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Abstract. In order to determine the thermo-mechanical properties of a complex

3D woven ceramic composite material, an experiment at high and inhomogeneous

temperature and its dedicated full-field measurement procedure is developed. 3D

tomographic images of the tested sample are captured at different stages of loading in

a synchrotron beamline, and an infrared camera captures a side view of the sample

as it rotates in the X-ray beam. A pin-hole projective model of the thermographic

camera allows one to map the thermal field measured under numerous orientations

onto a 3D mesh of the sample built from an initial tomographic image or a model. The

projective model has to be calibrated, and an original procedure is proposed thanks

to an integrated digital image correlation algorithm based on the “silhouette” of the

sample (as only the protruding edges outlining the sample shape can be seen clearly).

This procedure is illustrated with an experimental case study.

Keywords: Pin-hole projective model, Integrated-DIC, Infra-red imaging, In-situ

thermo-mechanical test, Full-field measurement, Computed tomography
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1. Introduction

The use of in-situ mechanical tests in material science has substantially increased during

past three decades. It consists in performing experimental tests (such as a mechanical

test) inside a sophisticated piece of equipment delivering full field measurements,

e.g. Transmission or Scanning Electron Microscopy (TEM or SEM) [1], Electron

BackScatter Diffraction (EBSD) [2] or tomograph [3, 4]. Such experiments are quite

complex to set up. Most of the time, a dedicated experimental device has to be

developed. Providing exceptionally rich and highly resolved in space or time information

about evolutions of the sample, they are among the most invaluable tools to understand

and describe quantitatively material behaviour when subjected to a variety of different

loadings including extreme conditions. The very last improvement consists in using

multi-modality to further broaden in-situ measurement [5].

This work is focused on thermo-mechanical behaviour of thermo-structural

composite materials [6]. Those materials are used at very high temperatures (more

than 1000◦C), under severe thermal gradients, and yet, they are expected to preserve

their structural qualities. Their very complex micro-structure produces anisotropic 3D

thermal and mechanical fields calling for full-field measurements. Testing materials

at such high temperatures is challenging and development of new experimental

methodologies is needed [7, 8].

The originality of our experiments is that they are carried out using tomography

and thermography. An in-situ loading device was designed to perform multi-modal

experiments on complex-shaped samples [9]. The sample is heated externally in a range

from 1000◦C to 1200◦C with a non-homogenous thermal field to induce elastic stress

from kinematic incompatibilities so that damage induced by extreme thermal and/or

mechanical loadings can be studied.

Tomography provides volume images of the sample. It is particularly relevant to

study micro-structured materials or samples submitted to complex localized loading [10].

In-situ tomographic observation has first been developed to study damage and crack

propagation [11]. It is the focus of most of those tests including the present study where

the occurrence of damage is investigated.

Due to acquisition time, a set of tomograms is generally acquired at pre-defined

loading steps. The acquisitions were done on steady states. After the thermal and

mechanical loadings are applied, few minutes are waited for to let the temperature and

damage fields reach a stationary state before the acquisition is ran. The comparison

between two steps provides information on the evolution of the bulk of the sample. The

bulk displacement field taking place between two acquisition steps can be computed from

tomography using Digital Volume Correlation (DVC) [12, 13]. In the global approach,

DVC computation may be based on a Finite-Element (FE) mesh which can be built

from a tomogram to reproduce accurately the sample geometry.

Infra-red (IR) thermography imaging is used in parallel to tomography. The thermal

field emitted by sample surfaces is measured as the sample is rotated for the tomographic
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scan. Emissivity of the surfaces is uniform, and hence digital levels of the IR camera

can be converted into temperatures. Moreover, because the tomographic scan is fast,

the thermal inertia of the sample ensures that the temperature field is steady. Thus

the temperature of the sample surface over most of the sample height can be estimated

safely.

