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Abstract

We investigate the equilibrium configurations of closed planar elastic curves of fixed length, whose stiffness,
also known as the bending rigidity, depends on an additional density variable. The underlying variational
model relies on the minimization of a bending energy with respect to shape and density and can be considered
as a one-dimensional analogue of the Canham-Helfrich model for heterogeneous biological membranes. We
present a generalized Euler-Bernoulli elastica functional featuring a density-dependent stiffness coefficient.
In order to treat the inherent nonconvexity of the problem we introduce an additional length scale in the
model by means of a density gradient term. We derive the system of Euler-Lagrange equations and study the
bifurcation structure of solutions with respect to the model parameters. Both analytical and numerical results
are presented.
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1 Introduction

We investigate the equilibrium configurations of elastic curves featuring an additional scalar density variable
which influences the bending rigidity. Our interest is motivated by the variational modelization of the shapes
of biological membranes, originally proposed by Canham [6] and Helfrich [15] to explain the characteristic
biconcave shape of a human red blood cell. According to this model, the equilibrium membrane shape Σ
minimizes the bending energy

�CH(Σ) =
∫
Σ

(
�

2 (� − �0)2 + �  
)

d(

under suitable constraints on membrane area and enclosed volume. Here, Σ is a smooth closed surface em-
bedded in R3, � and  are the mean and the Gauss curvature of Σ, respectively, and the material parameters
comprise the stiffnesses (bending rigidities) � > 0, � < 0 as well as the spontaneous curvature �0 ∈ R. The
material parameters of heterogeneous biomembranes are assumed to depend on the variable membrane com-
position, which is described by a scalar function � : Σ→ R which we interpret as a density of fixed total mass.
On the other hand, the geometry of themembrane influences the distribution of the density �, which originates
a coupling effect between curvature and composition. Indeed, the energy for heterogeneous biomembranes has
to be minimized with respect to both membrane geometry Σ and composition � simultaneously. Configu-
rations featuring this coupling have been experimentally observed for example by Baumgart, Hess, & Webb
[3] in case of giant unilamellar vesicles. Furthermore, the coupling effect also plays an essential role in the
dynamic morphology changes of cells, where special curved membrane proteins are involved, cf. McMahon
& Gallop [21].
Results on the mathematical analysis of the variational problem for heterogeneous biomembranes have been
obtained by Choksi, Morandotti, & Veneroni [7] and Helmers [17], who proved the existence of multiphase
minimizers in the axisymmetric regime. By dropping the symmetry restriction, existence of multiphase
minimizers has been recently obtained by [5] in the weak setting of varifolds. For a collection of recent results
on both single- andmultiphase Canham-Helfrich models the reader is referred to [2, 5, 10, 12, 13, 19, 22, 24, 26].
To the best of our knowledge, proving existence of minimizers for membranes featuring continuous phase
densities and general material parameter models is an open problem. We move a first step in this direction in
the present paper, by focusing on the lower-dimensional setting of curves instead. A classical elastic curve in
the plane, � : [0, !] → R2, minimizes the Euler-Bernoulli elastic bending energy (also known as the Willmore
energy)

�(�) = 1
2

∫
�
�2 dB,

where � is the scalar curvature of �. The stationary points are called elasticae and can be analytically described
in terms of elliptic functions. As was already clear to Euler, the only closed elasticae of fixed length in the plane
are the circle and Bernoulli’s Figure-8 curve, the single covered circle being the unique global minimizer of �,
see for example Truesdell [25] and Langer & Singer [18].
We now modify the setting by taking the additional scalar density � into the picture. The density �modulates
the elastic behavior of the curve. For this purpose we consider the following elastic bending energy with
density-modulated stiffness,

�0(�, �) = 1
2

∫
�
�(�)�2dB.

Our interest lies on the effects of the variable stiffness � and we dispense with the spontaneous curvature �0,
for simplicity. In order to take into account the coupling between shape and composition, we have to minimize
�0 with respect to both � and �. Admissible curves � are asked to be planar, regular, �1-closed, and have fixed
length !, whereas admissible densities � are required to have fixed mass

∫
�
�dB = ".

The application of the Direct Method for the minimization of �0 calls for checking lower semicontinuity with
respect to weak topologies, which in turn asks for the convexity of the integrand of �0. Yet, if such convexity
is imposed, only the trivial minimizer exists, namely the constant density �0 = "/! on a circle with curvature
�0 = 2�/!. This however is insufficient for describing the rich geometric morphologies that can be observed in
biological membranes.
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In the following, we will therefore not assume convexity of the integrand of �0. This lack of convexity may
however lead to nonexistence of minimizers, see Section 3 below. We are hence forced to consider a regularized
energy ��, featuring an additional length scale in terms of a gradient term in �, namely,

��(�, �) = 1
2

∫
�

(
�(�)�2 + � ¤�2) dB, (1.1)

where ¤� := d
dB �. The parameter � may be physically interpreted as the diffusivity of the density, cf. (2.5). For

� large, the only minimizer is the trivial one, see Proposition 3.3. By lowering � one observes the onset of
bifurcations from the trivial state. The main focus of this paper is the rigorous bifurcation analysis in terms
of �. We analytically classify the bifurcation behavior of solutions of the Euler-Lagrange equations of ��.
Moreover, we provide an exhaustive suite of numerical experiments, illustrating the distinguished patterning
of minimizers of ��, depending on �.
A variational model for planar elastic curveswith density has also been studied byHelmers [16]. He focused on
the effect of spontaneous curvature and established a Γ-convergence result to the sharp interface limit. Let us
mention also the recent work by Palmer & Pámpano [23], who presented analysis and numerics for the shapes
of elastic rods with anisotropic bending energies.
We conclude this introduction by presenting the outline of the paper. In Section 2, we briefly describe the
mathematical setting and explain our notation. Section 3 is devoted to the justification of ourmodel by existence
and nonexistence results for minimizers. In Section 4 we analytically discuss the local bifurcation structure of
solutions to the associated Euler-Lagrange equations. Numerical results for the bifurcation branches as well as
for the configurations of the curves are presented in Section 5. Finally, Section 6 summarizes our findings.

2 Mathematical setting

We devote this section to make the mathematical setting precise and fix notation.

2.1 Notation and preliminaries on curves

We collect some basic information on curves [11]. In the following, we will consider closed planar curves
� ∈ �2(T!)2, where T! := R/!Z is the one-dimensional torus with period ! > 0. The fact that �2(T!) ⊂ �1(T!)
ensures that � : [0, !] → R2 represents a �1-closed curve and �(0) = �(!) and ¤�(0) = ¤�(!). We systematically
assume � to be parametrized by arc-length B, namely, | ¤� | = 1. This induces that ¥� ∈ !2(T!)2 is orthogonal to
¤�. The normal vector = to the curve is defined pointwise by counterclockwise rotating ¤� by �/2. That is, by
denoting �(B) = (G(B), H(B)), =(B) = ¤�(B)⊥ := (− ¤H(B), ¤G(B)). The rate of change of ¤� in direction = is measured by
the scalar curvature � = = · ¥� = det( ¤�, ¥�) ∈ !2(T!) of the curve, so that ¥� = (= · ¥�) = = � =.
The inclination angle � ∈ !2(T!) is the angle between the G-axis and the tangent ¤�, that is ¤� = ( ¤G, ¤H) =
(cos�, sin�). Note that in even for smooth �, � is discontinuous on T!. However, the map B ↦→ �(B) − 2�

! � B

is an element of �1(T!), where the rotation index of the curve � ∈ Z counts the number of complete turns of ¤�
according to the standard orientation, see below. The curvature function � ∈ !2(T!) uniquely determines the
curve � ∈ �2(T!)2 up to translations and rotations in R2 [11, Section 1-5, pp. 19, 24, and Section 1-7, p. 36]. In
particular, if | ¤� | = 1, then

� = ¤�, �(B′) = �(0) +
∫ B′

0
�(B′′)dB′′, and �(B) =

(
G(B)
H(B)

)
=

(
G(0)
H(0)

)
+

∫ B

0

(
cos�(B′)
sin�(B′)

)
dB′. (2.1)

Identifying all curves whose images only differ by isometries in R2, one may adapt the coordinate system to
G(0) = H(0) = �(0) = 0, corresponding indeed to the choice �(0) = (0, 0) and ¤�(0) = (1, 0). A curve � ∈ �2(T!)2
parametrized by arc-length satisfies the following identities:

0 = �(!) − �(0) =
∫ !

