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Abstract

We examine how non-equilibrium steady states close to a continuous phase transition
can still be described by a Landau potential if one forgoes the assumption of analyticity.
In a system simultaneously coupled to several baths at different temperatures, the non-
analytic potential arises from the different density of states of the baths. In periodically
driven-dissipative systems, the role of multiple baths is played by a single bath trans-
ferring energy at different harmonics of the driving frequency. The mean-field critical
exponents become dependent on the low-energy features of the two most singular baths.
We propose an extension beyond mean field.
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1 Introduction

The Landau-Ginzburg theory of equilibrium phase transitions builds on simple principles,
namely symmetry, locality, and analyticity of the free energy potential. These simple assump-
tions, when fed into the Renormalization Group framework, lead to universality of the critical
exponents at second-order phase transitions, which depend only on the specific symmetry and
the dimensionality of space.

Systems that are not at equilibrium, on the other hand, are often thought to behave each in
its own different, non-universal way, and are thus studied under a hodgepodge of theoretical
techniques. Our goal in this paper is to salvage whichever piece of universality is possible in
those non-equilibrium systems that reach a steady state. In those cases, one can extract from
the probability distribution of the system’s state a potential that parallels the Landau-Ginzburg
free energy at equilibrium. We look into Landau theory, and examine the assumptions that one
must forgo when the steady state is not an equilibrium one.

Non-equilibrium phase transitions have been intensly investigated in the context of the
so-called driven-diffusive systems [1, 2], in which the dynamics conserves a global quantity
such as the particle number. A notable instance is the driven lattice gas [3,4], where classical
non-overlapping particles hop to unoccupied neighboring sites with rates that depend on an
external uniform electric field. There, the field-theoretic approaches mostly concentrated on
the mesoscopic dynamics by proposing equations of motion of the Langevin type, or their
associated Martin-Siggia-Rose-Janssen-deDominicis action, to generalize the Model B [5] to
non-equilibrium situations.

Another class of non-equilibrium systems are the so-called driven-dissipative systems, with
no conserved quantity. There is continued interest in the study of growth processes, such as
the directed percolation [2, 6, 7] or the Kardar-Parisi-Zhang problems [8, 9]. Similarly to the
driven-diffusive systems, space plays a fundamental role in their non-equilibrium nature in
the sense that these models need a formulation in at least one spatial dimension in order to
display non-Gibbsian stationary states.

In this manuscript, we study perhaps an even simpler class of driven-dissipative systems:
those for which the stationary states are expected to be homogeneous and isotropic. Their
appeal is the relative simplicity in which to examine basic yet fundamental questions (here
the prospect of a Landau theory for the non-equilibrium steady states via single-site mean-
field methods), in contrast to the driven-diffusive systems which typically exhibit directional
currents and possibly phase separation and thus require more sophisticated approaches.

We focus on the Z2-symmetric magnet, i.e. the Ising model, driven to a uniform non-
equilibrium steady state (NESS) by either multiple baths at different temperatures, or by a
fast periodic longitudinal magnetic field. It was previously analytically argued [10], numeri-
cally confirmed in many instances, and generally believed, that the related continuous ferro-
magnetic transitions still belong to the equilibrium Ising universality class. The argument was
based on both mean-field and finite-dimensional computations. The latter consisted in show-
ing that even when the microscopic dynamics do not derive from a potential, an RG procedure
washes away non-potential forces and Model A dynamics with the ordinary ϕ4 potential are
recovered at large scales. Noteworthy, these computations relied on the assumption that those
non-potential forces are analytic in ϕ. Our main result consists in showing via a mean-field
approach that the Landau potential of non-equilibrium steady states can in fact feature non-
analytic terms, reading

VNESS(ϕ) = a2ϕ
2 + a4ϕ

4
︸ ︷︷ ︸

analytic

+ cα|ϕ|2+α
︸ ︷︷ ︸

non−analytic

, (1)

where the additional term to the ordinary ϕ4 potential is a signature of the non-equilibrium
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nature of the steady state. The exponent α > 0 has its origin in the low-energy spectrum of
the environment and can be non-integer valued. The coefficients a2, a4, and cα, are smooth
functions of the external parameters and cα vanishes at equilibrium.

The additional non-analytic term in Eq. (1) alters the phase transition and the static critical
exponents of the ordinary ϕ4 theory. This departs from the equilibrium classes of universality
in that the critical exponents now also depend on the low-energy behavior of the environment’s
density of states.

The paper is organized as follows. In Sec. 2 we briefly review the assumptions of Landau-
Ginzburg theory at equilibrium, and how to extract the ordinary ϕ4 potential from the spin
dynamics when detailed balance holds. In Sec. 3 we identify the building principles of a Lan-
dau theory for non-equilibrium steady states, while in Sec. 4 we exemplify our non-equilibrium
theory on two different types of driven-dissipative Ising models: one coupled to baths at dif-
ferent temperatures, and one under time-periodic driving. We close in Sec. 5 by proposing a
Landau-Ginzburg free energy for the non-equilibrium steady states in finite dimensions, along
with a discussion of the underlying assumptions and the possible difficulties in carrying out
an RG calculation with it as starting point.

2 Brief review of Landau-Ginzburg theory at equilibrium

2.1 Landau-Ginzburg free energy: building principles

When seeking an effective-field-theory description of a many-body system, attempting a deriva-
tion starting from the microscopics is typically an unsurmountable task. More often than not,
the underlying microscopic degrees of freedom are plentiful, and their quantitative modeling
is unknown. Moreover, tracing over those degrees of freedom may be unfeasible, especially
if they are interacting. Therefore, one must rely on general arguments to come up with a
free-energy functional F[ϕ] which describes the probability distribution

P[ϕ]∼ e−F[ϕ] (2)

of configurations ϕ(x) of the order parameter. For simplicity, we assume here and throughout
this manuscript that the order parameter of interest, ϕ(x), is a scalar. At thermal equilibrium
and close to a second-order phase transition, the Landau-Ginzburg’s approach consists in con-
sidering the most generic expression of F[ϕ] that satisfies the following principles (see, e.g.,
Ref. [11]):

- Locality: F[ϕ] =
∫

dx L(ϕ,∇ϕ, . . . ; x). F can be expressed in terms of a local free-
energy density L.

- Symmetries: F[ϕ] = F[Sϕ], up to boundary terms. The Landau-Ginzburg free-energy
must comply with all the symmetries, global and local, of the order parameter. For
example, the global Z2 symmetry of the Ising model imposes L to be invariant under
S : ϕ(x) 7→ −ϕ(x). As another example, if the system is statistically invariant under
translations, L does not depend explicitly on x .

