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FIND YOUR PLACE: SIMPLE DISTRIBUTED ALGORITHMS FOR
COMMUNITY DETECTION∗

LUCA BECCHETTI† , ANDREA CLEMENTI‡ , EMANUELE NATALE§ , FRANCESCO

PASQUALE‡ , AND LUCA TREVISAN¶

Abstract. Given an underlying graph, we consider the following dynamics: Initially, each node
locally chooses a value in {−1, 1}, uniformly at random and independently of other nodes. Then, in
each consecutive round, every node updates its local value to the average of the values held by its
neighbors, at the same time applying an elementary, local clustering rule that only depends on the
current and the previous values held by the node.

We prove that the process resulting from this dynamics produces a clustering that exactly or
approximately (depending on the graph) re�ects the underlying cut in logarithmic time, under various
graph models that exhibit a sparse balanced cut, including the stochastic block model. We also prove
that a natural extension of this dynamics performs community detection on a regularized version of
the stochastic block model with multiple communities.

Rather surprisingly, our results provide rigorous evidence for the ability of an extremely simple
and natural dynamics which is non-trivial even in a centralized setting.

Key words. Distributed Algorithms, Averaging Dynamics, Community Detection, Spectral
Analysis, Stochastic Block Models.

1. Introduction. In this paper, we study the following distributed algorithm
on undirected graphs: At the outset, every node picks an initial value, independently
and uniformly at random in {−1, 1}; then, at each synchronous round, every node
updates its value to the average of those held by its neighbors. A node also labels
itself �blue� if the last update increased its value, �red� otherwise.

Distributed community detection is an active research topic, motivated by the
analysis of the structure of increasingly large networks [42]. A number of large-scale
graph processing systems, including Google's Pregel [51] and Apache Giraph [65], rely
on suitable simulations of decentralized link-based algorithms, where each node of the
network is viewed as a local computing unit.

We investigate the e�ectiveness of the algorithm above in recovering an under-
lying cluster structure under a variety of models, which include the stochastic block
model [36]. Informally speaking, in the scenario we consider, a hidden partition of the
vertex set V = (V1, V2) exists, so that the subgraph induced by each community Vi is
a good expander, whereas V1 and V2 are �loosely� connected by a sparse cut. Under
this setting, we show that the process resulting from the above simple local rule con-
verges, in a logarithmic number of rounds, to a coloring that exactly or approximately
(depending on the model) re�ects the underlying community structure. We further
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show that our approach simply and naturally extends to more communities, providing
a quantitative analysis for a regularized version of the stochastic block model with
multiple communities.

Besides the general motivations described above, the major theoretical goal of
this work is to show, in a rigorous and well-established framework, that the algorithm
above turns out to be one of the few examples of a dynamics [6, 4, 29, 60] that solves
a computational problem that is non-trivial in a centralized setting. By dynamics we
here mean synchronous distributed algorithms characterized by a very simple struc-
ture, whereby the state of a node at round t depends only on its state and a symmetric
function of the multiset of states of its neighbors at round t−1, while the update rule
is the same for every graph and every node and does not change over time. Note that
this de�nition implies that the network is anonymous, that is, nodes do not possess
distinguished identities. Examples of dynamics include update rules in which every
node updates its state to the plurality1 or the median it sees in its neighborhood,2 or,
as is the case in this paper, every node holds a value, which it updates to the average
of the values held by its neighbors. In contrast, an algorithm that, say, proceeds in
two phases, using averaging during the �rst 10 log n rounds and plurality from round
1 + 10 log n onward, with n the number of nodes, is not a dynamics according to our
de�nition, since its update rule depends on the size of the graph. As another example,
an algorithm that starts by having the lexicographically �rst vertex elected as �leader�
and then propagates its state to all other nodes again does not meet our de�nition of
dynamics, since it assigns roles to nodes and requires them to possess distinguishable
identities.

The Averaging dynamics, in which each node updates its value to the average
of its neighbors', is perhaps one of the simplest and most interesting examples of
linear dynamics, and it always converges when G is connected and not bipartite: It
converges to the global average of the initial values if the graph is regular and to a
weighted global average if it is not [18, 66]. Important applications of linear dynamics
have been proposed in the recent past [41, 7, 72, 43], for example to perform basic
tasks such as self-stabilizing consensus in faulty distributed systems [12, 74, 62]. The
convergence time of the Averaging dynamics is the mixing time of a random walk
on G [66]. It is logarithmic in |V | if the underlying graph is a good expander [37],
while it is slower on graphs that exhibit sparse cuts.

While previous work on applications of linear dynamics has focused on tasks that
are speci�c to distributed computing (such as reaching consensus, or stability in the
presence of faulty nodes), in this paper we show that our simple protocol based on the
Averaging dynamics is able to address community detection, that is, it identi�es a
partition (V1, V2) of a clustered graph G = ((V1, V2), E), either exactly (in which case
we have a strong reconstruction algorithm) or approximately (in which case we speak
of a weak reconstruction algorithm).

1.1. Our contributions. Consider a graph G = (V,E). Let A denote its adja-
cency matrix and D the diagonal matrix such that Du,u is the degree of node u. We
show that if a partition (V1, V2) of G exists such that 1V1

− 1V2
is3 (or is close to)

1Given a node v ∈ V , the plurality is de�ned as the most frequent state among those taken on
by the neighbors of v (with ties broken by some �xed rule).

2When states correspond to rational values.
3As explained in more detail later, 1Vi is the vector with |V | components, such that the j-th

component is 1 if j ∈ Vi and is 0 otherwise.
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a right eigenvector of the second largest eigenvalue of the graph's transition matrix4

P = D−1A of G, and the gap between the second and the third largest eigenvalues
is su�ciently large, our algorithm recovers (V1, V2), or a close approximation thereof,
in a logarithmic number of rounds. Though the algorithm we propose does not entail
any explicit eigenvector computation, it does exploit the spectral structure of the un-
derlying graph, based on the intuition that our dynamics is a distributed version of
the power method [1].

Our approach and analysis present a few novelties. Among these are the com-
pletely local and decentralized criterion whereby nodes assign themselves to clusters,
and the spectral bounds we prove for certain graph classes. A conceptual contribu-
tion is to have each node, at each round t, assign itself to a cluster (��nd its place�)
according to the di�erence between its values at rounds t and t−1. Globally, this cri-
terion amounts to removing the component of the state vector in the eigenspace of the
�rst eigenvalue, without computing it. This idea presents two advantages: it results
in a particularly simple algorithm, and it gives a running time that depends on the
gap between the second and third eigenvalues of the transition matrix of the graph.
In graphs consisting of two expanders connected by a sparse cut, the corresponding
running time only depends on the intra-cluster expansion (i.e., on the gap between
the second and third eigenvalues of the transition matrix), and it can be O(log |V |),
while the mixing time of the overall graph (that depends on the gap between the �rst
and the second eigenvalues) can be Ω(|V |α), for some constant α > 0. To the best
of our knowledge, this is the �rst distributed block reconstruction algorithm that, in
the above speci�ed graphs, converges faster than the mixing time of the underlying
random walk.

Our algorithm works on any graph where (i) the right eigenspace of the second ei-
genvalue of the transition matrix is correlated to the cut between the two communities
and (ii) the gap between the second and third eigenvalues is su�ciently large. While
these conditions have been investigated for the spectrum of the adjacency matrix of
the graph, our analysis requires these conditions to hold for the transition matrix. A
technical contribution of this paper is to show that such conditions are met by a large
class of graphs, including graphs sampled from the stochastic block model. Proving
spectral properties of the transition matrix of a random graph is more challenging
than proving such properties for the adjacency matrix, because the entries of the
transition matrix are not independent.

Strong reconstruction for regular clustered graphs. A (2n, d, b)-clustered regular
graph G = ((V1, V2), E) is a connected graph over the vertex set V1 ∪ V2, with |V1| =
|V2| = n, adjacency matrix A, and such that every node has degree d and (exactly)
b neighbors outside its cluster. If the two subgraphs induced by V1 and V2 are good
expanders and b is su�ciently small, the second and third eigenvalues of the graph's
transition matrix P = (1/d) · A are separated by a large gap. In this case, we can
prove that the following happens with high probability (for short w.h.p5): If the
Averaging dynamics is initialized by having every node choose a value uniformly
and independently at random in {−1, 1}, within a logarithmic number of rounds
the system enters a regime in which nodes' values are monotonically increasing or
decreasing, depending on the community they belong to. As a consequence, every

4This is the transition matrix of a simple random walk over G (see Subsection 2.2 for more on
the properties of P ).

5We say that a sequence of events En, n = 1, 2, . . . holds with high probability if P (En) =
1−O(1/nγ) for some positive constant γ > 0.
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node can apply a simple and completely local clustering rule at each round, which
eventually results in a strong reconstruction (Theorem 3.3).

We then show that, under mild assumptions, a graph selected from the regular
stochastic block model [19] is a (2n, d, b)-clustered regular graph that satis�es the
above spectral gap hypothesis, w.h.p. We thus obtain a fast and extremely simple
dynamics for strong reconstruction, over the full range of parameters of the regular
stochastic block model for which this is known to be possible using polynomial-time
centralized algorithms [57, 19] (Section 1.2 and Corollary 3.6).

We further show that a natural extension of our algorithm, in which nodes main-
tain an array of values and an array of colors, correctly identi�es a hidden balanced
k-partition in a regular clustered graph with a gap between λk and λk+1. Graphs
sampled from the regular stochastic block model with k communities satisfy such
conditions, w.h.p. (Theorem 5.2).

Weak reconstruction for non-regular clustered graphs. As a main technical con-
tribution, we extend the above analysis to show that our dynamics also ensures weak
reconstruction in clustered graphs having two clusters that satisfy an approximate reg-
ularity condition and a gap between the second and third eigenvalues of the transition
matrix P (Theorem 4.7). As an application, we further prove that these conditions
are met by the stochastic block model [2, 24, 27, 30, 36, 40, 54], a random graph model
that o�ers a popular framework for the probabilistic modelling of graphs that exhibit
good clustering or community properties. We here consider its simplest version, with
two equal-sized communities, de�ned as follows.

Definition 1.1. The random graph G2n,p,q consists of 2n nodes and the following
edge probability: The node set is partitioned into two subsets V1 and V2, each of size
n; edges linking nodes belonging to the same partition appear in E independently
at random with probability p = p(n), while edges connecting nodes from di�erent
partitions appear with probability q = q(n) < p. In the remainder, we let a = pn and
b = qn respectively denote the expected inner degree and the expected outer degree of
a node.

In this paper, we prove that graphs sampled from G2n,p,q satisfy the above approxi-

mate regularity and spectral gap conditions, w.h.p., whenever a−b > c
√

(a+ b) · log n,
for a suitable, absolute constant c > 0 (Theorem 4.10).

We remark that the latter result for the stochastic block model follows from an
analysis that applies to general non-random clustered graphs and hence does not
exploit crucial properties of random graphs. A further technical contribution of this
paper is a re�ned, ad-hoc analysis of the Averaging dynamics for the G2n,p,q model,
showing that this protocol achieves weak reconstruction, correctly classifying a 1 −
ε fraction of vertices, in logarithmic time whenever a − b > Ω(

√
(a+ b)) and the

expected degree d = a + b grows at least logarithmically (notice that the factor
hidden in the notation Ω(·) depends on ε - see Theorem 4.12). This re�ned analysis
requires a deeper understanding of the eigenvectors of the transition matrix of G.
Coja-Oghlan [24] de�ned certain graph properties that guarantee that a near-optimal
bisection can be found based on eigenvector computations of the adjacency matrix.
Similarly, we show simple su�cient conditions under which a right eigenvector of the
second largest eigenvalue of the transition matrix of a graph approximately identi�es
the hidden partition. We give a tight analysis of the spectrum of the transition matrix
of graphs sampled from the stochastic block model in Subsection 4.3. Notice that
the analysis of the transition matrix is somewhat harder than that of the adjacency
matrix, since the entries are not independent of each other; we were not able to �nd
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comparable results in the existing literature.
Final remarks. While we do think that improving performance is an important

goal, this was not the main driver behind this work. Rather, we believe the main
contribution of this paper is providing rigorous evidence for the e�ectiveness of com-
pletely decentralized and elementary dynamics in addressing important mining tasks,
such as community detection in clustered non-dense graphs. The complexity of such
a task appears to lie far beyond the tasks to which this kind of dynamics have been
applied in the area of distributed computing (for example, consensus problems).

1.2. Related work.
Dynamics for block reconstruction. Dynamics received considerable attention in

the recent past across di�erent research communities, both as e�cient distributed
algorithms [6, 12, 62, 55] and as abstract models of natural interaction mechanisms
inducing emergent behavior in complex systems [4, 20, 29, 32, 60]. For instance, simple
averaging dynamics have been considered to model opinion formation mechanisms [28,
33], while a number of other dynamics have been proposed to describe di�erent social
phenomena [31]. Label propagation algorithms [64] are dynamics based on majority
updating rules [6] and have been applied to some computational problems including
clustering. Several papers present experimental results for such protocols on speci�c
classes of clustered graphs [8, 49, 64]. The only available rigorous analysis of label
propagation algorithms on planted partition graphs is the one presented in [44], where
the authors propose and analyze a label propagation protocol on G2n,p,q for dense
topologies. In particular, their analysis considers the case where p = Ω(1/n1/4−ε)
and q = O(p2), a parameter range in which very dense clusters of constant diameter
separated by a sparse cut occur w.h.p. In this setting, characterized by a polynomial
gap between p and q, simple combinatorial and concentration arguments show that
the protocol converges in constant expected time. They also conjecture a logarithmic
bound for sparser topologies.

Belief propagation algorithms. Because of their relevance for the reconstruction
problem, we also brie�y discuss the class of belief propagation algorithms, whose sim-
plicity is close to that of dynamics. These algorithms are best known as message-
passing algorithms for performing inference in graphical models [50]. Belief propa-
gation cannot be considered a dynamics: At each round, every node sends di�erent
messages to each neighbor. As a result, the update rule is not symmetric w.r.t. the
neighbors, requiring thus port numbering [70], while the required amount of local
memory grows linearly in the degree of the node. There is non-rigorous, strong sup-
porting evidence that some belief propagation algorithms might be optimal for the
reconstruction problem [27]. A rigorous analysis is a major challenge; in particular,
the convergence to the correct value of belief propagation is far from being fully un-
derstood on graphs which are not trees [73, 56]. A complex algorithm based on belief
propagation has been presented in [58] by Mossel et al.: Among other results, they
show that this algorithm achieves a weak reconstruction for G2n,p,q which is optimal
for certain parameters.