In order to exploit tomography and thermography jointly, it is necessary to associate

the acquired raw data in a common framework. This requires a geometrical calibration

of the IR camera that will account quantitatively for the sample geometry, described in

3D with a finite element (FE) mesh built from an initial tomogram, and captured at

any rotation angle as a 2D image with the IR camera.

Such a geometrical calibration appears to share some similarities with that used

in stereo-vision. The latter, a modern evolution of photogrammetry [14], consists

in determining the 3D geometry of a scene from two (or more) 2D images, usually

photographs, taken under several angles [15]. Calibration is a needed first step that

aims to determine the optical parameters of the acquisition devices and their position

on the scene. Calibration is typically performed thanks to a dedicated Digital Image

Correlation (DIC) procedure using a textured (speckled) sample [16]. If the sample

cannot be speckled, the calibration can be performed projecting a pattern on the object

(e.g. fringe pattern [17]).

One specific difficulty of our experiment is that very few details of the sample

surface can be tracked. Indeed, no speckle was used as a uniform emissivity allows

an easy evaluation of temperature. Moreover, even edges between two visible surfaces

cannot be clearly distinguished on the IR images. Hence only the sample protruding

edges, namely the sample silhouette, can be trusted to calibrate the projective model.

This very severe constraint leads to the development of an original methodology designed

to be robust and accurate, to perform the geometrical calibration based solely on the

sample silhouette.

Once the camera parameters are known, the projection operation is standard and

can be used backward to transport the measured temperature field onto the mesh

surface. Care has to be exercised to identify the visible surfaces — and to discard

hidden ones — so that the thermal field can be mapped onto the visible parts of the

sample surface.

An original procedure is proposed to couple those two full-field measurement

modalities. After a brief presentation of the experimental setup, Section 2 details

the formulation of the projective model problem and its calibration based only on the

information available in thermographic images. In Section 3, this method is implemented

and illustrated in an actual experimental case study. The filtering of the hidden sample

surfaces is explained. The application is discussed in Section 4 together with the

evaluation of the uncertainty of the thermal field. Finally, Section 5 sums up the main

results and presents some future perspectives.
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2. Methods: Calibration of projection matrix

2.1. Experimental setup

A loading device was developed to perform tests on T-shaped or L-shaped samples of

ceramic matrix 3D-woven composite materials [9]. It can be used both in laboratory

or synchrotron tomography. The thermograms presented here were acquired during

an experimental campaign at PSICHE beamline at synchrotron SOLEIL [18]. The

mechanical quasi-static loading is applied step by step, alternating loading and

tomographic acquisition (which takes about 15 min). The geometry of the experimental

configuration is schematized in Figure 1. The (O,Xt) axis is the optical axis of the

tomograph. The loading device and the sample are fixed on the tomograph rotating

plate. They rotate with respect to the tomograph about (O,Zt) axis. During a

tomographic acquisition, a large number of radiographs at different angles θ are taken.

The angular step is sufficiently small so that the rotation of the plate can be continuous

without degradation of the radiograph quality (no motion blur).

During the tomography, a series of thermograms is acquired with an IR camera

which is positioned so that its optical axis (T, Zc) is oriented perpendicularly to (O,Xt).

This procedure provides a large set of view angles.

CS

Xt

Yt

O

Xp
Yp

θ

F

Xc

Zc

Figure 1: Scheme of the experimental configuration. The sample and the rotating stage

are in red and the camera, in blue. S is the X-ray source, O, the center of rotation and C,

the center of the scintillator. (O,Xt, Yt, Zt) is the coordinate system of the tomograph

frame of reference. (O,Xp, Yp, Zt) is the rotating plate frame. Finally (F,Xc, Yc, Zc)

denotes the frame of reference of the IR camera.

The objective is to use the information acquired by the IR camera as boundary

conditions of a 3D FE model of the sample. The thermal field will be “reprojected”

onto the 3D mesh surface using a pin-hole projective model. However, prior to this

exploitation, it is necessary to calibrate the projective geometry, as detailed below.