- Analyticity: L(ϕ,∇ϕ, . . .) = a1ϕ + a2ϕ
2 + b2(∇ϕ)2 + . . .. L is assumed to be analytic

in the field ϕ and its derivatives. This assumption is usually justified in the literature by
arguing that any non-analyticity present at a microscopic level is expected to be washed
out at a more mesoscopic level, after the corresponding degrees of freedom have been
traced out.
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- Smoothness of parameters: the coefficients a1, a2, b2 . . . are assumed to be smooth and
continuous non-universal functions of the external parameters (temperature, pressure,
etc.)

- Stability:
∫

D[ϕ]e−F[ϕ] <∞. For the probability distribution to be well defined, the
largest power of ϕ must be even and its coefficient positive.

- RG relevance: L(ϕ,∇ϕ, . . .) is defined up to terms which are irrelevant in an RG sense.
For example, the terms of order ϕ6 and higher are irrelevant to a ϕ4 theory in 4 − ε
dimensions and above.

These principles were given solid foundations by the Renormalization Group (RG) theory.
In particular, the RG theory taught us that the parameters a1, a2, b2 . . ., depend and flow with
the scale at which the system is probed. Low energy physics and critical physics are controlled
by fixed points of the RG flow and their stability.

2.2 ϕ4 theory from the dissipative Ising model

In the pursuit of identifying the effective field theory that correctly describes an extended
many-body system, it has often proven useful to first address the problem within a mean-field
picture. The mean-field approximation consists in neglecting possible spatial fluctuations of
the order parameter, i.e. working with uniform configurations ϕ(x) = ϕ. There, the iden-
tification of the Landau-Ginzburg free energy boils down to the identification of an effective
potential: L(ϕ,∇ϕ = 0) = V(ϕ). Later, once the mean-field description is well under control,
spatial fluctuations can be re-incorporated in the theory and their effect methodically studied.

This is precisely the approach we shall follow in this manuscript, working in the context of
the notorious Ising model whose equilibrium effective field theory is the well-known O(n= 1)-
symmetric ϕ4 theory. To better prepare the ensuing non-equilibrium discussions, we briefly
review the mean-field derivation of the later from the perspective of its equilibrium dynamics.

Dissipative Ising model Let us consider the equilibrium dynamics of the dissipative Ising
model, i.e. the Ising model coupled to a simple thermal environment. The Ising Hamiltonian
reads

H = −
J
z

∑

〈i j〉

Sz
i Sz

j , (3)

where each spin Sz
i = ±1 is ferromagnetically coupled to its z nearest neighbors. Below, we

take the ferromagnetic coupling J > 0 as the unit of energy by setting J := 1. The environ-
ment is assumed to be a collection of identical thermal reservoirs at temperature T ≡ β−1

that are locally and weakly coupled to the spins. This model is often referred as the kinetic
Ising model [12]. The non-conserved order parameter of interest is naturally the average
magnetization ϕ ≡ 〈Sz

i 〉. In two dimensions and above, this model is well known to exhibit a
finite-temperature second-order phase transition between a Z2-symmetric paramagnetic phase
(ϕ = 0) and a Z2-broken ferromagnetic phase (ϕ 6= 0).

Single-spin mean-field description At the level of the Ising spins, we implement the mean-
field approximation by considering an auxiliary single-spin impurity problem. It consists of
a single spin subject to a coherent Weiss field hW created by the neighboring spins, and to
incoherent thermal spin flips –the rates of which obey detailed balance– created by the local
environment at equilibrium (EQ). The self consistency (SC) between the original dissipative
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Ising model and the impurity problem is achieved by imposing the same average magnetization

ϕ in both models and the Weiss field hW(ϕ)
SC
= ϕ.

The dynamics of the mean-field order parameterϕmay be simply written as rate equations
on the probabilities P↓ =

1−ϕ
2 and P↑ =

1+ϕ
2 for the impurity spin to be down or up, respectively:

∂t P↑ = P↓R↓↑ − P↑R↑↓ , (4)

with the constraint P↑ + P↓ = 1. R↓↑ and R↑↓ are the rates of flipping the impurity spin up or
down, respectively. They depend of the local Weiss field hW. Once a steady state is reached,
i.e. ∂t P↑ = 0, the self-consistency equation on the mean-field order parameter reads

ϕ
SC
= R̂/R(ϕ)

EQ
= tanh(βϕ) , (5)

where we introduced R̂ ≡ R↓↑ − R↑↓ and R ≡ R↓↑ + R↑↓. This ratio of rates, R̂/R, is a central
object to this manuscript: it dictates the single-spin dynamics. In the last step, we made use

of the detailed balance condition, R̂/R
EQ
= tanh(βhW), which is a signature of the equilibrium

nature of the environment. Below, when dealing with non-equilibrium steady states, we shall
relax this condition.

Landau potential The solutions of the self-consistency equation (5) can be recast as the
extrema of the effective potential VEQ(ϕ) defined as

VEQ(ϕ)≡
∫ ϕ

dϕ
ϕ − tanh(βϕ)

D(ϕ)
. (6)

The denominator D(ϕ) is present to accommodate equivalent re-writings of Eq. (5). In App. A,
we show that D(ϕ) is a well-behaved positive and even function, the precise choice of which
is inconsequential to the resulting theory. To simply give the reader a flavor of this statement,
we compare the effective potentials that result from two different choices for D(ϕ). If one
chooses D(ϕ) := 1, one obtains the effective potential

VEQ(ϕ) =
1
2
(1− β)ϕ2 +

1
12
β3ϕ4 +O(ϕ6) , (7)

whereas another choice of interest for the next Section, namely D(ϕ) := 1−ϕ tanh(βϕ), yields

VEQ(ϕ) =
1
2
(1− β)ϕ2 +

1
12
[β3 + 3β(1− β)]ϕ4 +O(ϕ6) . (8)

It is clear that these two choices of D(ϕ) predict the same physics: a second-order phase
transition at the critical temperature Tc = 1. The difference in the coefficients of the ϕ4 terms
does not affect the nature of the symmetry-breaking mechanism, vanishes at criticality, and
will be washed out after a few RG steps away from criticality. Note that these two potentials
are related by a smooth change of variable: ϕ 7→ ϕ + 1

4βϕ
3.

Landau-Ginzburg free-energy To depart from the mean-field picture, one upgrades ϕ to a
fluctuating quantityϕ(x) and proposes the following Landau-Ginzburg free-energy, sometimes
referred as the Landau-Ginzburg-Wilson Hamiltonian,

FEQ[ϕ] =

∫

dx
1
2
(∇ϕ)2 +VEQ(ϕ) , (9)

where the dispersive term is the only gradient term allowed by the principles listed above.
One obtains the expected ϕ4 field theory which naturally boils down to the mean-field theory
for uniform configurations ϕ(x) = ϕ ∀x .

