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Abstract

This paper investigates a problem of passive mitigation of vibratory instabilities caused by two unstable
modes by means of a single nonlinear energy sink (NES). For this purpose, a linear four-degree-of-freedom
(DOF) primary structure having two unstable modes (reproducing the typical dynamic behavior of a friction
system) and undergoing, as it is linear, unbounded motions when it is unstable, is coupled to a NES. In this
work, the NES involves an essentially cubic restoring force and a linear damping force. We are interested
in characterizing analytically the response regimes resulting from the coupling of the two unstable linear
modes of the primary structure and the nonlinear mode of the NES. To this end, from a suitable rescaling
of the governing equations of the coupled system in which the dynamics of the primary structure is reduced
to its unstable modal coordinates, the complexification-averaging method is applied. The resulting averaged
system appears to be a fast-slow system with four fast variables and two slow ones related to the two unstable
modes of the primary structure. The critical manifold of the averaged dynamics is obtained through the
geometric singular perturbation theory and appears as a two-dimensional parametric surface (with respect
to two of the four fast variables) which evolves in the whole six-dimensional variable space. The asymptotic
analysis reveals that the NES attachment can produce some bounded responses and suggests that the
system may have simultaneous stable attractors. Numerical simulations complement the study, highlighting
a possible competition between stable attractors and allowing us to investigate their basins of attraction. In
each considered situation, a good agreement has been observed between theoretical results and numerical
simulations, which validates the proposed asymptotic analysis.

Keywords: Nonlinear energy sink, Multi-instabilities, Relaxation oscillations, Multiple-scale analysis

1. Introduction

A nonlinear energy sink (NES) is a vibration absorber used for passive shock and vibration mitigation
of undesirable oscillations of a primary structure induced by external, parametric or self-excitations. A
NES is classically defined as a nonlinear dynamical attachment consisting of a light mass (compared to the
total mass of the primary structure), an essentially nonlinear spring and a viscous linear damper. Properly
designed, a NES can be tuned to any frequency to perform an energy transfer from the primary structure
towards itself. This phenomenon, called targeted energy transfer (TET), is realized through nonlinear mode
bifurcations and it can be described as resonance captures. Reviews of these concepts can be found in [1]
and in a part of [2].

The use of NES to control or suppress dynamic instabilities has been widely studied. The first work
reported in this field concerns the suppression of limit cycle oscillations of the Van der Pol oscillator [3].
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Bifurcations of self-excitation regimes in a Van der Pol (respectively Van der Pol-Duffing) oscillator coupled
with a NES have been considered in [4] (respectively [5]). Numerous papers [6, 7, 8, 9, 10, 11, 12, 13] have
been dedicated to the suppression of aeroelastic instabilities. The mitigation, by means of a NES, of vortex-
induced vibrations resulting from the nonlinear interaction of a laminar flow and a rigid circular cylinder
has been described in [14, 15]. The passive suppression of helicopter ground resonance instabilities has been
considered in [16, 17]. Chatter control in machine tool vibrations has been studied in [18, 19]. Mitigation
of friction-induced vibrations due to mode coupling instabilities in a friction system has been investigated
in [20]. A network of parallel NES coupled to a Van der Pol oscillator has been considered in [21]. The
prediction of the steady-state regimes of a multi-degree-of-freedom dynamical system having one unstable
mode coupled to a set of NES has been performed in [22].

The presence of a NES modifies the position of the bifurcation point and the amplitude of the bifurcated
branches. It has been shown that NES can mitigate limit cycle oscillations (LCO). Several possible scenarios
have been identified including complete suppression, mitigation through periodic response and mitigation
through strongly modulated response (SMR). The results have been obtained under the main assumption
that the primary system has only one unstable mode. This assumption is the common thread in all previously
referenced works.

Mitigations involving two simultaneous resonances have been considered in the cases of external exci-
tations or transient regimes. TET by means of a multi-resonance capture in a 2-DOF system under two
different harmonic excitations has been investigated numerically [23, 24, 25] and experimentally [26]. It has
been shown that two resonances of the system are possible simultaneously resulting in vibration reduction
around the two resonance frequencies. Regarding transient responses, multi-frequency TET cascades have
been studied in [27, 28, 29]. Moreover, it has been shown in [30, 31] that a bistable NES is able to efficiently
mitigate oscillations of the primary system for more than one vibration mode.

In this paper, we consider the case of a primary system having two unstable modes and we investigate the
mitigation of the two instabilities by means of a single NES. To the knowledge of the authors, this case has
never been considered in the past. As for the primary system, the retained model, a simple 4-DOF friction
system involving two unstable modes, has been introduced in [32] and used in [33] to illustrate different
stability behaviors characterized by mode coupling having coalescence patterns. Based on the procedure
presented in [22], we provide an analytic framework for characterizing the response regimes.

The paper is organized as follows. In Sect. 2, the system under study is presented. It consists in two
2-DOF Hulten systems connected by one spring and one damper resulting in a 4-DOF system on which one
ungrounded NES is fixed along one of the DOF. In Sect. 3, applying a complexification-averaging method,
the analyses of the critical manifold, fixed points and relaxation oscillations regimes are addressed. Some
numerical examples are given and discussed in order to compare and to complete the asymptotic analysis
in Sect. 4. Finally, the paper is concluded in Sect. 5.

2. The system under study

2.1. The mechanical model

The system considered here is shown in Fig. 1. It is composed of a primary system coupled to a NES in
an ungrounded configuration. The primary system is defined by two 2-DOF Hulten systems with respective
masses m1 and m2 which are linearly coupled by a spring of stiffness ka, and a viscous damper of damping
coefficient ca. The two masses are arranged against three moving belts. It is assumed that the belts run at a
constant speed, that the masses and the belts are always in contact and that the relative velocities between
the masses and the belts are always positive so that the directions of the tangential fiction forces do not
change. Hence, the tangential forces FT due to friction contacts are proportional to the normal forces FN
as given by the Coulomb’s law: FT = γFN , where γ is the friction coefficient. This 4-DOF linear model was
introduced in [32] and used in [33] to illustrate different stability behaviors characterized by mode coupling
having coalescence patterns. The number of DOF of the primary system corresponds to the minimal number
of DOF which can be used to investigate the case of multi-instabilities.

The NES is simply modeled as a 1-DOF nonlinear oscillator characterized by a mass mh, no linear
stiffness, a cubic stiffness kNLh and a damping coefficient ch.
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Zoom into the NES
installation

Figure 1: The phenomenological system under study.

The system is described by the following equations of motion

m1
d2x̃1
dτ̃2

+ c1
dx̃1
dτ̃

+ ca

(
dx̃1
dτ̃
− dx̃3

dτ̃

)
+ k1x̃1+

ka (x̃1 − x̃3) + γk2x̃2 +mh
d2h̃

dτ̃2
= 0 (1a)

m1
d2x̃2
dτ̃2

+ c2
dx̃2
dτ̃

+ k2x̃2 − γk1x̃1 = 0 (1b)

m2
d2x̃3
dτ̃2

+ c3
dx̃3
dτ̃

+ ca

(
dx̃3
dτ̃
− dx̃1

dτ̃

)
+ k3x̃3+

ka (x̃3 − x̃1) + γk4x̃4 = 0 (1c)

m2
d2x̃4
dτ̃2

+ c4
dx̃4
dτ̃

+ k4x̃4 − γk3x̃3 = 0 (1d)

mh
d2h̃

dτ̃2
+ ch

(
dh̃

dτ̃
− dx̃1

dτ̃

)
+ kNLh

(
h̃− x̃1

)3
= 0 (1e)

where x̃1 and x̃2 (respectively x̃3 and x̃4) are the displacements of the primary mass m1 (respectively m2)
and h̃ is the displacement of the NES.
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Introducing the following notations