0
¤�(B)dB =

∫ !

0

(
cos�(B)
sin�(B)

)
dB =

∫ !

0

©«
cos

(
�(0) +

∫ B

0 �(C)dC
)

sin
(
�(0) +

∫ B

0 �(C)dC
) ª®¬dB ,

0 = ¤�(!) − ¤�(0) = (cos�(!) − cos�(0), sin�(!) − sin�(0)) .

The latter is equivalent to �(!) − �(0) =
∫ !

0 �(B)dB = 2� �. A curve � : [0, !] → R2 is called simple if it is an
injective map and regular, if it is �1 and ¤�(C) ≠ 0 for all C ∈ [0, !]. By the Theorem of Turning Tangents [11,
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Section 5-6, Theorem 2, p. 396], a simple �1-closed regular planar positively oriented �1 curve has rotation
index � = 1. This allows us to represent a simple �1-closed curve � ∈ �2(T!)2 parametrized by arc-length by
its inclination angle �, granted that � − 2�

! � B ∈ �1(T!) and

�(0) = 0, �(!) = 2� and
∫ !

0

(
cos�(B)
sin�(B)

)
dB = 0,

or by its curvature � ∈ !2(T!), additionally satisfying∫ !

0
�(B)dB = 2� and

∫ !

0

©«
cos

(∫ B

0 �(C)dC
)

sin
(∫ B

0 �(C)dC
) ª®¬dB = 0.

Eventually, note that by requiring a planar curve to be closed restricts the possible curvature functions. Ac-
cording to the Four Vertex Theorem [11, Section 1-7, Theorem 2, p. 37], a smooth simple closed regular planar
curve has either constant curvature (i.e. is a circle) or the curvature function possesses at least four vertices,
i.e. two local minima and two local maxima. The converse statement is given in [9]: every continuous function
which either is a nonzero constant or has at least four vertices is the curvature of a simple closed regular planar
curve.

2.2 Elastic energies with modulated stiffness

We consider planar curves � ∈ �2(T!)2 parametrized by arc-length. With no loss of generality, we will assume
from now on the length ! of the curve to be 2�. The scalar density field � : [0, 2�] → R is considered to be a
function of the arc-length of the curve. Moreover, we are given a density-modulated stiffness

� ∈ �2(R) with inf � =: �< > 0. (2.2)

In the following, we will assume (2.2) to hold throughout, without explicit mention. Note however that some
results in this section are valid under weaker conditions on � as well.
Admissible curves are defined as elements of the set

� :=
{
� ∈ �2(T2�)2 : | ¤� | = 1, �(0) = �(2�) = (0, 0), ¤�(0) = ¤�(2�) = (1, 0),

∫ 2�

0
det( ¤�(B), ¥�(B))dB = 2�

}
.

In particular, admissible curves are planar, arc-length parametrized, and �1-closed. Note that we are not
enforcing injectivity of � (i.e. � being simple) and we just require the weaker condition � = 1. This simplifies
our tractation, having no effect on the bifurcation result (Section 4).
By the representation theorem forplane curves, any admissible curve � ∈ � canbe recovered from its inclination
angle � or its curvature �. Correspondingly, we can equivalently indicate admissible curves as

� =

{
� ∈ !2(T2�) : � − B ∈ �1(T2�),

∫ 2�

0

(
cos�(B)
sin�(B)

)
dB =

(
0
0

)
, �(0) = 0

}
(2.3)

or

� =

� ∈ !2(T2�) :
∫ 2�

0

©«
cos

(∫ B

0 �(C)dC
)

sin
(∫ B

0 �(C)dC
) ª®¬dB =

(
0
0

)
,

∫ 2�

0
�(B)dB = 2�

 .
The abuse of notation in defining the set � is motivated by the above-mentioned equivalence of the represen-
tations via �, �, and �, up to fixing �(0) = (0, 0) and ¤�(0) = (1, 0) or �(0) = 0.
Admissible densities � are asked to have fixed total mass. By possibly redefining �, one may assume such mass
to be 2�, which simplifies notation. Given the parameter � ∈ [0,∞), we define

� :=
{
� ∈ !1(T2�) : �� ∈ �1(T2�),

∫ 2�

0
�(B)dB = 2�

}
. (2.4)

For the sake of simplicity, we do not restrict the values of � to be nonnegative, whichwould however be sensible,
for � is interpreted as a density. Note however that this simplification has no effect on the bifurcation results,
which are actually addressing a neighborhood of the trivial state only, where � is constant and positive.
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The elastic energy with modulated stiffness is defined as

��(�, �) :=
∫ 2�

0

(
1
2�(�) ¥�

2 + �

2
¤�2

)
dB. (2.5)

Note that the energy �� can be equivalently rewritten as ��(�, �) = ��(�, �) = ��(�, �), again by abusing
notation.
We identify elastic curveswithmodulated stiffness asminimizers of ��. In particular, we consider the following
minimization problem

min
(�,�)∈�×�

��(�, �). (2.6)

In contrast to the classical Euler-Bernoulli model for elasticae [18, 25], which is a purely geometric variational
problem, here the density plays an active role in the selection of the optimal geometry.

3 Existence and nonexistence

As mentioned in the Introduction, the minimization of �0 turns out to be of limited interest. Indeed, if the
integrand

Φ(�, �) = 1
2�(�)�

2

is strictly convex, problem (2.6) for � = 0 admits only the trivial solution

(�0 , �0) := (1, 1). (3.1)

This can be directly checked via Jensen’s inequality by computing, for any (�, �) ∈ � ×�,

�0(�, �) =
∫ 2�

0
Φ(�, �)dB Jensen≥ 2�Φ

(
1

2�

∫ 2�

0
�dB, 1

2�

∫ 2�

0
� dB

)
= 2�Φ(1, 1) = �0(�0 , �0)

where the inequality is strict whenever � or � are not constant, namely, whenever (�, �) ≠ (�0 , �0). Let us
mention that the integrand Φ is strictly convex if and only if

�′′ > 0 and �′′� > 2(�′)2. (3.2)

In order to allow the complex geometrical patterning of biological shapes to possibly be described by the
minimization problem (2.6), one is hence forced to dispense of (3.2), for in that case the only minimizer of �0
(and, a fortiori ��) would be the trivial one (�0 , �0). In the setting of our bifurcation results, our choices for �
will then fulfill

�′′(�) ≤ 0 or �′′(�)�(�) ≤ 2(�′(�))2 for some � ≥ 0, (3.3)

at least in a neighborhood of the trivial state �0.
On the other hand, lacking convexity of the integrandΦ, the energy �0 fails to be weakly lower semicontinuous
on � × �, e.g. [14, Thm. 5.14], and existence of minimizers may genuinely fail. We collect a remark in this
direction in the following.

Proposition 3.1 (No minimizers for �0). Assume that

�(0) < �(�) ∀� > 0. (3.4)

Then, the minimization problem (2.6) with � = 0 admits no solution.