2.2. Stereo-correlation matrix decomposition

The projection from the real space to the image space can be written as a projection

matrix [M ] which links the 3D homogeneous spatial coordinates of a point, {X}, to
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the 2D homogeneous coordinates of its corresponding point, {x}, in the image [19].
sx

sy

s

 = [M ]


X

Y

Z

1

 (1)

This formulation, where s is a scale factor (which is the expression of the perspective

effect), enables writing the projection as a linear problem. [M ] is an a priori unknown

3×4 matrix. Due to s, [M ] is defined up to a global magnification factor, so that eleven

parameters remain to be determined.

This matrix has to be identified for the whole set of n images. Without assumptions

on the respective displacement of the object and the camera, n projection matrices have

to be computed. During the test, the camera if fixed and the sample, clamped to the

tomograph rotating stage, undergoes only a rotation about the vertical axis. The stage

movement is assumed to be accurate enough to rewrite the projection matrix [M i]16i6n
for each angular position θi, as[

M i
]

= [M ]
[
Ri
]

(2)

where [Ri] is the rotation matrix of angle θi around the tomograph axis. [M ] has 11

parameters. The position and the orientation of the rotation axis of [Ri] is fully set with

5 parameters. The angular position of the first image can be arbitrarily set to θ1 = 0

(thus [M 1] = [M ]), only (n − 1) unknown angular positions remain. For n images,

n+ 15 parameters are to be determined.

Any 3×4 matrix does not represent an admissible projection matrix. A way to take

into account the constraints obeyed by [M i] consists in decomposing it in elementary

transformations (Figure 2) which can easily be written as linear transformations, and

thus as matrices. Only R(θi) depends on the considered image. P gathers intrinsic

parameters which stand for camera optics. Extrinsic ones (i.e. related to the position

of the object with respect to the camera) are decomposed to match the geometry of the

considered experimental set-up.

{X} {Xp} {Xt} {Xc} {sx}
T1 R(θi) T2 P

[Ri] [M ]

Figure 2: Decomposition of [M i] into elementary transformations. T1 and T2 correspond

respectively to the transformation from the 3D mesh frame to the tomograph rotating

stage frame and from the tomograph frame to the camera frame. R(θi) corresponds to

the rotation of the stage. And P represents the projection onto the image plane.

This decomposition increases the number of parameters of the problem.

Transformation T1 and T2 have 6 degrees of freedom (d.o.f.) (3 rotations and 3
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translations). For T1, as it just consists in aligning one of the basis axis with the

tomograph rotation axis (O,Zt), 1 translation is irrelevant. R(θi) has only one d.o.f. θi.

And, without further assumption on the camera optics, P has 11 parameters. Finally

5 + 6 + n+ 11 = 22 + n parameters have to be evaluated.

As all the transformations T1, R(θi), T2 and P do not change during the experiment,

calibration can be performed only once. Moreover, because a very stiff ceramic material

was tested, the displacement of the sample under the mechanical load turned out to be

very small (lower than thermogram resolution). Would the deformation of the sample

be significant, it could be computed by DVC on tomographic images. The positions

of 3D mesh (surface) nodes would then account for the deformed geometry. In fact,

the only case which may be troublesome is when the sample slips out of its grip. If

the sample requires a pre-loading for a good positioning, it is recommended to perform

calibration only after the pre-loading step.

A gross projection matrix is first computed assessing the values of parameters. This

matrix is used as an initialization for the digital image correlation procedure presented

below.

2.3. Shared information between 3D mesh and thermograms

Calibration consists in computing the projection matrix parameters in a given

configuration (cameras and their respective positions and orientations). Usually this

procedure operates on couples of images acquired by two different cameras [15, 20].

When images are not sufficiently textured for digital image correlation (DIC), a

preliminary step using a dedicated calibration target is used. Such an approach

determines the transformation between two images (1 and 2), [M2][M1]
−1 which is

not sensitive to some parameters which have to be set arbitrary as the 3D basis axes

and a scale factor.