5
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3 Landau potential for non-equilibrium steady states

We now move away from thermal equilibrium, and aim at identifying the building principles of
a Landau-Ginzburg theory for the non-equilibrium steady states (NESS). By non-equilibrium
steady states, we have in mind states that are non-thermal but that are invariant under in-
finitesimal time translations. We shall see in Sec. 4.2 that under certain conditions, the case of
time-periodic states can also be described by a static Landau theory.

Once a system with a fluctuating local order parameter ϕ(x , t) has reached a stable non-
equilibrium steady state, there exists a stationary probability distribution

PNESS[ϕ]∼ e−FNESS[ϕ] , (10)

which quantifies the statistical occurrence of configurations of the field ϕ(x). Our objective
is to lay out the principles that govern the expressions of the corresponding Landau-Ginzburg
effective free energies, FNESS[ϕ], close to a continuous phase transition between a disordered
(ϕ = 0) and an ordered (ϕ 6= 0) phase.

Similarly to the equilibrium case reviewed in Sec. 2, the non-equilibrium steady-state con-
struction will be based on the principles of locality, symmetry, stability, and smoothness of the
parameters. However, the assumption of analyticity of the free-energy density will need to be
abandoned.

We first focus on the potential part of the free-energy, VNESS(ϕ), by working at the mean-
field level. The addition of fluctuations on top of the mean-field picture will be discussed
subsequently in Sec. 5. Using concrete examples, we shall show that VNESS(ϕ) can feature
non-analytic terms consistent with the overall Z2 symmetry, of the type

VNESS(ϕ) = a2ϕ
2 + a4ϕ

4
︸ ︷︷ ︸

analytic

+ cα|ϕ|2+α
︸ ︷︷ ︸

non−analytic

, (11)

whereα > 0 and the coefficient cα is a smooth function of the external parameters that vanishes
at equilibrium. Several of these non-analytic terms can be simultaneously present (see, e.g.,
Sec. 4.2). This generic structure of the effective potential in non-equilibrium steady states is
one the main results of this manuscript.

3.1 Single-spin mean-field description

Let us consider the Ising model in Eq. (3), but now subject to a non-equilibrium drive and
to dissipation. The precise details do not matter as long as the non-equilibrium drive and
the dissipation occur uniformly and locally on the spins. Let us furthermore assume that,
after a transient, the system has reached a homogeneous isotropic non-equilibrium steady
state. This will guarantee the validity of a single-site mean-field approach. Obviously, not
all driven-dissipative conditions are compatible with the system reaching a non-equilibrium
steady state. However, it is a reasonable assumption in the presence of DC drives, such as
a constant temperature bias in the environment, and at a safe distance from any dynamical
instability. Furthermore, even with AC drives, constant non-equilibrium steady states may still
be recovered in a stroboscopic sense through a Floquet description of the periodic dynamics,
as we shall exemplify in Sec. 4.2.

Similarly to what was done in equilibrium in Sec. 2.2, the dynamics may be treated within
a single-spin self-consistent mean-field approximation. The equation (4) and the first equality
in Eq. (5) still apply to a non-equilibrium scenario, and we obtain the self-consistency (SC)
equation

ϕ
SC
= R̂/R(ϕ) , (12)

6
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where the dynamical ratio R̂/R(ϕ) was defined below Eq. (5) in terms of the spin-flip rates.
Here, given the non-equilibrium nature of the steady state, the ratio R̂/R(ϕ) does not obey the
detailed balance condition and must therefore be computed explicitly from the system-bath
dynamics. We can now readily generalize the definition of the effective potential made in
Eq. (6) to non-equilibrium steady-state situations via

VNESS(ϕ)≡
∫ ϕ

dϕ
ϕ − R̂/R(ϕ)

D(ϕ)
, (13)

such that the extrema of VNESS(ϕ) correspond to the solutions of Eq. (12). D(ϕ) is a well-
behaved positive and even function. We show in App. A that the precise choice of D(ϕ) is
inconsequential. It is noteworthy to remark that the above definition of VNESS(ϕ) is “universal”
in the sense that it only involves the dynamical quantity R̂/R and does not explicitly depend
on the details of the model.

3.2 Finite-size fully-connected model

Here, we propose an alternative route towards a consistent definition of the mean-field ef-
fective potential VNESS(ϕ) without any guess work, corroborating the definition proposed in
Eq. (13).

Let us consider a fully-connected version of the driven-dissipative Ising model that we
considered in Sec. 3.1. The system Hamiltonian reads

H = −
1
N

∑

i j

Sz
i Sz

j , (14)

where the sum now runs over all pairs of spin, irrespective of their relative distance, and we
assume here again that the non-equilibrium environment is uniform and acts locally on the
spins. We follow the dynamics of the mean magnetization, ϕ ≡ 1

N

∑N
i=1 Sz

i , when the total
number of spins N is large but finite. It is a stochastic process in which the random jumps are
due to individual spin flips driven by the system-bath interaction. In App. C, we show that the
dynamics of the probability distribution, P(ϕ, t), obey the following Fokker-Planck equation

∂t P + ∂ϕJ = 0 , (15)

with the current density

J ≡ PR(R̂/R−ϕ)−
1
N
∂ϕ
�

PR(1−ϕR̂/R)
�

+O(1/N2) . (16)

The steady-state distribution PNESS(ϕ) is solution of ∂t P(ϕ, t) = 0 and can be solved by finding
the distribution with a null current J = 0 1. We obtain the stationary measure

PNESS(ϕ)∼
1

R(1−ϕR̂/R)
e
−N

∫ ϕ
dϕ ϕ−R̂/R

1−ϕR̂/R . (17)

Discarding the factors which are sub-leading in N , we obtain the following definition of the
effective potential

VNESS(ϕ)≡
∫ ϕ

dϕ
ϕ − R̂/R(ϕ)

D(ϕ)
, (18)

1It is easy to show that in the limit N →∞ where the distribution is peaked on the solutions of ϕ = R̂/R, i.e.
P(ϕ)∼ δ(ϕ − R̂/R), there are no solutions with a non vanishing current J 6= 0.
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where

D(ϕ) = 1−ϕR̂/R(ϕ) . (19)

Naturally, this is consistent with the equilibrium expression of VEQ(ϕ) in Eq. (8) when imposing
the detailed balance condition. More importantly, this is consistent with the previous non-
equilibrium steady-state definition that was proposed in Eq. (13).

Both routes in Sec. 3.1 and Sec. 3.2 led us to the same definition for the effective mean-
field potential VNESS(ϕ) in Eqs. (13) and (18). We argue in App. A that the denominator D(ϕ)
is inconsequential to the resulting theory close to a continuous phase transition. Furthermore,
we show on general grounds in the App. B that the dynamical ratio R̂/R(ϕ) has the following
structure around ϕ ∼ 0,

R̂/R(ϕ)∼ β0ϕ + Cα sgn(ϕ)|ϕ|1+α + . . . , (20)

where β0, α > 0. This justifies the structure of the effective potential VNESS(ϕ) announced in
Eq. (11).