Before moving to the proof, let us point out that condition (3.4) implies in particular that Φ is not convex.
Indeed, if Φwere convex, one could take any � > 0 and � ∈ (0, 1) and compute

1
2�(�)�

2
0 = lim

�→1
Φ

(
�(0, �0/�) + (1 − �)(�/(1 − �), 0)

)
≤ lim

�→1

(
�Φ(0, �0/�) + (1 − �)Φ(�/(1 − �), 0)

)
= lim

�→1
�Φ(0, �0/�) = 1

2�(0)�
2
0 ,

contradicting (3.4). Note that the role of the value �0 in the latter computation is immaterial as one can argue
with any � ≠ 0.

5



Proof of Proposition 3.1. Let us show that �0 cannot be minimized on� ×�. We firstly remark that

�0(�, �)
(3.4)≥ �0(0, �)

Jensen≥ �0(0, �0) ∀(�, �) ∈ � ×�. (3.5)

In fact, the first inequality is strict as soon as �� . 0 almost everywhere while the second one is strict as soon
as � is not constantly equal to �0 (recall that �(0) > 0). For all � ∈ (0, 1), we now define

��(B) =


0 for B ∈ [0,��]
�0/(1 − �) for B ∈ (��,�]
0 for B ∈ (�, (1 + �)�]
�0/(1 − �) for B ∈ ((1 + �)�, 2�],

��(B) =


�0/� for B ∈ [0,��]
0 for B ∈ (��,�]
�0/� for B ∈ (�, (1 + �)�]
0 for B ∈ ((1 + �)�, 2�].

We now check that (�� , ��) ∈ � ×�. Indeed,∫ 2�

0
��dB = 2�(1 − �) �0

1 − � = 2��0 = 2�,
∫ 2�

0
��dB = 2���0

�
= 2��0 = 2�.

Moreover, by letting  �(B) =
∫ B

0
��(A)dA, namely,

 �(B) =


�0B/� for B ∈ [0,��]
�0� for B ∈ (��,�]
�0(B − (1 − �)�)/� for B ∈ (�, (1 + �)�]
�02� for B ∈ ((1 + �)�, 2�],

we can compute∫ 2�

0
cos

(∫ B

0
��(A)dA

)
dB =

∫ 2�

0
cos( �(B))dB

=

∫ ��

0
cos(�0B/�)dB +

∫ �

��
cos(�0�)dB +

∫ (1+�)�

�
cos(�0(B − (1 − �)�)/�)dB +

∫ 2�

(1+�)�
cos(2�0�)dB

=
�
�0

sin (�0�) − �
�0

sin 0 + cos(�0�)(1 − �)� + �
�0

sin (2�0�) − �
�0

sin (�0�) + cos(2�0�)(1 − �)�
= � sin� − � sin 0 + (cos�)(1 − �)� + � sin 2� − � sin� + (cos 2�)(1 − �)� = 0,

and analogously∫ 2�

0
sin

(∫ B

0
��(A)dA

)
dB =

∫ 2�

0
sin( �(B))dB

= −� cos� + � cos 0 + (sin�)(1 − �)� − � cos 2� + � cos� + (sin 2�)(1 − �)� = 0.

The latter ensures in particular that (�� , ��) ∈ � ×�.
Let us now compute

�0(�� , ��) = ��0(0, �0/�) + (1 − �)�0(�/(1 − �), 0) = ��0(0, �0/�)
and note that �0(�� , ��) → �0(0, �0) as � → 1. Owing to (3.5), this entails that �0(�� , ��) is an infimizing
sequence on � ×�. On the other hand, the value �0(0, �0) cannot be reached in � ×�. Indeed, assume by
contradiction to have (�, �) ∈ � × � with �0(�, �) = �0(0, �0). Recalling (3.5), we have that �� = 0 almost
everywhere and � = �0. This entails that � = 0 almost everywhere so that necessarily (�, �) = (0, �0), which
however does not belong to � ×�. �

Despite the lack of lower semicontinuity and the possible nonexistence of minimizers of variational problems,
in some cases information may still be retrieved by analyzing the structure of infimizing sequences, see [1].
This perspective seems however to be of little relevance here. Assume (�, �) to be a minimizer of �0 in � ×�

and let (�# , �#) denote its periodic extension to R. Let the fine-scaled trajectories

�=(B) = �#(=B), �=(B) = �#(=B) ∀B ∈ [0, 2�]
be defined. One may check that (�= , �=) ∈ � ×� as well and that �0(�= , �=) = �0(�, �), so that all (�= , �=) are
minimizers (infimizing, in particular). On the other hand, (�= , �=) weakly converges to its mean (�0 , �0). This
shows that, the limiting behavior of infimizing sequences may deliver scant information, for we recover the
trivial state.
These facts motivate our interest for focusing on the case � > 0 in the minimization problem (2.6). In contrast
to the case � = 0 of Proposition 3.1, energy �� can be minimized in � ×� for all � > 0.

6



Proposition 3.2 (Existence for � > 0). Let � > 0. Then, the minimization problem (2.6) admits a solution.

Proof. This is an immediate application of theDirectMethod. Let (�= , �=) ∈ �×� be an infimizing sequence for
�� (such a sequence exists, for ��(�0 , �0) > −∞). We can assumewith no loss of generality that sup��(�= , �=) <
∞. In particular, as � ≥ �< > 0 we have that �= and �= are uniformly bounded in �1(T2�) and in !2(T2�),
respectively. This implies, at least for a not relabeled subsequence, that �= ⇀ � in �1(T2�) hence strongly in
�(T2�) and �= ⇀ � in !2(T2�). We can hence pass to the limit in the relations∫ 2�

0
�= dB = 2�,

∫ 2�

0

©«
cos

(∫ B

0 �=(C)dC
)

sin
(∫ B

0 �=(C)dC
) ª®¬dB =

(
0
0

)
,

∫ 2�

0
�= dB = 2�

and obtain that (�, �) ∈ � × � as well. Moreover, �(�=) → �(�) strongly in �(T2�) as � is locally Lipschitz
continuous. This implies that (�(�=))1/2�= ⇀ (�(�))1/2� in !2(T2�) and lower semicontinuity ensures that
��(�, �) ≤ lim inf=→∞ ��(�= , �=) = inf��, so that (�, �) is a solution of problem (2.6). �

The parameter � is a datum of the problem and it is in particular related to the characteristic length scale at
which � changes along the curve. If � is chosen to be large comparedwith the length of the curve, theminimizer
is again forced to be trivial. Let us make these heuristics precise in the following.

Proposition 3.3 (Trivial minimizer for � large). For � large enough, the trivial state (�0 , �0) is the unique solution of
the minimization problem (2.6).

Proof. We structure the proof into two steps. In Step 1 we show that, for � large, the trivial state D0 = (�0 , �0)
with �0 = 1 and �0(B) = B is a strict minimizer in a neighborhood which is independent of �. In Step 2, we
prove that all minimizers converge to D0 in the �1 norm as �→∞. The combination of these two steps entails
then that all minimizers necessarily coincide with D0 for � sufficiently large, for they are arbitrarily close to D0
(Step 2) which is locally the unique minimizer (Step 1).
Step 1: The trivial state is a strict local minimizer. Let us check that, for � large enough, the second variation
�2��(D0) of �� = 1

2

∫ 2�
0 (�(�) ¤�2 + � ¤�2)dB is positive. Indeed, for the arbitrary directions D1 = (�1 , �1) and

D̃1 = (�̃1 , �̃1), we can compute

�2��(D0)(D1 , D̃1) =
∫ 2�

0

(
1
2�
′′(�0) ¤�2

0 �1�̃1 + �′(�0) ¤�0

(
¤�1�̃1 + �1

¤̃�1

)
+ �(�0) ¤�1

¤̃�1 + �2 ¤�1 ¤̃�1

)
dB,

which is uniformly continuous around D0. In particular, with ¤�0 = 1 and rearranging terms,

�2��(D0)(D1 , D1) =
∫ 2�

0

(
� ¤�2

1 + �(�0) ¤�2
1 + 2�′(�0)�1 ¤�1 + �′′(�0)

2 �2
1

)
dB.