Here the exact transformations from the 3D frame used for the sample mesh

and the image planes are sought. To make the correlation possible, data have to

be pre-processed to be comparable (2D images). Moreover, thermography implies a

homogeneous emissivity and grey levels are susceptible to vary in time so conventional

calibration methods (based on sample texture) reveal improper [21]. The common

information between the 3D mesh and the thermograms is thus the sample silhouette

geometry. The projection of the protruding 3D mesh edges on 2D images (the silhouette)

is compared to edges of the sample on the IR images. To do so, for each image,

Integrated-DIC (IDIC) is performed between the silhouette of the mesh on the image

plane and the binarized thermograms (Figure 3).

As the sample temperature is very high, the contrast between sample and

surrounding is quite high, and binarization is easy. The grey level threshold is

determined with an Otsu filter [22] but it could equally well be determined manually

over a significant range without noticeable changes. This simple and classical procedure

revealed satisfactory. In more complicated cases, images can be pre-processed to apply
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any needed correction (e.g. mask, more than one threshold, etc.).

The information supported by the edges of the silhouette of the sample is very poor

for DIC, yet suitable for global DIC. Not using directly grey level field and hence being

compatible with grey level changes expected for the thermographic images, it implies

an enhanced robustness.

(a) Thermograph (b) Projection of 3D mesh outlines

(c) Silhouette from the thermograph (d) Silhouette from the 3D mesh

Figure 3: Silhouettes of the sample are derived from either the thermograph (a) or a

3D mesh (b). From the thermograph, binarization is used to determine the silhouette

from the thermograph (c), and edges extraction provides that of the mesh (d).

2.4. IDIC procedure to determine matrix parameters

DIC, is a full-field measurement procedure consisting in computing a displacement field

u(x) between two images: the reference image, f , and a deformed one, g. Assuming

grey level conservation, u(x) minimizes the residual field, ρ(x),

ρ (x,u) = f (x)− g (x + u (x)) (3)
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The global formulation consists in finding the field u minimizing the quadratic norm of

the residual on the whole Region of Interest (ROI) [23].

Γ (u) =

∫
ROI

ρ(x,u)2 dx (4)

To do so, the displacement field u is progressively corrected by elementary corrections

δu which minimize the linearization of Γ(u) about the current point.

The main interest of such a formulation lies in the fact that u can be decomposed

within any kinematic basis ϕ (x) (u (x) = ϕi (x) ai) — commonly, ϕ (x) is a FE

basis [24]. Finding a is a non-linear problem which is classically solved from iterative

corrections, computed for the tangent (and hence linear) problem. The incremental

correction δa minimizes Γ̃

Γ̃ {δa} =
1

2
{δa}ᵀ [H] {δa} − {δa}ᵀ {b} (5)

where [H] is the Hessian matrix
[H] =

∫
ϕᵀ∇fᵀ∇fϕ dx

{b} =

∫
ϕᵀ∇fᵀρ dx

(6)

The above minimization corresponds to solving the following linear system

[H] {δa} = {b} (7)

and the correction {δa} is to be combined with the current determination of the

displacement {a}.
The displacement field u can depend on several parameters {p}. For each of them,

pi, the sensitivity field Si is defined as the ratio of the variation of displacement induced

by an infinitesimal variation of pi.

Si =
∂u

∂pi
(8)

Integrated-DIC consists in directly computing a vector containing the sought

unknowns {p}. Instead of solving Eq. 7, the problem is reformulated as

[S]ᵀ [H] [S] {δp} = [S]ᵀ {b} (9)

where [S] is the matrix concatenating all sensitivity fields of {a} with respect to the

parameters {p} of [M ]. Passing through the intermediate basis {a} is not mandatory

but it simplifies the writing of the problem.