ω1 =

√
k1
m1

, ω2 =

√
k2
m1

, ω3 =

√
k3
m2

, ω4 =

√
k4
m2

,

ηi =
c1

ω1m1
, η2 =

c2
ω2m1

, η3 =
c3

ω3m2
, η4 =

c4
ω4m2

,

Ωi =
ωi
ω1

for i = 2, . . . , 4,

σ =
m2

m1
, Ωa =

ka
ω1m1

, ηa =
ca

ω1m1
,

µ̃ =
ch

ω1m1
, α =

kNLh
ω2
1m1

, ε =
mh

m1
,

we can then rescale the variables x̃i, for i = 1 to 4 and h̃ as

xi =
x̃i√
ε

for i = 1, . . . , 4 and h =
h̃√
ε
, (2)

and change the time scale from τ̃ to t = ω1τ̃ . Denoting as ”·” the derivative with respect to time t, the
system of equations (1) takes the following final form

ẍ1 + (η1 + ηa)ẋ1 − ηaẋ3 +
(
1 + Ω2

a

)
x1 + γΩ2

2x2 − Ω2
ax3 + εḧ = 0 (3a)

ẍ2 + η2Ω2ẋ2 − γx1 + Ω2
2x2 = 0 (3b)

ẍ3 −
ηa
σ
ẋ1 +

(
η3Ω3 +

ηa
σ

)
ẋ3 −

Ω2
a

σ
x1 +

(
Ω2

3 +
Ω2
a

σ

)
x3 + γΩ2

4x4 = 0 (3c)

ẍ4 + η4Ω4ẋ4 − γΩ2
3x3 + Ω2

4x4 = 0 (3d)

ḧ+ µ
(
ḣ− ẋ1

)
+ α (h− x1)

3
= 0 (3e)

where µ̃ has been rescaled as µ̃ = εµ.
From now on we assume that ε is small. As it also implies that µ̃ is small, this assumption is satisfied if

the mass ratio and the damping coefficient of the NES are small.

2.2. The reduced model

To simplify the following calculations, it is convenient to introduce new coordinates in (3) as

u1 = x1 + εh, ui = xi for i = 2, . . . , 4 and v = x1 − h (4)

leading, after a first-order Taylor expansion around ε = 0, to the following equations

ü1 + (η1 + ηa)u̇1 − ηau̇3 +
(
1 + Ω2

a

)
u1 + γΩ2

2u2 − Ω2
au3+

ε

[
− (η1 + ηa)u̇1 + (η1 + ηa)v̇ −

(
1 + Ω2

a

)
u1 +

(
1 + Ω2

a

)
v

]
= 0 (5a)

ü2 + η2Ω2u̇2 − γu1 + Ω2
2u2 + εγ (u1 − v) = 0 (5b)

ü3 −
ηa
σ
u̇1 +

(
η3Ω3 +

ηa
σ

)
u̇3 −

Ω2
a

σ
u1 + γΩ2

4u4 + (Ω2
3 +

Ω2
a

σ
)u3+

ε

σ

[
ηau̇1 − ηav̇ + Ω2

au1 − Ω2
av
]

= 0 (5c)

ü4 + η4Ω4u̇4 − γΩ2
3u3 + Ω2

4u4 = 0 (5d)

v̈ + (η1 + ηa)u̇1 − ηau̇3 + µv̇ + (1 + Ω2
a)u1 + γΩ2

2u2 − Ω2
au3 + αv3+

ε
[
− (η1 + ηa)u̇1 + (η1 + ηa)v̇ + µv̇ − (1 + Ω2

a)u1 + (1 + Ω2
a)v + αv3

]
= 0. (5e)
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Then, to capture the essential features of the double instability of the primary system, a biorthogonal
transformation is applied to the variables characterizing the primary system after writing Eqs. (5a) to (5d)
in state-space form:

ẏ = Ay + ε (D1y + D2v + D3v̇) (6)

where y = (u1, · · · , u4, u̇1, · · · , u̇4)T . The matrices A and D1 and the vectors D2 and D3 are not explicitly
given but can be easily obtained from (5a-5d). The non symmetric matrix A characterizes the dynamics of
the primary system.

Let us consider the right and left eigenvector matrices

R = [r1 r∗1 · · · r4 r∗4] and L = [l1 l∗1 · · · l2 l∗4] (7)

corresponding to the following right and left eigenvalue problems with respect to the matrix A

AR = RΛ and ATL = LΛ. (8)

where Λ = diag(λ1, λ
∗
1, · · · , λ4, λ∗4) denotes the diagonal matrix of the eigenvalues. The superscript (.)∗

denotes the complex conjugate.
From now on we assume that the primary system is unstable with two pairs of conjugate eigenvalues

having small positive real parts, we arrange the eigenvalues so that λR1 > 0 and λR2 > 0 where λi = λRi + jλIi
for i = 1, 2 and we assume that

λR1 = ερ1 and λR2 = ερ2 (9)

with ρ1 and ρ2 of the order of O(1). The two other pairs of eigenvalues have negative real parts.
We introduce the biorthogonal transformation

y = Rq with q = LTy (10)

where the vector q = (q1, q
∗
1 , · · · , q4, q∗4)T is constituted of four pairs of complex conjugates. The matrices

R and L have been chosen such that

LTR = I and LTAR = Λ. (11)

where I denotes the identity matrix.
We can deduce that Eqs. (5) take the following formal form with respect to the new variables q:

q̇−Λq− εf(q, v, v̇) =0 (12a)

v̈ + g(v, v̇,q, ε) =0 (12b)

where f = LT (D1Rq + D2v + D3v̇). Again, the function g is not explicitly given but can be easily obtained
from (5e).

Neglecting the coupling term εf(q, v, v̇), Eq. (12a) reduces to q̇ − Λq = 0 and the variables q3, q∗3 , q4
and q∗4 , related to the stable modes, vanish (i.e. tend to zero). When the coupling term εf(q, v, v̇), which is
of the order of magnitude of ε, is taken into account, the variables q3, q∗3 , q4 and q∗4 do not vanish but their
contributions remain minimal and can be neglected [9, 22]. Consequently, all the terms related to q3, q∗3 , q4
and q∗4 will be omitted in the following developments.

Eq. (12) may therefore be simplified, retaining only the components q1, q∗1 , q2 and q∗2 associated with
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the unstable eigenvalues. The resulting equations take the (reduced) form

q̇1 − jλI1q1 − ερ1q1−
εLT1. [D1 (R1.q1 + R2.q

∗
1 + R3.q2 + R4.q

∗
2) + D2v + D3v̇] = 0 (13a)

q̇2 − jλI2q2 − ερ2q2−
εLT3. [D1(R1.q1 + R2.q

∗
1 + R3.q2 + R4.q

∗
2) + D2v + D3v̇] = 0 (13b)

v̈ + µv̇ + αv3+

(η1 + ηa)(R51q1 +R∗51q
∗
1 +R53q2 +R∗53q

∗
2)−

ηa(R71q1 +R∗71q
∗
1 +R73q2 +R∗73q

∗
2)+

(1 + Ω2
a)(R11q1 +R∗11q

∗
1 +R13q2 +R∗13q

∗
2)+

γΩ2
2(R21q1 +R∗21q

∗
1 +R23q2 +R∗23q

∗
2)−

Ω2
a(R31q1 +R∗31q

∗
1 +R33q2 +R∗33q

∗
2)+

ε
[
(η1 + ηa + µ)v̇ + (1 + Ω2

a)v + αv3−

(η1 + ηa)(R51q1 +R∗51q
∗
1 +R53q2 +R∗53q

∗
2)−

(1 + Ω2
a)(R11q1 +R∗11q

∗
1 +R13q2 +R∗13q

∗
2)
]

= 0 (13c)

where Rij denotes the (i, j) component of the matrix R and the vector Ri. (respectively Li.) denotes the
ith column of the matrix RT (respectively LT ). Eq. (13) involves two complex variables q1 and q2 and one
real variable v.