3.3 Effective temperature

Alternatively to generalizing the definition of the effective potential to non-equilibrium steady
states, VNESS(ϕ) in Eqs. (13) and (18), one can decide to stick with the equilibrium poten-
tial, VEQ(ϕ) in Eq. (7) at the cost of absorbing the non-analyticities into a redefinition of
the temperature. One can indeed define an order-parameter-dependent effective temperature
Teff(ϕ)≡ βeff(ϕ)−1 by imposing an effective detailed-balance condition, namely

R̂/R(ϕ)≡ tanh (βeff(ϕ)ϕ) . (21)

One obtains the regular ϕ4 potential

VNESS(ϕ) =
1
2
[1− βeff(ϕ)]ϕ

2 +
1
12
β3

eff(ϕ)ϕ
4 + o(ϕ4) , (22)

where o(ϕ4) stands for terms that are of higher order than ϕ4 and where the effective tem-
perature reads

βeff(ϕ)' β0 +
Cα

2+α
|ϕ|α , (23)

with β0, α > 0. This alternate construction is particularly valuable when one has a clear
physical understanding of the non-equilibrium processes responsible for the variation of the
temperature away from its thermodynamical value. Recently, such a viewpoint was used in
a related non-equilibrium steady-state Z2-symmetry breaking scenario: in the context of the
resistive switching of anti-ferromagnetic insulators driven by a DC voltage, where the local
heating and Teff(ϕ) could be computed exactly from first principles [13].

4 Concrete examples around the Ising model

Using two concrete examples of driven-dissipative Ising models, one with a DC drive and the
other with an AC drive, we shall derive explicitly the non-analytic terms entering the effective
potential announced in Eq. (11). They are of the type

VNESS(ϕ) = . . .+ cα|ϕ|2+α + . . . , (24)

whereα > 0 and the coefficient cα is a smooth function of the external parameters that vanishes
at equilibrium.
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4.1 Dissipative Ising model coupled to multiple baths

Consider the Ising model in Eq. (3) where each spin is now weakly coupled to two indepen-
dent baths at two different temperatures T1 and T2, and with two system-bath hybridization
functions ν1(ω) and ν2(ω), respectively. Those correspond to the state broadening, at energy
ω, due to the local spin-flip dynamics induced by each bath. Typically, νi(ω) = γiρi(ω) where
γi > 0 is a system-bath coupling constant and ρi(ω) is the density of states of the bath.

Mean-field Lindblad description In the single-spin mean-field approach, the impurity Hamil-
tonian reads

H = −ϕSz , (25)

and the dynamics of the impurity spin density matrix ρ are given (within the regular Born-
Markov approximation2) by the following Lindblad-type Master equation:

∂tρ = −i[H,ρ] + ν1(ε)
¦

(1+ nB(ε, T1))D[σ+ϕ]ρ + nB(ε, T1)D[σ−ϕ]ρ
©

+ ν2(ε)
¦

(1+ nB(ε, T2))D[σ+ϕ]ρ + nB(ε, T2)D[σ−ϕ]ρ
©

. (26)

Such Lindblad equations are commonly used to describe the dynamics of quantum systems
weakly coupled to an environment. They characterize the non-unitary evolution of the system’s
reduced density matrix, i.e. once the degrees of freedom of the environment have been traced
out. They can be derived unambiguously under the Born-Markov approximation (i.e. within
the same regime of validity as the Fermi Golden rule), assuming the immediate environment
is relaxing sufficiently fast to remain unaffected by the state of the system. In the limit of
no environment, they reduce to the usual von Neumann equation of isolated dynamics, see
the first term in the RHS of Eq. (26). The following terms in the RHS originate from the
hybridization with the environment. They involve the quantum of energy exchanged with
the environment ε ≡ 2|ϕ|, the Bose-Einstein distribution nB(ω, T ) ≡ 1/(eω/T − 1), the jump
operators σ±ϕ ≡ S± when ϕ > 0 and σ±ϕ ≡ S∓ when ϕ < 0, and the Lindblad operators

D[X ]ρ ≡ XρX † − (X †Xρ + ρX †X )/2 that act linearly on the system’s density matrix, while
preserving its trace, hermiticity, and positivity. It is rather straightforward to show that

R̂/R(ϕ) =
ν1(2|ϕ|) + ν2(2|ϕ|)

ν1(2|ϕ|) coth(ϕ/T1) + ν2(2|ϕ|) coth(ϕ/T2)
. (27)

The presence of the absolute values |ϕ| in the arguments of the bath hybridization functions
is a first possible source of non-analyticites in R̂/R(ϕ). A second source of non-analyticities is
a non-integer power law of the low-energy spectrum of the bath hybridization functions, i.e.
νi(ω)∼ωα with α /∈ N.

Note that any possible non-analyticity in the ratio R̂/R(ϕ) is lost as soon as the two bath
hybridization functions behave identically, i.e. ν1(ω) ∝ ν2(ω), since they can be factored
out of the expression (27). Incidentally, the continuous ferromagnetic transition in this sub-
class of non-equilibrium models, often investigated under the name of “competing spin-flip
dynamics”, was repeatedly found to belong to the equilibrium Ising universality class [14–16].
Another trivial case controlled by the Ising universality class is the thermal equilibrium limit,
i.e. T1 = T2, in which detailed balance and the analyticity of R̂/R(ϕ) are naturally recovered.

2Note that the Markov approximation behind the derivation of the above Lindblad-Master equation becomes
exact once a steady state is reached.
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We now stay away from these special cases, and assume that the low-energy features of
the baths are such that ν1(ω)� ν2(ω). Eq. (27) yields the self-consistency equation

ϕ
SC
= R̂/R(ϕ)' tanh(ϕ/T1)

�

1+
ν2(2|ϕ|)
ν1(2|ϕ|)

�

1−
tanh(ϕ/T1)
tanh(ϕ/T2)

��

+ . . . (28)

ϕ∼0
'
ϕ

T1

�

1+ c21

�

1−
T2

T1

�

|ϕ|α21

︸ ︷︷ ︸

non−analytic

−
1
3

�

ϕ

T1

�2
�

+ . . . , (29)

where we assumed the low-energy power-law behaviors νi(2ω) ' ciω
αi and introduced

α21 ≡ α2 −α1 and c21 ≡ c2/c1.