In the considered case, the unknowns are the geometrical parameters of [M i]

decomposition (Figure 2). The links between u and the parameters are explicitly known

and the derivatives can easily be computed analytically. As an example, using the

decomposition of Figure 2, [ST2 ] is

[ST2 {Xt}] =

[
∂ {Xc}
∂ {pT2}

]
=

[
∂ {T2Xt}
∂ {pT2}

]
(10)
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The sensitivity of [M i] w.r.t. the set of parameters of elementary matrix is written as

a composition of elementary sensitivity matrix

[SM i {X}] =
[
PT2RST1 {X} PT2SR {T1X} PST2 {RT1X} SP {T2RT1X}

]
(11)

and the global sensitivity matrix, considering the full set of images is naturally

[SM ] =

 SM1

...

SMN

 (12)

2.4.1. Support of sensitivity fields As explained in section 2.3, the relevant information

for DIC is located at the edges of the sample: in the area where the gradient of images

(see Figure 3c-3d) is not null. So only the edges which lines up the silhouette (outline of

the indicator function) are to be exploited. Moreover, to compute the sensitivity matrix,

the coordinates of the corresponding points in the 3D domain have to be known. Thus

only the projection of the protruding edges of the 3D mesh is to be considered.

2.4.2. Pyramidal approach to DIC The registration of the silhouette onto the

thermographic image using DIC cannot be performed directly with binary images.

Indeed, as seen in Eqs. 6-7, images are used only through their gradients, which are

sparse and ill-behaved. The abrupt variations of grey levels at boundaries induce a

“short-sightedness” of the algorithm. Intermediary steps to fix it consist in first blurring

images using a convolution with a Gaussian of width σ (Figure 4). In a pyramidal

approach, several decreasing lengths, σ, allows one to solve Eq. 9 even if the initialization

is quite far from the solution. Using first a large width σ makes registration robust with

respect to large displacements and then, at the end of the process, exactness is secured

by not using any filter (σ = 0 px). It speeds up the resolution without prejudice to

accuracy.

Figure 4: Blurred binarized thermograms used in the pyramidal approach,

σ = [3, 2, 1, 0 px] from left to right
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Two different convergence criteria are defined. The first one is based on the ∞-

norm of incremental nodal displacement vector. When this criterion is met, the value

of σ is decreased to sharper gradients (and hence better accuracy) once the current

registration is close to the sought solution. The second is the 2-norm of the residual

decrease rate and is only used at the end of the computation, at the lower floor of the

pyramidal approach, where σ = 0.

2.5. Conditionning improvement

With a single projection, it is obviously not possible to determine the parameters of the

projective model. The problem is ill-posed. As for stereo-vision, one has to consider

at least two different points of view. But even so, in our case because of the poor

information content of the silhouette, the problem defined by Eq. 9 appears as ill-

conditioned.

The definition of parameters {p} involves the choice of parameters expressed in a

specific frame. Although a mere translation and/or rotation does not change the nature

of the problem, and hence not the conditioning of the Hessien, the inherent singularity

of the Euler angles for an axis oriented close to the “north” pole is susceptible to make

the problem artificially singular (the azimuth direction is undefined at the north pole).

This is especially true in the present problem where the rotation axis of the tomograph

appears to be a natural choice for the frame of reference. Hence it revealed convenient

to rotate the frame within which the sample is described by a large angle to keep safe

from this singularity.

Most of the parameters are rotations and translations. A second step is to normalize

all rotation parameters (angles) with a characteristic length so that all variations of

those parameters have about the same magnitude. Typically, this characteristics length

is chosen equal to half the sample diameter.

Finally, when the above procedures are not sufficient, a Thikonov regularization is

used [25]. It consists in adding the identity matrix scaled by a very small parameter to

the Hessian. Here, this parameter is chosen to truncate the condition number (i.e. the

ratio of maximal and minimal eigenvalues) at 106.

3. Application

3.1. Simplifying assumptions

Additional assumptions on the problem geometry may help reducing the number of

d.o.f. with no loss of accuracy. First, as the rotation speed of tomograph plate and the

IR camera acquisition frequency are kept constant, the angular step between images is

accurately known and so is θi, for all i. The set of rotation transformations R(θi) is fully

determined. With this assumption, all parameters can be determined using two images.