3. Asymptotic analysis

The objective of this section is to characterize analytically the response regimes of the reduced model
(13) in the simultaneous vicinity of the unstable natural frequencies λI1 and λI2. The proposed method which
uses ε as a small parameter includes two steps. The first step (Sect. 3.1) combines complexification and
averaging methods to reduce the dynamics of the nonlinear system (13) by removing the oscillations with
respect to the frequencies λI1 and λI2. The resulting dynamical system appears as a slow-fast system where
the fast dynamics corresponds to the current time t whereas the slow dynamics is related to the time εt.
Note that the dynamics with respect to the frequencies λI1 and λI2 defines a third time scale denoted as
the super fast dynamics. The reduced system can be analyzed using the geometric singular perturbation
theory which is the objective of the second step (Sects. 3.2 to 3.5). That step begins with the definition of
the critical manifold (Sect. 3.2), which defines the space where the slow flow takes place. The associated
stability properties are then considered in Sect. 3.3. It continues with the characterization of the periodic
or quasi-periodic regimes of the mechanical system (5) as stable fixed points of the slow flow (19) (Sect.
3.4). Finally, in Sect. 3.5, it is shown that the specific shape of the critical manifold enables the existence of
more complicate steady-state responses named ”relaxations oscillations”, which exhibit strong modulated
amplitudes on both frequency components.

3.1. The complexification-averaging method and the slow-fast system

Our objective is to investigate the solution in the vicinity of two simultaneous natural frequencies λI1 and
λI2 named 1:1-1:1 resonances. We assume that λI1 and λI2 are incommensurable.

The complexification-averaging method [34] is used to make the slow dynamics of the system emerge
from fast oscillating responses.

The complex modal variable q1 (respectively q2) may be written as a fast component with respect to the
natural frequency λI1 (respectively λI2), and modulated by a slowly varying amplitude φ1 (respectively φ2),
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that is

q1 = φ1e
jλI

1t and q̇1 = φ̇1e
jλI

1t + jφ1λ
I
1e
jλI

1t (14a)

q2 = φ2e
jλI

2t and q̇2 = φ̇2e
jλI

2t + jφ2λ
I
2e
jλI

2t. (14b)

As for the real variable v, new variables v1 and v2 are introduced as

v = v1 + v2 (15)

to capture frequency components with respect to λI1 and λI2 (fast components) respectively. The slowly
changing complex amplitudes ξ1 and ξ2 are then respectively defined as

ξ1e
jλI

1t = v̇1 + jλI1v1 (16a)

ξ2e
jλI

2t = v̇2 + jλI2v2. (16b)

Inserting Eqs. (14), (15) and (16) into Eqs. (13) and averaging with respect to the frequencies λI1 and λI2
separately yields the following system of complex slow modulation with respect to (φ1, φ2, ξ1, ξ2):

φ̇1 = εF1(φ1, ξ1) (17a)

φ̇2 = εF2(φ2, ξ2) (17b)

ξ̇1 = G1(φ1, ξ1, ξ2, ε) (17c)

ξ̇2 = G2(φ2, ξ2, ξ1, ε) (17d)

where the complex functions F1, F2, G1 and G2 are not explicitly given. Eqs. (17) characterize the dynamics
of the slow complex amplitudes φ1, φ2, ξ1 and ξ2 of the physical variables q1, q2, v1 and v2 respectively.

By expanding Eqs. (17) using the following polar coordinates

φ1 = s1e
jδ1 (18a)

φ2 = s2e
jδ2 (18b)

ξ1 = r1e
jθ1 (18c)

ξ2 = r2e
jθ2 , (18d)

new equations of motion in terms of amplitudes s1, s2, r1 and r2 and phase differences ∆1 = δ1 − θ1 and
∆2 = δ2 − θ2 can be obtained as

ṡ = εf(s, t) (19a)

ṫ = g(s, t, ε) = g0(s, t) + εg1(s, t) (19b)

where s = (s1, s2)T and t = (r1, r2,∆1,∆2)T . The functions f = (f1, f2)T , g0 = (g01, g02, g03, g04)T and
g1 = (g11, g21, g31, g41)T take the following forms

f1(s1, r1,∆1) = a1s1 + r1(a2 cos ∆1 + a3 sin ∆1) (20)

f2(s2, r2,∆2) = a4s2 + r2(a5 cos ∆2 + a6 sin ∆2) (21)

g01(s1, r1,∆1) = H01(r1) + s1(a7 cos ∆1 + a8 sin ∆1) (22)

g02(s2, r2,∆2) = H02(r2) + s2(a9 cos ∆2 + a10 sin ∆2) (23)

g03(s1, r1,∆1, r2) =
1

r1
(H03(r1, r2) + s1(a8 cos ∆1 − a7 sin ∆1)) (24)

g04(s2, r2,∆2, r1) =
1

r2
(H04(r1, r2) + s2(a10 cos ∆2 − a9 sin ∆2)), (25)
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with

H01(r1) = −µ
2
r1, (26)

H02(r2) = −µ
2
r2, (27)

H03(r1, r2) = r1

(
λI1
2
− 3α

8λI
3

1

r21 −
3α

4λI1λ
I2
2

r22

)
, (28)

H04(r1, r2) = r2

(
λI2
2
− 3α

4λI
2

1 λ
I
2

r21 −
3α

8λI
3

2

r22

)
. (29)

The coefficients ai for i = 1, . . . , 10, are reported in Appendix A and the other functions are not given
explicitly because they are not used in the following.

In the framework of the Geometric Singular Perturbation Theory, Eqs. (19) define a (4, 2)-fast-slow
system where t = (r1, r2,∆1,∆2)T denote the fast variables and s = (s1, s2)T the slow ones. The slow
variables are related to the modal components q1 and q2 whereas the fast variables are associated with the
frequency components v1 and v2 of the NES variable v.

The system (19) corresponds to the fast time scale whereas for the slow time scale τ = εt, the system
reads

s′ = f(s, t) (30a)

εt′ = g(s, t, ε) = g0(s, t) + εg1(s, t) (30b)

where (.)′ denotes the derivative with respect to τ . The slow and the fast subsystems are defined by
considering ε = 0, which yields for the slow subsystem

s′ = f(s, t) (31a)

0 = g0(s, t), (31b)

which is a differential-algebraic equation, and for the fast subsystem

ṡ = 0 (32a)

ṫ = g0(s, t). (32b)

The slow and the fast subsystems will be complementary in the following analysis. Periodic or quasi-
periodic steady-state regimes of the mechanical system (13) correspond to fixed points of the slow flow which
are approximated by those of the slow subsystem. Indeed, if a fixed point of the slow flow with non-zero
amplitude coordinates (i.e. s1, s2, r1 and r2) is reached, the resulting steady-sate regime of the system (13)
is approximated by a quasi-periodic regime containing the two harmonic components at the frequencies λI1
and λI2 respectively. If a fixed point with s1 = r1 = 0 (respectively s2 = r2 = 0) is reached, the resulting
steady-sate regime is approximated by a periodic regime containing only one harmonic component at the
frequency λI2 (respectively λI1).

More complicate (amplitude and phase modulated) steady-state regimes of the mechanical system (13)
will be explained, inter alia, by the existence of relaxation oscillations of the slow flow (see Sect. 3.5), which
are described combining slow and fast periods predicted by (31) and (32) respectively. In the case of only
one unstable mode, those regimes are referred to as Strongly Modulated Responses (SMR) [35]. This term
is kept in this work but it covers more situations which are described in Sect. 3.5. Although SMR are also
quasi-periodic regimes, we have chosen to reserve the ”quasi-periodic” term for the situations evoked above
in which a fixed point of the slow flow is reached.

3.2. The critical manifold

The critical manifold is given as

C0 :=
{

(s, t) ∈ R2 × R4
∣∣g0(s, t) = 0

}
. (33)
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It defines the domain where the slow flow takes place (see (31b)) and consists in the equilibrium of the fast
flow (see (32b)). It plays a crucial role to characterize the response regimes under asymptotic assumptions.