General algorithms for block reconstruction. We next compare our dynamics to
previous general algorithms for block reconstruction. Several algorithms for commu-
nity detection are spectral : They typically consider the eigenvector associated with
the second eigenvalue of the adjacency matrix A of G, or the eigenvector correspond-
ing to the largest eigenvalue of the matrix A − d

nJ [14, 23, 24, 54] 6, since these are

6A is the adjacency matrix of G, J is the matrix having all entries equal to 1, d is the average
degree and 2n is the number of vertices.
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correlated with the hidden partition. More recently spectral algorithms have been
proposed [3, 24, 17, 59, 45, 63] that �nd a weak reconstruction even in the sparse,
tight regime.

Even though the above mentioned algorithms have been presented in a central-
ized setting, spectral algorithms turn out to be a feasible approach also for distributed
models. Indeed, Kempe and McSherry [42] show that eigenvalue computations can
be performed in a distributed fashion, yielding distributed algorithms for commu-
nity detection in various models, including the stochastic block model. However, the
algorithm of Kempe and McSherry as well as any distributed version of the above
mentioned centralized algorithms are not dynamics. Actually, adopting the e�ective
concept from Hassin and Peleg in [35], such algorithms are not even light-weight :
Di�erent and non-simple operations are executed at di�erent rounds, nodes have
identities, messages are treated di�erently depending on the originator, and so on.
Moreover, a crucial aspect is convergence time: The mixing time of the simple ran-
dom walk on the graph is a bottleneck for the distributed algorithm of Kempe and
McSherry and for any algorithm that performs community detection in a graph G by
employing the power method or the Lanczos method [46] as a subroutine to compute
the eigenvector associated with the second eigenvalue of the adjacency matrix of G.
Notice that the mixing time of graphs sampled from G2n,p,q is at least of the order of
a+b
2b : Hence, it can be super-logarithmic and even nΩ(1).

In general, the reconstruction problem has been studied extensively using a mul-
tiplicity of techniques, which include combinatorial algorithms [30], belief propagation
[27] and variants of it [58], spectral-based techniques [54, 24], Metropolis approaches
[40], and semide�nite programming [2], among others.

Stochastic Block Models have been studied in a number of areas, including com-
puter science [14, 54, 53], probability theory [57], statistical physics [27], and social
sciences [36]. Unlike the distributed setting, where the existence of light-weight proto-
cols [35] is the main issue (even in non-sparse regimes), in centralized settings, strong
attention has been devoted to establishing sharp thresholds for weak and strong re-
construction. De�ne a = np as the expected internal degree (the number of neighbors
that each node has on the same side of the partition) and b = nq as the expected ex-
ternal degree (the number of neighbors that each node has on the opposite side of the
partition). Decelle et al. [27] conjectured that weak reconstruction is possible if and
only if a− b > 2

√
a+ b. This was proved by Massoulie and Mossel et al. [59, 53, 57].

Strong recovery is instead possible if and only if a− b > 2
√
a+ b+ log n [2].

Versions of the stochastic block model in which the random graph is regular
have also been considered [57, 19]. In particular, Brito et al. [19] show that strong
reconstruction is possible in polynomial time when a− b > 2

√
a+ b− 1.

1.3. Roadmap. The rest of this paper is organized as follows. In Section 2,
we formalize the main concepts concerning block reconstruction and the Averaging
dynamics. Section 3 is devoted to the analysis of our protocol in the case of regular
graphs with two communities. This analysis is then generalized in Section 4 for the
case of almost-regular graphs with two communities. In particular, the important case
of the stochastic block model is described in Subsections 4.2 and 4.3. In Section 5,
we show how our analysis and the consequent weak reconstruction can be extended
to the case of regular graphs having more communities. Some useful but standard
results in linear algebra and probability are deferred to the Appendix.

2. Preliminaries.
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2.1. Distributed block reconstruction. The block reconstruction of a clus-
tered graph is a two-coloring of the nodes that separates the hidden communities, and
it can be de�ned in two versions depending on whether a small fraction of outliers is
allowed or not.

Definition 2.1. Let G = ((V1, V2), E) be a graph with V1 ∩ V2 = ∅. An ε-weak
reconstruction is a map f : V1 ∪ V2 → {red, blue} such that there are two subsets
W1 ⊆ V1 and W2 ⊆ V2 with |W1 ∪W2| > (1 − ε)|V1 ∪ V2| and f(W1) ∩ f(W2) = ∅.
When ε = 0 we say that f is a strong reconstruction.

Given a graph G = ((V1, V2), E), the block reconstruction problem requires com-
puting an ε-reconstruction of G. In this paper, we propose the following distributed
protocol for this problem. It is based on the averaging dynamics and produces a col-
oring of the nodes at the end of every round. In the next two sections we show that,
within O(log n) rounds, the coloring computed by the algorithm we propose achieves
strong reconstruction of the two blocks in the case of clustered regular graphs and
weak reconstruction in the case of clustered non-regular graphs.

Averaging protocol:
Rademacher initialization: At round t = 0 every node u ∈ V independently sam-

ples its initial value from {−1,+1} uniformly at random;
Updating rule: At each subsequent round t > 1, every node u ∈ V

1. (Averaging dynamics) Updates its value x(t)(u) to the average of the
values of its neighbors at the end of the previous round,

2. (Coloring) If x(t)(u) > x(t−1)(u) then u sets color(t)(u) = blue; other-
wise, u sets color(t)(u) = red.

Distributed implementation of Averaging protocol and its properties. The
protocol above can be implemented in the popular synchronous local communication
model [48], where nodes share a global clock that is initialized at the beginning of the
execution. At each round determined by the global clock, every node can perform
local computations and send/receive one message of arbitrary length to/from each of
its neighbors. We assume that there is no fault or message corruption: If a message
is sent at round t, then it arrives safely before round t+ 1 begins.

However, we remark that the Averaging protocol requires no unique labeling of
the nodes, and it is completely oblivious to time, being a dynamics in the strictest
sense. Namely, after initialization, the protocol iterates over and over at every node.
Convergence to a (possibly weak) reconstruction is a property of the protocol, of which
nodes are not aware; it is something that eventually occurs.

Finally, we remark that the clustering criterion is completely local, in the sense
that a decision is individually and independently made by each node at each round,
only on the basis of its state in the current and previous rounds. This may seem
counterintuitive at �rst, but it is only super�cially so. Despite being local, the clus-
tering criterion uses information that re�ects the global structure of the network, since
nodes' values are related to the second eigenvector of the network's transition matrix.

Notational remark. In the remainder of the paper, we use x(t) to denote the vector
of values collectively held by the nodes at the end of round t and, for simplicity of
notation, we use x(0) = x to denote the vector of binary values held upon initialization.

2.2. The Averaging dynamics and random walks on G. The analysis of
the Averaging dynamics on a graph G is closely related to the behavior of random
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walks on G, which are best studied using tools from linear algebra that we brie�y
summarize below.

Let G = (V,E) be an undirected graph (possibly with multiple edges and self
loops), A its adjacency matrix and du the degree of node u. The transition matrix of
(the random walk on) G is the matrix P = D−1A, whereD is the diagonal matrix such
that Du,u = du. The entry Pu,v = (1/du) ·Au,v thus corresponds to the probability of
going from u to v in one step of the random walk on G. So P operates as the random
walk process on G by left multiplication, and as the Averaging dynamics by right
multiplication.

Definition 2.2. For i = 1, 2, de�ne 1Vi as the |V |-dimensional vector, whose
u-th component is 1 if u ∈ Vi and is 0 otherwise. If (V1, V2) is a bipartition of the
nodes with |V1| = |V2| = n, we de�ne the partition indicator vector χ = 1V1

− 1V2
.

It is easy to show that, after t rounds of the Averaging dynamics, the vector of
values at time t can be written as

x(t) = P tx .

The product of the power of a matrix times a vector is best understood in terms
of the spectrum of the matrix, which is what we exploit in the next section. In what
follows we always denote by

λ1 > λ2 > · · · > λ2n

the eigenvalues of P . Recall that P is a stochastic matrix, hence λ1 = 1 and λ2n > −1.
Moreover, for all graphs that are connected and not bipartite, λ2 < 1 and λ2n > −1.
We denote by λ the largest, in absolute value, among all but the �rst two eigenvalues,
namely

λ = max {|λi| : i = 3, 4, . . . , 2n} .

Unless otherwise speci�ed, the norm of a vector x is the `2 norm ‖x‖ =
√∑

i(x(i))2,
and the norm of a matrix A is the spectral norm

‖A‖ = sup
x:‖x‖=1

‖Ax‖ .

For a diagonal matrix, this is the largest diagonal entry in absolute value.
Cuts and conductance. The notion of conductance plays an important role in the

convergence results we prove in Section 4, in particular in the proofs of Theorems 4.7
and 4.12.

Let G = (V,E) be an undirected graph with |E| = m and consider a subset
S ⊆ V . Then, the corresponding cut (S, V − S) is de�ned as the subset of the edges
of the graph with one endpoint in S and the other in V − S. The volume vol(S) of a
subset S ⊆ V is de�ned as

vol(S) =
∑
u∈S

du .

Definition 2.3. Given a graph G = (V,E) and a subset S ⊆ V , we de�ne the
associated conductance ΦG(S) as

ΦG(S) =
|(S, V − S)|
vol(S)

.
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The conductance of G is de�ned as

ΦG = min
S:vol(S)6m/2

ΦG(S) .

We simply write Φ in the remainder, whenever G is clear from context.7

3. Strong reconstruction for regular graphs. If the graph G is d-regular,
then P = (1/d)A is a real symmetric matrix, P and A have the same set of eigenvec-
tors, and 1 is an eigenvector with eigenvalue 1. We denote by

v1 = (1/
√

2n)1,v2, . . . ,v2n

a basis of orthonormal eigenvectors, where each vi is the eigenvector associated with
eigenvalue λi. Then, we can write a vector x as a linear combination x =

∑
i αivi,

and the averaging process, starting from x, can be described as

P tx =
∑
i

λtiαivi =
1

2n

(∑
i

x(i)

)
1 +

2n∑
i=2

λtiαivi ,

which implies that x(t) = P tx tends to α1v1 as t → ∞, that is, it converges to the
vector that has the average of x in every coordinate.

We say that a d-regular graph G is (2n, d, b)-regular if a partition of the nodes
(V1, V2) exists such that every node in V1 has b neighbors in V2 and every node in V2

has b neighbors in V1.

Fact 1. If G is a (2n, d, b)-regular graph then the partition indicator vector χ =
1V1
− 1V2

is an eigenvector of the transition matrix P of G with eigenvalue 1− 2b/d.

Proof. Every node u has b neighbors w on the opposite side of the partition, for
which χ(w) = −χ(u), and d− b neighbors w on the same side, for which χ(w) = χ(u),
so

(Pχ)(u) =
1

d
((d− b)χ(u)− bχ(u)) =

(
1− 2b

d

)
χ(u) .

We next show that, if the regular graph is �well� clustered, then the Averaging
protocol produces a strong reconstruction of the two clusters, w.h.p. By a well-
clustered graph we mean a (2n, d, b)-regular graph where (V1, V2) represents the unique
smallest cut.

Definition 3.1 (Clustered regular graphs). A (2n, d, b)-clustered regular graph
G = ((V1, V2), E) is a (2n, d, b)-regular graph such that 1− 2b/d is the second largest
eigenvalue of P , that is, λ2 = 1− 2b/d and λ < λ2. We also call a = d− b the inner
degree of each node.

In the next lemma, we show that, after t rounds of the Averaging dynamics
over a (2n, d, b)-clustered regular graph, the con�guration x(t) is close to a linear
combination of 1 and χ.

Lemma 3.2. Assume that we run the Averaging dynamics on a (2n, d, b)-clustered
regular graph G with an arbitrary initial vector x ∈ {−1, 1}2n. Then there are reals
α1, α2 such that, at every round t > 0,

(3.1) x(t) = α11 + α2λ
t
2χ + e(t) , where

∥∥∥e(t)
∥∥∥
∞

6 λt
√

2n .

7The notions introduced here refer to unweighted graphs, which are the ones addressed in this
paper, but they seamlessly extend to weighted, undirected graphs.
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Proof. Since x(t) = P tx we can write

P tx =
∑
i

λti〈x,vi〉vi,

where 1 = λ1 > λ2 = 1 − 2b/d > λ3 > · · · > λ2n are the eigenvalues of P and
v1 = 1√

2n
1, v2 = 1√

2n
χ, v3, . . . , v2n are a corresponding sequence of orthonormal

eigenvectors. Hence,

x(t) =
1

2n
〈x,1〉 · 1 + λt2

1

2n
〈x,χ〉 · χ +

2n∑
i=3

λtiαivi

= α11 + α2λ
t
2 · χ +

2n∑
i=3

λtiαivi,

where we set α1 = 1
2n 〈1,x〉 and α2 = 1

2n 〈χ,x〉. We bound the `∞ norm of the last
term as∥∥∥∥∥

2n∑
i=3

λtiαivi

∥∥∥∥∥
∞

6

∥∥∥∥∥
2n∑
i=3

λtiαivi

∥∥∥∥∥
2

=

√√√√ 2n∑
i=3

λ2t
i α

2
i 6 λt

√√√√ 2n∑
i=1

α2
i = λt‖x‖ = λt

√
2n .

Informally speaking, the equation above naturally �suggested� the choice of the
coloring rule in the Averaging protocol, once we considered the di�erence of two
consecutive values of any node u, that is,

(3.2) x(t−1)(u)− x(t)(u) = α2λ
t−1
2 (1− λ2)χ(u) + e(t−1)(u)− e(t)(u) .

Intuitively, if λ is su�ciently small, we can exploit the bound on
∥∥e(t)

∥∥
∞ in (3.1)

to show that, after a short initial phase, the sign of x(t−1)(u) − x(t)(u) is essentially
determined by χ(u), thus by the community u belongs to, w.h.p. The following
theorem and its proof provide formal statements of the above fact.

Theorem 3.3 (Strong reconstruction). Let G = ((V1, V2), E) be a connected
(2n, d, b)-clustered regular graph with λ2 = 1 − 2b/d > (1 + δ)λ for an arbitrarily
small constant δ > 0. Then the Averaging protocol produces a strong reconstruction
within O(log n) rounds, w.h.p. Moreover, the overall number of messages produced
by the protocol (until its completion time) is O(m log n) (where m = |E|), and each
message has size Θ(log n), w.h.p.

Proof. From (3.2) we have that sgn
(
x(t−1)(u)− x(t)(u)

)
= sgn (α2χ(u)) when-

ever

(3.3)
∣∣α2λ

t−1
2 (1− λ2)

∣∣ > ∣∣∣e(t−1)(u)− e(t)(u)
∣∣∣ .

From (3.1) we have that
∣∣e(t)(u)

∣∣ 6 λt
√

2n, thus (3.3) is satis�ed for all t such that

(3.4) t− 1 > log

(
2
√

2n

|α2|(1− λ2)

)
· 1

log (λ2/λ)
.