More images can be used to improve accuracy, computation time and the conditioning

of the problem.
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T1 and T2 cannot be simplified further and require respectively 5 and 6 d.o.f.

At the resolution of thermograms, optical distortions are assumed to be negligible.

Thus P depends only on 3 parameters: the focal length, λ, and a possible translation

offset if the centre of the camera sensor is not centered on the optical axis.

P =

 λ 0 0 tx
0 λ 0 ty
0 0 1 0

 (13)

Optical distortions are linked to intrinsic parameters of the camera. If they were not

negligible, they could be determined once and for all before experiments with a dedicated

calibration setup (as in [26] for example).

Eventually, 14 parameters are to be determined. In the hereafter discussed case

study, eight images are used to perform the calibration.

3.2. Mesh projection

On the thermograms, only well-oriented surfaces (i.e. facing the camera) are visible.

Building the projected mesh, the scalar product between the outgoing normal of each

3D surface element and the vector connecting the barycentre of the considered element

to the focal point of the camera is computed (Figure 5b). Only elements for which this

product is positive are considered (the other ones being obviously hidden).

(a) (b) (c)

Figure 5: 3D Mesh projection (a) before filtering, (b) only well-oriented elements, (c)

after filtering of hidden elements

Because the considered sample is not convex, this criterion is not sufficient to decide

whether a surface element is visible or not because parts of the object can hide some

well-oriented elements. All elements whose barycentre is hidden are considered to be

hidden themselves. If the line segment connecting a barycentre N of the 3D mesh

element to its projection P on the image plane crosses a 3D surface element then it is
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hidden. Efficient algorithms to compute the intersection of a segment line and a triangle

have been developed for ray tracing. The approach followed here is a simplified version

of the algorithm proposed by Moller et al [27].

Let ABC be a 3D surface element and I the intersection point of a ray (PN) with

the plane defined by ABC (Figure 6), the vector
−→
PI can be decomposed as

−→
PI = λ

−−→
PN =

−→
PA+ ξ

−→
AB + χ

−→
AC (14)

Using Cramer’s rule

λ =

−→
PA · ~n
−−→
PN · ~n

ξ = −

(−→
PA ∧ −→AC

)
· −−→PN

−−→
PN · ~n

χ =

(−→
PA ∧ −→AB

)
· −−→PN

−−→
PN · ~n

(15)

where ~n =
−→
AB ∧ −→AC.

B

A

C

N
I

P
−→
PA

χ
−→
AC

ξ
−→
AB

Figure 6: Decomposition of PI in the basis defined by the triangular element ABC

The node N is hidden by the element ABC iff I lies in ABC and I ∈ [PN ]. This

provides five conditions on the parameters
0 ≤ ξ and 0 ≤ χ

ξ + χ ≤ 1

0 < λ < 1

(16)

Not to be sensitive to computational errors, a tolerance ε is integrated such that

0 < ε� 1 
ε < ξ and ε < χ

ξ + χ < 1− ε
ε < λ < 1− ε

(17)

This system has to be solved for each couple node-element, its crude implementation

needs two nested loops. To easily bypass this problem and to drastically reduce

computation time, the projection on the focal plane of the camera is considered. The
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projection of every node coincides with the focal point: ∀N,P = F . Decoupling the

vectors linked to the nodes and the ones linked to the element, the computation of

coefficients λ, ξ and χ is reduced to matrix products. The three matrices (nb. of nodes×
nb. of el.), corresponding to the three coefficients enable to find all the nodes which

respect the conditions given in Eq. 17. Figure 5c shows remaining elements.

3.3. Thermal field mapping

Using a prior black body calibration, the thermogram grey levels are converted to an

equivalent temperature. This temperature field can then be re-projected onto the visible

surfaces of the 3D mesh, and affected to the mesh nodes. Assuming the temperature

field to be stationary in time, each nodal temperature value is averaged in time (over

the frames where the node is visible).