The equations defining the critical manifold (33) can be simplified solving g01 = 0 and g03 = 0 (re-
spectively g02 = 0 and g04 = 0) with respect to cos ∆1 and sin ∆1 (respectively cos ∆2 and sin ∆2), which
gives

cos ∆1 = −a8H03(r1, r2) + a7H01(r1)

s1 (a27 + a28)
and sin ∆1 = −a8H01(r1)− a7H03(r1, r2)

s1 (a27 + a28)
(34)

(respectively

cos ∆2 = −a10H04(r1, r2) + a9H02(r1)

s2 (a29 + a210)
and sin ∆2 = −a10H02(r1)− a9H04(r1, r2)

s2 (a29 + a210)
). (35)

Finally, compatibility equations relating s1 and s2 with r1 and r2 can be deduced from (34) and (35) as

s21 =
H1(r1, r2)

a27 + a28
(36a)

s22 =
H2(r1, r2)

a29 + a210
(36b)

where

H1(r1, r2) = H2
01(r1) +H2

03(r1, r2) (37a)

H2(r1, r2) = H2
02(r2) +H2

04(r1, r2). (37b)

The critical manifold C0 relates the variables s1, s2, ∆1 and ∆2 to r1 and r2 (see Eqs. (34) to (37))
and appears as a two-dimensional parametric surface with respect to the two fast variables r1 and r2 which
evolve in the six-dimensional variable space. It is hence possible to plot C0 as two surfaces by projecting
it on the three-dimensional spaces (r1, r2, s1) and (r1, r2, s2) using Eq. (37a) and Eq. (37b) respectively.
Figure 2 shows the corresponding two surfaces for given nominal parameter values of the considered system.
The surface in the three-dimensional space (r1, r2, s1) (see Fig. 2(a)) depicts C0 with respect to the unstable
mode λ1. Note that, as observed when only one mode is unstable [20], C0 restricted to r2 = 0 is S-shaped.
Similar comments can be made considering the surface in the three-dimensional space (r1, r2, s2) related
to the unstable mode λ2. The presence of an S-shaped critical manifold will be used to show that SMR
steady-state responses of the mechanical system can exist (as in the case of only one unstable mode, see for
example [20]).

Finally, the slow dynamics described by the slow subsystem can be only written in the (r1, r2)-plane, as
performed hereafter in Sect. 3.4.

3.3. Stability of critical manifold

The points constituting C0 are equilibrium point of the fast subsystem (32) and the stability properties
can be analyzed from the Jacobian matrix of g0(s, t) with respect to t, denoted as Dtg0(s, t), and evaluated
at each point of C0 as

Dtg0(s, t) =



dH01

dr1
(r1) −H03(r1, r2) 0 0

0 0
dH02

dr2
(r2) −H04(r1, r2)

1

r1

∂H03

∂r1
(r1, r2)

H01(r1)

r1

1

r1

∂H03

∂r2
(r1, r2) 0

1

r2

∂H04

∂r1
(r1, r2) 0

1

r2

∂H04

∂r2
(r1, r2)

H02

r2
(r2)


. (38)

The critical manifold C0 contains both regular points defined as det (Dtg0(s, t)) 6= 0 and singular points
characterized by det (Dtg0(s, t)) = 0. Depending on the eigenvalues of Dtg0(s, t), the set of regular points
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(a) (b)

Figure 2: The critical manifold in (a) the (r1, r2, s1)-space (function (36a)) and (b) in the (r1, r2, s2)-space (function (36b)).
The set of parameters used are given in Sect. 4.3, Eq. (58).

can be split into several parts (see definitions in Chap. 3 of [36]), including normally hyperbolic attracting
parts (all the eigenvalues have strictly negative real parts), normally hyperbolic repelling parts (all the
eigenvalues have strictly positive real parts), normally hyperbolic saddle type parts (neither attracting
nor repelling) and non normally hyperbolic parts (at least one eigenvalue has a zero real part). Finally, the
singular points for which the rank of Dtg0(s, t) is equal to 3 (= 4−1), (the simplest possible rank deficiency)
are denoted as fold points.

In general normally hyperbolic parts of C0 constitute surfaces in the (r1, r2)-plane whereas points that
are not normally hyperbolic (i.e. regular non normally hyperbolic points and singular points) are not isolated
but form a one-dimensional curve inside C0.

Fig. 3 shows, for the same nominal parameter values of the considered system as above, the different
parts of C0 in the (r1, r2)-plane as

C0 = Ca0,r ∪ (F 1 ∪ Cst,10,r ) ∪ (F 2 ∪ Cst,20,r ) ∪ (F 3 ∪ Cst,30,r ) ∪ (Nr ∪ Cst,40,r ) (39)

where Ca0,r (Fig. 3 - white background) is a (regular) normally hyperbolic attracting part and Cst,10,r (respec-

tively Cst,20,r and Cst,30,r ) (Fig. 3 - salmon background) is a (regular) normally hyperbolic saddle type part that

meets Ca0,r at the fold curve F 1 (respectively F 2 and F 3) (Fig. 3 - dashed and continuous red lines). Cst,40,r

(Fig. 3 - green background) is a normally hyperbolic saddle type part that meets Ca0,r at a (regular) non
normally hyperbolic curve Nr (Fig. 3 - green line).

3.4. Fixed points of the slow-flow in C0

As mentioned previously, the fixed points of the slow flow (19) characterize periodic or quasi-periodic
regimes of the mechanical system (5). Since 0 < ε� 1, these fixed points can be approximated by those of
the slow subsystem (31) which are computed in this section.

The critical manifold C0 relates the variables s1, s2, ∆1 and ∆2 to the variable r1 and r2. Hence,
substituting Eq. (36) into (31), the dynamics of the slow subsystem can be considered only with respect to

10
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0.0
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1.0

1.5

Ca0,r : attracting part of

the critical manifold

Cst,10,r , Cst,20,r and Cst,30,r :

normally hyperbolic saddle type parts

of the critical manifold that meet

Ca0,r at a fold curve

Cst,40,r : normally hyperbolic saddle type part

of the critical manifold that meets

Ca0,r at the regular non normally

hyperbolic curve

F 1, F 2 and F 3: fold curves

Nr : non normally hyperbolic curve

A1, A2 and A3: arrival curves

• Regular fixed points of the slow-flow

• Points where the transversality

condition does not hold

• Point where adj (DrH)F(r) = 0

Stream plot of the vector field DrH
−1F(r)

Figure 3: The different parts of the critical manifold C0 are represented in the (r1, r2)-plane, as defined by (39): Ca
0,r (white

background) is a (regular) normally hyperbolic attracting part; Cst,1
0,r (respectively Cst,2

0,r and Cst,3
0,r ) (salmon background)

is a (regular) normally hyperbolic saddle type part that meets Ca
0,r at a fold curve F 1 (respectively F 2 and F 3) (dashed

and continuous red lines); Cst,4
0,r (green background) is also a normally hyperbolic saddle type part which meets Ca

0,r at the

(regular) non normally hyperbolic curve Nr (green line). The blue dashed lines A1
1 (respectively A2

1 and A3
1) are the arrival

curves associated with the red dashed lines F 1
1 (respectively F 2

1 and F 3
1 ) and the blue solid lines A1

2 (respectively A2
2) are

the arrival curves associated with the red solid lines F 1
2 (respectively F 2

2 ). The stream plot of the vector field DrH−1F(r)
is depicted with gray arrows. Blue dots represent the regular fixed points of the slow flow as defined by (43) (here unstable).
The red dots are the points where the transversality condition (48) does not hold and the orange dot is the point where
adj (DrH)F(r) = 0. Same parameters as in Fig. 2.

the variables r1 and r2 as
DrH(r) r′ = F(r) (40)

where r = (r1, r2)T ,

DrH(r) =

∂H1

∂r1
(r1, r2)

∂H1

∂r2
(r1, r2)

∂H2

∂r1
(r1, r2)

∂H2

∂r2
(r1, r2)

 (41)

is the Jacobian matrix of the function vector H(r) = (H1(r), H2(r))T and

F(r) =

(
2
√
H1(r1, r2) (a27 + a28)

2
√
H2(r1, r2) (a29 + a210)

)
h(r). (42)

In the above equation the vector function h(r) is obtained by replacing in f(s, r) the variables s1, s2, ∆1

and ∆2 by their expressions as functions of r1 and r2.
From Eq. (40), it is possible to detect fixed points or equivalently regular fixed points as

F(r) = 0, (43a)

det (DrH(r)) 6= 0. (43b)

For the given nominal parameter values, the stream plot of the vector field DrH
−1F(r) associated with

the dynamical system (40) is depicted in Fig. 3 by gray arrows and the regular fixed points are reported
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as blue dots. A stability analysis has been performed given that all the fixed points are unstable. In the
following magenta dots will be used to represent stable fixed points. A stable fixed point of the slow flow (19)
characterizes a periodic regime of the initial system (5) if one of the variables ri (i = 1, 2) is equal to zero;
otherwise the regime is quasi-periodic with two frequency components.

