 0.999, (25a)

Nu = 1.16 + 0.179ρ ′ for σ ′ = 1, r = 0.996. (25b)

In the no-fracture limit, ρ ′ = 0, Nu is equal to Numat =
1.087, represented in Fig. 10. This value does not verify the
fits in Eqs. (25), but still remains in the ±20% error bar.

C. Convection in fractured porous media and in effective
homogeneous porous media

In this section, the heat released by the fractured porous
medium is compared to the heat released by a homogeneous
porous medium with the same effective permeability. The
results obtained with the fractured porous medium are de-
noted by the subscript FPM while results obtained with the
corresponding homogeneous porous medium are denoted by
the subscript HPM.

1. Computation of the effective properties
of fractured porous media

The influence of fractures on the effective properties of
the whole medium depends on their density and their thermal
and hydraulic transmissivities. In this study, the presence of
fractures increases the macroscopic permeability, as fractures
present a higher permeability than the porous matrix, but does
not change the thermal conductivity of the medium, as noticed
at the beginning of Sec. IV A. Therefore, the effective thermal
conductivity of the fractured medium is identical to the thermal
conductivity λm of the porous matrix. The fracture presence
does not significantly modify the global heat capacity either,
which is considered equal to the heat capacity of the porous
matrix.

To obtain the effective macroscopic permeability, a proce-
dure analogous to that in Ref. [30] is followed. First, for each
sample of fractured porous medium, a pressure drop is imposed
between two opposite boundaries while the other boundaries
are kept impervious. Then, the average fluid velocity is cal-
culated without considering the heat transfer. The relation
between this velocity and the imposed pressure gradient is
used in order to evaluate the sample permeability via the
macroscopic Darcy law. Simulations are done along the three
spatial directions and the effective permeability of the isotropic
fractured porous medium Keff is the mean of the three diagonal
values. Once Keff is computed for a given network, fractures
are removed, and the permeability of the matrix is replaced by
Keff . Then, simulations of convection in this effective medium
are performed for the same boundary conditions as for the
fractured medium.

2. Output thermal flux

The following results are obtained for fractured media
when ρ ′ varies from 0.5 to 10 and σ ′ from 0.1 to 10. The
Rayleigh number Ram is changed by varying 
T . The interval
of variations of 
T is limited to values for which the effective
Rayleigh number Raeff , evaluated by Eq. (14) with Km replaced
by Keff , does not exceed 150.

FIG. 11. The Nusselt number as a function of Raeff . Black dots
represent Nu with the FPM approach for 0.1 � σ ′ � 10, 0.5 � ρ ′ �
10, and 7 � Ram � 139. The dotted red line and solid blue line stand
for two- and three-dimensional convection in a HPM.

In order to evaluate the efficiency of the homogeneous
approach without any constraint on the topology of the fracture
network, Fig. 11 shows the Nusselt number obtained in a
FPM as a function of Raeff compared to the values of Nu for
two- and three-dimensional convection in a HPM as given by
Eqs. (24). This graph should be compared with Fig. 6, where
Nu is given as a function of Ram for some networks. In a first
approximation, the data are well gathered when Raeff is used
instead of Ram and they are close to Nu for homogeneous
porous media. However, some scatter can be observed as well
as particular trends, which are going to be analyzed. Note that
according to Fig. 4 the numerical errors are kept smaller than
2%.

In order to obtain a precise relationship between an average
Nusselt number and Raeff , a systematic statistical study should
be performed. A large number of networks should be generated
for a given density and a given aperture. Then, Nu should be
determined for each fractured porous medium and each Raeff .
Considering the duration of the computations, this was not
undertaken here, but it can be said that the statistical scattering
is similar to the one observed in Fig. 8.

As discussed in Sec. IV A and demonstrated in Fig. 7, a
stable convective flow in fractured porous media can be almost
two dimensional or three dimensional under the same thermal
conditions, depending on the characteristics of the fracture
network. In a homogeneous porous medium, the convection
pattern can also be two or three dimensional, depending on
the initial conditions or on the imposed boundary conditions.
These patterns correspond to different Nusselt numbers; hence,
the FPM results have to be compared to the HPM results with
a similar flow pattern. In order to select the FPM simulations
which should be compared with HPM two-dimensional con-
vection and to separate them from simulations which should be
compared to HPM three-dimensional convection, the volume
averages of the absolute value of the fluid velocities along the
x and y directions are calculated. When these velocities differ
by one order of magnitude or more, the FPM convection is said
to be two dimensional.