Effective potential Using the definition in Eqs. (13) or (18) with D(ϕ) := 1, we obtain the
following effective potential

VNESS(ϕ) =
1
2
(1− β1)ϕ

2 −
c21

2+α21
β1(1− β1/β2)|ϕ|2+α21 +

1
12
β3

1ϕ
4 . (30)

Let us use this example to underline once again the main message of this manuscript. We have
derived a non-equilibrium effective potential for the non-equilibrium steady states, which is
Z2-symmetric, but not an analytic function of ϕ. The quadratic and quartic term are analytic,
and their prefactors are smooth functions of the external parameters. It is the non-equilibrium
nature of the environment which is responsible for the non-analytic term in |ϕ|2+α21 . The
prefactor of the latter is a smooth function of the external parameters that vanishes at equi-
librium (when T1 = T2). The exponent α21 > 0 can be non-integer valued. For example, for
d-dimensional baths with dispersion relations ω ∼ kz , the exponent α21 = d2/z2 − d1/z1 is a
rational number.

An equivalent description of the physics consists in sticking to the equilibriumϕ4 potential,
in exchange of working with the effective temperature

Teff(ϕ) = T1 −
2c21

2+α21
(T1 − T2)|ϕ|α12 . (31)

Phase transition The effective potential in Eq. (30) reveals a continuous phase transition
at the critical temperature T c

1 = 1 as long as the second bath is at a higher temperature than
the first, i.e. for any T2 ≥ T1. Noteworthy, this critical temperature is as if the system was
only coupled, and in equilibrium, with the first bath: The first bath is the most “relevant”
bath. However, the mean-field critical exponents are clearly modified with respect to their
equilibrium values. If α21 < 2, the non-analytic term in Eq. (29) dominates over ϕ4 term at
small ϕ, and we get the scaling law

|ϕ| ∼
�

τ1

τ1 −τ2

�β̂NESS

, (32)

where we introduced the reduced temperatures τi ≡ 1−Ti and the mean-field critical exponent

β̂NESS =
1
α21

. (33)

This critical exponent is much different, in origin and in value, from its equilibrium counterpart
β̂EQ = 1/2 which stems from the competition of the ϕ2 and the ϕ4 terms of the mean-field
potential. If 1 < α21 < 21, the continuous phase transition can be classified as a third-order
phase transition since the derivative of the order parameter is continuous across the transition,
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whereas 0 ≤ α21 ≤ 1 yields a second-order phase transition with a discontinuous derivative
across the transition.

Remarkably, this continuous phase transition disappears if the second bath is colder than
the first, i.e. T2 < T1. There, we rather get a discontinuous (first-order) phase transition at a
different critical temperature T c

2(T1).

Many-bath dissipative Ising model The previous discussion can be generalized when the
Ising spins are coupled to more than two baths. Considering multiple baths, indexed by
n = 1, 2, . . ., with different3 temperature Tn, chemical potential µn and hybridization func-
tion νn(ω)∼ωαn at low energies, the ratio in Eq. (27) simply generalizes to

R̂/R(ϕ) =

∑

n νn(2|ϕ|)
∑

n νn(2|ϕ|) coth(2ϕ−sgn(ϕ)µn
2Tn

)
. (34)

Assuming that ν1(ω) � ν2(ω) � ν3(ω) � . . . at low energies, we may neglect the baths
indexed by n≥ 3 and the situation boils down to the previous case of two independent baths,
yielding the critical exponent β̂NESS already computed in Eq. (33).

Importantly, this teaches us that criticality is controlled in the non-equilibrium steady states
by those two baths that have the largest hybridization functions (i.e. typically the largest
density of states) at low energies.

4.2 Floquet-driven dissipative Ising model

In this example, we borrow the driven-dissipative model studied in [17]. It consists of the
dissipative Ising model, weakly coupled to a thermal bath, and driven out of equilibrium by
a periodic longitudinal field with frequency Ω and amplitude h ≥ 0. The time-dependent
Hamiltonian reads

H(t) = −
1
z

∑

〈i j〉

Sz
i Sz

j +
∑

i

h cos(Ωt)Sz
i . (35)

By combining the standard single-spin mean-field approximation with a Floquet treatment
of the periodic drive, one derives the steady-state dynamics of the order parameter averaged
over one period 2π/Ω, ϕ ≡ 〈Sz

i 〉. In the regime where Ω> 2|ϕ|, one obtains

R̂/R(ϕ)=
J2

0ν(2|ϕ|) +
∑

m∈Z∗
sgn(m)J2

mν(|m|Ω+ sgn(m)2|ϕ|)

J2
0ν(2|ϕ|) coth(ϕT ) +

∑

m∈Z∗
sgn(m)J2

mν(|m|Ω+sgn(m)2|ϕ|) coth
�

2ϕ+sgn(ϕ)mΩ
2T

� , (36)

where ν(ω) is the hybridization function with the bath, and Jm ≡ Jm(2h/Ω) where Jm(x),
m ∈ Z, are the Bessel functions of the first kind.

We now make a connection with the Sec. 4.1 by recasting the impurity problem at hand into
an impurity spin coupled to multiple equilibrium baths. Such a decomposition of a given non-
equilibrium impurity environment into a collection of equilibrium baths has already been made
in the context of non-equilibrium dynamical mean-field theory [18]. Here, the expression of
the ratio R̂/R(ϕ) in Eq. (36) can be formally recast in the form of Eq. (34) by identifying the

3If two (or more) baths have the same temperature and chemical potential, they can be formally combined into
a single bath.
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following equilibrium baths

m= 0 :







ν0(ω) := J2
0 ν(ω)

T0 := T
µ0 := 0

m 6= 0 :







νm(ω) := sgn(m)J2
m ν(|m|Ω+ sgn(m)ω)

Tm := T
µm := −mΩ

,

(37)

with m ∈ Z and where νm, Tm, and µm are the mth bath hybridization function, temperature,
and chemical potential, respectively. Note that the sign of νm(ω) may not be positive in this
Floquet approach.

Strong-driving regime In the strong-driving regime where Ω, h � |ϕ|, T , this further sim-
plifies as

R̂/R(ϕ)'
J2

0 ν(2|ϕ|) + 2|ϕ|A
J2

0 ν(2|ϕ|) coth(ϕ/T ) + 2 sgn(ϕ)B
, (38)

where we introduced A≡ 2
∑

n>0 J2
n ν
′(nΩ) and B ≡

∑

n>0 J2
n ν(nΩ) ≥ 0. Assuming a power-

law behavior of the low-energy spectrum of the bath hybridization function, i.e. ν(ω) ' cωα

with α > 0 and c > 0, we get

R̂/R(ϕ)
ϕ∼0
' β0ϕ + Cα sgn(ϕ)|ϕ|1+|α−1| + . . . , (39)

where the symbol . . . here stands for a collection of higher-order terms of the form |ϕ|1+n|α−1|

with n≥ 2. The coefficients

β0 =







β

β
1+βΩ ε0
1+β ε0

βΩ

, Cα = 2|α−1| ×







β ε0 (βΩ − β) α < 1
0 α= 1

1
β ε0
(β − βΩ) α > 1

, (40)

where βΩ ≡ A/B ≥ 0 and ε0 ≡ B/cJ2
0 > 0, smoothly depend on the external parameters such

as the temperature T , the driving amplitude h, or the driving frequency Ω 4. Importantly, we
find that both cases α < 1 and α > 1 give rise to non-analytic terms that enter the expression
of R̂/R(ϕ) above the first order in ϕ. The case of an Ohmic bath, i.e. α= 1, is special because
R̂/R(ϕ) is analytic in ϕ and we recover equilibrium physics at a modified temperature. Inci-
dentally, the Ohmic case has been explored numerically in 2D [19,20] and in 3D [21], and was
indeed found to belong to the Ising universality class. However, to the best of our knowledge,
the generic case of a non-Ohmic bath has not been studied.

