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Abstract

CDK1-cyclin B1 is a universal cell cycle kinase required for mitotic/meiotic cell cycle entry and its activity needs to decline for mitotic/

meiotic exit. During their maturation, mouse oocytes proceed through meiosis I and arrest at second meiotic metaphase with high CDK1-

cyclin B1 activity. Meiotic arrest is achieved by the action of a cytostatic factor (CSF), which reduces cyclin B1 degradation. Meiotic arrest is

broken by a Ca2+ signal from the sperm that accelerates it. Here we visualised degradation of cyclin B1DGFP in oocytes and found that its

degradation rate was the same for both meiotic divisions. Ca2+ was the necessary and sufficient trigger for cyclin B1 destruction during

meiosis II; but it played no role during meiosis I and furthermore could not accelerate cyclin B1 destruction during this time. The ability of

Ca2+ to trigger cyclin B1 destruction developed in oocytes following a restabilisation of cyclin B1 levels at about 12 h of culture. This was

independent of actual first polar body extrusion. Thus, in metaphase I arrested oocytes, Ca2+ would induce cyclin B1 destruction and the first

polar body would be extruded.

In contrast to some reports in lower species, we found no evidence that oocyte activation was associated with an increase in 26S

proteasome activity. We therefore conclude that Ca2+ mediates cyclin B1 degradation by increasing the activity of an E3 ubiquitin ligase.

However, this stimulation occurs only in the presence of the ubiquitin ligase inhibitor CSF. We propose a model in which Ca2+ directly

stimulates destruction of CSF during mammalian fertilisation.

D 2004 Elsevier Inc. All rights reserved.
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Introduction meiotic divisions are driven by changes in the activity of
In mammalian oocytes, there are two rounds of chromo-

some segregation. During meiosis I, a reductional division

segregates homologous chromosomes and then in meiosis II

an equational division segregates sister chromatids. There is

much interest in how these two events are regulated because

meiotic nondisjunction is believed to cause the high rates of

aneuploidy seen in human conceptuses (Angell, 1997;

LeMaire-Adkins et al., 1997; Pellestor et al., 2002). Both
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maturation (M-Phase) promoting factor (MPF); a hetero-

dimer of a catalytic CDK1 and a regulatory cyclin B1

component (Dorée and Hunt, 2002; Jones, 2004; Masui,

2001; Pines, 1999).

In oocytes, MPF activity peaks twice, firstly before

segregation of homologous chromosomes and secondly

before segregation of sister chromatids (Hashimoto and

Kishimoto, 1988). In oocytes, as in somatic cells, at ana-

phase onset, MPF activity declines by destruction of cyclin

B1 (Glotzer et al., 1991; Holloway et al., 1993; Kubiak et

al., 1993; Ledan et al., 2001; Nixon et al., 2002). Firstly

cyclin B1 is polyubiquitinated by the anaphase-promoting

complex (APC), an E3 ubiquitin ligase (Harper et al., 2002;

King et al., 1995; Peters, 2002; Sudakin et al., 1995;

Zachariae and Nasmyth, 1999), whose activity before full
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congression on the spindle is attenuated by an ‘anaphase

wait’/’spindle checkpoint’ signal (Musacchio and Hardwick,

2002; Yu, 2002). Secondly, polyubiquitinated cyclin B1 is

then targeted for destruction by the 26S proteasome, a

multisubunit protease specific for polyubiquitinated proteins

(Baumeister et al., 1998; Coux et al., 1996; Hershko et al.,

1991; Murray, 1995).

Mammalian oocytes arrest at metaphase II until they are

fertilised. Thus, oocytes possess an activity, known as

‘cytostatic factor’ (CSF; Ciemerych and Kubiak, 1999;

Kubiak et al., 1993; Masui and Markert, 1971; Tunquist

and Maller, 2003; Watanabe et al., 1991) whose function is

to inhibit anaphase onset by attenuating cyclin B1 and

securin degradation. In mammalian oocytes, cyclin B1

degradation does occur during CSF-induced cell cycle

arrest, with cyclin B1 having a half-life of 1–2 h (Nixon

et al., 2002; Winston, 1997), and thus spontaneous activa-

tion is only prevented by continued cyclin B1 synthesis.

Induction of an ‘anaphase wait’/’spindle checkpoint’ by

microtubule-disrupting agents greatly stabilises cyclin B1

(Nixon et al., 2002; Winston, 1997). In contrast, sperm have

the capacity to accelerate the destruction of cyclin B1 about

six-fold (Nixon et al., 2002) and at fertilisation a rise in

intracellular Ca2+ levels, possibly caused by a sperm-spe-

cific PLC~ (Saunders et al., 2002), is the physiological

trigger to overcome CSF-induced cyclin B1 stabilisation.

However, the exact mechanism by which Ca2+ stimulates

cyclin B1 destruction is poorly understood. There is evi-

dence that CaM-dependent kinase II (CaMKII) is the

immediate Ca2+ transducer (Lorca et al., 1993; Markoulaki

et al., 2003; Tatone et al., 2002; Winston and Maro, 1995)

but the ultimate downstream target of Ca2+ action has not

been identified. Ca2+ could act to stimulate the activity of an

E3 ubiquitin ligase (the APC); the 26S proteasome; or

indeed both. Inhibition of either one of these activities

(APC and/or proteasome) before any Ca2+ rise would likely

constitute CSF. Direct measurements of 26S proteasome

activity have found it to increase in fertilizing eggs of three

species: frog (Aizawa et al., 1996), ascidian (Kawahara and

Yokosawa, 1994), and sand dollar (Chiba et al., 1999).

However, ubiquitin ligation seems the more plausible con-

trol point since the two strongest CSF candidates, c-mos–

MAPK (Colledge et al., 1994; Hashimoto et al., 1994;

Sagata et al., 1989; Schwab et al., 2001; Tunquist et al.,

2002) and Emi1 (Reimann and Jackson, 2002), have both

been proposed to reduce APC activity, through Bub1 and

inhibition of APC activator CDC20, respectively.