Figure 12 represents NuHPM as a function of NuFPM, with
the same effective permeability. The comparison takes into
account the convection structure, which is either two or three
dimensional. It is useful to separately analyze two- and three-
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FIG. 12. The Nusselt number NuHPM computed in a homoge-
neous porous medium vs the Nusselt number NuFPM computed in
the discrete fracture medium, both presenting the same effective
permeability. Data for two-dimensional convection (red dots) and
three-dimensional convection (blue squares); one dot represents one
realization, and the first bisector is shown. Additional data: 7 <

Ram < 139, 0.5 < ρ ′ < 10, and 0.1 < σ ′ < 10.

dimensional FPM flow patterns because they demonstrate
different tendencies.

Two-dimensional convection patterns present three differ-
ent trends. The first regime concerns weak Nu < 1.4, when
Raeff is close to Rac. In this case, the HPM tends to underes-
timate the output flux of the FPM; therefore, fractures, when
present in the numerical model, are more influential than ex-
pected. For 1.4 � Nu � 2.7, the two-dimensional convection
in HPM tends to overestimate the output flux and to under-
estimate it for Nu � 2.7. This change is probably due to the
fact that two-dimensional convection in cubic boxes transfers
more heat than three-dimensional convection for Ra � 100
[Eqs. (24)], corresponding to Nu 
 2.7. Since the medium
is not homogeneous, convection cannot be perfectly two
dimensional. In our simulations, the horizontal velocities never
vanish, and the two-dimensional patterns are characterized by
a large velocity difference between the x and y directions.
Hence, the convection patterns in FPM have a hybrid structure
between two- and three-dimensional convections, leading to
an overestimation by HPM for Nu � 2.7 and underestimation
for Nu � 2.7. It is observed that the ratio between velocities
along the y and x directions does not vary significantly when
Ram increases, since velocities along all directions increase.

The comparison between HPM and FPM for three-
dimensional flow patterns is less intuitive as no obvious trend
appears. For Nu � 1.5, HPM systematically underestimates
the output flux generated by FPM; again the influence of
fractures is larger than expected when Raeff is weak. When Nu
is increased, no obvious trend is seen; HPM can overestimate
or underestimate the heat released by FPM. Among 239
simulations in FPM compared to three-dimensional convection
in HPM, 124 simulations exhibit an overestimation of HPM.
As can be seen in Figs. 11 and 12, some data points are
perfectly aligned, with NuHPM = 1.44, 1.87, 2.94, and 3.75,
and correspond to simulations with Raeff = 50, 70, 110, and
150, respectively. These simulations are relative to networks

with various ρ ′ and various σ ′. The fact that these dots are
not superimposed and that NuFPM varies from one network to
another means that the applicability of the HPM depends on
the network parameters.

V. DISCUSSION

A. Validity of the homogeneous approach

As demonstrated in Sec. IV, some predictions of HPM based
on Keff provide the same macroscopic heat transfer as in the
corresponding FPM; nevertheless, for several networks, HPM
provides contrasts with FPM larger than 25%. Let us analyze
the error of HPM as a function of the parameters tested in this
study, namely, the network density ρ ′ and the transmissivity σ ′
of the fractures.

Figure 13 represents the same data as in Fig. 12, in four
panels according to the value of ρ ′. Figure 13(a) shows that the
effective approach is in agreement with the discrete fracture
approach for very low fracture densities, i.e., ρ ′ � 2. Note
that these networks are not percolating. The deviation of
NuHPM from NuFPM for low-density fracture networks is seen to
increase with increasing Ra. Figures 13(b) and 13(c) display
results for 3 � ρ ′ � 7; these densities obviously present the
largest deviations, up to 29% between HPM and FPM. Then,
Fig. 13(d) corresponds to large-density networks with ρ ′ �
8 and exhibits lower deviations. In this latter case, HPM
predictions become more precise as the heterogeneity of the
fractured porous medium decreases.