Ultimately, this yields the following structure of the effective potential,

VNESS(ϕ) =
1
2
(1− β0)ϕ

2 −
Cα

2+ |α− 1|
|ϕ|2+|α−1| + . . . . (41)

Equivalently, this corresponds to an order-parameter-dependent effective (inverse) tempera-
ture reading

βeff(ϕ) := β0 +
Cα

2+ |α− 1|
|ϕ||α−1| + . . . . (42)

Using the results of Sec. (4.1), this predicts a continuous non-equilibrium phase transition at
the bath critical temperature T c = 1 whenever B/A > 1 in the sub-Ohmic case (α < 1), and
at the critical drive B/A = 1 whenever T > 1 in the super-Ohmic case (α > 1). Both these
transitions are described by a mean-field critical exponent β̂NESS = 1/|α− 1|.

4The equilibrium limit cannot be easily recovered since we have assumed strong-driving conditions,
Ω, h� |ϕ|, T .
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5 Beyond mean field – discussion and open problems

In this Section, we question the lessons of the previous mean-field analysis away from the limit
of infinite dimensionality, and we propose an effective Landau-Ginzburg free energy for the
non-equilibrium steady states in finite dimensions.

Non-analyticity vs. discreteness The non-analytic term of the effective potential originated
from the ratio R̂/R(ϕ)when evaluated aroundϕ ∼ 0. While there is no question that this func-
tion of ϕ can feature non-analyticities in a non-equilibrium steady state (we have computed it
explicitly in a couple of concrete examples), the fact that it was continuously probed around
ϕ ∼ 0 was clearly due to the self-consistency equation of the mean-field treatment, namely

ϕ
SC
= R̂/R(ϕ). In practice, the dynamics of any single spin depends of the local Weiss field

hW =
n↑−n↓

z where n↑ (n↓) counts the number of up (down) spin neighbors and z = n↑ + n↓ is
the coordination number. In finite dimensions, hW is not a continuous variable but a discrete
quantity which varies by increments of δ ≡ 2/z. This implies that the dynamics of a given
spin is controlled by the discrete set of values R̂/R(nδ), n ∈ Z rather than by the continuous
series expansion of R̂/R(ϕ) around ϕ ∼ 0. Therefore, it is legitimate to worry whether the
non-analyticities of R̂/R(ϕ) are still transfered to VNESS(ϕ) in finite dimensions, or if they are
washed away with the introduction of a small energy cutoff in the theory.

Coarse-graining and Landau-Ginzburg free-energy The above issue could in principle be
removed by performing a coarse-graining procedure, where the size of the coarse-graining
region would replace the connectivity z of the lattice. In this case, the discreteness of the
Weiss field would be exactly the same as the one of the coarse-grained magnetization ϕ(x),
which in Landau theory is replaced by a continuous field. If one assumes that there exists an
appropriate coarse-graining procedure that allows to neglect the energy discretization along
with the order parameter discretization, then one can extend the equilibrium reasoning that
led to Eq. (9) to propose a Landau-Ginzburg free energy of the form:

FNESS[ϕ] =

∫

dd x

¨

1
2
(∇ϕ)2 +

∫ ϕ(x)

dϕ
�

ϕ − R̂/R(ϕ)
�

«

(43)

'
∫

dd x
1
2
(∇ϕ)2 + a2ϕ

2 + cα|ϕ|2+α + a4ϕ
4 , (44)

where non-analytic terms can enter the expression at the order |ϕ|2+α and the exponent α > 0
is typically determined by law-energy spectrum of the environment. The parameter cα is a
smooth function of the external parameters (temperatures, driving strength, etc), that vanishes
at equilibrium thus restoring the analyticity of the free-energy density.

The presence of analytic gradient terms in the Landau-Ginzburg free energy, such as (∇ϕ)2

in Eq. (43), is guided by what is already well-known in equilbirum. Depending on the physics
at stake, terms with higher order (integer) derivatives, higher (integer) powers, or mixed terms
such as ϕ2(∇ϕ)2 could naturally enter the free energy. In the context of the ϕ4 magnet, we
know that they are essentially irrelevant in front of the (∇ϕ)2 term. However, in a generic
non-equilibrium steady state, we cannot rule out the additional presence of non-analytic terms
of the form |ϕ|α(∇ϕ)2, with a non-integer power α > 0 5. While a naive power counting seems
to indicate that it would be less relevant than the original (∇ϕ)2 term, more insight is required
(e.g. numerical simulations or full-fledged RG analysis) to make a definite statement.

5We did not propose a term of the form |∇ϕ|α with a non-integer power α > 0 because the non-equilibrium
environments considered in this manuscript are local in space, and we do not expect them to generate gradient
terms.
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RG approach If the assumptions leading to this Landau-Ginzburg free energy are valid, then
the question becomes how information can be extracted from it.

The first step is to analyze the engineering dimension of the non-analytic term. Setting as
usual the dimension of the gradient term to be zero, we get [cα] = α(d/2−1)−2. Forα ∈ (0,2),
this term is always more relevant than the ϕ4 term. Above d > 4/α + 2, the non-analytical
term is irrelevant. Therefore, to the extent that one can carry this naive analysis of scaling
dimensions, one would expect that new mean-field exponents obtained in the preceding part
of the paper would apply in high enough dimensions.

However, going beyond the tree-level power counting is daunting. The following two issues
with a proper RG calculation arise. First, the presence of the non-analytical potential makes
it difficult to carry out a conventional RG diagrammatic calculation. (Possibly, a functional
RG approach may be better suited instead.) Second, it is possible that the presence of the
non-analytic potential at tree level may be symptomatic that a proper RG scheme should not
start with it, but instead take a step back and restore the bath degrees of freedom instead of
integrating them out to get the effective potential.