10



Next, note that the right-hand side of (3.4) can be upper bounded as follows:

log

(
2
√

2n

|α2|(1− λ2)

)
· 1

log (λ2/λ)
= log

(
d
√

2n

b|α2|

)
· 1

log (λ2/λ)

< log

(
d
√

2n

b|α2|

)
· 1

log (1 + δ)

6
2

δ
log

(
n
√

2n

|α2|

)
,(3.5)

where the �rst equality follows since λ2 = 1− 2b/d in the (2n, d, b)-clustered regular
case, the second inequality follows from the hypothesis on the spectral gap between
λ2 and λ, while the third inequality follows since log(1 + δ) > δ/2, for a su�ciently
small δ, and from the trivial bound d/b 6 n.

The second key step of the proof relies on the randomness of the initial vector.
Indeed, since x is a vector of independent and uniformly distributed random variables
in {−1, 1}, the absolute di�erence between the two partial averages in the two com-
munities, that is |α2|, is �su�ciently� large, w.h.p. More precisely, from Lemma B.1,
if R is the sum of 2n Rademacher random variables, for every 0 < η < 1,

P
(
|R| 6 η

√
2n
)
6 O(η) .

Since α2 = 1
2n 〈χ,x〉 and x is a vector of Rademacher random variables, the previous

inequality implies that

|α2| =
∣∣∣∣ 1

2n
〈χ,x〉

∣∣∣∣ > n−γ ,

for some positive constant γ, w.h.p. In this case, we can upper bound (3.5) as follows:

2

δ
log

(
n
√

2n

|α2|

)
6

2

δ
log
(√

2nγ+3/2
)
.

Hence, for some positive γ, w.h.p. (3.3) is satis�ed whenever

(3.6) t− 1 >
2

δ
log
(√

2nγ+3/2
)

=
2

δ

(
γ +

3

2

)
log n+

2

δ
log
√

2 .

As for the communication complexity of the protocol, we observe that, at every
round, every node receives one message (i.e., its current state) from each neighbor.
So, since we proved that the completion time is w.h.p. O(log n), the overall number
of messages is O(m log n), w.h.p. Finally, in order to correctly apply the coloring rule,
the values x(t)(u) must be encoded with Θ(log n) bits.

Not surprisingly, a typical case in which the spectral condition required by Theo-
rem 3.3 is satis�ed is when the input graph consists of two regular expanders connected
by a sparse regular cut. This is formalized in the next corollary.

Corollary 3.4. Let G = ((V1, V2), E) be a (2n, d, b)-clustered regular graph and
let λA = max {λ2(A1), λ2(A2)}, where A1 and A2 are the adjacency matrices of the
subgraphs induced by V1 and V2, respectively. If a−b > (1+δ)(λA+b) then G satis�es
the hypothesis of Theorem 3.3.

11



Proof. We can write the transition matrix as P = (1/d)(M + E) where

M =

(
A1 0

0 A2

)
, E =

(
0 B

Bᵀ 0

)
,

and B is a matrix with exactly b non-zero entries in each row and in each column,
and each non-zero entry being 1. Observe that for every i = 1, . . . , 2n (see e.g.
Corollary 4.10 in Chapter IV in [68])

(3.7) |λi (M + E)− λi(M)| 6 ‖E‖2 .

Since λ1(A1) = λ1(A2) = a, we also have that λ1(M) = λ2(M) = a and λ3(M) =
max{λ2(A1), λ2(A2)} = λA (notice that a value µ is an eigenvalue of M if and only
if µ is an eigenvalue of A1 or an eigenvalue of A2). Hence,

λ3(P ) 6 (1/d)(λ3(M) + ‖E‖2) 6
λA + b

d
6

1

1 + δ
· a− b

d
=

1

1 + δ
λ2 ,

where in the �rst inequality we used (3.7), in the second one we used λ3(M) = λA and
‖E‖2 6 b, and in the third inequality we used the hypothesis a− b > (1 + δ)(λA+ b).

Remark 1. While we de�ned (2n, d, b)-clustered regular graphs as simple graphs,
De�nition 3.1 could be easily extended to include regular multigraphs, where regularity
clearly refers to the standard de�nition of multiedges. Then Theorem 3.3 holds for
this class of multigraphs as well.

3.1. Regular stochastic block model. We can use Theorem 3.3 to prove that
the Averaging protocol achieves strong reconstruction in the regular stochastic block
model. In the case of two communities, a graph on 2n vertices is obtained as follows:
Given two parameters a(n) and b(n) (internal and external degrees, respectively),
partition the vertices into two equal-sized subsets V1 and V2 and then sample a random
a(n)-regular graph over each of V1 and V2 and a random b(n)-regular graph between
V1 and V2. This model can be instantiated in di�erent ways depending on how one
samples the random regular graphs (for example, via the uniform distribution over
regular graphs, or by taking the disjoint union of random matchings) [57, 19]. We
here consider a regular stochastic block model obtained as random lift [5].

If G is a multigraph on n vertices, then a random k-lift of G is a distribution
over graphs G′ on kn vertices sampled as follows: every vertex v of G is replaced by
k vertices v1, . . . , vk in G′, every edge (u, v) in G is replaced by a random bipartite
matching between u1, . . . , uk and v1, . . . , vk (if there are multiple edges, each edge
is replaced by an independently sampled matching) and every self loop over u is
replaced by a random degree-2 graph over u1, . . . , uk which is sampled by taking a
random permutation π : {1, . . . , k} → {1, . . . , k} and connecting ui to uπ(i) for every
i. The regular stochastic block model we consider here is a random n-lift of the graph
that has only two vertices v1 and v2: it has b parallel edges between v1 and v2, and it
has a/2 self-loops on v1 and a/2 self-loops on v2.

If G is a graph sampled according to any random regular stochastic block model
with internal and external degrees a and b respectively (notice that those sampled
according to random lifts are, in general, multi-graphs), then G is a (2n, d, b)-clustered
graph with largest eigenvalue of the transition matrix 1 and corresponding eigenvector
1, while χ is also an eigenvector, with eigenvalue 1−2b/d, where d = a+b. By using a

12



general result of Friedman and Kohler [34] on random k-lifts of a graph, we can derive
the following upper bound on the maximal absolute value achieved by the other 2n−2
eigenvalues corresponding to eigenvectors orthogonal to 1 and χ.

Lemma 3.5. Let G be a graph sampled from the regular stochastic block model with
internal and external degrees a and b, respectively, such that a− b > 2

√
a+ b+ o(1).

Then, w.h.p.,

(3.8) λ 6
2

a+ b
(
√
a+ b− 1 + o(1)) .

Proof. The lemma is a consequence of the following general results of Friedman
and Kohler [34] (see also Bordenave [16]).

For every lift of any d-regular graph, the lifted graph is still d-regular, and every
eigenvalue of the adjacency matrix of the base graph is still an eigenvalue of the lifted
graph. Our base graph consists of only two nodes and it has two eigenvalues, that is,
1 and 1 − 2b/d. When we consider the random n-lift, the obtained multi-graph has
2n− 2 new eigenvalues.

In this setting, Friedman and Kohler [34] prove that, if d > 3, then with probabil-
ity 1−O(1/n) over the choice of a random n-lift, the new eigenvalues of the adjacency
matrix of the lifted graph are at most 2

√
d− 1 + o(1) in absolute value. 8

Since λ2 = a−b
a+b , using (3.8) in Theorem 3.3 for clustered regular multigraphs (see

Remark 1), we get a strong reconstruction for the regular stochastic block model.

Corollary 3.6. Let η be an arbitrary positive constant and let G be a random
graph sampled from the regular stochastic block model with the parameters a and b
such that a − b > 2(1 + η)

√
a+ b. Then the Averaging protocol produces a strong

reconstruction in O(log n) rounds, w.h.p.

Proof. The hypothesis on a− b implies that

(3.9) λ2 =
a− b
a+ b

>
2(1 + η)√
a+ b

.

On the other hand, for su�ciently large n,

(3.10) λ 6
2

a+ b
(
√
a+ b− 1 + o(1)) <

2√
a+ b

.

Together, (3.9) and (3.10) imply λ2 > (1+η)λ. Then, the claim follows from Theorem
3.3. In particular, plugging δ = η into (3.6),

t− 1 >
2

η

(
γ +

3

2

)
log n+

2

η
log
√

2 .

4. Non-regular graphs.

8Bordenave [16, Corollary 21] has considerably simpli�ed the proof of Friedman and Kohler;
although he does not explicitly state the probability of the above event, his argument also bounds
the failure probability by 1/kΩ(1) [15].
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The Averaging process on non-regular graphs. The results of Section 3 rely on
very clear spectral properties of regular, clustered graphs, immediately re�ecting their
underlying topological structure. If G is not regular then the matrix P = D−1A is not
symmetric in general. However it is possible to relate its eigenvalues and eigenvectors
to those of a symmetric matrix as follows. We consider the normalized adjacency
matrix of G

N = D−1/2AD−1/2 = D1/2PD−1/2 .

Notice that N is symmetric, and P and N have the same eigenvalues λ1, . . . , λ2n. We
also recall that λ is de�ned as the largest, in absolute value, among all but the �rst
two eigenvalues, namely

λ = max {|λi| : i = 3, 4, . . . , 2n} .

Moreover, v is an eigenvector of P if and only if D1/2v is an eigenvector of N . Finally,
P = N when G is regular.

Let w1, . . . ,w2n be a basis of orthonormal eigenvectors of the normalized adja-
cency matrixN of G, withwi de�ned as the eigenvector associated with the eigenvalue

λi, for each i. Notice that w1 = D1/21
‖D1/21‖ . If we set vi = D−1/2wi, we obtain a set

of eigenvectors for the transition matrix P , and we can express the initial vector as a
linear combination of them, i.e.,

(4.1) x =
∑
i

α̃ivi .

Then, the Averaging process can again be described by the following linear
equation

(4.2) x(t) = P tx =
∑
i

λtiα̃ivi = α̃1v1 +

2n∑
i=2

λtiα̃ivi.

We remark that (4.1) uniquely de�nes the coe�cients α̃i, and, since P is not sym-
metric, they cannot be written as simple inner products. The next lemma summarizes
some useful properties of the Averaging process for general graphs.

Lemma 4.1. Let G be connected and not bipartite and let x be any initial vector.
Then

1. The coe�cients in the spectral decomposition of x in (4.1) are

α̃i = wᵀ
iD

1/2x = vᵀ
iDx , for i = 1, . . . , 2n.

2. For every t > 1, the di�erence between vector x(t) in (4.2) in two consecutive
rounds is
(4.3)

x(t−1) − x(t) = α̃2(1− λ2)λt−1
2 v2 + e(t−1) − e(t), where e(t) =

2n∑
i=3

λtiα̃ivi.

3. For every t > 0, the norm of vector e(t) in (4.3) is bounded by

(4.4) ‖e(t)‖ 6
√
dmax

dmin
λt‖x‖ = λt

√
dmax

dmin
2n .

where dmax and dmin are the maximum and minimum degree of the nodes,
respectively.
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Proof. The �rst claim follows from the de�nition of the α̃i's. Indeed, since x =∑
i α̃ivi,

D1/2x =
∑
i

α̃iD
1/2vi =

∑
i

α̃iwi .

On the other hand, wi's are orthonormal, so α̃i is the projection of D1/2x along wi,
i.e.,

α̃i = wᵀ
iD

1/2x .

As for the second claim, (4.3) follows straightforwardly from (4.2), when one considers
x(t−1) − x(t).

As for the third claim,

‖e(t)‖2 =

∥∥∥∥∥
2n∑
i=3

α̃iλ
t
iD
−1/2wi

∥∥∥∥∥
2

6
∥∥∥D−1/2

∥∥∥2
∥∥∥∥∥

2n∑
i=3

α̃iλ
t
iwi

∥∥∥∥∥
2

=
∥∥∥D−1/2

∥∥∥2 2n∑
i=3

α̃2
iλ

2t
i

6
∥∥∥D−1/2

∥∥∥2

λ2t
2n∑
i=3

α̃2
i 6

∥∥∥D−1/2
∥∥∥2

λ2t
∥∥∥D1/2x

∥∥∥2

6
∥∥∥D−1/2

∥∥∥2 ∥∥∥D1/2
∥∥∥2

λ2t‖x‖2 6
dmax

dmin
λ2t‖x‖2 =

dmax

dmin
λ2t2n,

where the last equality follows since, by de�nition, ‖x‖2 = 2n.

Lemma 4.1 states that, if G is connected and not bipartite, the Averaging
dynamics converges to α̃1v1, which is parallel to 1. Moreover, as in the regular
case, if the second eigenvalue λ2 of the transition matrix P of a clustered almost-
regular graph is close to 1 and |λ3|, . . . , |λ2n| are su�ciently small, the Averaging
dynamics exhibits a long phase in which x(t) = P tx is close to α̃11+ α̃2v2. The next
result establishes a crucial, general relationship between the coloring rule used by the
Averaging protocol and the sign of α̃2v2(u).

Corollary 4.2. Let G be connected and not bipartite, and let x be any initial
vector. If α̃2 6= 0, then, for every component (i.e., node) u such that v2(u) 6= 0,

(4.5)

sgn(x(t−1)(u)− x(t)(u)) = sgn(α̃2v2(u)) , whenever t− 1 >
log

(
2
√

2n(dmax/dmin)

|α̃2|·|v2(u)|(1−λ2)

)
log(λ2/λ)

.

Proof. From Claim 3 of Lemma 4.1 (in particular, using (4.4)),

|e(t−1)(u)− e(t)(u)| 6 ‖e(t−1) − e(t)‖ 6 ‖e(t−1)‖+ ‖e(t)‖ < 2

√
dmax

dmin
λt−1‖x‖ .

Hence, (4.3) implies that sgn(x(t−1)(u)− x(t)(u)) = sgn(α̃2v2(u)), whenever

|α̃2v2(u)|λt−1
2 (1− λ2) > 2

√
dmax

dmin
λt−1‖x‖,

that is, whenever (
λ2

λ

)t−1

>
2
√

2n(dmax/dmin)

|α̃2| · |v2(u)|(1− λ2)
.

Taking logarithms of both sides yields (4.5).
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The result stated by Corollary 4.2 will be leveraged in the following subsections to
prove weak reconstruction for the following class of clustered, almost regular graphs.

Definition 4.3 (Clustered γ-regular graphs). A (2n, d, b, γ)-clustered graph G =
((V1, V2), E) is a graph over the vertex set V = V1 ∪ V2, where |V1| = |V2| = n such
that: i) every node u ∈ V has degree du = d± γd, and ii) every node in V1 has b± γd
neighbors in V2, and every node in V2 has b± γd neighbors in V1.