How universal is the ability of Ca2+ to trigger cyclin B1

degradation? Although Ca2+ signals have been observed

during mitosis in somatic cells (Kao et al., 1990), they do

not appear to be a universal phenomenon during mitosis of

mouse embryos (Kono et al., 1996). Also, in sea urchin

embryos, Ca2+ seems to play a specific role in sister

chromatid disjunction rather than cyclin B1 destruction

(Groigno and Whitaker, 1998). In mouse oocytes, little is

understood about the controlling factors that regulate cyclin
B1 destruction during meiosis I. Despite the two meiotic

divisions in mouse being separated by just a few hours, no

study has set out to determine if Ca2+ plays a controlling

factor in meiosis-I-associated cyclin B1 destruction, despite

the observation that cyclin B1 destruction here also requires

the APC (Herbert et al., 2003; Wassmann et al., 2003).

Here we have addressed the function of Ca2+ in stimu-

lating cyclin B1 destruction in mouse oocytes by using a

cyclin B1 construct fused to the enhanced GFP. We find that

Ca2+ has a precise function in promoting cyclin B1 degra-

dation only when oocytes are arrested and so have CSF

activity. Furthermore, we have used the interaction of the E3

ligase SIAH1 (House et al., 2003), with one of its substrates

T-STAR, to demonstrate that Ca2+ does not function through

regulating 26S proteasome activity. A finding we confirmed

by a fluorometric assay for proteasomal activity during

oocyte activation. From the present findings, we conclude

that Ca2+ has a specific role in cell cycle progression,

stimulating the loss of an anaphase inhibitor (CSF) whose

activity first appears at the completion of meiosis I.
Materials and methods

All chemicals were from Sigma (UK) unless otherwise

stated and embryo tested or tissue culture grade where

appropriate. MG132 was from Calbiochem.

Gamete collection and culture

In the present studies, random-bred four- to eight-week-

old albino MFI mice (Harlan, UK) were used. GV stage

oocytes were collected 44–52 h after mice were primed

with an intraperitoneal injection of 7.5 IU pregnant mares’

serum gonadotrophin (Intervet, UK). Ovaries were punc-

tured with a sterile needle and cumulus-enclosed oocytes

were stripped of their cumulus cells mechanically using a

mouth pipette. Oocytes were cultured at 37jC in medium

M2, with the addition of 0.1 mM dibutyryl cAMP to arrest

oocytes at prophase I where necessary. Mature oocytes were

collected 12.5–15 h after intraperitoneal injection of 5 IU

human chorionic gonadotrophin (Intervet) in mice that had

been pregnant mares’ serum gonadotrophin-primed 44–52

h previously. Cumulus cells were removed with 0.3 mg/ml

hyaluronidase.

In some studies, oocytes were treated with the partheno-

genetic agent ethanol (Cuthbertson et al., 1981). Oocytes

were placed in medium M2 containing 7% ethanol for 7 min

at room temperature. Oocytes were then immediately

washed in warm M2 before use.

Preparation of constructs

The cyclin B1DGFP plasmid used (gift of Dr J. Pines,

Cambridge) consists of a full-length human cyclin B1 fused

via a five-amino-acid linker (AGAQF) to the second amino
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acid residue of mmGFP. This fusion had been cloned into a

pRN3 vector specifically to produce cRNA transcripts with

maximal stability. This is conferred by the presence of 5V
globin UTR upstream and both 3VUTR and a poly(A)-

encoding tract downstream of the gene to be transcribed.

Full-length human PLC~ was cloned into pRN3 vector.

RT-PCR was performed on human testis poly(A) RNA

(Ambion, UK). Forward (GATCAGATCTACTATG

GAAATGAGATGG) and reverse (GATCGCGGCCGCT-

TATCTGACGTACCAAA CATA) primers to the predicted

5V and 3V end of the human PLC~ were used. Following

cutting with BglII and NotI, the vector with ligated insert

was transformed into JM109 cells (Promega). Colonies

forming on LB-agar plates supplemented with ampicillin

were further cultured in ampicillin-containing LB medium

and plasmid DNA extracted using WizardPlus SV Mini-

preps (Promega, UK). The complete insertion of full-length

PLC~ was confirmed by DNA sequencing.

Full-length human T-STAR was cloned into a pGFP3

vector by standard cloning procedures and the success of

cloning was confirmed again by sequencing. For all

constructs, cRNA was produced using the T7 mMES-

SAGE mMACHINE (Ambion), and dissolved in nucle-

ase-free water to a concentration of at most 1 Ag/Al before
microinjection.

Microinjection and imaging of cells

Microinjection of cRNA constructs or fura2 dextran

(Molecular Probes, OR) were made essentially as previously

described (Jones et al., 1995, 1998; Nixon et al., 2002).

Briefly fabricated micropipettes were inserted into cells by

using a pulse of the negative capacitance overcompensation

facility on an electrometer. A precise, bolus, injection

corresponding to 1–3% of the total cell volume was

achieved using a timed injection on a Pneumatic PicoPump

(World Precision Instruments). Imaging of cells simulta-

neously for Ca2+ and GFP is as described previously

(Hyslop et al., 2001; Nixon et al., 2002). All recordings

represent the mean GFP reading from a single oocyte

tracked as a Region Of Interest by the MetaFluor software

package (Universal Imaging Corp., PA).

For experiments involving ACMS and Suc-Phe-Leu-

Arg-CAMS, oocytes were first microinjected with either a

120 mM KCl, pH 7.4, buffer or with 0.1 Ag/Al PLC~
cRNA. PLC~-injected oocytes that had extruded their

second polar body, and control oocytes that had not,

were then further injected with a 1–3% volume injection

of 33 mM bestatin (Chiba et al., 1997) to inhibit

exopeptidase activity. Fifteen to sixty minutes later, pairs

of oocytes were microinjected with a micropipette con-

taining 5 mM Suc-Phe-Leu-Arg-CAMS, which is a pro-

teasome substrate, in 100 mM HEPES, pH 7, containing

50 AM ACMS, used to monitor that exactly equal

injection volumes were given to each pair of oocytes.