Fixed points no longer exist in situations where

F(r) = 0, (44a)

det (DrH(r)) = 0. (44b)

The points in which Eqs. (44) hold are called folded singularities in the literature of slow-fast dynamical
systems. Considering the relation

det (DrH(r)) = −4r1r2 det (Dtg0(s, t)) , (45)

it follows that fold curves can be defined from det (DrH(r)) = 0 and that folded singularities correspond to
situations in which fixed points and fold points coincide. Folded singularities are hints of particular solutions
of such slow-fast systems, called canard cycles [37]. These solutions are not investigated in this paper.

3.5. Relaxation oscillations

As suggested by the particular shape of the critical manifold, we examine in this section if specific
solutions of the slow-fast system named relaxation oscillations can occur. These solutions characterize
complicate motions named SMR of the mechanical system (5). We focus here on the limit case ε → 0. A
relaxation oscillation is a solution consisting of successive fast and slow segments forming a closed loop in
the (r1, r2)-plane representation of the critical manifold. The fast segments satisfy the fast subsystem (32)
whereas the slow segments are obtained from the slow subsystem (31). Hence the slow segments take place
on C0 and the fast ones are outside of C0. A switch from a slow segment to a fast one can occur when the
trajectory crosses a fold line. In this case the fast segment appears as a jump from a fold point (in C0) to
an (arrival) point in C0.

3.5.1. Transversality condition

The transversality condition is defined as a crossing condition with respect to a fold curve F i (i = 1, 2
or 3) of the slow dynamics. It is obtained writing that the slow flow, projected in the (r1, r2)-plane, is not
tangent to a fold curve F i (i = 1, 2 or 3) (i.e. a jump can occur).

The slow subsystem (40) being by definition singular on the fold curve, it is first desingularized intro-
ducing the time rescaling τ1 = τ/ det (DrH(r)), which leads to

r′ = adj (Dr(r)H)F(r) (46)

where adj(.) denotes the adjoint matrix of (.) and ()′ is now the derivative with respect to the new time τ1.
Recalling that a fold curve in the (r1, r2)-plane is defined as det (DrH(r)) = 0 (see Sect. 3.4), the

transversality condition at a point r on a fold curve F i (i = 1, 2 or 3) is written as follows

gradr (det (DrH(r))) · [adj (DrH)F(r)] 6= 0 (47)

where gradr(.) denotes the gradient of (.) with respect to r and · denotes the usual dot product in R2. The
points where the transversality condition does not hold are obtained solving

gradr (det (DrH(r))) · [adj (DrH)F(r)] = 0 (48)

for adj (DrH)F(r) 6= 0. The points defined by (48) are depicted in red on Fig. 3 for the given nominal
parameter values. These points are isolated and divide the fold curves into two parts

F i = F i1 ∪ F i2. (49)
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In Fig. 3 the red dashed (respectively solid) lines are arbitrarily chosen to depict F 1
1 , F 2

1 and F 3
1 (respec-

tively F 1
2 , F 2

2 and F 3
2 ). Moreover, we can see that the stream plot of the vector field DrH

−1F(r) can head
towards or against the fold lines.

If adj (DrH)F(r) = 0, the considered points are no longer points where the transversality condition does
not hold, but fixed points of the desingularized system (46), which are also hints of possible canard cycles.
In Fig. 3, a point, depicted as an orange dot, corresponds to this situation.

3.5.2. Jumps and arrival curves

When the slow dynamics described by (40) reaches a point rJ = (rJ1 , r
J
2 ) of a part F ij (with i = 1, 2, 3

and j = 1, 2) of the fold curve F i (this can occur if the stream plot of the vector field DrH
−1F(r) heads

towards F ij ), the trajectory can leave the critical manifold C0 (and the slow epoch) and undergoes a jump

(a fast episode) before reaching another part of Ca0,r. The point rJ is named jump point. The jump is

described by the fast subsystem (32) with the jump point rJ as initial condition. Hence the possible drop
point, denoted as rD = (rD1 , r

D
2 ), of the fast dynamics on Ca0,r is determined as a fixed point of the fast

subsystem (32), that is
g0(sJ , t) = 0 (50)

where sJ is obtained from Eqs. (36) evaluated at rJ .
Manipulating Eq. (50), it can be shown that the drop point rD is defined as the root of the following set

of equations

H1

(
rD1 , r

D
2

)
= H1

(
rJ1 , r

J
2

)
(51a)

H2

(
rD1 , r

D
2

)
= H2

(
rJ1 , r

J
2

)
, (51b)

where the functions H1 and H2 are defined by Eqs. (37). The solutions obtained solving Eqs. (51) for each
point of F ij define the arrival curve denoted as Aij . The arrival curves are also reported in Fig. 3. The

blue dashed line A1
1 (respectively A2

1 and A3
1) is the arrival curve associated with the red dashed line F 1

1

(respectively F 2
1 and F 3

1 ) and the blue solid line A1
2 (respectively A2

2) is the arrival curve associated with
the red solid line F 1

2 (respectively F 2
2 ).

The arrival curve (or a part of it) is stable, and therefore potentially reached by the trajectory at the
end of a fast jump, if it is located on Ca0,r, and unstable if it is located on Cst,i0,r (i = 1, 2, 3 or 4).

3.5.3. Description of a possible relaxation oscillation scenario

The previous results, leading to the general form of the critical manifold depicted in Figs. 2 and 3, allow
us to predict different possible scenarios of relaxation oscillations. The latter can be defined from elementary
relaxation oscillations.

An elementary relaxation oscillation is defined as a succession of fast, slow, fast and slow epochs starting
from and dropping on the same part F ij . This can for example occur in Fig. 3, considering the case where

the slow dynamics in Ca0,r leads the trajectory to a jump point P1 of F 1
1 . Next a fast jump occurs before

reaching a drop point P2 of A1
1. Then, from P2, the slow dynamics reaches the fold curve F 1

2 at the jump
point P3, followed by a jump to a drop point P4 of A1

2. Finally the slow dynamics reaches the fold curve F 1
1

at a jump point P5. If P1 = P5, the elementary relaxation oscillation defines a (sustained) simple relaxation
oscillation.

In the case of Fig. 3, it is easy to verify that elementary relaxation oscillations can occur in the neigh-
borhood of Cst,10,r and Cst,20,r , but not in the neighborhood of Cst,30,r . Indeed, a necessary condition to observe

relaxation oscillations on both sides of a normally hyperbolic saddle type part Cst,i0,r (i = 1, 2, 3) of the critical

manifold is that both F i1 and F i2 contain parts where the vector field DrH
−1F(r) is incoming.

Unlike the case where the slow dynamics can be described in a one-dimensional space, here the critical
manifold C0 appears as a two-dimensional parametric surface. Consequently the condition P1 = P5 is
not always satisfied. Moreover a simple relaxation oscillation can appear after a transient phase including
successive elementary relaxation oscillations. We have not developed a method to characterize the existence
of such simple relaxation oscillations.
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More complex (sustained) relaxation oscillation scenarios may be considered, such as a double relaxation
oscillation which is defined from two successive elementary relaxation oscillations occurring alternatively in
the neighborhoods of two different Cst,i0,r .

The next section provides an overview of the possible steady-states regimes by means of numerical
simulations and aims at understanding them with regard to the theoretical results presented in this section.
Note that basins of attraction of the possible steady-states regimes must be considered besides the previous
local analysis. Indeed, for a given set of parameters, the system may have several stable attractors (stable
fixed points or sustained relaxation oscillations) and the initial conditions determine which one is reached.