We observe that, in any (2n, d, b, γ)-clustered graph, the ratio dmax/dmin is upper
bounded by (1 + γ)/(1− γ). Moreover, since

‖D1/21‖ = ‖D1/2χ‖ =

√ ∑
u∈[2n]

du ,

from the de�nition of (2n, d, b, γ)-clustered graph,

(4.6)
√

(1− γ)2nd 6 ‖D1/21‖ = ‖D1/2χ‖ 6
√

(1 + γ)2nd .

In what follows we will also name ν the quantity

ν = 1− 2b

d
,

since it will appear several times in the remainder of this section.9

Conductance and Cheeger's inequalities. Cheeger's inequalities are a key result in
spectral graph theory, relating the second eigenvalue of N to the conductance Φ of a
graph G (see De�nition 2.3). In particular, we will make use of the following version
of them.

Theorem 4.4 ([21, 22, 39]). Let G = (V,E) be a graph. Then

(4.7)
Φ2

2
6 1− λ2 6 2Φ .

Roadmap of Section 4. The rest of this section in organized as follows: In Sub-
section 4.1 we show that the Averaging dynamics produces a �weak� reconstruction
for the family of (2n, d, b, γ)-clustered graphs (see Theorem 4.7). In Subsection 4.2
we show that graphs sampled according to the stochastic block model G2n,p,q belong
to the above family, w.h.p., for large ranges of the parameters p and q (see Theo-
rem 4.10). In Section 4.3 we provide an ad-hoc analysis for G2n,p,q over a parameter
range that matches the weak reconstruction threshold (up to a constant factor) in the
case of logarithmic node degree (see Theorem 4.12).

4.1. Analysis of the Averaging dynamics on almost-regular clustered
graphs. In this subsection, we generalize (3.1) to (2n, d, b, γ)-clustered graphs, show-
ing that for this class, x(t) is still close to a linear combination of 1 and χ. This is
the key ingredient to prove weak reconstruction for this class (see Theorem 4.7).

Di�erently from the regular case, however, the partition indicator vector χ no
longer is an eigenvector of P . As a consequence, the argument needed to prove
the above result is considerably harder than in the regular case. In the following
Lemma 4.5 we prove that D1/2χ is close to its projection on w2. We will use this fact
in Lemma 4.6, to prove that χ is close to its projection on the second eigenvector v2

of P .

9Recall from Fact 1 that λ2 = ν in clustered regular graphs.
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Lemma 4.5. Let G be a connected (2n, d, b, γ)-clustered graph with γ 6 1/10. If
λ3 < ν then ∥∥∥D1/2χ− β2w2

∥∥∥ 6
52 γ

ν − λ3

√
2nd ,

where β2 = χᵀD1/2w2 is the length of D1/2χ's projection onto w2.

Proof. For every node v, we denote by av and bv the numbers of v's neighbors in
its own cluster and in the other cluster, respectively, so that its degree is dv = av+bv.
From the de�nition of (2n, d, b, γ)-clustered graphs, we know that

(1− γ)d 6 dv 6 (1 + γ)d and b− γd 6 bv 6 b+ γd .

Then, for any node v, we get

(4.8) |av − bv − νdv| =
∣∣∣∣2bdvd − 2bv

∣∣∣∣ 6 |2b(1 + γ)− 2(b− γd)| 6 4γd .

Using the above inequality, we obtain

‖Aχ− νDχ‖2 =
∑
v∈[2n]

 ∑
w∈Neigh(v)

χ(w)− νdvχ(v)

2

=
∑
v∈[2n]

(avχ(v)− bvχ(v)− νdvχ(v))
2

=
∑
v∈[2n]

(av − bv − νdv)2

(from (4.8)) 6 32nd2γ2 .(4.9)

Thus, ∥∥∥ND1/2χ− νD1/2χ
∥∥∥ =

∥∥∥D−1/2Aχ− νD1/2χ
∥∥∥ =

∥∥∥D−1/2 (Aχ− νDχ)
∥∥∥

6
∥∥∥D−1/2

∥∥∥ · ‖Aχ− νDχ‖

(from Hyp. γ 6 1/10 and (4.9)) 6

√
10/9√
d
·
√

2n4d γ

6 8
√

2nd γ .(4.10)

Observe that w1 is parallel to D1/21 and we have that

(4.11) |1ᵀDχ| =

∣∣∣∣∣∣
∑
v∈[2n]

χ(v)dv

∣∣∣∣∣∣ 6 (1 + γ)dn− (1− γ)dn = 2nd γ .

Hence, if we name y the component of D1/2χ orthogonal to the �rst eigenvector, we
can write

(4.12) D1/2χ =
1ᵀDχ

‖D1/21‖2
D1/21 + y .
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From (4.12) and triangle inequality we get∥∥∥D1/2χ− β2w2

∥∥∥ =

∥∥∥∥ 1ᵀDχ

‖D1/21‖2
D1/21 + y − β2w2

∥∥∥∥
6
|1ᵀDχ|
‖D1/21‖

+ ‖y − β2w2‖ .(4.13)

As for the �rst term in (4.13), from (4.11) and the lower bound on ‖D1/21‖ in (4.6)
it follows that

|1ᵀDχ|
‖D1/21‖

6
γ√

1− γ
√

2nd

(from Hyp. γ 6 1/10) 6 2γ
√

2nd .(4.14)

As for the second term in (4.13), we �rst remark that

(4.15) b 6 d/2 and
∥∥∥D1/21

∥∥∥ > (1/2)
√

2nd,

where the second inequality above holds since γ 6 1/10. Then

‖Ny − νy‖ =

∥∥∥∥N (D1/2χ− 1ᵀDχ

‖D1/21‖2
D1/21

)
− ν

(
D1/2χ− 1ᵀDχ

‖D1/21‖2
D1/21

)∥∥∥∥
6
∥∥∥ND1/2χ− νD1/2χ

∥∥∥+
|1ᵀDχ|
‖D1/21‖2

∥∥∥ND1/21− νD1/21
∥∥∥

=
∥∥∥ND1/2χ− νD1/2χ

∥∥∥+
|1ᵀDχ|
‖D1/21‖

2b

d

6 8
√

2nd γ + 4
√

2nd γ ,(4.16)

where: in the �rst equality we used (4.12), in the second inequality we used the
triangular inequality, the third equality follows by the de�nition of ν, and in the last
inequality we used (4.10), (4.14), and (4.15).
We can now bound ‖y‖ as follows.

‖y‖ >
∥∥∥D1/2χ

∥∥∥− 1ᵀDχ∥∥D1/21
∥∥ > (1− γ)

√
2nd− 2γ

√
2nd

= (1− 3γ)
√

2nd > (1/2)
√

2nd ,(4.17)

where: in the �rst equality we used (4.12) and the triangular inequality, in the sec-
ond inequality we used (4.6) and (4.14), while the fourth inequality follows from the
hypothesis γ 6 1/10.
Now, let us write y as a linear combination of the orthonormal eigenvectors of N

y = β2w2 + · · ·+ β2nw2n

(recall that yᵀw1 = 0 by de�nition of y in (4.12)). By comparing (4.16) and (4.17),

(4.18) (24γ)2‖y‖2 > ‖Ny − νy‖2 =

∥∥∥∥∥
2n∑
i=2

(λi − ν)βiwi

∥∥∥∥∥
2

=

2n∑
i=2

(λi − ν)2β2
i .
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Moreover, from the hypothesis λ3 < ν,

(4.19)

2n∑
i=2

(λi − ν)2β2
i >

2n∑
i=3

(λi − ν)2β2
i > (λ3 − ν)2

2n∑
i=3

β2
i = (λ3 − ν)2‖y− β2w2‖2.

Thus, by combining (4.18) and (4.19),

(4.20) ‖y − β2w2‖ 6
24 γ

ν − λ3
‖y‖,

where β2 = yᵀw2 =
(
D1/2χ

)ᵀ
w2.

Then, since y is the projection of D
1
2χ on D

1
21,

(4.21) ‖y‖ 6 ‖D 1
2χ‖ 6 2

√
2nd .

Finally, from (4.13),∥∥∥D1/2χ− β2w2

∥∥∥ 6
|1ᵀDχ|
‖D1/21‖

+ ‖y − β2w2‖ 6 4γ
√

2nd+
24 γ

ν − λ3
‖y‖

6 4 γ
√

2nd +
48 γ

ν − λ3

√
2nd 6

52 γ

ν − λ3

√
2nd ,

where the second inequality follows from (4.14) and (4.20), in the third inequality we
use (4.21), and the last inequality follows since ν − λ3 < 2.

The next lemma essentially states that the second eigenvector v2 of P is almost
parallel to χ, up to an additive �error� which is comparatively small in norm.

Lemma 4.6. Let G be a connected (2n, d, b, γ)-clustered graph with γ 6 1/10 and
let x =

∑
i α̃ivi be the decomposition of an arbitrary initial vector x, according to the

basis {vi}i of eigenvectors of the transition matrix P . If λ < ν then

(4.22) α̃2v2 = α2 (χ + z) ,

where we set

α2 =
α̃2

β2
=

wᵀ
2D

1/2x

wᵀ
2D

1/2χ
,

and

‖z‖ 6 104 γ

ν − λ3

√
2n .

Proof. We can write

α̃2v2 =
α̃2

β2
β2v2 =

α̃2

β2
(χ + (β2v2 − χ)) = α2(χ + z)

with z = β2v2 − χ. As for the norm of z observe that

D1/2z = β2D
1/2v2 −D1/2χ = β2w2 −D1/2χ .

Thus, from Lemma 4.5

‖z‖ = ‖D−1/2D1/2z‖ 6 ‖D−1/2‖ · ‖D1/2z‖ 6 2√
d
· 52 γ

ν − λ3

√
2nd =

104 γ

ν − λ3

√
2n .
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The above lemma allows us to generalize our approach to achieve e�cient, weak
reconstruction in clustered, almost regular graphs.

Theorem 4.7 (Weak reconstruction). Let G be a connected (2n, d, b, γ)-clustered
graph such that: γ 6 (ν − λ3)/208, λ < ν, and λ2 > (1 + δ)λ for an arbitrarily
small constant δ > 0. Then the Averaging protocol produces an O(γ2/(ν − λ3)2)-
weak reconstruction within O(log n) rounds, w.h.p.10 Moreover, the overall number of
messages exchanged by the protocol (until its completion time) is O(m log n) and each
message has size Θ(log n), w.h.p.

Proof. From (4.3) in Lemma 4.1

x(t−1)(u)− x(t)(u) = α̃2λ
t−1
2 (1− λ2)v2(u) + e(t−1)(u)− e(t)(u)

= α2λ
t−1
2 (1− λ2) (χ(u) + z(u)) + e(t−1)(u)− e(t)(u),

where the second equality follows from Lemma 4.6. Corollary 4.2 (in particular, (4.5))
implies that, for every initial state x such that α̃2 6= 0 and for every node u such that
v2(u) 6= 0,

(4.23) sgn

(
x(t−1)(u)− x(t)(u)

)
= sgn (α̃2v2(u)) ,

whenever t− 1 >
log

(
2
√

2n(1+γ)/(1−γ)

|α̃2|·|v2(u)|(1−λ2)

)
log(λ2/λ)

.

We next prove the following three claims:

1. For constant ĉ =
(

208γ
ν−λ3

)2

< 1, a subset S of nodes, with |S| > 2(1 − ĉ)n,
exists such that for each node u ∈ S,

|v2(u)| > ε√
2nd

and sgn (α̃2v2(u)) = sgn (α2) sgn (χ) ,

where ε 6 1/2 is a positive constant.
2. |α̃2| > 1√

2nd
, w.h.p. Thus, for the subset S in the previous claim the

Averaging protocol produces the right reconstruction.
3. 1− λ2 > 1

2((1+γ)dn)2 .

Together with (4.23), these claims imply that weak reconstruction is achieved within
O(log n) rounds, w.h.p.

Proof of Claim 1. Recall from Lemma 4.6 that ‖z‖ 6 c̃
√

2n, where c̃ = 112γ
ν−λ3

. Hence,
if we set S = {u ∈ V : |z(u)| < 1− ε̂}, for some 0 < ε̂ < 1/2, and h = |V \ S| we get

(1− ε̂)2h 6 ‖z‖2 6 2c̃2n .

Thus, h 6 2ĉn, where

ĉ =
c̃2

(1− ε̂)2
=

(
112γ

(1− ε̂)(ν − λ3)

)2

6

(
208γ

ν − λ3

)2

.

Finally, observe that |β2v2(u)− z(u)| = 1 for all nodes u, since β2v2 = χ+ z. Hence,
|β2v2(u)| > ε̂ for each node u with |z(u)| < 1− ε̂. Thus, for all nodes u ∈ S,

10Consistently, Theorem 3.3 is a special case of this one when γ = 0.
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(a) |v2(u)| > ε̂
|β2| >

ε̂√
(1+γ)2nd

= ε√
2nd

, where ε = ε̂/
√

1 + γ < ε̂ 6 1/2.

(b) sgn (α̃2v2(u)) = sgn (α2(χ(u) + z(u))) = sgn (α2) sgn (χ(u)) where in the �rst
equality we used Lemma 4.6 and in the second one the fact that |z(u)| 6
1− ε̂ < 1.

Proof of Claim 2. We rely on Lemma B.2. In detail, we apply Lemma B.2 with y =
D(χ + z) = β2Dv2. By de�nition of S in the proof of the previous claim, |y(u)| =
|D(χ + z)(u)| > ε̂du for all u ∈ S, since |z(u)| 6 1− ε̂. For the same reason, we have
|y(u)| 6 (2− ε̂)du. These considerations and the fact that G is a (2n, d, b, γ)-clustered
graph (see De�nition 4.3) imply that, for every u ∈ S we have (1 − γ)ε̂d 6 |y(u)| 6
(1+γ)(2− ε̂)d. So, we can apply Lemma B.2 with the following setting: y = D(χ+z),

S is de�ned as in Claim 1 above, r = (1−γ)ε̂d, c = (1+γ)(2−ε̂)
(1−γ)ε̂ , k = 1/(1−ĉ), km = 2n,

and δ =
√

1−ĉ
2n . We then obtain

P
(
|〈(1/

√
km)y,x〉| 6 δ

)
= P

(
|〈y,x〉| 6

√
1− ĉ
2n

√
2n

1− ĉ

)
= P (|〈y,x〉| 6 1)

6

√
2k

π
· δ
r

+
4c√
m

= O
(

1

d
√
n

)
+O

(
1

n

)
= O

(
1√
n

)
.