The rate of formation of ACMS was then followed in the
two oocytes for a period of at least 10 min (Chiba et al.,

1997, 1999). Pairs of oocytes at a time were imaged,

such that one was a control metaphase II arrested oocyte,

while the other had been injected with PLC~ . The

excitation filter was 360 F 12nm (Coherent, UK) and

a 400-nm dichroic mirror was used fitted with a 435-nm-

long pass emission filter (Nikon, UK).
Results

Ca2+-dependent cyclin B1 destruction during segregation of

sister chromatids

Cyclin B1, the regulatory component of MPF, was

tagged to GFP and cRNA injected into mature oocytes

to follow its rate of destruction during fertilisation. Cyclin

B1DGFP has previously been demonstrated to faithfully

mimic endogenous cyclin and report cyclin B1 rates of

proteolysis (Clute and Pines, 1999; Hagting et al., 1998).

We have used it in mouse meiosis, and in agreement with

our previous findings (Nixon et al., 2002), we consistently

found an acceleration of cyclin B1 destruction associated

with oocyte activation. In mammals, the sperm-induced

signal for activation is a series of Ca2+ spikes lasting

several hours. Only about 2% of the total decrease in

cyclin B1DGFP was observed during the first sperm-

induced Ca2+ spike. Instead, in the present study, we

concentrated on the long-lasting decline in cyclin B1,

which makes up the vast majority of the cyclin B1

degradation at fertilisation. The steady cyclin B1 decline

began several minutes (13 F 5, n = 20) after the initiation

of Ca2+ spiking (Fig. 1A; starred) decreasing exponentially

over the next 2 h (110 F 35 min; n = 20), and terminating

in extrusion of the second polar body following segrega-

tion of sister chromatids. It is highly probable, however,

that newly synthesised cyclin B1 continues to be destroyed

during the remaining period of meiotic exit (around 6 h)

because cyclin B1DGFP levels only increased again once

the oocyte had finished meiosis and pronuclei were visible

in the one-cell embryo.

The sperm-induced decrease in cyclin B1 can be blocked

by preincubation of mature oocytes with the Ca2+ chelator

BAPTA (Fig. 1B, n = 7), and can be mimicked by

microinjection of cRNA to the sperm-specific oocyte-acti-

vating factor PLC~ (Fig. 1C; Saunders et al., 2002, n = 25).

This demonstrates that the promotion of cyclin B1 destruc-

tion during meiosis II, when sister chromatids are segregat-

ed, is dependent physiologically on the ability of sperm to

generate a cytosolic rise in Ca2+.

Ca2+-independent cyclin B1 destruction during segregation

of homologous chromosomes

The above experiments show that the function of Ca2+

is to increase the activity of the 26S proteasome and/or



 

Fig. 1. Ca2+ promotes cyclin B1 destruction during meiosis II. Metaphase II mouse oocytes were coinjected with cyclin B1DGFP cRNA and fura2 dextran, and

cultured for a further 2–3 h. At the times indicated by the arrow, oocytes were inseminated (sperm) in the absence (A) or presence (B) of BAPTA-AM (10 AM);

or (C) microinjected with PLC~ cRNA (0.25 Ag/Al). In control oocytes (A), the initiation point in the steady decline of cyclin B1DGFP is marked by an asterisk

and second polar body extrusion is indicated (pb2). In BAPTA-treated oocytes, there was no drop in cyclin B1 levels. Sperm fusion was confirmed by staining

with Hoescht 33258 at the end of the recording period. Similar to the profile with inseminated oocytes, PLC~ induced Ca2+ spiking and cyclin B1 degradation.

GFP readings are represented by the quotient Ft/F0, where Ft is the fluorescence at time t hours, and F0 is fluorescence at time 0 hours. F0 was comparable for

all three oocytes shown (F50% of each other) Ca2+ is measured as fluorescence at excitation 340/380 nm (RU = ratio units). Intracellular Ca2+ and GFP

fluorescence were monitored every 20 s. Time 0 h represents the time at which recording was started. In some oocytes, a steady state in cyclin B1 levels had

been reached by the time sperm were added (A, C), while in others cyclin B1 levels were still rising (B). A steady state can be reached because metaphase II

arrested oocytes have APC activity, and are therefore capable of degrading expressed cyclin B1 (Nixon et al., 2002).
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APC during the period of metaphase II arrest. We then

went on to examine if the segregation of homologous

chromosomes is a process also associated with Ca2+

spiking. Tombes et al. (1992) previously commented on

their inability to detect Ca2+ changes during oocyte mat-

uration; however, in that study, they used fura2-AM, which

because of its compartmentalisation into intracellular

organelles makes it a problematic Ca2+ reporter over long

time courses (Malgaroli et al., 1987). In the present study,

we attempted to examine for Ca2+ changes in oocytes

using dextran-coupled fura2, which is not compartmental-

ised, and also simultaneously monitor for cyclin B1DGFP

degradation.