4. Numerical results

In this part, numerical simulations are performed both to validate and to complete the asymptotic
analysis presented in Sect. 3 by means of direct numerical integration of the slow flow (19) and of the initial
system (12). For the numerical simulations, we fix ε = 0.01 and the other parameters are always chosen
to ensure that the first two modes of the primary system (3a-3d) undergo Hopf bifurcations at γ = γHopf,1

and γ = γHopf,2 respectively (i.e. the real parts ρ1 and ρ2 (see Eq. (9)) of the eigenvalues become greater
than zero at γHopf,1 and γHopf,2 respectively). The numerical values of γHopf,1 and γHopf,2 are given for each
situation under study in the following sections.

In all the examples presented below, the friction coefficient γ is chosen such that γHopf,1 < γHopf,2 < γ.
This choice validates the use of the reduced model (13) and the slow-flow formulation where s1 and s2
represent the two unstable modes of the primary system and r1 and r2 represent the frequency components
(related to the two unstable modes of the primary system) of the relative displacement between the NES
and the primary system.

Note that the primary structure (without NES) is linear, consequently it undergoes, when it is unstable,
an exponential growth (i.e. the solution is not bounded). Therefore, all the responses of the coupled system
shown in this section, which show bounded amplitudes, correspond to a quench of the ”double-instability”
by the single NES. These bounded motions can occur through periodic responses, quasi-periodic responses
or complex SMR. Another type of response is shown at the end of the section (Sect 4.4).

Sect. 4.1 investigates the competition between two stable fixed points of the slow flow corresponding
to the competition between two periodic or quasi-periodic regimes for the mechanical system; Sect. 4.2
analyzes the competition between a sustained relaxation oscillation and a stable fixed point of the slow flow
corresponding to the competition between an SMR and a periodic or quasi-periodic regime; in Sect. 4.3
the competition between two kinds of sustained relaxation oscillations, corresponding to the competition
between two SMR, is addressed. Finally, the case of the bifurcation of a fixed point to a limit cycle of the slow
subsystem, corresponding to another type of amplitude and phase modulated response of the mechanical
system, is presented in Sect. 4.4.

4.1. Competition between two stable fixed points of the slow flow

In this section the following set of parameters is used:

η1 = 0.01 η2 = 0.07 η3 = 0.01 η4 = 0.07 (52a)

Ω2 = 0.93 Ω3 = 1 Ω4 = 1.7 (52b)

ηa = 0.01 Ωa = 0.95 (52c)

σ = 1 γ = 0.09075 (52d)

µ = 0.395 α = 7. (52e)

For this set of parameters, γHopf,1 = 0.081, γHopf,2 = 0.088 and the invariant manifold C0 admits a decom-
position in the form of (39). The fixed points of the slow flow are obtained solving Eq. (43), which gives
four unstable fixed points including the trivial point (0, 0), and two stable fixed points, denoted as r∗s,1 and
r∗s,2, whose coordinates in the (r1, r2)-plane are respectively

r∗s,1 = (0.26, 0) and r∗s,2 = (0, 0.45). (53)
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The two stable fixed points of the slow flow correspond to a mitigation of the two unstable modes of
the primary system. Note that if r∗s,1 is reached, the first unstable mode is mitigated through a periodic
response of the physical system (12)1 whereas the second unstable mode is completely suppressed. If r∗s,2
is reached, the first unstable mode is completely suppressed whereas the second unstable mode is mitigated
through a periodic response. The associated critical manifold C0 is depicted on Fig. 4(b) and Fig. 5(b). The
stable fixed points are represented by magenta dots and the unstable fixed points by blue dots. Two stable
and one unstable fixed points are in the neighborhood of the trivial point (0, 0). These four fixed points are
on the (regular) normally hyperbolic attracting part Ca0,r. The other two fixed points are far from (0, 0).
The stream plot of the vector field of Eq. (40), also reported in Fig. 4(b) and Fig. 5(b), suggests that each
stable fixed point admits a basin of attraction in the neighborhood of the trivial point (0, 0).

The direct numerical integration of the slow flow (19) is performed to localize, on the critical manifold
C0, the basin of attraction of each stable fixed point.

The time series of s1, s2, r1 and r2 obtained from two different initial conditions r0,1 = (r1(0), r2(0)) =
(0.02, 0.1) and r0,2 = (0.02, 0.2) are reported respectively on Fig. 4(a) and Fig. 5(a), and the corresponding
trajectories in the (r1, r2)-plane are plotted on Fig. 4(b) and Fig. 5(b). In the latter, the initial condition
points r0,1 and r0,2 are represented by light blue dots and the trajectories of the slow flow are depicted using
a color gradient from light blue at t = 0 to black at t = 30000. These trajectories give a good idea of the
basins of attraction and of the role played by the unstable fixed points. The basin of attraction of r∗s,1 is
located between the r1-axis and the streamline that links the trivial point to the unstable fixed point located
at (0.16, 0.25); the basin of attraction of r∗s,2 is located between the same streamline and the r2-axis.

Finally, the time series obtained solving the complete equations (12) are also reported in Fig. 4(a) and
Fig. 5(a) following the remarks below.

From Eqs. (14) to (16) and (18), the variables of the complete model (12) can be expressed as functions
of the slow-flow variables as follows

q1 = s1e
j(λI

1t+δ1), q2 = s2e
j(λI

2t+δ1), (54)

v1 =
r1
λI1

sin
(
λI1t+ θ1

)
= Av1 sin

(
λI1t+ θ1

)
, v2 =

r2
λI2

sin
(
λI2t+ θ2

)
= Av2 sin

(
λI2t+ θ2

)
. (55)

To analyze the results, the modulus of the variables q1 and q2 (orange lines) of the system (12) must
be compared to the variables s1 and s2 (blue lines) of the slow flow (19) respectively. Moreover, the
spectrograms of the signal v(t) (resulting from the numerical integration of Eq. (12)) are then computed
and the amplitudes Av1 and Av2 of the components v1(t) and v2(t) related to the frequencies λI1 and λI2
respectively are extracted. The variables λI1Av1 and λI2Av2 (black dashed lines) are to be compared to the
variables r1 and r2 (green lines) of the slow flow (19).

In each case the behavior of s1 (respectively r1, s2 and r2) is found close to the behavior of q1 (respectively
λI1Av1 , q2 and λI2Av2), which allows us to validate the theoretical development presented in Section 3.

Even if the previous comparisons show a good agreement, quantitative differences are nevertheless ob-
served. We recall that two steps separate the initial mechanical system (12) and its approximated slow
flow (19): the reduction of the dynamics keeping only the unstable modes and the averaging with respect
to the frequencies of these two unstable modes. Additional numerical simulations (not displayed here) show
that the quantitative differences observed here (and also in the following sections) are mainly due to the
averaging step.

1Indeed, if r1 = 0 or r2 = 0, the non averaged initial system undergoes periodic oscillations.
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Figure 4: Competition between two stable fixed points of the slow flow (1st example). (a) Amplitudes r1, s1 (top) and r2, s2
(bottom) as functions of time with the initial condition r0,1 = (0.02, 0.1) obtained by solving numerically the slow flow (19).
The time series of q1 (top) and q2 (bottom) obtained solving numerically Eqs. (12) are also shown. (b) Similar representation
as in Fig. 3 with the addition of the trajectories (solid lines with a color gradient from light blue at t = 0 to black at t = 30000)
shown in (a); the magenta dots are the stable fixed points of the slow flow. The parameters (52) are used.
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Figure 5: Competition between two stable fixed points of the slow flow (2nd example). Same caption as in Fig. 4 with the initial
condition r0,2 = (0.02, 0.2).
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4.2. Competition between a sustained relaxation oscillation and a stable fixed point of the slow flow

To illustrate the competition between sustained relaxation oscillations and a stable fixed point we use
the following parameters

η1 = 0.01 η2 = 0.07 η3 = 0.01 η4 = 0.07 (56a)

Ω2 = 0.93 Ω3 = 1 Ω4 = 1.7 (56b)

ηa = 0.01 Ωa = 0.95 (56c)

σ = 1 γ = 0.09 (56d)

µ = 0.25 α = 7. (56e)

The parameters of the primary system are here unchanged compared to those of Sect. 4.1 (only the
bifurcation parameter γ and the NES parameters µ ans α are modified). Therefore, the values of the Hopf
bifurcation points are still γHopf,1 = 0.081 and γHopf,2 = 0.088. Moreover, the invariant manifold C0 admits
again a decomposition in the form of (39); the slow flow now admits six fixed points, among which only one
is stable. The latter, denoted as r∗s,3, has the following coordinates in the (r1, r2)-plane:

r∗s,3 = (0, 0.57). (57)

If r∗s,3 is reached, only the first unstable mode is completely suppressed whereas the second unstable mode
is mitigated through a periodic response. The critical manifold C0 is reported in Fig. 6(b) and Fig. 7(b)
where the stable fixed point is again represented by a magenta dot and the unstable points by blue dots.
The stable fixed point and two unstable fixed points (excluding the trivial point) are in the neighborhood
of the trivial point (0, 0), the other unstable points being on the contrary far from (0, 0). The stream plot
of the vector field of Eq. (40) suggests that, depending of the initial condition point, the system can reach
the stable fixed point r∗s,3 or initiate another type of oscillations.