Next, we have:

|α̃2| = |vᵀ
2Dx| = |(χ + z)ᵀDx|

|β2|
,

where the �rst equality follows from Claim 1 of Lemma 4.1, while the second equality
follows from (4.22). As for β2, recall that

|β2| = |wᵀ
2D

1/2χ| 6 ‖D1/2χ‖ =

√√√√ 2n∑
i=1

di 6
√

(1 + γ)nd,

where the second step follows from Cauchy inequality and ‖w2‖ = 1, while the last in-
equality follows from the de�nition of (2n, d, b, γ)-clustered graphs. As a consequence,
we have |α̃2| > 1√

(1+γ)nd
, w.h.p. over the randomness of x.

Proof of Claim 3. The third claim follows directly from Cheeger's inequalities and

connectedness of the graph. In particular, from (4.7) we have 1− λ2 > Φ2

2 . Connect-
edness in turn implies that, for every subset S of the vertices, the corresponding cut is
crossed by at least one edge, so that its conductance is at least 1/vol(S). These consid-
erations immediately imply that φG > 1

(1+γ)dn , whenever G is (2n, d, b, γ)-clustered.

This proves the third claim and thus the theorem.
Finally, observe that we can perform the same analysis of the communication cost

we made in the proof of Theorem 3.3, thus leading to the same bounds.

Roughly speaking, the above theorem states that the quality of block reconstruction
depends on the regularity of the graph (through the parameter γ) and conductance
within each community (here represented by the di�erence |ν − λ3|). Interestingly
enough, as long as |ν − λ3| = Θ(1), the protocol achieves O(γ2)-weak reconstruction
on (2n, d, b, γ)-clustered graphs.
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4.2. Stochastic block model. In this subsection, we prove that graphs sampled
according to the stochastic block model G2n,p,q, satisfy the hypotheses of Theorem 4.7,
w.h.p. and, thus, the Averaging protocol e�ciently produces a good reconstruction.
In what follows, we will often use the following parameters of the model:

expected inner degree a = pn , expected outer degree b = qn, and d = a+ b .

We need two preliminary lemmas. In the �rst one, since G is not regular and random,
we derive some spectral properties of its adjacency matrix A by considering a �more
tractable� matrix, namely the expected matrix

(4.24) B = E [A] =

(
pJ qJ
qJ pJ

)
,

where J is the matrix with all entries equal to 1, so Bi,j is the probability that the edge
(i, j) exists in a random graph G ∼ G2n,p,q. The matrix B has a very simple spectral
structure, summarized in the following fact, which will be useful in the following.

Fact 2. If B is de�ned as in (4.24), then 1 is an eigenvector of eigenvalue d, χ
is an eigenvector of eigenvalue a − b, and all vectors orthogonal to 1 and to χ are
eigenvectors of eigenvalue 0.

In detail, the �rst lemma claims that G is likely to have an adjacency matrix A close
to B in spectral norm.

Lemma 4.8. Let A be the adjacency matrix of a random graph sampled from
G2n,p,q with d > 5 log n. Then there is a large enough absolute constant c1 > 0
such that, w.h.p.,

‖A−B‖ 6 c1
√
d .

Proof. The lemma directly follows from Theorem 2.1 in [47] with d′ = 2d and the
observation that, from the Cherno� bounds, all degrees are smaller than 2d, w.h.p.

The second lemma states that every clustered graph whose adjacency matrix is
close to B has the properties required in the analysis of the Averaging dynamics.

Lemma 4.9. Let G be a (2n, d, b, γ)-clustered graph such that: (i) ν = 1− 2b/d >
12γ and (ii) the adjacency matrix A of G satis�es ‖A−B‖ 6 γd. Then

λ 6 4γ and λ2 > 2λ > 2λ3 .

Proof. Recall Fact 2. In order to understand the eigenvalues and eigenvectors of
N , and hence the eigenvalues and eigenvectors of P , we �rst prove thatA approximates
B and that N approximates (1/d)A, namely ‖dN −A‖ 6 3γd.

To show that dN approximates A we need to prove that D approximates dI. The
condition on the degrees immediately gives us ‖D − dI‖ 6 γd. Since every vertex
v has degree dv in the range d ± γd, the square root

√
dv must be in the range

[
√
d− γ

√
d,
√
d+ γ

√
d], so we also have the spectral bound:

(4.25) ‖D1/2 −
√
dI‖ 6 γ

√
d .

We know that ‖D‖ 6 d+ γd < 2d and that ‖N‖ = 1, so from (4.25)

‖A− dN‖ = ‖D1/2ND1/2 − dN‖ 6 ‖D1/2ND1/2 −
√
dND1/2‖+ ‖

√
dND1/2 − dN‖

= ‖(D1/2 −
√
dI) ·ND1/2‖+ ‖

√
dN · (D1/2 −

√
dI)‖

6 ‖D1/2 −
√
dI‖ · ‖N‖ · ‖D1/2‖+

√
d · ‖N‖ · ‖D1/2 −

√
dI‖ 6 3γd .(4.26)
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By using the triangle inequality and (4.26),

(4.27) ‖N − (1/d)B‖ 6 ‖N − (1/d)A‖+ (1/d) · ‖A−B‖ 6 4γ .

Finally, we use Theorem A.2 (see Appendix A), which is a standard fact in matrix
approximation theory: If two real symmetric matrices are close in spectral norm then
their eigenvalues are close. From (4.27) and Fact 2,

(4.28) |λi| = |λi − 0| 6 ‖N − (1/d)B‖ 6 4γ, for every i ∈ {3, . . . , 2n} .

Similarly, from the fact that the second eigenvalue of (1/d)B is ν = 1− 2b/d,

(4.29) |λ2 − ν| 6 ‖N − (1/d)B‖ 6 4γ .

Now, (4.28) and (4.29) imply that λ 6 4γ and λ2 > ν − 4γ, respectively. The
thesis then follows from the hypothesis ν > 12γ.

We can now prove the main result of this subsection.

Theorem 4.10. Let G ∼ G2n,p,q with a − b > 72
√
d log n. Then w.h.p.: i) G is

(2n, d, b, 6
√

log n/d)-clustered, and ii) λ 6 min
{
λ2/2 , 24

√
log n/d

}
.

Proof. From the hypothesis d > a−b > 722 log n, we get Claim (i) (with probabil-
ity at least 1− n−1) from an easy application of the Cherno� bound with any degree
deviation γ > 6

√
(log n)/d. As for Claim (ii), the hypothesis above and Lemma 4.8 al-

low11 to apply Lemma 4.9 with γ = 6
√

(log n)/d. This implies that λ 6 24
√

(log n)/d
and, moreover, λ 6 λ2/2.

By combining Theorem 4.10 and Theorem 4.7, we achieve weak reconstruction
for the stochastic block model.

Corollary 4.11. Let G ∼ G2n,p,q with a − b > 1368
√
d log n and b = Ω(log n).

Then the Averaging protocol produces an O(d log n/(a− b)2)-weak reconstruction
within O(log n) rounds, w.h.p.

Proof. From Theorem 4.10 we get that w.h.p. G is (2n, d, b, γ)-clustered with
γ = 6

√
log n/d, λ 6 4γ and λ2 > (1 + δ)λ3 with δ = 1. Given the hypotheses on a

and b, we also have that the graph is connected, w.h.p. Moreover, from the hypothesis
of the corollary, dν = a− b > 1368

√
d log n. Hence,

γ

ν − λ3
=

dγ

dν − dλ3
<

6
√
d log n

1368
√
d log n− 24

√
d log n

=
1

224
,

where the last inequality follows from the hypothesis a− b > 1368
√
d log n and since

λ3 6 λ 6 4γ. We can thus apply Theorem 4.7 which guarantees that, w.h.p., the
Averaging protocol achieves a ε-weak reconstruction in (2n, d, b, γ)-clustered graphs,
with

ε =

(
224γ

ν − λ3

)2

< 1 ,

from the derivations above and Claim 1 in the proof of Theorem 4.7. This con-
cludes the proof.

11Notice that Lemma 4.8 would work even for a smaller γ, i.e., for γ = Ω(1/
√
d): However, in this

proof, this stronger bound is not useful since, in order to get the �rst claim of the theorem, we need
γ > 6

√
(logn)/d. The stronger bound will be instead useful in the next subsection.
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4.3. Improved analysis for the stochastic block model. In this section we
assume again that the underlying graph G is sampled from G2n,p,q, and we recall
that a = pn, b = qn and d = a + b. In Lemma 4.10 we have shown that, when
(a − b) > c

√
d log n for a suitable absolute constant c, a graph sampled according to

G2n,p,q satis�es the hypotheses of Theorem 4.7, w.h.p. In this setting, the Averaging
protocol thus achieves weak reconstruction in O(log n) rounds.

It is known that, when a − b < 2
√
d, weak recovery is impossible for any algo-

rithm [59, 53, 57], including centralized algorithms of arbitrarily high running time.
How close to this information-theoretic bound does the Averaging protocol get? In
this section we provide an analysis specialized to the stochastic model showing that
the Averaging protocol achieves weak reconstruction provided that a − b > c ·

√
d

where c is a su�ciently large constant, and provided that the average degree d is at
least logarithmic.

Theorem 4.12. There is an absolute constant c such that the following holds.
Let G be sampled from G2n, an ,

b
n
with 9 log n 6 d < n

1
4 , b > log n, and a− b > c ·

√
d.

Then the Averaging protocol produces an O(d/(a− b)2)-weak reconstruction within
O(log n) rounds, w.h.p.

To achieve this improved analysis, we �rst show, in Lemma 4.13 that, under the
assumptions of the above theorem, w.h.p

‖N −B/d‖ 6 O
(

1√
d

)
,

where we recall: B is the expectation of the adjacency matrix A of G ∼ G2n, an ,
b
n
and

N = D−1/2AD−1/2 is the normalized adjacency matrix.
As discussed in the previous section, the matrix B has only two non-zero eigen-

values, d and a − b, and the eigenvector of the second eigenvalue is the indicator of
the cut. In Lemma 4.15 we use the Davis-Kahan theorem (see Theorem A.4) to argue
that, if the distance between N and B/d in spectral norm is smaller than (a − b)/d,
then there is a gap between the second and the third eigenvalues of N , and the eigen-
vector of the second eigenvalue of N is close to the indicator of the cut. Finally,
we show that these spectral conditions on N su�ce for the Averaging dynamics to
achieve weak reconstruction, thus proving Theorem 4.12.

4.3.1. Concentration of the normalized adjacency matrix. In this section
we prove the following concentration result for the normalized adjacency matrix of a
graph sampled from G2n, an ,

b
n
.

Lemma 4.13. There is an absolute constant c2 such that, for every 9 log n < d <
n

1
4 , w.h.p.

‖N −B/d‖ 6 c2/
√
d .

In order to prove that ‖N − B/d‖ 6 O(1/
√
d), our starting point is Lemma 4.8,

ensuring that ‖A/d−B/d‖ 6 O(1/
√
d), w.h.p. Thanks to the above result, to prove

Lemma 4.13, it remains to argue that ‖N − A/d‖ 6 O(1/
√
d), w.h.p. To this aim,

we would like to use the fact that
√
d · D−1/2 is close to the identity, so that N =

D−1/2AD−1/2 and A/d are also be close to each other.
Unfortunately, arguing about the spectral norm of

√
dD−1/2 − I does not work,

because it introduces a dependency on the maximum degree of the graph, and the

best bound that we would get in this way is ‖A/d−B/d‖ 6 O
(√

logn
d

)
, which would
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not lead to an improvement over the analysis of the previous section. Instead, we are
going to use again the fact that A and B are close, and bound ‖D−1/2AD−1/2−A/d‖
in terms of ‖D−1/2BD−1/2 − B/d‖. Since B only acts on the span of 1 and of χ,
which are very smooth vectors in which all coordinates are ±1, the latter term does
not depend on the maximum degree but can be bounded in terms of the quantity∑
v(
√
dv −

√
d)2. We begin by bounding the latter quantity.

Lemma 4.14. If 5 log n < d < n
1
4 then w.h.p.∑

v∈V

(√
d−

√
dv

)2

6 5n .

Proof. We �rst remark that each degree dv has the distribution of a sum of n
Bernoulli random variables of expectation p plus a sum of n Bernoulli random variables
of expectation q. Thus, each dv has expectation E [dv] = d and variance Var (dv) 6 d.

Let eu,v be the binary random variable that is 1 i� the edge (u, v) is included in

the graph and de�ne also d
(u)
v as the sum of all random variables ev,v′ incident on v

except for ev,u.

As for the sum of the variables
(√

d−
√
dv

)2

,

∑
v∈V

(√
d−

√
dv

)2

= 2dn+
∑
v∈V

dv − 2
√
d ·
∑
v∈V

√
dv.(4.30)

From the Cherno� bound (and the hypothesis d < n
1
4 ), w.h.p.

(4.31)
∑
v∈V

dv 6 2dn+ n .

We will next prove that, w.h.p.,

(4.32)
∑
v∈V

√
dv > 2n

√
d− 2

n√
d
.

Observe that, by using (4.31) and (4.32) in (4.30),∑
v∈V

(√
d−

√
dv

)2

6 5n ,

which concludes the proof of the lemma. So, we will now prove that (4.32) holds
(w.h.p.). Observe that if x > 0, then

√
x > 1 +

x− 1

2
− (x− 1)2

2

so that if X is a non-negative random variable of expectation 1 then12

E
[√

X
]
> 1− Var (X)

2
.

12This argument is due to Ori Gurel-Gurevich (see [38]).
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By applying the above inequality to dv/d we get

E

[√
dv
d

]
> 1−

Var
(
dv
d

)
2

= 1− Var (dv)

2d2
> 1− 1

2d

and

(4.33) E
[√

dv

]
>
√
d− 1

2
√
d
.

We will now show that
∑
v∈V
√
dv is concentrated around its expectation by using

Chebyshev's inequality13. In order to do that, we will bound their covariance as

E
[√

dvdu

]
−E

[√
dv

]
E
[√

du

]
6

8d2

n
.

With a slight abuse of notation, in what follows we use P (ev,u) to denote P (ev,u = 1).
By the law of total probability

E
[√

dv

]
= P (ev,u)E

[√
d

(u)
v + 1

]
+ (1−P (ev,u))E

[√
d

(u)
v

]
and

E
[√

dudv
]
= P (ev,u)E

[√
d

(u)
v + 1

]
E

[√
d

(v)
u + 1

]
+ (1−P (ev,u))E

[√
d

(v)
u

]
E

[√
d

(u)
v

]
.