We microinjected cyclin B1DGFP cRNA into pro-

phase I arrested oocytes that were then allowed to

mature. Some oocytes, expressing very high amounts of

cyclin B1 (Fig. 2A, black trace), failed to show any
obvious minimum in cyclin B1 levels during their period

of maturation. However, the vast majority of oocytes (n =

37/43; red and green traces) showed a distinct period of

cyclin B1 degradation, that in some ended with extrusion

of the first polar body (Fig. 2A; green trace). At about

12 h of culture for all these maturing oocytes cyclin B1

levels stabilised, if maturation proceeded fully, then this

restabilisation followed first polar body extrusion. Inter-

estingly higher levels of expressed cyclin B1 appeared

associated with a failure to extrude the first polar body

(green vs. red; Fig. 2B and Table 1). This suggests a

minimum CDK1 activity is required to complete meiosis

I. The oocytes failing to extrude a polar body arrested at

metaphase I with a fully aligned spindle (data not

shown). Similar observations on cyclin B1-expressing

oocytes have been made previously (Ledan et al., 2001)

and this metaphase I arrest can also be observed in a
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Fig. 2. Oocyte maturation in cyclin B1-expressing oocytes. Cyclin

B1DGFP levels were monitored during oocyte maturation following

injection of cRNA at the GV stage. (A) In the majority of oocytes, there

was a period of cyclin B1 destruction (red and green traces), during 6–12

h of culture. In 15 of the 43 oocytes, the first polar body (pb1) was extruded

during maturation, and in these oocytes pb1 was associated with the

minimum in the cyclin B1 concentration (green trace). Only a few oocytes

failed to show a minimum in their cyclin B1DGFP levels (black trace) and

these oocytes expressed very high levels of cyclin. Stabilisation of cyclin

B1 levels at about 12 h of culture was independent of segregation of

homologous chromosomes since some oocytes (red trace) failed to extrude

a pb1 but instead arrested at metaphase I. (B) In three separate experiments,

the recorded minimum in the cyclin B1DGFP trace was a good indicator of

whether oocytes would arrest at meiosis I (red) or meiosis II (green).

Oocytes containing more cyclin B1 consistently arrested at meiosis I. GFP

fluorescence was monitored every 10 min. Experiments were started 3

h after cyclin B1 microinjection by washing free of dbcAMP and at this

time imaging was initiated.

Table 1

Cyclin B1 overexpression reduces the rate of oocyte maturation

Prophase I Metaphase I

[% (number)]

Metaphase II

Uninjected 4 (3) 18 (13) 78 (56)

KCl 1 (1) 21 (24) 78 (90)

eGFP 2 (1) 18 (11) 80 (48)

cyclin B1 7 (3) 61 (28)a 33 (15)a

Cyclin B1 expression in oocytes led to an increased arrest of oocytes at

metaphase I (MI). Oocytes were classified as either at prophase I (no GV

breakdown); at metaphase I (no first polar body extrusion); or at metaphase

II (first polar body extruded). We confirmed metaphase I arrest by staining

with Hoescht 33258 (n = 12) and also by Giemsa spreads (n = 4). At the GV

stage, the following injections were made: KCl buffer (120 mM KCl, 10

mM HEPES pH 7.2); eGFP cRNA (1 Ag/Al); or cyclin B1DGFP cRNA (1

Ag/Al). Oocyte maturation was assessed at 16 h after washing free of

dbcAMP, done to initiate maturation.
a Significantly different from all other conditions (v2 test, P < 0.01).

Fig. 3. Cyclin B1 destruction rates are similar during meiosis I and II. (A)

GV stage oocytes were microinjected with cyclin B1DGFP cRNA and GFP

fluorescence followed during oocyte maturation. At the time indicated,

metaphase II arrested oocytes were activated by a brief incubation with 7%

ethanol. Brightfield images were captured every 10 min so as to monitor

extrusion of the first and second polar bodies (pb1 and pb2). The diagonal

lines represent the maximum rates of cyclin B1 destruction during the two

meiotic divisions. (B) By measuring the rate of cyclin B1 destruction in

oocytes during meiosis I and then during meiosis II following ethanol-

induced oocyte activation, it was possible to compare the two rates of

destruction. The rates of cyclin B1 destruction during meiosis I and meiosis

II were not statistically different (n = 11, P = 0.68, paired t test).
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smaller percentage of control oocytes (Table 1; Donahue,

1968; Eppig et al., 1994; Sorensen and Wassarman, 1976;

Wickramasinghe et al., 1991) . In the one third of

oocytes expressing cRNA for cyclin B1DGFP that ma-

tured fully to a metaphase II oocyte, the chromatin when

stained at the end of the recording was aligned on a

metaphase II plate and chromosome spreads showed

attached bivalents (not shown); therefore, they were

indistinguishable from control in vitro fully matured

oocytes.

In 11 oocytes, we were able to monitor cyclin B1

destruction during meiosis I, and then following oocyte
activation at meiosis II (Fig. 3A). Oocyte activation was

induced by addition of ethanol, a commonly used par-

thenogenetic agent (Cuthbertson et al., 1981) able to
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induce a large rise in intracellular Ca2+. Interestingly, the

rate of cyclin B1 degradation was similar during the two

meiotic divisions despite the absolute levels of cyclin B1

being much less during meiosis II (Fig. 3B). In further

control experiments, we examined the rate of cyclin B1

degradation at meiosis II for oocytes activated with

ethanol and with strontium, to provide an oscillatory

Ca2+ signal. We found no significant difference in the

rates of cyclin B1 degradation (not shown).

Since the rate of cyclin B1 destruction was similar at

meiosis II as at meiosis I, and cyclin B1 destruction is

initiated by Ca2+ at meiosis II, we therefore wanted to

establish if a Ca2+ signal also prompted cyclin B1 degra-

dation during oocyte maturation. Oocytes were microin-

jected with cyclin B1DGFP cRNA (0.3 Ag/Al) and fura2

dextran. Cyclin B1 levels and intracellular Ca2+ changes

were then recorded during oocyte maturation in addition to

brightfield images to monitor for polar body formation.

Fifty-five percent of oocytes (n = 18) extruded a first polar

body, a higher rate than in Table 1 because a lower cyclin

B1 cRNA concentration was used, but in all oocytes no

Ca2+ spiking was observed either at the initiation of cyclin

B1 destruction (Fig. 4) or during the entire period of cyclin

B1 destruction that terminated with polar body formation

(n = 10/10). We confirmed the ability of the Ca2+ reporter

dye fura2 to remain sensitive to Ca2+ changes throughout

this very long period of recording by the addition of

thimerosal at the end of the experiment (Fig. 4A). To

examine if addition of exogenous cyclin B1 had a delete-

rious effect on the ability of oocytes to generate Ca2+

spikes, we performed the same experiments on oocytes

microinjected with only fura2 dextran (n = 22) or Ca2+

green dextran (n = 18), another Ca2+ reporter. In these

maturing oocytes, we monitored brightfield images for

polar body formation simultaneously with intracellular

Ca2+. However, in all oocytes, we found that no Ca2+

changes were measurable for the entire period of record-

ing, from the period of washing free of dbcAMP, done to

initiate oocyte maturation, until the extrusion of the first

polar body.