Assuming further the temperature field to be spatially smooth enough to be

faithfully described by a 3D polynomial field, the previous determination is projected

onto such a polynomial field thanks to a least squares regression,

T (X) = argmin
∑(

T (X)−
∑

θ δ(θ,X)f(x(θ))∑
θ δ(θ,X)

)2

(18)

where {x(θ)} = [M(θ)]{X}, δ(θ,X) is equal to 1 or 0, respectively when the node

X is visible in the image under the angle θ or not. This additional step further filters

out small fluctuations that resulted from the previous mapping. The difference between

the two temperature fields allows one to assess the unphysical nature of the filtered

fluctuations, and its very small magnitude.

4. Result and discussion

4.1. “Re-projecting” thermal field

Figures 7a and 7b present the projection of the 3D mesh in a thermogram with,

respectively, the initial estimation of parameters and their fine calibration. In this

example, the initialization of parameters is estimated from the nominal position of

the sample with respect to tomograph rotating stage (i.e. the sample is vertical and

centered on the rotation axis), and the position of the camera (as in Figure 1). The

scale of the sample is rather well-estimated. The calibration algorithm efficiently corrects

angular and positioning errors. After calibration, projected (2D) meshes fit accurately

the sample in the IR images.

Camera calibration problem is ill-conditioned and the convergence is typically very

slow (a fortiori when the calibration is based only on few reference points, as in manual

procedure). So the number of iterations at convergence depends much on the value of

convergence criterion. Here the conditioning improvement (part 2.5) and the relevant

amount of data provided using the full edges of the sample and 8 images for calibration

drastically reduce the number of iterations (22 iterations for the presented case). Each
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iteration is more complex and more time-consuming but the overall procedure remains

fast without any computational optimisation.

(a) (b) (c)

Figure 7: Result of calibration and affectation of temperature values onto the surface

mesh (a) before calibration, (b) after calibration, (c) temperature mapping

The temperature field is expressed at the nodes of the 2D mesh (Figure 7c). Due

to interpolation, the temperature close to the protruding edges is distorted. During the

computation of 3D field, the nodes of those edges are omitted. However, the information

provided by the whole set of images is redundant enough to allow for the determination

of a 3D polynomial fit (here a degree 2 revealed sufficient) of the temperature data to be

performed accurately, and hence the full 3D surface temperature map can be obtained

(Figure 8a).

After calibration, the temperature was followed in time over the observed surfaces.

Even if the temperature field is not strictly stationary — as the sample is rotated on the

tomographic turn-table — the temperature change revealed hardly measurable because

of the thermal inertia of the sample. Regarding the uncertainty on the measured field,

the thermal field can be considered stationary.

This 3D field can effortlessly be mapped from a mesh to another. As an illustration,

the mesh of Figure 8b corresponds to the part of the sample where the interpolation

is relevant (that is the part which is visible on IR images). Setting the thermal field

re-projection procedure within the wider framework of inverse measurement, the field

should be mapped on the mesh used for DVC.

4.2. Considerations about errors and uncertainties

4.2.1. Diffuse emissivity assumption The thermal field is diffuse, indeed the edges

between two visible faces of the sample cannot be distinguished in any IR image.

Moreover the grey level value of a physical point of the sample does not vary from

one frame to the next. The emissivity of the sample seems not to depend on the view
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(a) (b)

Figure 8: Registration of thermal field in 3D mesh (digital level) (a) on calibration mesh,

(b) on another (finer) mesh

angle, thus, it is legitimate to use the camera software to convert the luminance data of

the camera to temperatures.

4.2.2. Uncertainty induced by thermograms noise The uncertainty on the re-projected

thermal field induced by IR images noise can be estimated empirically. IR-image noise

level η is computed as one half of the standard deviation of the difference between two

images of the same scene. (Ii)i=1...n denotes the original set of IR images. A new set of

images (Ji)i=1...n is built adding a Gaussian white noise of intensity η to each images Ii.