Then the last two equations above imply that

E
[√

dvdu
]
−E

[√
dv
]
E
[√

du
]

= P (ev,u)E

[√
d

(u)
v + 1

]
E

[√
d

(v)
u + 1

]
+ (1−P (ev,u))E

[√
d

(v)
u

]
E

[√
d

(u)
v

]
−P (ev,u)

2 E

[√
d

(v)
u + 1

]
E

[√
d

(u)
v + 1

]
−P (ev,u) (1−P (ev,u))E

[√
d

(v)
u

]
E

[√
d

(u)
v + 1

]
−P (ev,u) (1−P (ev,u))E

[√
d

(v)
u + 1

]
E

[√
d

(u)
v

]
− (1−P (ev,u))

2E

[√
d

(v)
u

]
E

[√
d

(u)
v

]
6 p(1− p)

(
E

[√
d

(u)
v + 1

]
E

[√
d

(v)
u + 1

]
+E

[√
d

(v)
u

]
E

[√
d

(u)
v

])
6

4d2

n
,(4.34)

where in the last inequality we used that E

[√
d

(u)
v + 1

]
<
√

2d, w.h.p., (by the

Cherno� bound), and that max{q(1 − q), p(1 − p)} = p(1 − p) < p < d/n (from the

hypothesis d < n
1
4 ). Then, (4.34) implies that

(4.35) Var

(∑
v∈V

√
dv

)
6 2nd+ 16d2n = O

(
n2

dn
1
4

)
.

13A stronger bound which does not require the hypothesis d 6 n1/4 may be obtained with some
concentration techniques compatible with the stochastic dependence among the

√
dvs.
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Finally, by combining (4.35) and (4.33) with Chebyshev's inequality,

P

(∑
v∈V

√
dv < 2n

√
d− 2

n√
d

)
6 P

(∣∣∣∑
v∈V

√
dv −E

[∑
v∈V

√
dv

]∣∣∣ > n√
d

)

= O
(

1

n1/4

)
.

We now can prove Lemma 4.13.

Proof of Lemma 4.13. The main idea is to use the triangle inequality to upper
bound ‖N−B/d‖ in terms of ‖A−B‖ and ‖B−dD−1/2BD−1/2‖. The former can be
bounded with Lemma 4.8 while the latter can be bounded by bounding ‖

√
d1−D1/21‖

and ‖
√
dχ−D1/2χ‖ using Lemma 4.14.

We �rst write

(4.36) ‖N −B/d‖ 6
∥∥∥N −D− 1

2BD−
1
2

∥∥∥+
∥∥∥D− 1

2BD−
1
2 −B/d

∥∥∥ .
We can bound the �rst term on the right-hand side as∥∥∥N −D− 1

2BD−
1
2

∥∥∥ =
∥∥∥D− 1

2 (A−B)D−
1
2

∥∥∥
6 ‖D− 1

2 ‖ · ‖A−B‖ · ‖D− 1
2 ‖ .(4.37)

A simple application of the Cherno� bound and the union bound shows that w.h.p.

‖D−1/2‖ 6
√

2

d
.(4.38)

Indeed, by de�nition ‖D−1/2‖ = 1/mini{
√
di}. For every i = 1, . . . , 2n, E [di] = d.

Therefore, from the Lemma's hypothesis that d > 9 log n and from the fact that the
edges are generated independently, a straightforward application of Cherno�'s bounds
yields:

P

(
di <

d

2

)
6 e−

d
8 6

1

n9/8
.

Applying a union bound on the nodes yields (4.38).
The assumptions of the lemma together with Lemma 4.8 imply that

‖A−B‖ 6 O(
√
d) .

By applying the above bound and (4.38) in (4.37), we conclude∥∥∥N −D− 1
2BD−

1
2

∥∥∥ 6 O
(

1√
d

)
.

Regarding the second error term in (4.36), we write∥∥∥D− 1
2BD−

1
2 −B/d

∥∥∥ 6

∥∥∥∥D− 1
2BD−

1
2 −D− 1

2
B√
d

∥∥∥∥+

∥∥∥∥D− 1
2
B√
d
−B/d

∥∥∥∥
=

∥∥∥∥D− 1
2

(
B − B√

d
D

1
2

)
D−

1
2

∥∥∥∥+

∥∥∥∥ 1√
d
D−

1
2

(
B −D 1

2
B√
d

)∥∥∥∥
6 ‖D− 1

2 ‖2 ·
∥∥∥∥B − B√

d
D

1
2

∥∥∥∥+
‖D− 1

2 ‖√
d
·
∥∥∥∥B −D 1

2
B√
d

∥∥∥∥
6 O

(
1

d

)
·
∥∥∥∥B −D 1

2
B√
d

∥∥∥∥ ,(4.39)
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where, in the second-to-last step we used the fact that ‖M‖ = ‖Mᵀ‖ for every matrix
M and the fact that B is symmetric. The last step holds w.h.p.

Recall that

B =
d

2n
11ᵀ +

a− b
2n

χχᵀ .

So ∥∥∥∥B −D 1
2
B√
d

∥∥∥∥ 6

∥∥∥∥∥ d2n11ᵀ −
√
dD

1
2

2n
11ᵀ

∥∥∥∥∥+

∥∥∥∥∥a− b2n
χχᵀ − (a− b)D 1

2

2n
√
d

χχᵀ

∥∥∥∥∥
=

√
d

2n
‖(
√
d1−D 1

21)1ᵀ‖+
a− b
2n
√
d
‖(
√
dχ−D 1

2χ)χᵀ‖

6

√
d

2n
‖
√
d1−D 1

21‖ · ‖1‖+

√
d

2n
‖
√
dχ−D 1

2χ‖ · ‖χᵀ‖

6 O(
√
d) ,(4.40)

where the last step holds w.h.p. and uses the fact that, under our assumptions,
Lemma 4.14 implies that w.h.p.∑

i

(
√
d−

√
di)

2 6 O(n) .

Then, for any vector x ∈ {±1}n,

‖
√
dx−D 1

2x‖2 =
∑
i

(xi
√
d− xi

√
di)

2 =
∑
i

x2
i (
√
d−

√
di)

2 6 O(n) ,

so that
‖
√
d1−D 1

21‖ = |
√
dχ−D 1

2χ‖ = O(
√
n) .

From (4.39) and (4.40) it follows that∥∥∥D− 1
2BD−

1
2 −B/d

∥∥∥ 6 O
(

1√
d

)
,

which concludes the proof.

Remark 2 (Comparison with the work of Le and Vershynin). In [47] Le and
Vershynin's show the following result. Let G be sampled from G2n, an ,

b
n
with average

degree d = a + b and adjacency matrix A, and consider the modi�ed matrix Aτ =
A + τ

2nJ , where τ is a parameter of the order of d (for example what we state below
holds for τ = 3d), and let

Nτ = (D + τI)−
1
2Aτ (D + τI)−

1
2

be the normalized version of the modi�ed adjacency matrix, and let Bτ be the expec-
tation of the modi�ed adjacency matrix

Bτ = B +
τ

2n
J .

Then, with constant probability,∥∥∥∥Nτ − 1

d+ τ
Bτ

∥∥∥∥ 6 O
(

1√
d

)
,
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even when a, b, and d are constants. Our Lemma 4.13 above shows that when d is at
least order of log n, then the above bound holds without correction, for τ = 0. It would
also be possible to modify the proof of Le and Vershynin to work for τ = 0 in the
regime of logarithmic or higher degree. Such a proof would be similar to our argument
above, but instead of a straightforward reduction to bounding

∑
i(
√
d −
√
di)

2, which
requires some work, one would derive a somewhat more complicated reduction to the
easier task of bounding

∑
i(d− di)2.

4.3.2. Analysis of the Averaging Dynamics. We �rst use the Davis-Kahan
theorem (Theorem A.4) to infer spectral properties of N based on the fact that N
and B/d are close with high probability, as established above.

Lemma 4.15 (Spectral properties of N). There is an absolute constant c such
that the following holds. Let G be a graph sampled from G2n, an ,

b
n
, with c log n 6 d 6

n
1
4 and a− b > 2002(4c2 + 4)

√
d, where c2 is the constant of Lemma 4.13. Consider

the normalized adjacency matrix N of G.14 Then the following properties hold w.h.p.:
1. λ2 > 1− 2b

d −
c1√
d
;

2. λ2 > 2λ;

3. A subset of nodes S exists with |S| = 2n
(

1− 2002 · (4c2 + 4) ·
√
d

a−b

)
such

that, for every u ∈ S,

|
√

2nd(D−1/2w2)(u)− χ(u)| 6 1

100
.

Proof. Recall that B/d is such that its largest eigenvalue is 1, its second largest
is (a− b)/d = 1− 2b/d, with eigenvector χ, and all other eigenvalues are zero. From
Lemma 4.13, w.h.p.

‖N −B/d‖ 6 c2/
√
d .(4.41)

From Theorem A.2, we have λ2 > 1 − 2b/d − c2/
√
d and λ 6 c2/

√
d, which in

turn implies λ2 > 2λ, because a− b > 3c2
√
d.

As for the third claim, let us write w2 = w‖ + wχ + w⊥ where w‖ and wχ are
the projections of w2 onto 1 and χ respectively, and w⊥ is the projection of w2 onto
the subspace orthogonal to 1 and χ. We are going to argue that w2 is close to wχ

and hence to χ.
First let us see that w‖ is small. We know that 〈w2, D

1/21〉 = 0, thus

‖w‖‖ =
1√
2n
|〈w2,1

√
d√
d
− 1√

d
D

1
21〉| 6 1√

2nd
‖w2‖‖1

√
d−D 1

21‖ 6
√

5

2d
6

2√
d
,

where in the second-to-last inequality we used Lemma 4.14.
From (4.41) and the de�nition of spectral norm,

wᵀ
2Nw2 −wᵀ

2

B

d
w2 6

c2√
d
.

Now let us compute the two quadratic forms in the above expression. We can
write

wᵀ
2Nw2 = λ2 >

a− b
d
− c2√

d

14Please refer to the beginning of Section 4 for de�nition and notation.
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wᵀ
2

B

d
w2 = ‖w‖‖2 +

a− b
d
‖wχ‖2

and, putting it all together,

a− b
d
‖wχ‖2 >

a− b
d
− 2

c2√
d
− 2√

d
=
a− b− (2c2 + 2)

√
d

d
,

which gives

‖wχ‖2 >
a− b− (2c2 + 2)

√
d

a− b
= 1− (2c2 + 2)

√
d

a− b
.

Moreover,

(4.42)

〈
w2,

χ√
2n

〉
= ‖wχ‖ > ‖wχ‖2 > 1− (2c2 + 2)

√
d

a− b
,

where we used the fact that ‖wχ‖ 6 1.
We are now able to bound the distance between w2 and χ/

√
2n:

∥∥∥w2 −
1√
2n

χ
∥∥∥2

= ‖w2‖2 +
∥∥∥ 1√

2n
χ
∥∥∥2

− 2〈w2,
1√
2n

χ〉

= 2− 2‖wχ‖ 6
(4c2 + 4)

√
d

a− b
,(4.43)

where in the last inequality we used (4.42).
We now de�ne the set O of �outlier� nodes u such that

(4.44)
∣∣∣√2nw2(u)− χ(u)

∣∣∣ > 1

200
.

Since each node u ∈ O contributes at least 1/(2002 · 2n) to ‖w2 − 1√
2n

χ‖2 and, by

(4.43),

‖w2 −
1√
2n

χ‖2 6
(4c2 + 4)

√
d

a− b
,

it follows that

|O| 6 2n · 2002 · (4c2 + 4)
√
d

a− b
.

Notice that, from the Cherno� bound, w.h.p.
√
d/du = 1 ± 1/200, for each u ∈ V .

Thus, (4.44) and the last fact imply that, for each u ∈ S = V \O, w.h.p.∣∣∣√2ndD−
1
2w2(u)− χ(u)

∣∣∣ 6 1

100
,

and the third claim of Lemma 4.15 is proved.

We are now ready to show that the Averaging dynamics achieves weak recon-
struction when a− b�

√
d.
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Proof of Theorem 4.12. The proof proceeds along the same lines as the one
of Theorem 4.7. To begin, recall (4.3) from Lemma 4.1:

x(t−1)(u)− x(t)(u) = α̃2λ
t−1
2 (1− λ2)v2(u) + e(t−1)(u)− e(t)(u).

Moreover, Corollary 4.2 (in particular, (4.5)) ensures that, if α̃2 6= 0, for every u ∈ V
such that v2(u) 6= 0,
(4.45)

sgn(x(t−1)(u)− x(t)(u)) = sgn(α̃2v2(u)) , whenever t− 1 >
log

(
2
√

2ndmax/dmin

|α̃2|·|v2(u)|(1−λ2)

)
log(λ2/λ)

.

We next prove the following three claims:

1. Set ĉ = 2002 ·(4c2 +4) ·
√
d

a−b , with c2 the absolute constant appearing in Claim

3 of Lemma 4.15, and notice that ĉ < 1, whenever a−b > 2002 · (4c2 +4) ·
√
d.

From this claim, a subset S of nodes exists, such that |S| > 2(1 − ĉ)n and,
for each node u ∈ S,

|v2(u)| > 99

100
√

2nd
and sgn (α̃2v2(u)) = sgn (α2) sgn (χ) .

2. |α̃2| > 1√
2nd

, w.h.p. Thus, for the subset S in the previous claim the

Averaging protocol produces the right reconstruction.
3. 1− λ2 > 1

n4 , w.h.p. over the randomness of G.
Together with (4.45) and the fact that dmax/dmin = O(1), w.h.p., these claims imply
that weak reconstruction is achieved within O(log n) rounds, w.h.p.

Proof of Claim 1. Since v2 = D−1/2w2 and (a − b)2 > 106c22d, the third claim of
Lemma 4.15 implies that, w.h.p. over the randomness of the graph, for a subset S of
at least 2(1− ĉ)n entries i of v2,

|
√

2nd v2(i)− χ(i)| 6 1

100
,

for a suitable constant ĉ < 1. This is equivalent to:

v2(i) >
99

100
√

2nd
if i ∈ V1 ∩ S and v2(i) 6 − 99

100
√

2nd
if i ∈ V2 ∩ S .

This proves Claim 1.

Proof of Claim 2. To begin, recall that α̃2 = wᵀ
2D

1/2x from Claim 1 of Lemma 4.1.
Let y =

√
2ndD1/2w2 =

√
2ndDv2 for the remainder of this proof, so that

|α̃2| =
1√
2nd
|yᵀx| .

Then, recall that, for every i ∈ S,

|
√

2nd v2(i)− χ(i)| 6 1

100
.

When i ∈ V1 ∩ S this implies

99

100
6
√

2ndv2(i) 6
101

100
.
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Likewise,

−101

100
6
√

2ndv2(i) 6 − 99

100
, i ∈ V2 ∩ S ,

whenever i ∈ V1 ∩ S. Next, the assumptions of Theorem 4.12 (in particular, d >
9 log n) imply that, w.h.p., (1− α)d 6 du 6 (1 + α)d, for every u ∈ V , with α < 1 a
(small) constant. As a consequence, w.h.p.{

99
100 (1− α)d 6 y(i) 6 101

100 (1 + α)d, i ∈ V1 ∩ S,
− 101

100 (1 + α)d 6 y(i) 6 − 99
100 (1− α)d, i ∈ V2 ∩ S .