To further examine the role of Ca2+ during meiosis,

we looked to see if Ca2+ would accelerate cyclin B1

destruction during meiosis I. Oocytes expressing cyclin

B1DGFP were matured and cyclin B1 levels monitored.

When a steady decline in cyclin B1 was observed, after

about 6 h of culture, oocytes were treated with ethanol

for a 7-min period to induce a large rise in cytosolic

Ca2+ and then cyclin B1 further imaged to monitor for

any acceleration of cyclin B1 destruction. However, in

none of these maturing oocytes (n = 5) was any

acceleration of cyclin B1 destruction observed (Fig.

4B). For ethanol activation, oocytes had to be removed

from the stage of the microscope and placed in ethanol-

containing medium. Therefore, there is a gap in the

recording period during this time (Fig. 4B). We con-

firmed that ethanol is a good agent for inducing a large
Ca2+ rise by measuring the Ca2+ changes induced by it in

maturing oocytes. All oocytes studied in this way

responded to ethanol treatment (n = 6) with a Ca2+ rise

that was greater than that induced by sperm (data not

shown).

Cyclin B1 destruction during segregation of homologous

chromosomes is Ca2+-dependent if oocytes arrest at

metaphase I

From the above data, we conclude that segregation of

homologous chromosomes proceeds independently of ob-

servable Ca2+ spiking. Here we examined if maturing

oocytes that had arrested at metaphase I (Fig. 2A) were

Ca2+-sensitive, as are oocytes arrested at metaphase II.

Oocytes were microinjected with cyclin B1DGFP

cRNA and released from prophase I arrest for a period

of 15 h. Oocytes that had not extruded a first polar body

were then imaged for a further 10 h over which time cyclin

B1DGFP and brightfield images were captured. During

this time, no oocytes went on to extrude a first polar body,

and cyclin B1 levels appeared stable (not shown). These

observations were therefore consistent with a metaphase I

arrest. In metaphase I arrested oocytes, intracellular Ca2+

was raised using the parthenogenetic agent ethanol and

cyclin B1 destruction was observable in two-thirds of

oocytes (Fig. 5; n = 22/31). Some of the oocytes (n =

10) went on to extrude a first polar body (Fig. 5) and then

arrest at metaphase II. Therefore, in metaphase I arrested

oocytes, there was a Ca2+-stimulated decrease in cyclin

B1, and in a proportion of these where the drop was

sufficient, first polar body extrusion occurred. A simulta-

neous experiment performed with GV stage oocytes, at

prophase I, expressing similar amounts of cyclin B1DGFP

failed to show any decrease in cyclin B1 levels. Therefore,

Ca2+-stimulated cyclin B1 destruction appears specific to a

metaphase arrest.

Ca2+ fails to stimulate the 26S proteasome during meiosis II

Cyclin B1 destruction is a two-step process, involving

first its polyubiquitination through the APC, and second

its proteolysis mediated by the 26S proteasome. Since we

observe a Ca2+-mediated acceleration of cyclin B1 de-

struction at metaphase I or metaphase II arrest, Ca2+ has

to activate, directly or indirectly, either the APC and/or

the 26S proteasome. Current models on the identity of

CSF would predict that Ca2+ acts through the APC, yet

there is some evidence in oocytes of other species that at

fertilisation there is also an increase in 26S proteasome

activity. We therefore thought it important to examine

26S proteasome activity before and during Ca2+ spiking.

We used the E3 ligase SIAH1 as an APC-independent

tool to examine the degradation of polyubiquitinated

proteins (Fig. 6A). Our approach was to microinject

cRNA to a GFP-tagged SIAH1 substrate, initiate its



 

Fig. 4. Meiosis I proceeds independently of Ca2+. (A) When intracellular Ca2+ levels were monitored in maturing oocytes, there were no observable changes in

Ca2+ before or during the steady decline in cyclin B1 levels. GV-stage oocytes were microinjected with fura2 dextran and cyclin B1DGFP cRNA. Images were

captured after 2–3 h of culture at which time oocytes were washed free of dbcAMP and allowed to mature. Cyclin B1 reached a minimum at the time of first

polar body extrusion (pb1). In these oocytes, which had matured to metaphase II, the thiol-reagent thimerosal was added to induce Ca2+ spiking, and hence

demonstrate that the Ca2+ reporter dye used was still responsive to cytosolic Ca2+ changes. (B) Raising cytosolic Ca2+ did not further promote cyclin B1

destruction once it had been initiated at meiosis I. Oocytes expressing cyclin B1DGFP were allowed to mature and when the initiation of cyclin B1 destruction

was observed oocytes were treated with the parthenogenetic agent 7% ethanol to induce a large rise in cytosolic Ca2+. No further increase in the rate of cyclin

B1 destruction was observed following the rise in cytosolic Ca2+. Images were captured every 20 s (A) or every 5 min (B). Ca2+ was measured as a ratio of 340/

380 nm signal (RU). GFP readings are expressed by the quotient Ft/Fm, where Ft is the fluorescence at time t, and Fm, is the maximum recorded fluorescence

during the maturation period.
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degradation by addition of cRNA to SIAH1, and then

finally initiate Ca2+ spiking by a third microinjection of

cRNA to PLC~ . If Ca2+ was stimulating the 26S protea-

some, then like cyclin B1DGFP, we would observe an

acceleration in the destruction of the SIAH1 GFP-coupled

substrate following initiation of Ca2+ spiking. We used

the SIAH1 substrate, T-STAR/Salp/SLM-2/KHDRBS3 (Di

Fruscio et al., 1999; Lee and Burr, 1999; Venables et al.,

1999), a testis-specific protein related to Sam68, which is

believed to regulate RNA splicing. When expressed in

293T cells, T-STAR is degraded following addition of the
E3 ligase SIAH1 (Venables and Elliott, unpublished).