Monte-Carlo approach We would be cautious in diving into an RG calculation with the
Landau-Ginzburg free energy Eq. (43) before we could more solidly establish the validity of the
assumption that coarse-graining resolves the issue of non-analyticity vs. discreteness discussed
above. That could be settled by numerical simulations of the lattice model in Sec. 4.1 in 2D
and 3D. This should validate or invalidate that the critical exponents (as well as the order of
the transition) at the magnetic transition acquire a dependency on the bath density of states.
If so, this would provide solid evidence for remnants of universality in non-equilibrium steady
states. If not, we still expect the presence of a near-critical crossover regime controlled by
these bath-dependent exponents.
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A Inconsequentiality of the denominator D(ϕ)

Let us recall the definition of the effective potential that we proposed from a single-spin mean-
field treatment of the dynamics of the dissipative Ising model:

V(ϕ)≡
∫ ϕ

dϕ
ϕ − R̂/R(ϕ)

D(ϕ)
. (45)

V(ϕ) is such that its extrema, located at ∂ϕV = 0, are in one-to-one correspondence with the

solutions of the self-consistency equation ϕ
SC
= R̂/R(ϕ).

The possible expressions of D(ϕ) are subject to the following constraints:

- Symmetry: the Z2 symmetry of the effective potential imposes D(ϕ) to be even, i.e.
D(ϕ) = D(−ϕ),
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- Stability of the solutions: D(ϕ) is non-negative, i.e. D(ϕ)≥ 0.

- Stability of the theory: D(ϕ) cannot affect the positive sign of the coefficient of the
highest relevant power of ϕ in V(ϕ)

- Re-parametrization invariance: at criticality, all possible expressions of the effective po-
tential should match, i.e. D(ϕ = 0) = 1.

- “Universality” of the definition: V (ϕ) and therefore D(ϕ) are expected to be functions
of ϕ and R̂/R(ϕ) which do not depend explicitly on the system parameters. In particu-
lar, this implies that the expression of D(ϕ, R̂/R) is the same at equilibrium and out of
equilibrium, and is analytic in both its arguments: D(ϕ) = f (ϕ2,ϕR̂/R, (R̂/R)2, . . .)

- RG relevance: the effective potential being defined up to terms which are irrelevant with
respect to a ϕ4 interaction, one may truncate D(ϕ) at the order ϕ2.

Thus, a given choice of D(ϕ) may only impact the precise form of the potential by modifying
the value (not the sign) of the coefficient of the ϕ4 term. Given that the parameters of the
Landau-Ginzburg free-energy density are anyway immaterial, we can conclude that D(ϕ) is
essentially inconsequential close to a continuous phase transition.

B Structure of the dynamical ratio R̂/R(ϕ)

We consider the single-spin mean-field impurity problem associated with a driven-dissipative
Ising model that has reached a non-equilibrium steady state. It consists of a single spin coupled
to a local Weiss field and to an incoherent environment responsible for spin flips at rates R↑↓
and R↓↑. We do not assume the environment to be at equilibrium, i.e. the rates do not have to
obey the detailed balance condition.

We recall the self-consistency equation on the mean-field order parameter,

ϕ
SC
= R̂/R(ϕ) , (46)

where we introduced R̂≡ R↓↑ − R↑↓ and R≡ R↓↑ + R↑↓.
Below we assume

- The existence of a continuous phase transition.

- Smoothness of the rates: R↓↑ and R↑↓ are smooth continuous functions of the external
parameters (temperature, drive, etc.)

The ratio R̂/R(ϕ) is a continuous and odd function ofϕ. This guarantees that the paramag-
netic ϕPM = 0 is always a solution of the self-consistency equation. If any, the other solutions
are ferromagnetic and obey

1
SC
=

R̂/R(ϕFM)
ϕFM

. (47)

Close to a continuous phase transition, the two solutions merge together, i.e. ϕFM→ ϕPM = 0.
This imposes that, at criticality,

lim
ϕ→0

R̂/R(ϕ)
ϕ

�

�

�

criticality
= 1 . (48)
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Using the assumption that the rates are smooth continuous functions of the external parame-
ters, we can therefore conclude that away from criticality

lim
ϕ→0

R̂/R(ϕ)
ϕ

= β0 , (49)

where the constant β0 > 0 depends smoothly on the external parameters and β0 = 1 at criti-
cality. The property in Eq. (49) ensures that the development of R̂/R(ϕ) in powers of ϕ starts
at the order ϕ:

R̂/R(ϕ) = β0ϕ + . . . , (50)

with β0 > 0. Importantly, this allows the presence of non-analytic terms of the type
sgn(ϕ)|ϕ|1+α as long as α > 0.

C Fokker-Planck equation on P(ϕ, t)

We work with the fully-connected version of the driven-dissipative Ising model that we con-
sidered in Sec. 3.2. We recall the system Hamiltonian given in Eq. (51)

H = −
1
N

∑

i j

Sz
i Sz

j , (51)

where the total number of spins N is large but finite. We assume that the non-equilibrium
environment is uniform and acts locally on the spins. We follow the dynamics of the mean
magnetization,

ϕ ≡
1
N

N
∑

i=1

Sz
i . (52)

It is a stochastic process in which the random jumps are due to individual spin flips driven
by the system-bath interaction. They occur in units of δϕ = 2

N . In a mean-field picture, the
spin flips are supposed uncorrelated but their statistics, namely the spin flip rates R↓↑ and
R↑↓, are controlled by the common mean-field order parameter ϕ. In this approximation, the
probabilities for ϕ to increase by δϕ, decrease by δϕ, or stay constant, during a time step dt
read, respectively























R+(ϕ 7→ ϕ +δϕ) = N P↓ R↓↑
︸ ︷︷ ︸

≡ r+

dt

R−(ϕ 7→ ϕ −δϕ) = N P↑ R↑↓
︸ ︷︷ ︸

≡ r−

dt

R(ϕ 7→ ϕ) = 1− (r+ + r−)dt

, (53)

where P↓ =
1−ϕ

2 (P↑ =
1+ϕ

2 ) is the probability for a given spin to be down (up), R↓↑ (R↑↓) is
the rate of flipping a spin up (down), and the overall factor of N takes care of the summation
over the N (uncorrelated) spins in Eq. (52).

The derivation of the Fokker Planck equation which governs the dynamics of the probability
to find ϕ at time t, P(ϕ, t), is obtained quite standardly by developing

P(ϕ, t + dt)' P(ϕ, t) + dt ∂t P(ϕ, t) +O(dt2) (54)
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on the one side, and by developing the budget equation

P(ϕ, t + dt) =P(ϕ −δϕ, t)R+(ϕ −δϕ 7→ ϕ)
+ P(ϕ +δϕ, t)R−(ϕ +δϕ 7→ ϕ)
+ P(ϕ, t)R(ϕ 7→ ϕ) (55)

'[Pr+ −δϕ ∂ϕ(Pr+) +
1
2
δϕ2 ∂ 2

ϕ (Pr+)]dt

+ [Pr− +δϕ ∂ϕ(Pr−) +
1
2
δϕ2 ∂ 2

ϕ (Pr−)]dt

+ P[1− (r+ + r−)dt] +O(δϕ3) (56)

on the other side. Finally, identifying Eqs. (54) and (55), we obtain the Fokker Planck equation

∂t P =− ∂ϕ
�

P[(R↓↑ − R↑↓)−ϕ(R↓↑ + R↑↓)]
�

+
1
N
∂ 2
ϕ

�

P[(R↓↑ + R↑↓)−ϕ(R↓↑ − R↑↓)]
�

+O(1/N2) , (57)

which can be recast into a simple conservation equation,

∂t P + ∂ϕJ = 0 , (58)

via the identification of the current density

J ≡ PR(R̂/R−ϕ)−
1
N
∂ϕ
�

PR(1−ϕR̂/R)
�

+O(1/N2) , (59)

with R≡ R↓↑ + R↑↓ and R̂≡ R↓↑ − R↑↓.