We can now apply Lemma B.2 with the following setting: y and S de�ned above,
r = 99

100 (1− α)d, c = 101
99

1+α
1−α , k = 1/(1− ĉ), km = 2n and δ = 1√

2n
. Then

P

(
|(1/
√

2n)yᵀx| 6 1√
2n

)
= P

(
|(1/
√
km)yᵀx| 6 δ

)
6

√
2k

π
· δ
r

+
4c√
m

= O
(

1√
n

)
.

Proof of Claim 3. We begin by noting that, from our hypotheses, G is connected
w.h.p. In particular, each community induces a random graph with parameter p =
a/n > d/2n > 1.5 log n/n, which is well above the connectivity threshold. Moreover,
our assumptions on q imply that the expected number of edges connecting the two
communities is at least log n, which in turn implies that at least one such edge will
be present, w.h.p. Together, these arguments imply that G is connected, w.h.p.
Conditioned on this event, the third claim follows directly from Cheeger's inequalities.

In more detail, (4.7) implies 1−λ2 > Φ2

2 . Connectedness in turn implies that, for every
subset S of the vertices, the corresponding cut is crossed by at least one edge, so that
its conductance is at least 1/vol(S). But vol(S) 6 |S|·(|S|−1) < n2 deterministically.
This immediately implies 1− λ2 >

1
n4 and thus Claim 3, which completes the proof.

Remark 3. After looking at Lemma 4.15, one may wonder whether it could be
enough to generalize De�nition 4.3 to include �quasi-(2n, d, b, γ)-clustered graphs�, that
is, graphs that are (2n, d, b, γ)-clustered except for a small number of nodes which may
have a much higher degree. In fact, this would be rather surprising: These higher-
degree nodes may connect to the other nodes in a way that would greatly perturb the
eigenvalues and eigenvectors of the graph. In G2n,p,q, besides the fact that there are
few nodes with degree much larger than d, it is also crucial that they are connected in
a non-adversarial way, that is, randomly.

5. Moving beyond two communities: An outlook. The Averaging pro-
tocol can be naturally extended to address the case of more communities. One way
to achieve this is by performing a suitable number of independent, parallel runs of
the protocol. We next outline the analysis for a natural generalization of the regular
block model. We formally state the result in Theorem 5.2, and we give a proof in the
following subsection.

Let G = (V,E) be a d-regular graph in which V is partitioned into k equal-sized
communities V1, . . . , Vk, while every node in Vi has exactly a neighbors within Vi and
exactly b neighbors in each Vj , for j 6= i. Note that d = a+(k−1) ·b. We observe that
the transition matrix P of the random walk on G has an eigenvalue 1 − kb/d with
multiplicity at least k − 1, since all stepwise vectors that are constant within each
community Vi and whose entries sum to zero are eigenvectors of P with eigenvalue
1− kb/d. Moreover, if
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max{λk+1, |λkn|} < (1− ε) ·
(

1− kb

d

)
,

then P has eigenvalues

λ1 = 1, λ2 = · · · = λk =

(
1− kb

d

)
,

with all other eigenvalues strictly smaller by a (1− ε) factor.
The properties discussed above can be leveraged to achieve strong reconstruction

in the regular case we consider in this section. In more detail, let x ∈ RV be a vector.
We say that a node v is of positive (respectively, negative) type with respect to x if
a threshold T = T (x, v) exists such that the value (P tx)(v) increases (respectively,
decreases) with t, for all t > T . Note that, if x were orthogonal to the span of the �rst k
eigenvectors, we might in principle have nodes of neither type, because (P tx)(v) might
not eventually become strictly monotone in t.15 However, if x is chosen uniformly
at random, this is unlikely to happen. On the contrary (see Lemma 5.4), w.h.p. x
has a su�ciently large component in the span of the �rst k eigenvectors, so that for
t > max{T (x, v) : v ∈ V }, the vector P tx is nearly contained in the span of the �rst
k eigenvectors and thus, from the previous paragraphs, up to a �small� additive error,
it can be expressed as a linear combination of vectors that are stepwise constant with
respect to the communities. This implies that, for an initial vector x ∈ {−1, 1}|V |
chosen uniformly at random, all nodes in the same community are of the same type,
w.h.p. (see Lemma 5.4), while nodes from di�erent communities are of di�erent types,
with probability γ (see Lemma 5.5), where γ > 0 is an absolute constant.

We thus consider the parallel procedure where each node initially chooses ` =
Θ(log n) values independently and uniformly at random from {−1, 1} and, to each of
them, applies an independent copy of the Averaging protocol in parallel.

In the proof of Theorem 5.2, we will prove that the arguments outlined above
imply that, starting from the ` random initial vectors x1, . . . ,x`, each in {−1, 1}V ,
the parallel procedure has w.h.p. the following properties: i) every node is either of
positive or negative type for each xi; ii) if we associate a �signature� to each node,
namely, the sequence of ` types, then nodes within the same Vi exhibit the same
signature, while nodes in di�erent Vi, Vj have di�erent signatures.

5.1. Averaging dynamics for k-clustered regular graphs. For n, d, k ∈ N,
we say that a d-regular graph G with kn nodes is (kn, d, b)-regular if a k-partition
of the nodes (V1, V2, . . . , Vk) exists such that, for every i = 1, . . . , k and every j =
1, . . . , k, every node in Vi has exactly b neighbors in Vj , if j 6= i, and thus exactly
d − (k − 1)b neighbors in Vi. We name a = d − (k − 1)b the �inner� degree of each
node.

For a (kn, d, b)-regular graph G = (V,E) and k-partition (V1, . . . Vk) we say that
a vector z = (z(u) : u ∈ V ) is stepwise if for every i = 1, . . . , k and for every
u, v ∈ Vi, z(u) = z(v). Notice that any stepwise vector z such that

∑
u∈V z(u) = 0 is

an eigenvector of the transition matrix P with eigenvalue (a− b)/d = 1− kb/d.
Definition 5.1 (Clustered Regular Graph). A (kn, d, b)-clustered regular graph

G = ((V1, . . . , Vk), E) is a (kn, d, b)-regular graph such that 1 − kb/d is the second

15This, for example, might follow from the presence of negative eigenvalues associated with eigen-
vectors from the (k + 1)-th onward.
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largest eigenvalue of P with multiplicity k − 1, that is, λ2 = · · · = λk = 1− kb/d and
λ = max{λk+1 , |λkn|} < λk.

Theorem 5.2 (More communities). Let G = (V,E) be a (kn, d, b)-clustered
regular graph with k = O(n(1/2)−δ), for an arbitrarily small constant δ > 0, and
assume that λ = max{λk+1, |λkn|} < (1 − ε)

(
1− kb

d

)
, for a suitable constant ε > 0.

Then, for ` = Θ(log n), the Averaging protocol with ` parallel runs produces a strong
reconstruction within O(log n) rounds, w.h.p.

5.2. Proof of Theorem 5.2. We �rst give a formal de�nition of the type of a
node with respect to an initial vector x.

Definition 5.3. Let x ∈ RV be a vector. We say that a node v is of positive
(respectively, negative) type with respect to x if a threshold T = T (x, v) ∈ N exists
such that, for all t > T , the value (P tx)(v) increases (respectively, decreases) with t.

From the spectral decomposition of P , it is easy to see that all nodes are either of
positive or of negative type with respect to any vector x that is not orthogonal to the
span of the �rst k eigenvectors of P .

In Lemmas 5.4 and 5.5 we show that, for an initial random vector x ∈ {−1, 1}kn,
all nodes in the same community have the same type, w.h.p., while nodes in di�erent
communities have di�erent types, with constant probability.

Lemma 5.4. For any i ∈ {1, . . . , k}, if the vector x ∈ {−1, 1}kn is chosen uni-
formly at random, then the nodes of Vi are either all of positive type or all of negative
type, w.h.p., with threshold T (x, v) 6 2 log(n)/ log(λ2/λ) for all v ∈ Vi. Furthermore,
the two events have equal probability.

Proof. We can decompose the vector x as

x = x1 + xVi + x⊥i + x⊥ ,

where x1 is the component of x parallel to 1, xVi is the component parallel to the
vector 1Vi − k−11, x⊥i is the component in the eigenspace of λ2 orthogonal to 1Vi −
k−11, and x⊥ is the component orthogonal to 1 and to the eigenspace of λ2.

For the above to make sense, 1Vi − k−11 must be an eigenvector of λ2, which is
easily veri�ed because its entries sum to zero and it is constant within components.

The reason for picking the above decomposition is that x⊥i is zero in Vi. Indeed,
since x⊥i is orthogonal to 1 and to 1Vi − k−11, from

〈x⊥i ,1〉 = 〈x⊥i ,1Vi − k−11〉 = 0 ,

it follows that 〈x⊥i ,1Vi〉 = 0. Thus, the entries of x⊥i sum to zero within Vi, but,
being in the eigenspace of λ2, the entries of x⊥i are constant within components, and
so they must be all zero within Vi.

According to the above decomposition, we have that

P tx = x1 + λt2xVi + λt2x⊥i + P tx⊥ .

Hence, for each v ∈ Vi,

(5.1) (P t+1x)(v)− (P tx)(v) = λt2 · (1− λ2)(xVi)(v) + ((P t+1 − P t)x⊥)(v) .

For large enough t, that is, when λt2 > n2λt (where λ = max{λk+1, |λkn|}, as de�ned
in the statement of Theorem 5.2), the hypothesis λ < (1− ε)λ2 implies that

(5.2) |(P tx⊥)(v)| 6 ‖P tx⊥‖∞ 6 ‖P tx⊥‖ 6 λt‖x⊥‖ 6
√
n · λt 6 1

n1.5
λt2 .
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Now observe that

(5.3) ‖1Vi − k−11‖2 =
∑
u∈Vi

(
1− 1

k

)2

+
∑

u∈V \Vi

1

k2
=
k − 1

k
n = (1− k−1)n,

whence:

(5.4) ‖xVi‖ =
|〈x,1Vi − k−11〉|
‖1Vi − k−11‖

=
1√

(1− k−1)n

∣∣∣∣∣∣
∑
j∈Vi

x(j)−
∑
j∈V

x(j)

k

∣∣∣∣∣∣ .
Thus, for each v ∈ Vi,

|(xVi)(v)| = |〈x,1Vi − k
−11〉|

‖1Vi − k−11‖
· 1− k−1

‖1Vi − k−11‖

=
1

(1− k−1)n

∣∣∣∣∣∣
∑
j∈Vi

x(j)−
∑
j∈V

x(j)

k

∣∣∣∣∣∣ (1− k−1
)

=
1

n

∣∣∣∣∣∣
∑
j∈Vi

x(j)−
∑
j∈V

x(j)

k

∣∣∣∣∣∣ =

√
1− k−1

n
‖xVi‖ ,

where in the second equality we used (5.3), and in the second-to-last and last steps
we used (5.4). Moreover, observe that

‖xVi‖ =
|〈x,1Vi − k−11〉|
‖1Vi − k−11‖

=
1√

(1− k−1)n
|〈x,1Vi − k−11〉|

=
1√
kn

∣∣∣∣∣
〈
x,

1Vi − k−11√
k−1(1− k−1)

〉∣∣∣∣∣ ,
where in the second equality we used (5.3). If we let y =

1Vi−k
−11√

k−1(1−k−1)
, each entry of

this vector is either

1− k−1√
k−1(1− k−1)

=
√
k − 1 (this is the case for all nodes in Vi)

or

− k−1√
k−1(1− k−1)

= − 1√
k − 1

(this is the case for all nodes not in Vi)

In particular, for every v, 1√
k−1

6 |y(v)| 6
√
k − 1. Hence, by applying Lemma B.2

with m = n, r = 1√
k−1

, c = k − 1, and δ =
√

1
n , we get

P

(
‖xVi‖ 6

√
1

n

)
= P

(
1√
kn
〈x,y〉 6

√
1

n

)

6

√
2k

π
·
√
k − 1

n
+

4(k − 1)√
n

= O
(
k√
n

)
.
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Hence, w.h.p.

(5.5) |(xVi)(v)| >
√

1− k−1

n

√
1

n
=
√

1− k−1 · 1

n
.

Using (5.2) and (5.5) in (5.1), we get that (P t+1x)(v) − (P tx)(v) has the same sign
as (xVi)(v), w.h.p., for all elements of Vi simultaneously, and it is equally likely to be
positive or negative.

Observe that the above lemma also holds for all i simultaneously, w.h.p., by a union
bound.

Lemma 5.5. Let u, v be two nodes in two distinct communities. An absolute
constant γ > 0 exists such that, if x ∈ {−1, 1}kn is chosen uniformly at random,
then the types of u and v are di�erent with probability at least γ and the threshold
T = 2 log(n)/ log(λ2/λ).

Proof. Without loss of generality, assume u ∈ V1 and v ∈ V2. This time we
decompose x as follows

x = x1 + xV1⊕2
+ xV1	2

+ x⊥1,2
+ x⊥ ,

where
• x1 is the component parallel to 1,
• xV1⊕2

is the component parallel to 1V1
+ 1V2

− 2
k1,

• xV1	2 is the component parallel to 1V1 − 1V2 ,
• x⊥1,2 is the component in the eigenspace of λ2 orthogonal to xV1⊕2 and xV1	2

,
• x⊥ is the component of x orthogonal to all the above vectors (i.e., orthogonal
to both the eigenspaces of λ1 and λ2).

Similarly to the proof of Lemma 5.4, the important observations are that xV1⊕2
and

xV1	2 are in the eigenspace of λ2, and that x⊥1,2 is zero in all the coordinates of V1

and of V2. Thus, for each v ∈ V1 ∪ V2 we have that

(5.6) (P t+1x)(v)− (P tx)(v) = λt2(1− λ2)(xV1⊕2
+ xV1	2

)(v) + ((P t+1 − P t)x⊥)(v) .

From (5.6) it is easy to see that, if the initial vector x is such that the two following
conditions hold for every v ∈ V1 ∪ V2,

|(xV1⊕2)(v)| 6 1

2
|(xV1	2)(v)| and(5.7)

|((P t+1 − P t)x⊥)(v)| 6 1

8
λt2 · (1− λ2) · |(xV1	2)(v)| .(5.8)

then for such an initial vector x, all the elements in V1 have the same type, all the
elements of V2 have the same type, and the two types are di�erent.