When cRNA to T-STARDGFP was expressed in oocytes,

it had no observable deleterious affect on oocyte mor-

phology, and when injected into GV stage oocytes these

went on to mature to metaphase II. T-STAR was a stable

protein when expressed in oocytes, because the addition

of cycloheximide to block protein synthesis did not lead

to any rapid decline in T-STARDGFP signal. In contrast,

following the addition of the E3 ligase SIAH1, we

observed a steady decline in T-STAR signal (Figs.

6B,C). In similar experiments, we observed no decline



Fig. 5. Ca2+ promotes cyclin B1 destruction when oocytes arrest at metaphase I. Oocytes were matured following microinjection of cyclin B1DGFP cRNA and

fura2 dextran. Oocytes that had failed to extrude a polar body by 25 h after release from dbcAMP were incubated with the parthenogenetic agent ethanol.

Recording of cyclin B1DGFP began 10–11 min after oocytes were first cultured in ethanol-containing medium. (A) Represents pseudocolour images and (B)

plots of the transient drop in cyclin B1DGFP levels recorded in metaphase I arrested oocytes (n = 22, red and green traces) but not in prophase I arrested

oocytes (n = 11, grey) that were used as control. Some of the oocytes that were metaphase I arrested failed to extrude a polar body even though cyclin B1 levels

decrease (n = 12, red trace). In these oocytes, the drop in cyclin B1 was small compared to oocytes that did extrude a polar body (decrease of 0.46 F 0.11

versus 0.20 F 0.08, mean F standard deviation, n = 22, significantly different, t test, P < 0.001).
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in GFP signal when T-STAR was replaced with cRNA to

eGFP or a related splicing factor Sam68 (not shown).

Furthermore, when oocytes were preincubated with the

proteasome inhibitor MG132 (Lee and Goldberg, 1996),

SIAH1 cRNA microinjection into oocytes failed to lead

to degradation in T-STAR demonstrating that SIAH1

mediated T-STAR degradation requires the 26S protea-

some. Importantly, in contrast to similar experiments

performed with cyclin B1DGFP, no deflection in the rate

of SIAH1-mediated T-STARDGFP destruction was ob-

served following the initiation of Ca2+ spiking (Fig. 7A;

n = 5). These results therefore demonstrate that T-STAR

is degraded through the action of the E3 ligase SIAH1

and the 26S proteasome, but the rate of destruction is not

enhanced by Ca2+. We also examined what happened to

the degradation of T-STAR during extrusion of the first

polar body. At this time, cyclin B1 levels become stable
for an extended period of time, due to the action of CSF

(Fig. 2B). We observed an obvious inflexion in the rate

of cyclin B1 degradation at polar body extrusion but not

with SIAH1-mediated T-STAR destruction, which contin-

ued to decrease unabated (Fig. 7B). This confirms the

above observations that CSF mediates its action solely

through the APC in mammalian oocytes. If it had been

affecting proteasome activity, then T-STAR, like cyclin

B1, would have been stabilised at polar body extrusion.

How polyubiquitinated substrates are transferred to the

26S proteasome (Hartmann-Petersen et al., 2003) and what

proteins constitute the complex (Leggett et al., 2002) are

still being resolved. Because of this, it remains plausible that

distinct proteasome complexes exist that are Ca2+ sensitive

and preferentially degrade cyclins. Indeed, cell cycle com-

ponents in budding yeast, notably cdc28, have been proven

to interact directly with the 26S proteasome (Kaiser et al.,



Fig. 6. SIAH1 mediates T-STAR destruction through the 26S proteasome. (A) A model to show the relationship between T-STAR, SIAH1, cyclin B1,

the APC and the 26S proteasome. Here we show that T-STAR is a substrate of the RING finger E3 ligase SIAH1. In an analogous way, cyclin B1 is a

substrate of the E3 ligase the APC. Both T-STAR and cyclin B1 become polyubiquitinated as a result of ubiquitin ligation, and as such are targets of

the 26S proteasome. The ability of T-STAR to be degraded through SIAH1 in mouse oocytes is shown in B and C. (B) Pseudocolour images and (C)

corresponding fluorescence readings taken from oocytes that had been microinjected with T-STARDGFP cRNA 2–3 h previously. At time 0 h, oocytes

were incubated with cycloheximide (chx, 1 Ag/ml) or further microinjected with SIAH1 cRNA. The addition of the E3 ligase SIAH1 led to degradation

of T-STAR, which otherwise was stably expressed. The 26S proteasome inhibitor MG132 completely blocked the degradation of T-STAR, demonstrating

the need for the 26S proteasome in this pathway. The plots are representative of: 8 (+SIAH1 and MG132), 7 (+chx), or 12 (+SIAH1) oocytes. Images

were captured every 10 min.
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1999). Therefore, we measured total cellular proteasome

activity by measuring the formation of fluorogenic ACMS.

ACMS is generated by the proteolytic activity of the

proteasome against peptide amides of AMC, in this case

suc-Phe-Leu-Arg-CAMS (Chiba et al., 1997, 1999). This

method has been used to measure increased proteasome
activity during starfish maturation and also during sand

dollar egg fertilisation. However, in agreement with the

observations with T-STAR here, we found no evidence for

increased proteasome activity (Fig. 8; n = 8 pairs) during

exit from meiosis II in mouse oocytes. We conclude that

Ca2+ does not induce oocyte activation by increasing



Fig. 7. SIAH1-mediated T-STAR destruction during meiosis I and meiosis II. (A) T-STAR degradation mediated by SIAH1 was not affected by PLC~-induced
Ca2+ spiking. Metaphase II arrested oocytes expressing T-STARDGFP were microinjected with SIAH1 cRNA to initiate T-STAR degradation. The rate of T-

STAR degradation was unaffected by the initiation of Ca2+ spiking caused by the further microinjection of PLC~ (microinjected during the recording gap).