By integrating by parts and using the Cauchy-Schwarz inequality in the third term we get

�2��(D0)(D1 , D1) ≥ �

∫ 2�

0
¤�2
1 dB + �(�0)

∫ 2�

0
¤�2
1 dB

−
(
4�′(�0)2
��(�0)

) 1
2

‖ ¤�1‖!2(0,2�)
(
��(�0)

) 1
2 ‖�1‖!2(0,2�) −

|�′′(�0)|
2

∫ 2�

0
�2

1 dB,

where � is the Poincaré constant on (0, 2�). Using again Poincaré’s inequality to bound the second and last
term in the right-hand side above, and Young’s inequality for the third term we are left with

�2��(D0)(D1 , D1) ≥
(
� − 2�′(�0)2

��(�0) −
|�′′(�0)|

2�

) ∫ 2�

0
¤�2
1 dB + �(�0)

2

∫ 2�

0
¤�2
1 dB,

which is positive for

� >
2�′(�0)2
��(�0) +

|�′′(�0)|
2� .

As �2��(D0) is positive, D0 minimizes �� on some neighborhood *� ⊂ � ×� for � ≥ �0 and for some �0 > 0.
Since �� is increasing in � and ��(D0) does not depend on �, *� may be taken to be increasing in � as well.
Thus, D0 minimizes �� on*�0 for all � ≥ �0.

7



Step 2: Global minimizers converge to the trivial state. We next prove that, for any � > 0 there exists �2 > 0 such
that for any � > �2 , any global minimizer (�, �) of �� is such that

‖� − �0‖!2(0,2�) + ‖� − �0‖!2(0,2�) . ‖ ¤�‖!2(0,2�) + ‖ ¤� − ¤�0‖!2(0,2�) < � (3.6)

where we use the sign . to indicate the implicit occurrence of a constant just depending on data. In fact, we
have that

��(�0 , �0) ≥ ��(�, �) =
∫ 2�

0

(
1
2�(�)

¤�2 + �

2
¤�2

)
dB

≥
∫ 2�

0

(
1
2�<
¤�2 + �

2
¤�2

)
dB ≥

∫ 2�

0

(
1
2�<
¤�2
0 +

�

2
¤�2

)
dB, (3.7)

since �0 minimizes the Dirichlet energy
∫ 2�

0
¤�2 dB under the conditions �(0) = 0, �(2�) = 2�. Since ��(�0 , �0) =

1
2

∫ 2�
0 �(�0) ¤�2

0 = ��(�0) < ∞, both terms in the above right-hand side are bounded. We hence deduce that∫ 2�
0
¤�2 dB is bounded uniformly in � and

∫ 2�
0 ¤�2 dB = $(�−1) = >(�−1/2), so that there exists �1 > 0 such that for

� > �1 we have
∫ 2�

0 ¤�2 dB < �/2. Now, � ∈ � implies
∫ 2�

0 (� − �0)dB = 0 and by the Poincaré inequality as well
as the continuous embedding in !∞(0, 2�),

‖� − �0‖!∞(0,2�) . ‖ ¤�‖!2(0,2�) = >(�−1/4),
and, by the local Lipschitz continuity of �,

‖�(�) − �(�0)‖!∞(0,2�) = >(�−1/4).
This allows us to refine estimate (3.7) as follows:

��(�0 , �0) ≥ ��(�, �) ≥
∫ 2�

0

(
1
2�(�0) ¤�2

0 +
�

2
¤�2

)
dB + >(�−1/4) = ��(�0 , �0) + �

2

∫ 2�

0
¤�2dB + >(�−1/4),

from which we get lim
�→∞�

∫ 2�
0 ¤�2 dB = 0, and then

lim
�→∞��(�, �) = lim

�→∞

∫ 2�

0

1
2�(�)

¤�2 dB = ��(�0 , �0).

Finally, we control ����∫ 2�

0

1
2�(�)

¤�2 dB − ��(�0 , �0)
���� = ����∫ 2�

0

�(�0)
2 ( ¤�2 − ¤�2

0)dB + >(�−1/4)
���� ,

so to prove that lim
�→∞

∫ 2�
0
¤�2 dB = lim

�→∞
∫ 2�

0
¤�2
0 dB = 2�. This is enough to conclude that

lim
�→∞ ‖ ¤� − ¤�0‖!2(0,2�) = 0.

We can then choose �2 such that, for � > �2, ‖ ¤� − ¤�0‖!2(0,2�) < �/2 and set �2 = max{�1 , �2} for which the
second inequality in (3.6) holds. The first inequality follows from Poincaré’s inequality. �

We present now a symmetry result which will turn out useful later on, when interpreting the numerical
findings.

Proposition 3.4 (Symmetry of ��). If (�, �) is a local minimizer of �� for �, then (2�0 − �, �) is a local minimizer of
�� for �̃, defined as �̃(�) = �(2�0 − �).

Proof. The integrand is unchanged by this transformation, so that the first and second variations of �� at (�, �)
and (2�0 − �, �)when considering respectively � and �̃ are identical. �
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4 Bifurcation analysis

By Proposition 3.3, the circle with constant density is the global minimizer of the energy �� (1.1) for large
enough values of the diffusivity �. In this section candidates for nontrivial minimizers are constructed by
bifurcation from this trivial critical point with decreasing � > 0 as bifurcation parameter. The analysis will be
based on the Euler-Lagrange equations of a suitable Lagrangian, incorporating the constraints of closedness
of the curve and of given total mass. Additional auxiliary conditions will eliminate symmetries resulting from
arbitrary positioning of the curve in the plane.

4.1 Euler-Lagrange equations

We introduce the Lagrange multipliers (�G ,�H) ∈ R2 for the closedness constraint and �" ∈ R for the mass
constraint (cf. the definitions (2.3) and (2.4) of admissible � and � respectively), and define the Lagrangian

ℒ(D̄) := 1
2

∫ 2�

0

(
�(�) ¤�2 + � ¤�2

)
dB +

∫ 2�

0
(�G cos� + �H sin� + �"(� − 1))dB ,

with D̄ = (�, �,�G ,�H ,�"), where �, � − B ∈ �1(T2�). Critical points of the energy subject to the constraints
solve the Euler-Lagrange equations

� ¥� − 1
2 �′(�) ¤�2 = �" , (4.1)

3

3B

(
�(�) ¤�

)
= −�G sin� + �H cos� , (4.2)

along with the boundary conditions

�(2�) − �(0) = 0 , ¤�(2�) − ¤�(0) = 0 , �(0) = 0 , �(2�) = 2� , (4.3)

and mass and closedness constraints∫ 2�

0
�dB = 2� ,

∫ 2�

0

(
cos�
sin�

)
dB =

(
0
0

)
, (4.4)

respectively. For every solution, new solutions can be produced by arbitrary shifts in B. In order to eliminate
this degree of freedom we add the condition

�(0) = 1 , (4.5)
where we note that 1 is the average value of � by the mass constraint, which is assumed by every continuous
solution. One symmetry remains: The problem is still invariant under the flip symmetry B ↔ −B (with �↔ −�,
�H ↔ −�H).
The trivial solution D̄0 of (4.1)–(4.5) (and the minimizer for large enough �) is the unit circle with constant
density:

�0(B) = B , �0(B) = 1 , �G0 = �H0 = 0 , �"0 = −1
2�
′(1) . (4.6)

For the stiffness coefficient � we shall assume the following local behavior close to the trivial solution:

�(�) = 1 + <(� − 1) + ℎ (� − 1)2
2 + $ ((� − 1)5) as �→ 1 . (4.7)

The bifurcation behaviour will be characterized in terms of the Taylor coefficients <, ℎ ∈ R. The complexity of
the bifurcation computations belowhavemotivated the simplifying assumption that the third- and fourth-order
coefficients vanish. Including these higher-order terms would only alter the sub-/supercritical nature of the
bifurcation, but not the critical values for the parameter �.