The two 3D thermal fields, TI and TJ , corresponding respectively to set (Ii) and (Ji)

are computed. The error field E is the difference

E = TJ − TI (19)

The uncertainty is characterized by the standard deviation of E. It is dependent

on the artificial noise realizations. A large number of samples has to be used to estimate

the average standard deviation e.

In our images, the noise level is η = 0.25% (of the full range of grey level). The

3D fields are computed onto the visible (meshed) surface of the sample (Figure 8b).

Figure 9a shows an example of error field whose intensity remains low. It is quite

smooth because it is the difference between two polynomial fields. The uncertainty e

is computed over 100 realizations. The graph (Figure 9b) presents the influence of the

number of images used for the computation on the average uncertainty e (the minimum

and maximum uncertainties on the samplings are plotted in dotted lines). As expected,

e decreases with the number of images used. When the full set (48 images) is used, the

uncertainty, induced by the noise affecting the IR images, is about 0.01%.

4.2.3. Residual fields To evaluate the relevance of the 3D polynomial interpolation,

residual fields are computed. They are a set of 2D images defined as the difference
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Figure 9: Estimate of the uncertainty of the re-projected field: (a) an error field;

(b) average uncertainty e is shown as a solid curve, whereas minimum and maximum

uncertainties on the 100 independent samplings are indicated as dotted curves.

between the projection of the 3D polynomial field and the IR images (Figure 10). Their

intensities are low (a few percent of image dynamic). As expected, the polynomial

approximation smoothens the field and some differences are visible, namely near the

edges of the sample. The luminance data on the thermograms can be affected by the

environment of the sample. Taking into account the whole set of images, this effect is

averaged out in the 3D field.
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Figure 10: Residual (%): Difference between the projection of the 3D polynomial field

and infra-red images evaluated for polynomials of degrees 2, 3 and 4, respectively for

(a), (b) and (c)

Residuals were computed for several polynomial fields of different order. All three

have the same order of magnitude. For degree 2, 3 and 4 their norms are respectively

1.20%, 1.22% and 1.12%. The assumption on the smoothness of the temperature field

to be described by a low order polynomial approximation is deemed validated.
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5. Conclusion

To draw an intimate connection between two full-field measurement modalities, a new

calibration procedure is introduced. In order to allow a direct use of the IR image

intensity to infer the temperature value, the sample is not speckled. Hence, the

calibration has to rely only on the silhouette of the sample. The proposed procedure is

based on the correspondence of the protruding edges of the 3D mesh projected on the

IR-camera image plane, and the outline of the sample extracted from the thermograms.

The use of the calibrated projective model allows the temperature field to be mapped

onto the surface of the 3D mesh of the sample, and to be readily accessible for any

further thermo-mechanical modelling.

Up to now, in-situ thermo-mechanical tests within a tomograph, were carried out

either at room or at high temperatures, but most of the times with a spatially uniform

temperature field. However, for ceramic materials and especially ceramic composites

it is very important to assess the material resistance to extreme temperature gradients

potentially combined to mechanical loads. Moreover samples with a complex shape

(such as T- or L-shaped woven composites) is required to obtain meaningful results,

representative of extreme conditions that industrial parts have to sustain in service.

The proposed procedure allows to quantify thermal fields on the actual sample 3D

geometry. Coupled with tomography and DVC, both temperature and displacement

field can now be accessed with a consistent description, that of a 3D mesh of the

sample, directly amenable to quantitative comparison with a numerical modelling. This

opens up the possibility to validate complex thermo-mechanical model of complex micro-

structures with local highly anisotropic properties.

The presented procedure is quite generic and can be extended to other acquisition

modalities. It can provide different fields, mapped onto the same frame, such as the

temperature field in the present case, but it is also applicable to multiscale or multi-

resolution acquisitions.
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