Fura2 images were captured every 10 s and T-STARDGFP every 3 min. This recording is representative of four other oocytes. (B) T-STAR degradation

mediated by SIAH1 was also not affected by extrusion of the first polar body (Pb1, n = 12); however, control oocytes in separate experiments expressing cyclin

B1 showed an obvious inflexion in the rate of cyclin B1 destruction following Pb1 extrusion (n = 15). Times are given relative to Pb1 extrusion.

Fig. 8. Measurement of proteasome activity shows no increase following

oocyte activation.Metaphase II oocytes and those activated by PLC~ (cRNA,
0.1 Ag/Al) were injected with the proteasomal substrate Suc-Phe-Leu-Arg-

CAMS. Proteasomal activity was measured by the rate of formation of

ACMS. Pairs of oocytes were imaged in any one experiment, such that the

same micropipette was used for both a metaphase II oocyte and one that had

extruded its second polar body (Pb2) following microinjection with PLC~ .
This experiment is typical of seven other pairs of microinjections.
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proteasome activity, despite observations to the contrary in

oocytes of lower species.
Discussion

Little is understood about the process by which Ca2+

controls cyclin B1 destruction during a CSF-induced cell

cycle arrest; especially in mammalian oocytes. To further

explore this process, cyclin B1 was coupled to GFP to

visualise its destruction in mouse oocytes during the two

meiotic divisions. Cyclin B1 was degraded at the same

rate during the two meiotic divisions, suggesting that

once initiated, destruction proceeds along a common

pathway. Therefore, both periods of cyclin B1 destruction

may be controlled by the same degradation pathway

(APC activated by CDC20; and the 26S proteasome)

present to the same amounts and working at the same

rates.

During the second meiotic division, Ca2+ was the

necessary and sufficient trigger for cyclin B1 destruction.
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In contrast, during meiosis I, homologous chromosomes

segregated in the absence of any measurable cytosolic

Ca2+ changes and furthermore cyclin B1 degradation was

not enhanced by Ca2+. In maturing oocytes that failed to

mature fully, and so arrested at metaphase I, Ca2+ stimu-

lated cyclin B1 destruction and led to segregation of

homologous chromosomes. Therefore, an activity appeared

in oocytes at about 12 h of culture that stabilised cyclin B1

levels and conferred a sensitivity to Ca2+-mediated cyclin

destruction. In contrast to the Ca2+-induced acceleration in

cyclin B1 destruction observed in mature oocytes, mediat-

ed by its E3 ligase the APC, there was no Ca2+-induced

acceleration in the rate of T-STAR degradation, mediated

by its E3 ligase SIAH1. In addition, direct measurement of

proteasome activity in oocytes showed no difference be-

tween mature oocytes and oocytes activated by PLC~ .
These observations show that Ca2+ is more likely to

control APC activity than the 26S proteasome. Since

physiological arrest at metaphase II and spontaneous arrest

at metaphase I are both periods associated with a stabili-

sation of cyclin B1, it is argued that Ca2+ targets an

activity (CSF) that is specifically generated at these times

and arrests the cell cycle.

Ca2+ does not affect mouse oocyte 26S proteasome activity

The immediate Ca2+ transducer at fertilisation is CaM-

dependent protein kinase II (Lorca et al., 1993; Markou-

laki et al., 2003; Tatone et al., 2002; Winston and Maro,

1995). Since cyclin B1 degradation increases following

the Ca2+ signal, then the Ca2+ signal provided by the

sperm must ultimately increase the activity of the 26S

proteasome and/or the APC. Proteasome activity has been

seen to increase during the fertilisation of sand dollar

(Chiba et al., 1999), ascidian (Kawahara and Yokosawa,

1994) and frog (Aizawa et al., 1996) eggs making the

26S proteasome a plausible target. However, there has

been only one report of Ca2+ interacting with the protea-

some and in this case Ca2+ decreases, rather than stim-

ulates its activity, by binding a KEKE-containing REG

subunit (Realini and Rechsteiner, 1995). In addition, in

sand dollar eggs, it is the fertilisation-associated pH rise

and not the Ca2+ rise that activates the 26S proteasome

(Chiba et al., 1999), and in mammalian oocytes there is

no pH rise at fertilisation (Kline and Zagray, 1995).

Therefore, the only evidence that Ca2+ stimulates the

26S proteasome is from biochemical analyses on proteol-

ysis rates in ascidian and frog eggs. The present data in

mouse oocytes, however, present no evidence of a general

increase in 26S proteasome activity, since there is a clear

increase in the proteolysis of cyclin B1 but not of T-

STAR, and direct measurement of proteasome activity

fails to show any increase during fertilisation. In addition,

the establishment of CSF activity during meiosis II was

not associated with a decline in 26S proteasome activity

(Fig. 7B).
An increase in APC activity at fertilisation is therefore

the more likely pathway stimulated by Ca2+. This is based

on observation that proposed CSF candidates work through

inhibiting APC action. Thus, the c-mos–MAPK cascade has

the spindle checkpoint protein Bub1 as its downstream

effector (Schwab et al., 2001). While Emi1, another pro-

posed CSF candidate (Reimann and Jackson, 2002), binds

CDC20/Fizzy to inhibit its interaction with the APC (Reim-

ann et al., 2001) and thereby decreasing APC activity. In

fact, in frog, immunodepletion of CDC20/Fizzy blocks

CaMKII-mediated oocyte activation following CSF-induced

oocyte arrest (Lorca et al., 1998). All these data taken

together suggest that it is the APC rather than the 26S

proteasome that is stimulated by Ca2+.