4.2 Linearization around the trivial state

In terms of a small correction D̄1 := D̄ − D̄0, the linearization of problem (4.1)–(4.5) reads (using (4.7))

� ¥�1(B) − < ¤�1(B) − ℎ2 �1(B) − �"1 = 5 (B) , (4.8)

3

3B

(
¤�1(B) + < �1(B)

)
+ �G1 sin B − �H1 cos B = 6(B) , (4.9)
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subject to the boundary conditions

�1(2�) − �1(0) = 0 , ¤�1(2�) − ¤�1(0) = 0 , �1(0) = 0 , �1(2�) = 0 , (4.10)

the constraints ∫ 2�

0
�1(B)dB = 0 ,

∫ 2�

0

(− sin B
cos B

)
�1(B)dB =

(
G
H

)
, (4.11)

and the auxiliary condition
�1(0) = 0 . (4.12)

The inhomogeneities 5 (B), 6(B), G , H can be interpreted as nonlinear corrections.

Proposition 4.1 (Solution of the homogeneous linearized system). A nonzero solution of (4.8)–(4.12) with 5 =
6 = G = H = 0, � > 0, <, ℎ ∈ R, only exists in the following cases:

Case 1: There exists 9 ∈ N, 9 ≥ 2, such that � = �9(<, ℎ) := 1
92

(
<2 − ℎ

2
)
≠ − ℎ2 . The space of solutions is one-

dimensional and given by

�1(B) = 01 sin(9B) , �1(B) = 01<

9
(cos(9B) − 1) , �G1 = �H1 = �"1 = 0 , 01 ∈ R . (4.13)

Case 2: � = �1(ℎ) := − ℎ2 ≠ 1
92

(
<2 − ℎ

2
)
for all 9 ∈ N, 9 ≥ 2. The space of solutions is one-dimensional and given by

�1(B) = 11 sin B , �1(B) = 0 , �G1 = �"1 = 0 , �H1 = 11< , 11 ∈ R . (4.14)

Case 3: There exists 9 ∈ N, 9 ≥ 2, such that � = �9(<, ℎ) = �1(ℎ). The space of solutions is two-dimensional and given
by

�1(B) = 01 sin(9B) + 11 sin B , �1(B) = 01<

9
(cos(9B) − 1) , �G1 = �"1 = 0 , �H1 = 11< , 01 , 11 ∈ R .

Remark 4.2. 1. As expected, bifurcations only occur under the condition (see (3.3))

2<2 − ℎ = 2�′(1)2 − �(1)�′′(1) > 0 .

2. For Case 1 solutions, the curvature correction �1 = ¤�1 satisfies �1 = −<�1. This means that the sign of
< = �′(1) decides if curvature maxima coincide with density maxima (< < 0) or with density minima
(< > 0), which is not a surprising result. The condition 9 ≥ 2 is a manifestation of the Four Vertex
Theorem (see Section 2).

3. Case 2 solutions exhibit only one maximum and one minimum of the density without any effect on the
circular shape of the curve. The numerical computations reported in Section 5 show, however, that these
solutions initiate bifurcating branches strongly deviating from the circular shape far enough from the
bifurcation point.

4. Whereas Cases 1 and 2 correspond to codimension-one bifurcations, Case 3 represents a bifurcation of
codimension two, whose nonlinear structure will not be analyzed in the following.

5. In a bifurcation scenario, where the values of < and ℎ are fixed and the value of � is decreased, there
are several situations. For ℎ ≥ 2<2 no bifurcations occur by convexity (see above). For 0 ≤ ℎ < 2<2 an
infinite series of Case 1 bifurcations occurs at the bifurcation values �9 , 9 ≥ 2, with the first one at � = �2.
For ℎ < 0, apart from the bifurcations at � = �2 , �3 , . . ., there is also a Case 2 bifurcation at � = �1. There
are two subcases concerning the question, which bifurcation occurs first, determined by the criterion

�1 > �2 ⇐⇒ ℎ < −2
3<

2 .

Codimension-two bifurcations occur whenever �1 = �9 , i.e. ℎ = −2<2/(92 − 1) for some 9 ≥ 2. These
observations are illustrated in the (<, ℎ)-plane in Figure 4.1.
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Figure 4.1: Regions of different bifurcation behaviour in the (<, ℎ)-plane according to Proposition 4.1: No
bifurcations above the parabola ℎ = 2<2. Only Case 1 bifurcations between the parabola and the<-axis. Case 1
andCase 2 bifurcations below the< axis, with codimension-twobifurcations on theparabolas ℎ = −2<2/(92−1),
9 ≥ 2. The first bifurcation is a Case 2 bifurcation below the parabola ℎ = −2<2/3, and a Case 1 bifurcation
with 9 = 2 otherwise.

Proof. By the smoothness of solutions of ordinary differential equations we can employ Fourier representation
and write

�1(B) =
∑
:∈Z

�̂1,: 4
8:B , �1(B) =

∑
:∈Z

�̂1,: 4
8:B .

We keep the inhomogeneities for the moment, since this will be useful for the proof of the following result, and
we use their Fourier series

5 (B) =
∑
:∈Z

5̂: 4
8:B , 6(B) =

∑
:∈Z

6̂: 4
8:B .

The constraints (4.11) imply

�̂1,0 = 0 , �̂1,±1 =
1

2� (H ± 8G) . (4.15)

Comparing Fourier coefficients for : = 0 in (4.8), (4.9) implies

�"1 = − 5̂0 and 6̂0 = 0 , (4.16)

where the latter has to be seen as a solvability condition for the inhomogeneous problem. Coefficients for
: = ±1 in (4.8) and (4.9) give

− (
� − �1

)
�̂1,±1 = 5̂±1 − <

2� (G ∓ 8H) , (4.17)

± <8�̂1,±1 ∓ 8

2�G1 − 1
2�H1 = 6̂±1 + 1

2� (H ± 8G) . (4.18)

For coefficients with |: | ≥ 2 we obtain

−
(
�:2 + ℎ2

)
�̂1,: − 8:<�̂1,: = 5̂: , −:2�̂1,: + 8:<�̂1,: = 6̂: ,

implying

− :2(� − �|: |)�̂1,: = 5̂: − 8<
:
6̂: , �̂1,: − 8<

:
�̂1,: = − 1

:2 6̂: . (4.19)

The results follow immediately from the homogeneous ( 5 = 6 = G = H = 0) versions of (4.15)–(4.19), using
the auxiliary conditions (4.12). �

Lemma 4.3 (Solvability conditions). Case 1: Problem (4.8)–(4.12) with 0 < � = �9 ≠ �1, 9 ≥ 2, has a solution if and
only if

9

∫ 2�

0
5 (B) cos(9B)dB = <

∫ 2�

0
6(B) sin(9B)dB ,
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9

∫ 2�

0
5 (B) sin(9B)dB = −<

∫ 2�

0
6(B) cos(9B)dB , and

∫ 2�

0
6(B)dB = 0 . (4.20)

Case 2: Problem (4.8)–(4.12) with 0 < � = �1 ≠ �9 , ∀ 9 ≥ 2, has a solution if and only if∫ 2�

0
5 (B) cos B dB = <G ,

∫ 2�

0
5 (B) sin B dB = <H , and

∫ 2�

0
6(B)dB = 0 . (4.21)

Proof. For Case 1 the solvability conditions follow from (4.16), (4.19), and for Case 2 from (4.16), (4.17). �

4.3 Asymptotic expansion around bifurcation points

For the codimension-one bifurcations identified above (Cases 1 and 2 in Proposition 4.1), the existence of
bifurcating solution branches is guaranteed by general results on bifurcations from simple eigenvalues [8]. The
local shape of these branches will be analyzed by perturbation expansions. By the presence of a flip symmetry
in problem (4.1)–(4.5), pitchfork bifurcations can be expected, at least generically. For the bifurcation at � = �9 ,
9 ∈ N, we therefore introduce

� = �9 − ��2 , 0 < � � 1 , � ∈ {1,−1} .
The small parameter �measures the distance from the bifurcation point, whereas the sign �, to be determined
by the analysis, tells us whether the bifurcation is supercritical for � > 0 or subcritical for � < 0. This convention
is in line with the scenario of decreasing � (see Remark 4.2, 5.). The solution D̄ = (�, �,�G ,�H ,�") of (4.1)–(4.5)
will be approximated by an asymptotic expansion

D̄ = D̄0 + �D̄1 + �2D̄2 + �3D̄3 + $(�4) , (4.22)

where the reason for going up to third order will become apparent below.