Direct numerical integration of the slow flow (19) is performed to localize, on the critical manifold C0, the
basin of attraction of the stable fixed point and to characterize the other type of oscillations. The time series
obtained from the slow flow (19) considering the initial condition r0,3 = (0.01, 0.15) are plotted in Fig. 6(a)
and, using a color gradient, the corresponding trajectory in the (r1, r2)-plane is depicted in Fig. 6(b). It can
be seen that the stable fixed point is reached.

Results related to a second initial condition point r0,4 = (0.01, 0.03) are reported in Fig. 7. Again, the
time series are plotted in Fig. 7(a) and the trajectory in the (r1, r2)-plane in Fig. 7(b). To better understand
the observed behavior, three-dimensional plots are also used (see Figs. 7(c) and 7(d)), where the trajectories
are plotted in the (r1, r2, s1)-space and the (r1, r2, s2)-space respectively and superimposed to the surfaces,
defined by Eqs. (36), characterizing the invariant manifold C0. Moreover, using the same color code as in
Fig. 3, the fold and arrival curves as well as the points where the transversality condition is lost are depicted
in Figs. 7(c) and 7(d).

Fig. 7(b) shows that after transient elementary relaxation oscillations (described in Sect. 3.5.3) with re-
spect to the normally hyperbolic saddle type part Cst,10,r of the critical manifold, a sustained simple relaxation
oscillation (described in Sect. 3.5.3) occurs along the straight line r2 = 0 (s2 and r2 tend towards zero as
visible in Fig. 7(a)). Observing Figs. 7(c) and 7(d), we can see that this simple relaxation oscillation is due
to an S-shape of the critical manifold in the (r1, r2, s1)-space and in the plane r2 = 0. This means that the
first unstable mode here is completely suppressed while the second unstable mode is mitigated through a
sustained simple relaxation oscillation which corresponds to an SMR for the initial physical system (12).

As in the previous case studied in Sect. 4.1, the boundary between the basins of attractions of the two
attractors appears to be the connection between two unstable fixed points, i.e. the trivial fixed point and
the fixed point located at (0.22, 0.18).

Here again, the predictions obtained with the slow flow (19) are in good agreement with the simulations
of the complete system (12) (see Figs. 6(a) and 7(a)).

17



0 5000 10000 15000 20000 25000 30000
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Time

Am
pl

itu
de

0 5000 10000 15000 20000 25000 30000
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Time

Am
pl

itu
de

(a)

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0

1.5

Time

0

5000

10000

15000

20000

25000

30000

(b)

Figure 6: Competition between a sustained relaxation oscillation and a stable fixed point of the slow flow (1st example). Same
caption as in Fig. 4 with the initial condition r0,3 = (0.01, 0.15). The set of parameters (56) is used.

4.3. Competition between two kinds of sustained relaxation oscillations

In this section the following parameters are used

η1 = 0.01 η2 = 0.07 η3 = 0.01 η4 = 0.07 (58a)

Ω2 = 0.93 Ω3 = 1 Ω4 = 1.7 (58b)

ηa = 0.01 Ωa = 0.95 (58c)

σ = 0.85 γ = 0.0935 (58d)

µ = 0.28 α = 5 (58e)

for which the slow flow (19) has six fixed points, all unstable. The values of the Hopf bifurcation points
are γHopf,1 = 0.078 and γHopf,2 = 0.088. The critical manifold C0 is reported in Fig. 8(b) and Fig. 9(b).
Note that there are no unstable fixed points in the neighborhood of the trivial point. Obviously in this
case, because the slow flow has no stable fixed point, the instability mitigation cannot be performed through
quasi-periodic or periodic regimes.

In practice, depending on the chosen initial conditions, two kinds of sustained relaxation oscillations can
be observed by means of numerical simulations of the slow flow (19).

Fig. 8 illustrates the first scenario. The time series are obtained from the initial condition r0,5 =
(0.05, 0.05) and are reported in Fig. 8(a). This scenario is similar to that observed in Sect. 4.2 and reported in
Fig. 7: after transient elementary relaxation oscillations, the second unstable mode is completely suppressed
(see Fig. 8(a)) whereas the first unstable mode is mitigated through a sustained simple relaxation oscillation
taking place along the straight line r2 = 0 (see the black curve in Fig. 8(c)). This simple relaxation oscillation
is due to the S-shape of the critical manifold in the (r1, r2, s1)-space and in the plane r2 = 0. It consists of
four parts: two fast jumps (from the fold curve F 1

1 to the arrival curve A1
1 and from the fold curve F 1

2 to
the arrival curve A1

2) and two slow epochs on Ca0,r.
Fig. 9 illustrates the second scenario. The time series are obtained from the initial condition r0,6 =

(0.1, 0.1) and are reported in Fig. 9(a). After a quick transient phase, the two unstable modes are mitigated
through complex relaxation oscillations with respect to the normally hyperbolic saddle type parts Cst,10,r and

Cst,20,r of the critical manifold successively. The complex relaxation oscillations here consist of three parts:
an elementary relaxation oscillation due to the S-shape of the critical manifold in the (r1, r2, s2)-space (see
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Figure 7: Competition between a sustained relaxation oscillation and a stable fixed point of the slow flow (2nd example). (a)
and (b) Same captions as in Fig. 4 with the initial condition r0,4 = (0.01, 0.03). In (c) and (d) the trajectory of the slow flow
obtained from the numerical simulation of Eq. (19) is plotted in the (r1, r2, s1)-space and the (r1, r2, s2)-space respectively and
superimposed to the surfaces given by Eqs. (37a) and (37b). The set of parameters (56) is used.

Fig. 9(d)), an elementary relaxation oscillation due to the S-shape of the critical manifold in the (r1, r2, s1)-
space (see Fig. 9(c)) and transient bursting oscillations (see Figs. 9(b) and 9(c)). This sustained complex
relaxation oscillation regime is due to successive targeted energy transfers, first from the first unstable mode
to the NES (principally when the jumps from F 2

1 to A2
1 and from F 2

2 to A2
2 occur) and then from the second

mode to the NES (when the jumps from F 1
1 to A1

1 occur). Note that those energy transfers do not occur
simultaneously as shown in Fig. 9(a).

From [36], bursting oscillations are defined as patterns of time series alternating between near steady-
state and rapid oscillatory phases. Here, the steady-state phases are the slow evolution parts on Ca0,r of the
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relaxation oscillation cycles and the rapid oscillatory phases correspond to the fast jumps which are now
oscillating. This phenomenon is related to the normally hyperbolic saddle type part of C0, Cst,40,r , that meets
Ca0,r at the (regular) non normally hyperbolic curve Nr (see Fig. 9(b)). Indeed, when a part of the arrival
curve is in this area, it is made up of unstable fixed points of the fast subsystem (32). In this case, the
attractor of the fast dynamics during a jump, at constant values of s1 and s2 (see Eq. (32a)), is no longer
an equilibrium point but a limit cycle oscillation (LCO). Then, when the jump is finished, because s1 and
s2 vary again the system leaves Cst,40,r and the LCO undergoes a bifurcation to a new steady-state (slow)
phase. Here the bursting oscillations are transient but depending on the parameter values, they can also
been sustained. This scenario has not been studied in this paper.