Ca2+-independent meiosis I

Here we observed that segregation of homologous chro-

mosomes during meiosis I proceeded in the absence of any

detectable change in intracellular Ca2+. This is in agreement

with earlier indirect observations that polar body extrusion

would occur in BAPTA-treated oocytes (Tombes et al.,

1992). If Ca2+ changes are present in maturing oocytes,

they are certainly not to the same magnitude as those seen at

fertilisation. Therefore, Ca2+ appears to play little function

in stimulating cyclin B1 destruction during meiosis I and in

support of this view we also found that Ca2+ would not

accelerate loss of cyclin B1 during its normal window of

destruction at meiosis I.

In mammalian oocytes, a CSF activity, assessed by

fusion experiments between maturing oocytes and embry-

os, only appears shortly after first polar body extrusion

(Ciemerych and Kubiak, 1998). In agreement with this

observation, we (Figs. 2 and 3) and others (Ledan et al.,

2001) find that expressed cyclin B1 becomes stable at this

time. Interestingly, this CSF-mediated stabilisation appears

independent of actual extrusion of the polar body, as it is

observed in the majority of maturing oocytes that fail to

extrude any polar body. The trigger for CSF is obviously

not polar body extrusion. Instead, stimulation of its syn-

thesis/activation may be initiated at the point at which

cyclin B1 destruction begins during meiosis I. Efficient

cyclin B1 destruction during meiosis I appears a necessary

prerequisite for polar body extrusion (Fig. 2). Indeed, a

nondestructible cyclin B1 arrests oocytes at metaphase I

(Herbert et al., 2003). However, cyclin B1-expressing

oocytes that failed to extrude a polar body and instead

arrested at metaphase I showed Ca2+-sensitive cyclin B1

destruction. These oocytes could be considered abnormal,

since they should be at metaphase II. However, the

important point here is that only when an arrest is imposed

(naturally at metaphase II, or artificially at metaphase I)

does cyclin B1 degradation become Ca2+ sensitive. It is

clear that for the normal period of meiosis I (Fig. 4), Ca2+

has no role in cyclin B1 destruction, nor can it accelerate

cyclin B1 destruction when artificially imposed on the



Fig. 9. Model of Ca2+-stimulated CSF destruction during meiotic arrest.

This model is based on the observed profile of cyclin B1 destruction in

mouse oocytes. (A) Cyclin B1 destruction is initiated during meiosis I and

reaches a minimum level at the time of first polar body extrusion. After this

time, oocytes do not enter interphase but instead chromatin remains

condensed and a second meiotic spindle is formed. Oocytes remain arrested

at metaphase II until a Ca2+ signal provided by the sperm breaks this arrest.

The arrest is initiated and maintained by the activity of CSF. (B) The

molecular identity of CSF is unresolved but Emi1, Mad2 and Bub1 (the

most downstream component of the c-mos–MAPK pathway) have all been

suggested to constitute CSF. For completeness, we include MAI, a

hypothetical meiosis-specific anaphase inhibitor. Ca2+ acts most likely

through CamKII on these APCCDC20 inhibitors such that APC activity is

accelerated and cyclin B1 destruction increases. Abbreviations, AI, AII,

anaphase I and II; MI, MII, metaphase I and II; Ub, ubiquitin.
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oocyte. Only when cyclin B1 is restabilised during oocyte

maturation can Ca2+ stimulate cyclin B1 degradation, even

when the oocyte has a metaphase I spindle. Thus, we

argue that the main action of Ca2+ is to interfere with the

function of a cyclin B1 stabilising activity (CSF) that

develops in maturing oocytes at the end of meiosis I.

A model for Ca2+ stimulation of cyclin B1 degradation in

mouse oocytes

We present the following model to explain the present

data (Fig. 9). CSF activity is initiated by a period of cyclin

B1 degradation during oocyte maturation. At the time when

meiosis I normally completes during oocyte maturation,

with extrusion of the first polar body, CSF activity becomes

sufficient to stabilise cyclin B1 and so prevents entry into

interphase at the end of meiosis I. The rise in CSF activity is

triggered by initiation of cyclin B1 destruction; therefore, if

there is a large excess of added exogenous cyclin B1 in an

oocyte, CSF will become functional before cyclin B1 is at a
sufficiently low level to permit polar body extrusion. Ca2+

can stimulate the destruction of CSF and in so doing allows

cyclin B1 to be degraded and the second polar body to be

extruded. In mouse but not frog, this mechanism is possible

since in mouse CSF, activity decreases quickly on oocyte

activation (Ciemerych and Kubiak, 1999), whereas in frog

CSF persists after MPF has declined (Watanabe et al.,

1991).

CSF could constitute a component of the spindle check-

point such as Mad2 (Kallio et al., 2000) or Bub1 (Schwab et

al., 2001). However, arguing against this is the observation

that induction of spindle checkpoint by microtubule-disrupt-

ing agents increases greatly cyclin B1 stability in oocytes

(Nixon et al., 2002) and prevents the Ca2+ signal from

triggering completion of meiosis II (Jones et al., 1995;

Winston et al., 1995). Emi1 is an attractive alternative since

it contains a potential consensus sequence for phosphoryla-

tion by CaMKII (Reimann and Jackson, 2002) making

direct regulation by Ca2+ possible; however, it is not known

if it is expressed in mammalian oocytes. Finally, CSF may

be a novel Ca2+-sensitive meiotic anaphase inhibitor (MAI,

Fig. 6). This is not too speculative because not only are

there meiosis-specific components of the c-mos–MAPK

pathway (Lefebvre et al., 2002) but also in yeasts meiosis-

specific regulators of the APC have already been identified

(Bolte et al., 2002; Cooper et al., 2000).

In summary, we find that the Ca2+ signal provided by the

sperm at fertilisation induces an increase in the rate of cyclin

B1 degradation that is dependent on CSF-induced oocyte

arrest. Given the immediate loss of CSF in mouse oocytes

during activation and our finding that Ca2+ acts via the

APC, one likely pathway is therefore the Ca2+-stimulated

loss of an APC inhibitor.
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