Remark 4.4 (Bifurcation diagram for classical elasticae). The expectation of pitchfork bifurcations and, thus,
the ansatz (4.22) can also be motivated by the bifurcation diagram for classical elasticae (e.g. [20, Ch. 7]). The
diagram shows an infinite series of bifurcations similar to the series of Case 1 bifurcations in (4.1)–(4.5). In the
classical elastica problem all these bifurcations are supercritical pitchforks.

The notation in (4.22) is consistent with the above. The trivial rotationally symmetric solution of (4.1)–(4.5) is
denoted by D̄0, and the first correction D̄1 has to satisfy the homogeneous version ( 5 = 6 = G = H = 0) of
the linearized problem (4.8)–(4.12) with � = �9 , whose solution is unique up to a scalar constant (01 in Case 1
and 11 in Case 2). The problems for D̄2 and D̄3 are determined by substituting the ansatz (4.22) into (4.1)–(4.5),
expanding the nonlinearities and comparing coefficients of �2 and �3. Both D̄2 and D̄3 solve inhomogeneous
versions of the linearized problem (4.8)–(4.12) with � = �9 and with the inhomogeneities

52 =
<

2
¤�2
1 + ℎ�1 ¤�1 , 62 = − 3

3B

(
<�1 ¤�1 + ℎ2 �

2
1

)
− �1(�G1 cos B + �H1 sin B) , (4.23)(

G2
H2

)
=

1
2

∫ 2�

0
�2

1

(
cos B
sin B

)
dB , (4.24)

for D̄2, and

53 = � ¥�1 + < ¤�1 ¤�2 + ℎ2
(
2�2 ¤�1 + 2�1 ¤�2 + �1 ¤�2

1

)
, (4.25)

63 = − 3
3B

(
<�1 ¤�2 + <�2 ¤�1 + ℎ

2 �
2
1
¤�1 + ℎ�1�2

)
− �1(�G2 cos B + �H2 sin B) − �2(�G1 cos B + �H1 sin B) + 1

2�
2
1(�G1 sin B − �H1 cos B) , (4.26)(

G3
H3

)
=

∫ 2�

0

(
�1�2 cos B − 1

6�
3
1 sin B

�1�2 sin B + 1
6�

3
1 cos B

)
dB , (4.27)

for D̄3. Note that the inhomogeneities depend on lower-order terms. So the terms in the asymptotic expansion
(4.22) can be computed recursively. However, this comeswith two problems, which are connected: the solution
of the linearized problem is not unique (see Proposition 4.1), and it does not have a solution for arbitrary
inhomogeneities (see Lemma 4.3). The strategy is to recover the lacking information for uniqueness from the
solvability conditions for higher-order problems. It will turn out (as a consequence of the above mentioned flip
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symmetry) that the inhomogeneities (4.23), (4.24) of the second-order problem satisfy the solvability conditions,
no matter what the value of the missing first-order constant (01 in Case 1 and 11 in Case 2) is. This is the reason
why the third-order problem has to be considered, whose solvability condition will provide an equation for
the missing first-order constant. In the following the essential results of these straightforward but lengthy
computations will be given. They have been carried out manually and checked with the help of MATHEMATICA.

Case 1 bifurcations

The goal is to determine the value of the constant 01 in the first-order correction D̄1 of the expansion (4.22),
given in (4.13). The first step is the computation of the second-order terms.

Lemma 4.5 (Case 1: second-order solution). Let 9 ≥ 2 and D̄1 be given by (4.13). Then every solution of (4.8)–(4.12)
with 0 < � = �9 ≠ �1 and with the inhomogeneities given by (4.23), (4.24) can be written as

�2(B) = 02 sin(9B) + 0
2
1(<(<2 − ℎ))
2(2<2 − ℎ) (cos(29B) − cos(9B)) ,

�2(B) = 02
<

9
(cos(9B) − 1) − 0

2
1(6<4 − 6<2ℎ + ℎ2)

89(2<2 − ℎ) sin(29B) , 02 ∈ R , (4.28)

�G2 = �H2 = 0, �"2 = −
02

1<(<2 − 2ℎ)
4 .

Lemma 4.6 (Case 1: the missing constant). Let 9 ≥ 2, 0 < �9 ≠ �1, and D̄1 , D̄2 be given by (4.13), (4.28). Then the
inhomogeneities given by (4.25)–(4.27) satisfy the solvability conditions (4.20), if and only if

01

(
92� − 02

1
/(<, ℎ)

8(2<2 − ℎ)
)
= 0 , with /(<, ℎ) := −14<6 + 36<4ℎ − 18<2ℎ2 + ℎ3 . (4.29)

This shows that Case 1 bifurcations are pitchforks if and only if /(<, ℎ) ≠ 0. The amplitude of the first-order
term along the bifurcating branch is determined by the nontrivial solutions of (4.29):

02
1 =

892�(2<2 − ℎ)
/(<, ℎ) , (4.30)

which shows for the criticality � = sign /(<, ℎ) that the bifurcation is supercritical for /(<, ℎ) > 0 and subcritical
for /(<, ℎ) < 0. Writing /(<, ℎ) = <6(I3 − 18I2 + 36I − 14) with I := ℎ/<2 < 2 shows that /(<, ℎ) > 0 and
2<2 > ℎ are equivalent to

I1 < I < I2 with I1 ≈ 0.52 and I2 ≈ 1.71. (4.31)
Consequently, a supercritical pitchfork bifurcation occurs in the parabolic region {(<, ℎ) ∈ R2 : I1<

2 < ℎ <
I2<

2}. Conversely, if (<, ℎ) is such that /(<, ℎ) < 0, which holds for ℎ < I1<
2 or 2<2 > ℎ > I2<

2, then the
bifurcation is subcritical. The situation is illustrated in Figure 4.2. Note that the criticality is independent from
9. For a fixed pair (<, ℎ) the whole series of Case 1 bifurcations has the same criticality.

Case 2 bifurcations

Lemma 4.7 (Case 2: second-order solution). Let D̄1 be given by (4.14). Then every solution of (4.8)–(4.12) with
0 < � = �1 ≠ �9 , ∀9 ≥ 2, and with the inhomogeneities given by (4.23), (4.24) can be written as

�2(B) = 12 sin B + 12
1<ℎ

2(2<2 + 3ℎ) (cos(2B) − cos B) , 12 ∈ R ,

�2(B) =
12

13ℎ2

8(2<2 + 3ℎ) sin(2B) , (4.32)

�G2 = −
12

1<
2ℎ

2(2<2 + 3ℎ) , �H2 = 12< , �"2 = 0 .