The fact that HPM is more precise for low and for dense
fracture networks is in accordance with physical intuition.
For isotropic networks in a cubic domain with R′ = 0.2, the
probability of percolation reaches 1/2 when ρ ′ 
 2.9 [43].
In fracture networks with low densities, where few fractures
actually intersect without forming a percolating network, the
influence of fractures is only due to local disturbances in the
flow field around each fracture and Nu can be approximated
by its value in a homogeneous medium, within 6% (for Raeff

up to 110). On the other hand, dense fracture networks are
similar to homogeneous media. Perturbations of the flow field
are still localized in small domains but are distributed over
the whole medium. This last result was already emphasized in
Ref. [44] for two-dimensional fractured media. For low and
dense fracture networks, the heat released by the fractured
porous medium is close to that released by a homogeneous
medium presenting the same macroscopic properties within
10%, at least for Raeff up to 150.

Furthermore, Raeff can be evaluated using predictions of
the macroscopic permeability of fractured porous media. The
macroscopic permeability K ′

eff = Keff/Km of porous media
containing dilute and dense networks is given by [29,45]

K ′
eff = 1 + κdρ

′ + κd
2ρ ′2 for ρ ′ � 2, (26a)

K ′
eff = 1 + 2

9
ρ ′σ ′

[
1 − 1

1 + 7
3σ ′−0.7

(
1 − βK
ρ ′2

ρ ′(1 + βK
ρ ′)

)]

for ρ ′ � 4, (26b)
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FIG. 13. The Nusselt number NuHPM computed in a homogeneous porous medium as a function of the Nusselt number NuFPM computed in
the discrete fracture medium with the same effective permeability. One dot represents one realization, and the first bisector is added for clarity.
Data for (a) ρ ′ = 1 and 2, (b) ρ ′ = 3 and 4, (c) ρ ′ = 5, 6, and 7, and (d) ρ ′ = 8 and 10.

where κd is deduced from

κd = σ ′

σ ′ + 3/2
κd∞ (27)

with κd∞ = 0.335, βK = 0.155, fitting parameters, and 
ρ ′ =
ρ ′ − ρ ′

c with ρ ′
c the percolation threshold.

These expressions can be used to determinate Raeff , and
then Nu can be evaluated from Eqs. (24). Figure 14 shows
the predicted Nu [Eqs. (24), and Raeff from Eq. (26)] in
comparison with the results obtained in Sec. IV B.

As seen in Fig. 14, the predictions based on Eqs. (24)
and (26) agree with the numerical data for FPM within their
statistical error bars when ρ ′ � 2 and ρ ′ � 4, for Ram = 41.5
and σ ′ = 1. In addition, since Eqs. (24) apply for Ra up
to 300 and Eqs. (26) for any σ ′, their combination can be
expected to provide reasonable predictions of Nu at least for
the investigated Ra range. This includes at least the cases in
Figs. 13(a) and 13(d).

Let us now consider the effect of the dimensionless trans-
missivity or aperture of fractures. It was already emphasized
in Ref. [44] that fractured systems with uniform aperture sys-
tems behave more like homogeneous media than nonuniform
aperture systems. Nevertheless, even when fractures present
the same transmissivity, the value of this transmissivity is a
parameter influencing the validity of the homogenization. This

is illustrated in Fig. 15, which presents the deviation 
Nu
between the HPM and FPM approaches for one network with
ρ ′ = 4.


Nu is seen to increase with σ ′. Increasing σ ′ implies a
relative reduction of the contribution of the matrix to the flow.
Therefore, under such conditions, the temperature field devi-
ates from the stable three-dimensional convection structure in

FIG. 14. The Nusselt number as a function of the dimensionless
density of fractures, ρ ′, for σ ′ = 1 (red dots) and Ram = 41.5. Dots
represent the statistical average over 18 different networks with the
same ρ ′. Error bars represent the standard deviations. Solid green and
dotted blue curves are the predictions for Nu deduced from Eqs. (24a)
and (26a) and Eqs. (24b) and (26b), respectively, with solid and dotted
lines in their range of validity.
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FIG. 15. The deviation 
 Nu = |NuFPM − NuHPM|/NuFPM be-
tween fractured and homogeneous porous media with the same ef-
fective permeability as a function of the dimensionless transmissivity
of fractures σ ′ for a density ρ ′ = 4 and 12 < Ram < 138. Each data
point corresponds to one realization.

cubic homogeneous porous materials, and this effect depends
on fracture locations.