The boundary between the basins of the two attractors does not appear as clearly as in the previous
situations where it corresponded to the connection between two unstable points. Indeed, as noticed above,
there are no unstable fixed points in the neighborhood of the trivial point. Here, the boundary depends on
the first reached point on the fold curve F1 and on the direction of the transient relaxation oscillations along
Cst,10,r , which can move downward (first scenario) or upward (second scenario).

Finally, here also, the predictions obtained with the slow flow (19) are in good agreement with the
complete system (12) (see Figs. 8(a) and 9(a)).

4.4. Bifurcation of a fixed point to a limit cycle of the slow subsystem

For this last example, the following parameters are used with two different values of the friction coefficient

η1 = 0.01 η2 = 0.07 η3 = 0.01 η4 = 0.07 (59a)

Ω2 = 0.93 Ω3 = 1 Ω4 = 1.7 (59b)

ηa = 0.01 Ωa = 0.95 σ = 0.98 (59c)

γ1 = 0.09053 (1st example) γ2 = 0.09075 (2nd example) (59d)

µ = 0.45 α = 7. (59e)

With the parameters (59), the primary system undergoes Hopf bifurcations at γHopf,1 = 0.08 and γHopf,2 =
0.086. The associated critical manifolds C0 are reported in Fig. 10(b) and Fig. 10(d) for γ = 0.09053 and
γ2 = 0.09075 respectively.

For γ1 = 0.09053, the slow flow (19) admits a single stable fixed point having the following coordinates
in the (r1, r2)-plane:

r∗s,4 = (0.06, 0.61), (60)

and five unstable fixed points. Note that if r∗s,4 is reached, both unstable modes are mitigated through
a periodic response of the physical system which therefore undergoes a quasi-periodic regime even if the
amplitude of the component corresponding to the first unstable mode is much smaller than that of the second
unstable mode. Numerical simulations of the slow flow (19) corresponding to this situation are shown in
Figs. 10(a) and 10(b).

Then, when γ increases, the stable fixed point r∗s,4 of the slow flow undergoes a Hopf bifurcation and
becomes unstable. For example, for γ = 0.09075, the slow flow has only unstable fixed points, four of which
are in the neighborhood of (0, 0).

Numerical simulations of the slow flow (19) corresponding to this second case have been performed for
different values of the initial conditions, showing that only one stable attractor is present whose basin of
attraction includes a neighborhood of the trivial point (0, 0) (as it was previously the case for the stable fixed
point). The time series obtained from the initial condition r0,7 = (0.05, 0.05) are reported in Figs. 10(c)
and Fig. 10(d). The figures show that after the bifurcation of the stable fixed point (60), the slow flow
undergoes an LCO (see the black curve in Fig. 10(d)) which takes place in the attractive part Ca0,r of the
critical manifold, and therefore only at the slow-time scale (there are no fast jumps, unlike for relaxation
oscillations). Therefore, the LCO can be characterized theoretically only from the two-dimensional slow
subsystem (40). This situation also corresponds to a modulated response, in terms of amplitude and phase,
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Figure 8: Competition between two kinds of sustained relaxation oscillations (1st example). Same caption as in Fig. 7 with the
initial condition r0,5 = (0.05, 0.05). The set of parameters (58) is used.

of the mechanical system (13), but here due to a limit cycle of the slow flow instead of relaxation oscillations
of the slow flow as in the SMR case.

Finally, once again, the predictions obtained with the slow flow (19) are in good agreement with that of
the complete system (12) (see Figs. 10(a) and 10(c)), which allows us to validate the asymptotic analysis
presented in Sect. 3.

5. Conclusion

The possibility of mitigating simultaneously two unstable modes of a linear MDOF primary system
using a nonlinear energy sink (NES) has been investigated in this paper by means of an asymptotic analysis
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Figure 9: Competition between two kinds of sustained relaxation oscillations (2nd example). Same caption as in Fig. 7 with
the initial condition r0,6 = (0.05, 0.15). The set of parameters (58) is used.

complemented by numerical simulations. This study focuses on a 4-DOF phenomenological friction system
having two unstable modes and coupled to a single NES.

The asymptotic analysis begins with the well-known biorthogonal transformation to diagonalize the
primary system for the purpose of reducing its dynamics only to the two unstable modes. A complexification-
averaging process is applied at the vicinity of the two 1:1-1:1 resonances at the natural frequencies of the
unstable modes, leading to the slow flow of the system which takes the form of a (4, 2)-fast-slow system. The
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Figure 10: Bifurcation of a fixed point to a limit cycle of the slow subsystem. Same caption as in Fig. 4 with the initial
condition r0,7 = (0.05, 0.05). The parameters (59) are used, with (a) and (b) γ = 0.09053 and (c) and (d) γ = 0.09075.

slow variables characterize the two unstable modes of the primary system whereas the four fast variables
describe the relative motion between the NES and the primary system (amplitudes and phases of the two
frequency components relative to the two unstable modes). The slow flow is finally analyzed by means
of the geometric singular perturbation theory. The critical manifold C0 is obtained and, contrary to the
case of a single unstable mode, it consists in a 2-dimensional parametric surface with respect to the two
fast variables r1 and r2 which evolve in the whole 6-dimensional variable space, and which characterize the
frequency components of the NES dynamics with respect to the two unstable modes. The critical manifold
appears as the union of a normally hyperbolic attracting domain and four normally hyperbolic saddle type
domains (with finite dimensions). Two of them meet the attracting part at fold curves and it can be shown by
analyzing, inter alia, the transversality condition, that these fold curves can be split into successive incoming
and outgoing sections, enabling jumps and complex motions of the slow flow, such as successive slow and
fast epochs (i.e. relaxation oscillations). Some relaxation oscillation scenarios have been deduced from
the asymptotic analysis, among which simple relaxation oscillations around one of the normally hyperbolic
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saddle type domains, or multi-relaxation oscillations around two of the normally hyperbolic saddle type
domains. These relaxation oscillation scenarios and the stable fixed points of the slow flow define possible
sustained mitigated regimes of the physical system such as strongly modulated responses (SMR), complex
SMR, periodic or quasi-periodic regimes.

Direct numerical integrations of the system have been performed. First of all, the simulations validated
that it was possible to mitigate simultaneously two unstable modes by means of a single NES. The two
unstable modes can be completely eliminated, or mitigated through one of the sustained regimes (periodic,
quasi-periodic, SMR). Secondly, the simulations allowed us to study the notion of basin of attraction. Indeed,
because of the two-dimensional nature of C0 and the fact that, for a given set of parameters, the system may
have several stable attractors (stable fixed points or sustained relaxation oscillations) this notion has to be
considered. Three kinds of competitions have been observed, respectively between two stable fixed points
of the slow flow, between a sustained relaxation oscillation and a stable fixed point of the slow flow and
between two kinds of sustained relaxation oscillations. In each situation considered, a good agreement has
been observed between the theoretical results and the numerical simulations, which validates the proposed
asymptotic analysis. Moreover, the numerical simulations highlighted that the two unstable modes could
also be mitigated through a strongly modulated response defined from a limit cycle of the slow system at
the slow time scale.

As a general conclusion, when it is coupled to a linear system which has two unstable modes, a single
NES is able to produce bounded motions of various kinds, thoroughly studied in this paper. In real life,
unstable mechanical systems are in general nonlinear and therefore they undergo limit cycle oscillations
which can be dangerous if they are of significant amplitude. As a perspective, from an engineering point
of view, the NES may be designed to produce effective bounded motions, i.e. with a lower amplitude than
that of the system without the NES. The present study might constitute a tool to perform this design. The
amplitude of the oscillations of the resulting bounded motions may also be compared with those provided
by other mitigation methods.
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Appendix A. Coefficients of the slow-fow system (19)

The coefficients ai for i = 1, . . . , 10, characterizing the functions f and g which define the slow-fow
system (19), are given by
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