Now observe that

(xV1⊕2)(v) =
1

2n

(∑
i∈V1

x(i) +
∑
i∈V2

x(i)− 2

k

∑
i∈V

x(i)

)

(xV1	2
)(v) =

1

2n

(∑
i∈V1

x(i)−
∑
i∈V2

x(i)

)
.
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Hence, if the initial vector x satis�es the following three conditions

2
√
n 6

∑
v∈V1

x(v) 6 3
√
n,(5.9)

−2
√
n 6

∑
v∈V2

x(v) 6 −4

3

√
n , and(5.10)

0 6
∑

v∈V/(V1∪V2)

x(v) 6
1

10

√
kn ,(5.11)

then 2n(xV1⊕2)(v) 6 5
3

√
n and 2n(xV1	2)(v) > 10

3

√
n, and we get (5.7).

Finally, observe that, for an initial vector x ∈ {−1, 1}kn chosen uniformly at
random, events (5.9), (5.10) and (5.11) are independent, and each one happens with
constant probability. Thus, for such a random initial vector x, (5.7) holds with con-
stant probability. Moreover, notice that if (5.7) holds then (5.8) is satis�ed, w.h.p.,
for large enough t: for example, as soon as λt2 > n2λt (where λ = max{λk+1, |λkn|},
as de�ned in the statement of Theorem 5.2).

From Lemmas 5.4 and 5.5 it follows that it is enough to pick ` = (3/γ) log n paral-
lel runs to have that the signatures are well de�ned and they are the same within each
community and di�erent between communities, w.h.p. Indeed, Lemma 5.5 ensures
that, for each pair of nodes u, v belonging to distinct communities, the probability
that they are of the same type in all ` runs is smaller than (1 − γ)` 6 eγ` 6 n−3. A
union bound over all pairs of nodes in distinct communities then proves that all pairs
of nodes belonging to distinct communities have distinct type in at least one of the
` runs, w.h.p. Since, from Lemma 5.4, in each run all nodes in the same community
have the same type, w.h.p., it follows that all nodes in the same community have the
same type in all the ` = O(log n) runs, w.h.p.

6. Follow-up and open questions. The contribution of this paper represents
a �rst important step toward a rigorous understanding of the process yielded by an
elementary local rule (that is, a dynamics) when it is applied over clustered net-
works. In particular, our analysis essentially shows that, in this setting, the averaging
dynamics possesses a metastable regime where nodes' states well-re�ect the hidden
communities of the network: interestingly enough, we also show that this property
can be e�ciently exploited by a simple and local coloring criterion that allows fully
decentralized community detection.

We believe that this contribution is important since it can provide reasonable
models to study self-organizing properties observed in fully-decentralized Multi-Agent
Systems having natural local interaction rules [25, 26, 44]. In this setting, we empha-
size three research directions that have been inspired by the conference version of our
paper.

The �rst one is to extend the analysis of the (synchronous) Averaging dynamics
to more general graph classes and multiple, possibly non-balanced, communities. The
general underlying question is whether the temporal evolution of the power method
applied to an initial random vector may provide equivalent information as a spectral
method, without requiring explicit eigenvector computations. A �rst step in this
direction was taken by Becchetti et al [11], who extended the analysis presented in
Section 5. In particular, they showed that a class of graphs exhibiting a milder form
of regularity than the one considered here is the largest class of undirected, possibly
weighted graphs that may contain k stepwise eigenvectors in the presence of a hidden
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k-partition. Graphs belonging to this class need not be regular in general, nor does
the hidden partition need to be balanced. In this case, under suitable conditions,
running multiple, parallel instances of the Averaging dynamics a�ords recovery of
the hidden partition, w.h.p. These results use a connection between volume regularity
and lumpability of Markov chains [71]. At the same time, the analysis presented
in [11] highlights that simple, sign-like rules applied to the power method are unlikely
to distill information equivalent to an explicit eigenvector computation. Apparently,
a more sophisticated approach is needed.

The second line of research concerns the analysis of suitable versions of the averag-
ing dynamics that work in well-established asynchronous, �sparsi�ed� communication
models. Indeed, in the Averaging dynamics considered in this paper, every node
communicates in parallel with all its neighbors at each round. While this might be
too expensive in scenarios characterized by dense topologies, it is simply infeasible
in other settings (for instance, the latter is the case when links represent sporadic
opportunistic meetings that occur asynchronously). Motivated by the above con-
siderations, a �rst line of follow-up work considered �sparsi�ed�, asynchronous vari-
ants of the Averaging protocol that work on the well-known Population Protocol
model [9, 52, 69]. In the latter model, at every round, the end-points of (only) one
link, chosen uniformly at random, can exchange data. According to this model, nodes
are anonymous and cannot use any �xed static subgraph of the underlying graph.
In more detail, Becchetti et al. in [9] consider two averaging protocols, working on
the Population Protocol model, that approximately recover the community structure
in the case of a class of regular clustered graphs having good inner expansion and a
sparse cut. Their local clustering criterion is similar to the one we introduce in this
paper on top of the Averaging dynamics, that is, it is based on the sign of the nodes'
state. Their second-moment analysis show that the protocol converges in O(n log n)
time16 and requires a work per node of order O(polylogn), even in the case of dense
graphs. For the same restricted class of clustered regular graphs with dense cut (i.e.,
when the cut between the clusters has size Θ(|E|)), they also derive a more complex
second-moment analysis of the Averaging dynamics leading to a somewhat weighted
version the Averaging protocol, equipped with a di�erent clustering criterion that is
based on the �uctuations of the nodes' states. This second protocol converges within
O(n log n + n/λ2) rounds and requires O(polylogn + 1/λ2) work per node. Inspired
by our work and [9], Mallmann-Trenn et al. in [52] consider Oja's classic iterative
method for principal components analysis [61], to derive some asynchronous protocols
that approximate the k largest eigenvectors of a graph. Then, they use them to de�ne
a more complex version of the Averaging protocol that gets weak reconstruction
over clustered graphs including the G2n,p,q model for a wide range of parameters p
and q.

According to the aim of �sparsi�cation� discussed above, in [69], Sun and Zanetti
propose a distributed synchronous algorithm that takes a clustered graph as input
and constructs a static, sparse random subgraph that, under some spectral conditions
of the original graph (satis�ed by the stochastic block model), preserves the original
community structure. Then they apply a suitable averaging protocol on the output
subgraph. The resulting protocol works even in the case of more communities and
returns a weak reconstruction within O(polylogn) time and work per-node.

Another interesting direction inspired by our work is the rigorous analysis of well-

16Notice that the opportunistic communication model is sequential so a meaningful comparison
with our parallel, synchronous model requires dividing the time bound by a factor of n.
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known (non-linear) dynamics based on majority rules, when applied to graphs that
exhibit community structure. In [25], Cruciani et al. consider the 2-Choices dynamics
where, at each round, every node picks two random neighbors and updates its value
to the most frequent among its value and those held by its sampled neighbors. They
show that if the underlying graph has a suitable core-periphery structure and the
process starts in a suitable random con�guration, the system reaches a metastable
regime that re�ects the underlying community structure. Similar results have subse-
quently been obtained for regular clustered graphs with dense communities in [26].
Very recently, Shimizu and Takeharu Shiraga [67] consider the 2-Choices and another
simple majority dynamics on G2n,p,q and their ability to compute majority consensus.
In short, they show that this ability undergoes a phase transition depending on the
ratio q/p. One major question left open by the above works on non-linear majority
dynamics is whether they can be used to get e�cient community detection on G2n,p,q.
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Appendix
Appendix A. Linear algebra toolkit.
If M ∈ Rn×n is a real symmetric matrix, then it has n real eigenvalues (counted

with repetitions), λ1 > λ2 > · · · > λn, and we can �nd a corresponding collection of
orthonormal real eigenvectors v1, . . . ,vn such that Mvi = λivi. Thus, if x ∈ Rn is
any vector, then we can write it as a linear combination x =

∑
i αivi of eigenvectors,

where the coe�cients of the linear combination are αi = 〈x,vi〉. In this notation, we
can see that

Mx =
∑
i

λiαivi, and so M tx =
∑
i

λtiαivi .

Lemma A.1 (Cauchy-Schwarz inequality). For any pair of vectors x and y

|〈x,y〉| 6 ‖x‖ · ‖y‖ .

Observation 1. For any matrix A and any vector x

‖Ax‖ 6 ‖A‖ · ‖x‖ , and ‖A ·B‖ 6 ‖A‖ · ‖B‖ .

Theorem A.2. (Corollary 4.10 in [68]) Let M1 and M2 be two Hermitian ma-
trices, let λ1 > λ2 > · · · > λn be the eigenvalues of M1 with multiplicities in non-
increasing order, and let λ′1 > λ′2 > · · · > λ′n be the eigenvalues of M2 with multiplic-
ities in non-increasing order. Then, for every i,

|λi − λ′i| 6 ‖M1 −M2‖.

Theorem A.3 (Berry and Essen, Berry's formulation [13]). Consider n in-
dependent random variables X1, . . . , Xn such that for every i: i) E [Xi] = 0, ii)
σ2
i = E

[
X2
i

]
> 0, and iii) ρi = E

[
|Xi|3

]
is �nite. Let

σ2 =
∑
i

σ2
i and ψ =

maxi
ρi
σ2
i

σ
.

Denote by F (x), the cumulative distribution function (for short, c.d.f.) of the variable
X =

∑n
i=1Xi and by G(x) the c.d.f. of a Gaussian distribution with mean 0 and

variance σ2. Then there exists an absolute constant C0 > 0 such that

sup
x
|F (x)−G(x)| 6 C0ψ .

Theorem A.4 (Davis and Kahan, 1970). Let M1 and M2 be two symmetric
real matrices, let x be a unit length eigenvector of M1 of eigenvalue t, and let xp
be the projection of x on the eigenspace of the eigenvectors of M2 corresponding to
eigenvalues 6 t− ε. Then

‖xp‖ 6
2

επ
‖M1 −M2‖ .

Appendix B. Length of the projection of x.
For the analysis of the Averaging dynamics on both regular and non-regular

graphs, it is important to understand the distribution of the projection of x on 1 and
χ, that is (up to scaling) the distribution of the inner products 〈x,1〉 and 〈x,χ〉. In
particular we are going to use the following bound.
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Lemma B.1. Let y ∈ {−1, 1}2n an arbitrary vector with ±1 entries. If we pick x
uniformly at random in {−1, 1}2n then, for any δ > 0,

P
(∣∣(1/√2n)xᵀ y

∣∣ 6 δ
)
6 O(δ) .

Proof. Since x is a vector of independent and uniformly distributed random vari-
ables in {−1, 1}, xᵀy is distributed according to a sum of 2n Rademacher random
variables. Such a sum takes value 2k − 2n with probability 1

2n

(
2n
k

)
, and so every

possible value has probability at most 1
2n

(
2n
n

)
≈ 1√

2πn
. Consequently, if R is the sum

of 2n Rademacher random variables, we have P
(
|R| 6 δ

√
2n
)
6 O(δ).

Although it is possible to argue that a Rademacher vector has Ω(1) probability of
having inner product Ω(‖y‖) with every vector y, such a statement does not hold
w.h.p. We do, however, have estimates of the inner product of a vector y with a
Rademacher vector x provided that y is close to a vector in {−1, 1}2n.

Lemma B.2. Let k,m ∈ N be two integers and let y be an mk-dimensional vector
with real entries. Given two positive real numbers r and c, let S be the subset of
coordinates of y whose absolute value is between r and cr, i.e.,

S = {i ∈ {1, . . . , km} : r 6 |y(i)| 6 cr} .

If |S| > m and we pick x uniformly at random in {−1, 1}km, then for every δ > 0

P
(∣∣(1/√km)xᵀ y

∣∣ 6 δ
)
6

√
2k

π
· δ
r

+
4c√
m
.

Proof. Let T = {1, . . . , km}−S. In the remainder of this proof, the restriction of
x to entries in T will be denoted by xT . Clearly, xT is independent of x(i) for every
i ∈ S. Next, we prove that, for any �xed a ∈ {−1, 1}|T |,

(B.1) P
(
|xᵀy| 6 δ

√
km

∣∣∣ xT = a
)
6

√
2k

π
· δ
r

+
4c√
m
.

Observe that the lemma is a consequence of the above bound since

P
(
|xᵀy| 6 δ

√
km
)

=
∑

a∈{−1,1}|T |
P
(
|xᵀy| 6 δ

√
km

∣∣∣ xT = a
)
P (xT = a)

6

(√
2k

π
· δ
r

+
4c√
m

) ∑
a∈{−1,1}|T |

P (xT = a) =

√
2k

π
· δ
r

+
4c√
m
,

where the last equality follows since the P (xT = a)'s obviously sum to 1. In order to
prove (B.1), we de�ne

t =
∑
i∈T

a(i)y(i) ,

and show that, conditioned on xT = a, with a ∈ {−1, 1}|T |,

P

(
|
∑
i∈S

x(i)y(i) + t | 6 δ
√
km

∣∣∣∣∣ xT = a

)
6

√
2k

π
· δ
r

+
4c√
m
.
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To this purpose, we �rst write

P

(
|
∑
i∈S

x(i)y(i) + t | 6 δ
√
km

∣∣∣∣∣ xT = a

)
=

= P

(
−t− δ

√
km 6

∑
i∈S

x(i)y(i) 6 −t+ δ
√
km

∣∣∣∣∣ xT = a

)
.

Next, we apply the Berry-Esseen theorem A.3, with Xi = x(i)y(i), for every i ∈
S. In particular, our hypotheses on y and the fact the the x(i)'s are Rademacher
random variables imply: i) E [Xi] = 0, ii) σ2

i = y(i)2, iii) ρi = |y(i)|3. Moreover,
ρi/σ

2
i = |y(i)|, so that our hypotheses on y in turn imply maxi(ρi/σ

2
i ) 6 cr. Finally,

σ2 =
∑
i σ

2
i > mr2. As a consequence, we can apply Theorem A.3 to

∑
i∈S x(i)y(i),

with ψ 6 2c√
m

to obtain17

P

(∣∣∣∣∣∑
i∈S

x(i)y(i) + t

∣∣∣∣∣ 6 δ
√
km

∣∣∣∣∣ xT = a

)
6

6 P
(
−t− δ

√
km 6 g 6 −t+ δ

√
km
)

+
4c√
m
,

where g is a Gaussian random variable of mean 0 and variance σ2. Finally:

P
(
−t− δ

√
km 6 g 6 −t+ δ

√
km
)

=
1√

2σ2π

∫ −t+δ√km
−t−δ

√
km

e−
s2

2σ2 ds

6
2δ
√
km√

2πr2m
=

√
2k

π
· δ
r
,

where we used the fact that e−s
2/2σ2

6 1 for all s. This concludes the proof.

17In the following, we use the fact that the constant C0 > 0 that appears in the claim of Theorem
A.3 is less than 2 (see [13]).
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