These geometrical effects explain the occurrence of the
largest deviations between homogeneous and heterogeneous
approaches for moderate fracture densities. Nevertheless, it
should be noted that the large range of ρ ′ (2 � ρ ′ � 7), in-
ducing potentially inaccurate predictions from HPM, depends
on R′. Therefore, the well-known finite size effect may play a
role [46]. As shown in Ref. [30], the smaller the R′, the sharper
the percolation transition. However, with the value R′ = 0.2
used in this study, the transition takes place over a wide density
interval. The probability Pp of percolation for the flow problem
increases from 0.05 to 0.95 in the range 1.8 � ρ ′ � 4 [43].

To summarize, the effective approach gives good results
when it provides a good estimation of the heat released by the
fracture system. This happens when the fracture network does
not impact the flow patterns. Since only isotropic networks
are studied, two cases meet this requirement. The first one is
a nonpercolating fracture network, where only few fractures
disturb the convective patterns. The second one is a large-
density fracture network, since the influence of fractures on
convective flow patterns decreases with decreasing fracture
spacing [37]. Using the effective permeability deduced from
Eqs. (26), the Nu can be deduced from Eqs. (24) within 20%
except in the range 2 < ρ ′ < 4. Whatever ρ ′, HPM gives better
results with decreasing transmissivity. The impact of some
geometrical effects are described in Ref. [37] for simplified
regular fracture networks.

B. On the existence of an equivalent Rayleigh number

As shown in Sec. V A, the heat released by a fractured
porous medium could be deduced within 20% by means of
HPM. This section aims at understanding if a better precision
can be obtained with HPM.

Figure 6 displays Nu as a function of Ram for various
networks. The evolution of Nu with increasing Ram is smooth
and data are aligned along curves analogous to the ones of
homogeneous porous media. Note that the trends of networks
ρ ′ = 3, σ ′ = 5 and ρ ′ = 7, σ ′ = 2 are very similar, even if
these networks are morphologically different, with different
effective permeabilities (K ′

eff = 2.25 and 3.02, respectively).

FIG. 16. The equivalent Rayleigh number Raeq as a function of the
effective Rayleigh number Raeff for four individual fracture networks.
Data for ρ ′ = 1, σ ′ = 5 (red circles); ρ ′ = 3, σ ′ = 5 (blue triangles);
ρ ′ = 4, σ ′ = 0.1 (blue squares); and ρ ′ = 8, σ ′ = 1 (blue stars). Solid
and broken lines correspond to Eq. (28).

Based on this correspondence, an equivalent Rayleigh
number Raeq is defined by taking the projection of the value
of Nu in the fractured porous medium on the curve of the
homogeneous medium as illustrated in Fig. 6. Raeq is the value
of Ra in a HPM which releases the same heat as a FPM.

Raeq is plotted as a function of Raeff (see Sec. IV C) in
Fig. 16, which shows that these two dimensionless quantities
are linearly related.

Only four different networks are presented here for the
sake of clarity, but computations were made on 48 different
networks (1 � ρ ′ � 10 and 0.1 � σ ′ � 10) and the mean
regression coefficient is equal to 0.998.

Since a linear relationship relates Raeq and Raeff , Raeq

depends only on the fracture network and on Ram. This means
that the heat released by a known fractured system could be
possibly deduced from a homogeneous approach. The linear
relationship can be analyzed further:

Raeq = aRaeff + B, (28)

where a and B are fitted for each individual network. These
coefficients are displayed in Fig. 17(a) for all the networks.
They are seen to be correlated and aligned along the curve
a = 1 − B/100, with a regression coefficient of r2 = 0.991
for nonpercolating networks and r2 = 0.881 for percolating
networks. Thus, Fig. 17(a) suggests the approximate relation

(Raeq − 100) = a(Raeff − 100), (29)

where a depends on the network realization. In particular,
Eq. (29) is satisfied when Raeq = Raeff = 100. As shown in
Fig. 16, this solution is approximately verified for nonper-
colating and some percolating networks. This value is very
close to Ra 
 100.5, for which two- and three-dimensional
convections release the same energy (Fig. 5). Hence, it is not
surprising that this solution is verified for networks inducing
weak deformations of the flow patterns, such as nonpercolating
networks and fracture networks with weak transmissivities.