References

[1] B. Schmittmann and R. K. P. Zia, Statistical mechanics of driven diffusive system, in Phase
Transitions and Critical Phenomena 17, 1 (1995).

[2] U. C. Tauber, Critical dynamics, Cambridge University Press (2009),
doi:10.1017/CBO9781139046213.

[3] S. Katz, J. L. Lebowitz, and H. Spohn, Phase transitions in stationary nonequilibrium states
of model lattice systems, Phys. Rev. B 28, 1655 (1983), doi:10.1103/PhysRevB.28.1655.

[4] J. Marro and R. Dickman, Nonequilibrium phase transitions in lattice models, Cambridge
University Press (1999), doi:10.1017/CBO9780511524288.

[5] P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys.
49, 435 (1977), doi:10.1103/RevModPhys.49.435.

[6] W. Kinzel, Percolation structures and processes, in Ann. Isr. Phys. Soc. (1983).

[7] H. Hinrichsen, Non-equilibrium critical phenomena and phase transitions into absorbing
states, Adv. Phys. 49, 815 (2000), doi:10.1080/00018730050198152.

[8] M. Kardar, G. Parisi and Y.-C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev.
Lett. 56, 889 (1986), doi:10.1103/PhysRevLett.56.889.

[9] M. Lässig, On growth, disorder, and field theory, J. Phys.: Condens. Matter 10, 9905
(1998), doi:10.1088/0953-8984/10/44/003.

17

https://scipost.org
https://scipost.org/SciPostPhys.8.5.074
http://dx.doi.org/10.1017/CBO9781139046213
http://dx.doi.org/10.1103/PhysRevB.28.1655
http://dx.doi.org/10.1017/CBO9780511524288
http://dx.doi.org/10.1103/RevModPhys.49.435
http://dx.doi.org/10.1080/00018730050198152
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1088/0953-8984/10/44/003


SciPost Phys. 8, 074 (2020)

[10] G. Grinstein, C. Jayaprakash and Y. He, Statistical mechanics of probabilistic cellular au-
tomata, Phys. Rev. Lett. 55, 2527 (1985), doi:10.1103/PhysRevLett.55.2527.

[11] M. Kardar, Statistical physics of fields, Cambridge University Press (2007),
doi:10.1017/CBO9780511815881.

[12] R. J. Glauber, Time-dependent statistics of the Ising model, J. Math. Phys. 4, 294 (1963),
doi:10.1063/1.1703954.

[13] J. E. Han, J. Li, C. Aron and G. Kotliar, Nonequilibrium mean-field theory of resistive phase
transitions, Phys. Rev. B 98, 035145 (2018), doi:10.1103/PhysRevB.98.035145.

[14] P. L. Garrido, A. Labarta and J. Marro, Stationary nonequilibrium states in the
Ising model with locally competing temperatures, J. Stat. Phys. 49, 551 (1987),
doi:10.1007/BF01009348.

[15] P. Tamayo, F. J. Alexander and R. Gupta, Two-temperature nonequilibrium Ising
models: Critical behavior and universality, Phys. Rev. E 50, 3474 (1994),
doi:10.1103/PhysRevE.50.3474.

[16] A. Achahbar, J. J. Alonso and M. A. Muñoz, Simple nonequilibrium extension of the Ising
model, Phys. Rev. E 54, 4838 (1996), doi:10.1103/PhysRevE.54.4838.

[17] G. Goldstein, C. Aron and C. Chamon, Driven-dissipative Ising model: Mean-field solution,
Phys. Rev. B 92, 174418 (2015), doi:10.1103/PhysRevB.92.174418.

[18] C. Aron, C. Weber and G. Kotliar, Impurity model for non-equilibrium steady states, Phys.
Rev. B 87, 125113 (2013), doi:10.1103/PhysRevB.87.125113.

[19] G. Korniss, C. J. White, P. A. Rikvold and M. A. Novotny, Dynamic phase transition, uni-
versality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating
field, Phys. Rev. E 63, 016120 (2000), doi:10.1103/PhysRevE.63.016120.

[20] G. M. Buendía and P. A. Rikvold, Dynamic phase transition in the two-dimensional kinetic
Ising model in an oscillating field: Universality with respect to the stochastic dynamics, Phys.
Rev. E 78, 051108 (2008), doi:10.1103/PhysRevE.78.051108.

[21] H. Park and M. Pleimling, Dynamic phase transition in the three-dimensional
kinetic Ising model in an oscillating field, Phys. Rev. E 87, 032145 (2013),
doi:10.1103/PhysRevE.87.032145.

18

https://scipost.org
https://scipost.org/SciPostPhys.8.5.074
http://dx.doi.org/10.1103/PhysRevLett.55.2527
http://dx.doi.org/10.1017/CBO9780511815881
http://dx.doi.org/10.1063/1.1703954
http://dx.doi.org/10.1103/PhysRevB.98.035145
http://dx.doi.org/10.1007/BF01009348
http://dx.doi.org/10.1103/PhysRevE.50.3474
http://dx.doi.org/10.1103/PhysRevE.54.4838
http://dx.doi.org/10.1103/PhysRevB.92.174418
http://dx.doi.org/10.1103/PhysRevB.87.125113
http://dx.doi.org/10.1103/PhysRevE.63.016120
http://dx.doi.org/10.1103/PhysRevE.78.051108
http://dx.doi.org/10.1103/PhysRevE.87.032145

	Introduction
	Brief review of Landau-Ginzburg theory at equilibrium
	Landau-Ginzburg free energy: building principles
	4 theory from the dissipative Ising model

	Landau potential for non-equilibrium steady states
	Single-spin mean-field description
	Finite-size fully-connected model
	Effective temperature

	Concrete examples around the Ising model
	Dissipative Ising model coupled to multiple baths
	Floquet-driven dissipative Ising model

	Beyond mean field – discussion and open problems
	Inconsequentiality of the denominator D()
	Structure of the dynamical ratio /R()
	Fokker-Planck equation on P(,t)
	References