Lemma 4.8 (Case 2: the missing constant). Let 0 < �1 ≠ �9 , ∀9 ≥ 2, and D̄1 , D̄2 be given by (4.14), (4.32). Then the
inhomogeneities given by (4.25)–(4.27) satisfy the solvability conditions (4.21), if and only if

11

(
� + 12

1
3ℎ3

8(2<2 + 3ℎ)
)
= 0 . (4.33)
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Figure 4.2: Contour plot of /(<, ℎ) given by (4.29). The solution in Case 1 has the structure of a supercritical
pitchfork bifurcation whenever /(<, ℎ) > 0 and ℎ < 2<2. These conditions define the crosshatched region
I1<

2 < ℎ < I2<
2 below the parabola ℎ = 2<2 (black line); I1 ≈ 0.52 and I2 ≈ 1.71, see (4.31). Conversely, if

/(<, ℎ) < 0 which is true when ℎ < I1<
2 or in the narrow white region given by I2<

2 < ℎ < 2<2, then the
bifurcation is subcritical.

This shows that Case 2 bifurcations are pitchforks, since

12
1 = −

8�(2<2 + 3ℎ)
3ℎ3

is finite by �1 = −ℎ/2 > 0 and nonvanishing by 2<2 + 3ℎ = 8(�2 − �1) ≠ 0. The bifurcation is subcritical
for 2<2 + 3ℎ < 0, i.e. when the Case 2 bifurcation is the first one for decreasing � (see Remark 4.2, 5.). It is
supercritical for 2<2 + 3ℎ > 0. It is also noteworthy that the circular shape of the trivial solution curve is now
perturbed at the order of �2 with the perturbation given in (4.32). The leading order density perturbation
�1 has both its extrema coinciding either with the maxima of the curvature perturbation ¤�2 (in the subcritical
case) or with its minima (in the supercritical case). This can be verified numerically, see Cases (iv) and (v) in
Section 5.3 and Figure 5.4 for 9 = 1.

4.4 Energy and stability

As an indicator for the stability of bifurcating solutions, we investigate the changes of the energy (1.1) along
bifurcating branches. For this purpose, we substitute � = �9 − ��2 and the asymptotic expansion (4.22) of the
bifurcating solution into the energy and re-expand:

��(�, �) = 1
2

∫ 2�

0
(�(�) ¤�2 + � ¤�2)dB = �0 + ��1 + �2�2 + �3�3 + �4�4 + $(�5) .

For the coefficients we obtain (all computations of this section again verified with MATHEMATICA)

�0 =
1
2

∫ 2�

0
dB = � = ��9 (�0 , �0) , �1 =

1
2

∫ 2�

0

(
<�1 + 2 ¤�1

)
dB = 0 , (4.34)

�2 =
1
2

∫ 2�

0

(
2<�1 ¤�1 + ℎ

2 �
2
1 + ¤�2

1 + �9 ¤�2
1

)
dB , (4.35)

�3 =
1
2

∫ 2�

0

(
2<�1 ¤�2 + 2<�2 ¤�1 + <�1 ¤�2

1 + ℎ�1�2 + ℎ�2
1
¤�1 + 2 ¤�1 ¤�2 + 2�9 ¤�1 ¤�2

)
dB , (4.36)

�4 =
1
2

∫ 2�

0

(
2<�1 ¤�3 + 2<�3 ¤�1 + <�2 ¤�2

1 + 2<�2 ¤�2 + 2<�1 ¤�1 ¤�2 + ℎ2 �
2
2 + ℎ�1�3

+ 2ℎ�1�2 ¤�1 + ℎ2 �
2
1
¤�2
1 + ℎ�2

1
¤�2 + 2 ¤�1 ¤�3 + ¤�2

2 + �9 ¤�2
2 + 2�9 ¤�1 ¤�3 − � ¤�2

1

)
dB . (4.37)
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Lemma 4.9 (Energy expansion). Let 9 ∈ N, let D̄1 , D̄2 be given by (4.13), (4.28) in Case 1, 9 ≥ 2, or by (4.14), (4.32)
in Case 2, 9 = 1. Let the constants 01 in Case 1 or 11 in Case 2 be chosen such that the third-order inhomogeneities
(4.25)–(4.27) satisfy the solvability conditions of Lemma 4.6 in Case 1 and Lemma 4.8 in Case 2. Let D̄3 be a corresponding
solution of the linearized problem (4.8)–(4.12) with � = �9 . Then the coefficients in the energy expansion above satisfy
�1 = �2 = �3 = 0 in both cases, as well as

�4 = −2�94(2<2 − ℎ)
/(<, ℎ) (4.38)

in Case 1 with the notation of Lemma 4.6. In Case 2 we have

�4 =
2�(3ℎ + 2<2)

3ℎ3 .

As expected, the sign of �4 goes with criticality of the bifurcating branch. Stability is gained (�4 < 0) along
supercritical branches and lost (�4 > 0) along subcritical branches. In particular, this can be expected to decide
the stability of the branch corresponding to the first bifurcation for decreasing �.

5 Numerical continuation of bifurcation branches

5.1 Discretization

The Euler-Lagrange equations (4.1) and (4.2) are discretized by finite differences as follows. For # ∈ N we
discretize the interval [0, !] by introducing ΔB = !(# − 1)−1 and B8 = 8ΔB, 0 ≤ 8 ≤ # − 1, which naturally
leads to the (abuse of) notation � = (�8)#−1

8=1 , � = (�8)#−1
8=1 with �8 = �(B8), �8 = �(B8). This can be thought of as

considering a polygonal approximation of the curve �, where �8 is the angle of the 8th side and where �8 is a
piecewise constant approximation of � on that side (i.e. �8 is not associated to a vertex).
Using the notation D = (�, �) and Λ = (�G ,�H ,�"), we propose the following natural finite differences
approximation for (4.1) and (4.2), respectively:

�!�(D,Λ) = �

(
�8−1 − 2�8 + �8+1

ΔB2

)
− 1

2�
′(�8)

(�8+1 − �8−1

2ΔB

)2
− �" = 0 , (5.1)

�!�(D,Λ) = 1
ΔB

(
�
(�8+1 + �8

2

) (
�8+1 − �8
ΔB

)
− �

(�8 + �8−1

2

) (
�8 − �8−1
ΔB

))
+ �G sin�8 − �H cos�8 = 0 , (5.2)

for 0 ≤ 8 ≤ # − 1.
To remove the degree of freedom associated to solid rotations, we can set �(0) = 0 at the continuous level. This
is reflected by the choice �0 = 0 at the discrete level. We also need to provide values for indices 8 = −1, # .
Again by periodicity we set �−1 = �#−1, �# = �0, �−1 = �#−1 − 2�, and �# = �0 + 2�. Thus, we only consider
(5.1) for 0 ≤ 8 < # − 1 and (5.2) for 0 < 8 < # − 1.
The mass and closedness constraints can be naturally approximated as

�"(D,Λ) = ΔB
#−1∑
8=0

�8 −" = 0 ,(
�G
�H

)
(D,Λ) = ΔB

#−1∑
8=0

(
cos�8
sin�8

)
= 0 .

We are left with a system of 2# + 1 nonlinear equations which we propose to solve using a damped Newton
method. If we assume D̄: =

(
D: ,Λ:

)
to be known, we look for D̄:+1 as a solution to

�(D̄:) (D̄:+1 − D̄:) = −� A(D̄:) , (5.3)

where A(D̄:) = (
�!� , �!� , �G , �H , �"

)
, � is the Jacobian of A with respect to D̄, and � ≤ 1 is the damping

parameter with � = 1 corresponding to the standard Newton’s method.

5.1.1 Continuation of branches

To follow numerically the bifurcation branches, one can pick some � close to the critical value �9 and take
as initial value a perturbation of the trivial solution (corresponding to the circle with homogeneous �). The
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position of � relative to the critical value and the amplitude of the bifurcation are given precisely by the results
of Section 4. Solving (5.3) yields a numerical approximation of a critical point, which can be used as initial
condition for neighbouring values of �. By iterating this process, one can move along the branch, provided
that

1. the branch is locally smooth (for example, this is not the case when � hits zeros of �, where one could
expect the branch to terminate),

2. the features of the solution can be resolved by the discretization with the chosen value of # .