Figures 17(b) and 17(c) display a as a function of ρ ′ and
σ ′, respectively; a does not seem to be correlated to ρ ′ and
σ ′, except for very weak transmissivities (σ ′ � 1), where a

is close to 1, i.e., Raeff ≈ Raeq, which is in accordance with
previous results (Sec. IV C).
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FIG. 17. The linear relation (29): a as a function of (a) B, (b) ρ ′, (c) b′, and (d) K ′
z = 2Kz/(Kx + Ky). The solid line in (a) is a = 1 − b/100

and that in (d) is a = 3.4 − 2.5K ′
z. Red dots and blue squares represent nonpercolating and percolating networks, respectively.

Another parameter is analyzed in order to check anisotropic
effects:

K ′
z = 2Keff,z

Keff,x + Keff,y
, (30)

where Keff,x , Keff,y , and Keff,z are the effective permeabilities
calculated by imposing a pressure drop along the x, y, and
z axes, respectively. Figure 17(d) shows a as a function of
K ′

z. Some correlation between a and K ′
z can be observed

for nonpercolating networks, namely, a > 1 for the networks
with a slight horizontal anisotropy (K ′

z < 1) and a < 1 for the
networks with a slight vertical anisotropy (K ′

z > 1). According
to Eq. (29), for Raeff < 100, Raeq < Raeff when a > 1, where
the effective medium approach underestimates the output
thermal flux; these networks induce two-dimensional convec-
tion patterns. Moreover, Raeq > Raeff when a < 1, where the
effective medium approach overestimates the output flux; the
flow pattern is three dimensional. Therefore, it seems that non-
percolating networks with a slight horizontal anisotropy of the
flow favor two-dimensional convection while nonpercolating
networks with a slight vertical anisotropy of the flow promote
three-dimensional convection. For percolating networks, no
correlation between K ′

z and a was found.
To conclude, the relationship between Raeff and Raeq makes

possible the modeling of the heat transfer in a fractured
reservoir by a homogeneous approach. Unfortunately, no way
to predict the value of Raeq for a particular FPM could be
derived from the presented simulations.

VI. CONCLUSION AND PERSPECTIVES

The influence of the parameters characterizing a fracture
network, embedded in a permeable fully saturated porous
matrix, has been investigated by a direct approach which takes
into account the real geometry of the fracture network and the
distribution of the physical properties. This study is limited to
closed-top cubic boxes, but other boundary conditions can be
easily included in the numerical model.

The results provide a quantitative estimate of the heat
released by the medium, when the density of fractures and
their transmissivity are varied. More precisely, the output flux
increases linearly with the fracture density, in the investigated
ranges of Rayleigh number, density, and fracture transmissiv-
ity. The influence of transmissivity on the output flux shows
the importance of the network percolation status. However, the
percolation status of a fracture network when flow is governed
by a pressure drop consists of a cluster of fractures, forming a
connected path joining two opposite boundaries of the domain
[29]. Since in this study the flow is governed by thermal con-
vection, the percolation status should refer to a connected set of
fractures following the whole trajectory of the convection cell.

The comparison of the heat transfer in a fractured medium
and in a homogeneous medium with the same effective prop-
erties shows that predictions based on the effective perme-
ability are not satisfactory in a limited range of densities.
The heat transfer occurring in a fractured porous medium
using a homogeneous porous approach, considering the same
initial conditions and the effective permeability deduced from
Ref. [29], is reasonably predicted (within 20%) for ρ ′ � 2 and
ρ ′ � 4. These 20% represent the fluctuations of the Nusselt
number for various networks with the same ρ ′, related to the
particular geometry of each network. However, on a case-
by-case basis, the homogeneous porous approach gives better
results when ρ ′ is very small or very dense. The results show
that for ρ ′ � 2 and ρ ′ � 8 the effective approach predicts Nu
within 10%.

This study highlights the existence of an equivalent
Rayleigh number Raeq in a fractured porous medium, which
is linearly related to the effective Rayleigh number Raeff

in a homogeneous porous medium and by extension to the
Rayleigh number in the porous matrix containing the fracture
network. This linearity implies that the heat release from a
fractured medium could be known by means of a homoge-
neous approach. However, the way to estimate the coefficient
linking Raeq and Ram for a particular fractured network is not
elucidated in this study.
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Finally, this study could be extended in many ways. Various
boundary conditions could be chosen in order to schematize
various geological situations. Presently, the influence of an
open-top condition and the influence of the anisotropy of the
fracture network and non-Boussinesq effects when the fluid
viscosity and thermal expansivity vary with temperature are
being studied.
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