5.2 Choice of parameters

In what followswewill consider a number of different situations, depending on the choice of parameters (<, ℎ)
for the function �, which will be of the form (4.7) with �0 = 1, namely

�(�) = 1 + < (
� − �0

) + ℎ2 (
� − �0

)2
.

As before we will take " = ! = 2�, so that �0 = 1. We consider six sets of parameters:

(i) (<, ℎ) = (1, 1.85) corresponding to Case 1 with � = −1 (subcritical bifurcation),

(ii) (<, ℎ) = (1, 1) corresponding to Case 1 with � = 1 (supercritical bifurcation),

(iii) (<, ℎ) = (1, 1/4) corresponding to Case 1 with � = −1 (subcritical bifurcation),

(iv) (<, ℎ) = (1,−1/2) corresponding to Case 1 with � = −1 (subcritical bifurcation) and supercritical Case 2,

(v) (<, ℎ) = (1,−2) corresponding to Case 1 with � = −1 (subcritical bifurcation) and subcritical Case 2,

(vi) (<, ℎ) = (0,−1), which is similar to (v) in the special choice < = 0. At first order, � should remain a circle,
including for Case 1, as the correction coefficient �1 ≡ 0 for < = 0, see (4.13).

For the definition of the different cases, we refer to Proposition 4.1. The parameters in (i) – (vi) are represented
in Figure 5.1. The corresponding results are presented in Figures 5.3 and 5.4.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4
−2

−1

0

1

2

3

•

(i)

•

(ii)

•

(iii)

•
(iv)

•
(v)

•
(vi)

m

h

Figure 5.1: The different sets of model parameters (<, ℎ) represented on the parameter space. The gray region
corresponds to parameters which have no critical points except the trivial solution. The crosshatched region
corresponds to supercritical bifurcations (Case 1 for ℎ > 0, Case 2 for ℎ < 0), and the plain white region to
subcritical bifurcations. The dashed parabolas indicate where Case 3 occurs, for 9 up to 8.
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1
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9 m2

Figure 5.2: Critical values of � for Case 1 (thin) and Case 2 (bold). The intersections correspond to (the
degenerate) Case 3 which is not studied in this paper. The dashes indicate the value of 9: —— for 9 = 1, — - —
for 9 = 2, etc.

5.3 Results

The method described above (Section 5.1) was implemented in Julia [4]. Figure 5.3 presents the bifurcating
branches both in terms of the amplitude of the density � and in terms of the energy ��. It offers a partial
confirmation of the results of Section 4 in that:

• For Case (ii), 9 ≥ 2 and (iv), 9 = 1, the bifurcation appears supercritical, i.e., the branch bifurcates to the
left of the critical �. Additionally, the energy decreases close to the trivial state. These branches offer
critical points of �� which are candidates to be global minimizers.

• For all other cases, the bifurcation is subcritical, i.e., the branch bifurcates to the right of the critical �, and
the energy initially increases as one gets further from the trivial state.

Interestingly, Cases (i) and (iv) feature turning points, where the derivative of �� along the branch seems to
change sign. In Case (i) it becomes negative, leading to critical points of lower energy with respect to the trivial
state, and potentially global minimizers. This fact precludes uniqueness of minimizers of �� in general.
Wewere able to track an additional branch in Cases (i) to (iii), which seem to bifurcate from the 9 = 2 branch. No
analytical results are available at this point, but we can make the following observations. The corresponding
shapes, presented in gray in Figure 5.4, look like the ones obtained for 9 = 1 in Cases (iv) to (vi). This justifies
the placement in the first column, although 9 has no meaning for this branch. In Cases (i) and (iii), it bifurcates
from the 9 = 2 branch with decreasing energy for the choice of parameter considered. Case (ii) is a bit different,
in that the bifurcation leads to critical points of higher energy, although the branch features a turning point,
after which �� starts decreasing and eventually becomes smaller than for the 9 = 2 branch, for a given value
of �.
Other features of the critical points further along the branch can be seen in Figure 5.4. For Cases (i) to (v) and
9 > 1, one can identify the value of 9 with the number of flatter sections in each closed curve. These correspond
to higher values of �, which agree with the fact that for all choices of parameters presented here, < ≥ 0. This
can be roughly thought as higher values of � penalizing higher values of the curvature ¤�. For 9 = 1 or in Case
(vi), the situation is different, since the first-order correction �1 ≡ 0. If one goes further in the expansion, one
case expect that the next order correction �2 have the form cos(29B), that is half the period of �1. This could
explain that in these cases, � seems to have 9 maxima when ¤� has 29.
Additionally, far from the bifurcation point and after potential turning points, one can distinguish Cases (i) and
(ii) fromCases (iii) to (vi). For the former, � decreases along the branch, �� decreases and � seems to concentrate
on flat sections. For the latter, the situation is the opposite: � increases along the branch, �� increases and �
stays rather smooth.

Remark 5.1. In Proposition 3.3 it is stated that for � bounded away from 0, only the trivial state (�0 , �0) is a
minimizer of ��. The branches in Figure 5.3 which seem to continue far to large values of � have an energy
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clearly larger than � = ��(�0 , �0). We also recall that for the results presented here, the choice of � is quadratic,
and thus not bounded away from 0. There is then no contradiction of our analysis.

A systematic study of the stability in terms of the energy would be interesting, although probably necessarily
limited to numerics, as it would help identifying local minimizers. Such an investigation is however out of the
scope of this paper.
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Figure 5.3: Numerical results for Cases (i) to (vi), in columns, for 9 = 1, 2, 3. The first column shows the
amplitude in �, where the lower and greatest values of � are represented. The horizontal gray line corresponds
to the trivial solution, for which � ≡ 1. The second column shows the energy ��, with the horizontal gray
line again corresponding to the trivial solution, for which �� = �. The dashes indicate the value of 9 for each
branch: — — for 9 = 1 (absent in (i) to (iii)), — - — for 9 = 2, — - - — for 9 = 3. The gray vertical lines indicate
the theoretical critical values for �. In Cases (i) to (iii), the secondary bifurcation branch is plotted in gray. As
detailed in (4.22), at a supercritical (resp. subcritical) bifurcation point, the branch will appear for values of �
greater (resp. lower) than the critical value.
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Case 2 Case 1 Case 1
9 = 1 9 = 2 9 = 3

Case (i)

Case (ii)

Case (iii)

Case (iv)

Case (v)

Case (vi)

Figure 5.4: The shapes corresponding to each case, with 9 = 1, 2, 3 increasing with each column. These
correspond to the last point computed on the branches shown in Figure 5.3. In Cases (i) to (iii), the shapes in
the first column are in gray, as they do not correspond to branches bifurcating from the trivial state, and 9 is not
defined in this case. They are placed in the first column due to their resemblance to shapes obtained for ℎ < 0,
in Cases (iv) to (vi). Thicker lines denote larger values of �.
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6 Conclusion

To describe elastic curves in the plane, we introduced a regularized Canham-Helfrich type functional which
includes a density-modulated stiffness �. We proved that the associatedminimization problem has a solution if
the regularization parameter is positive. If not, the problem has no solution in general. Conditions on the first
derivatives of � were derived so that the problem has non trivial solutions. In this case, a bifurcation analysis
around the trivial solution was performed, the regularization parameter playing the role of the bifurcation
parameter. A family of both subcritical and supercritical pitchfork bifurcations were found, depending on the
choice of �. This contrasts with the classical elastic curves, which display supercritical bifurcations only. An
expansion of the energy confirmed that subcritical (resp. supercritical) solutions correspond to a gain (resp.
a loss) of energy compared to the trivial state. This analysis was completed by numerical continuation of the
bifurcating branches, which confirmed the theoretical findings. Secondary bifurcations and turning points
—found numerically— testify of the intricate mathematical structure of the model. In particular no uniqueness
should be expected for the minimization problem, except for large regularization.
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