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ON THE DYNAMICS OF LIPSCHITZ OPERATORS

ARAFAT ABBAR, CLÉMENT COINE, AND COLIN PETITJEAN

Abstract. By the linearization property of Lipschitz-free spaces, any Lips-

chitz map f : M → N between two pointed metric spaces may be extended

uniquely to a bounded linear operator f̂ : F(M) → F(N) between their cor-

responding Lipschitz-free spaces. In this note, we explore the connections

between the dynamics of Lipschitz self-maps f : M → M and the linear dy-

namics of their extensions f̂ : F(M)→ F(M). This not only allows us to relate

topological dynamical systems to linear dynamical systems but also provide a
new class of hypercyclic operators acting on Lipschitz-free spaces.

1. Introduction

A topological dynamical system is a pair (M,f) where M is a metric space and
f : M →M is continuous map. In topological dynamics, it is often assumed that M
is compact. A linear dynamical system is a pair (X,T ) where X is a Banach space
(or, more generally, a Fréchet space) and T is a bounded linear operator on X.
We refer to [19] (and references therein) for an introduction to dynamical systems
as well as for more details on the next notions. In what follows, the pair (M,f)
stands for a topological dynamical system, while (X,T ) denotes a linear dynamical
system. Let N denote the set of positive integers and let N0 = N ∪ {0}. For any
point x in M , the orbit of x under f is defined by

Orb(x, f) := {fn(x) : n ∈ N0}.

We will say that f is hypercyclic if it a has a dense orbit, that is, there exists x ∈M
such that Orb(x, f) is dense in M ; such an x will be called a hypercyclic element for
f . Next, we say that f is topologically transitive if, for each pair of nonempty open
sets U, V of M , there exists n ∈ N0 such that fn(U)∩V 6= ∅. It is known that if M
has no isolated point then any hypercyclic map is also topologically transitive [19,
Proposition 1.15]. Conversely, if M is a separable Baire space then a topologically
transitive map is hypercyclic (see the remark after [9, Theorem 1.2]). We will also
consider the following stronger notions:

• f is (topologically) mixing if for each pair of nonempty open sets U, V of M there
exists N ∈ N0 such that for every n ≥ N , fn(U) ∩ V 6= ∅;
• f is (topologically) weakly mixing if f × f is topologically transitive on M ×M ;
• f is Devaney chaotic if it is topologically transitive and its set of periodic points

is dense in M . We recall that x is a periodic point of f if there exists n ∈ N such
that fn(x) = x, and we will denote by Per(f) the set of all periodic points of f .
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2 A. ABBAR, C. COINE, AND C. PETITJEAN

It is straightforward that

mixing =⇒ weakly mixing =⇒ topologically transitive.

Moreover, for every bounded linear operator T defined on a separable Banach space
X (see [9, 19]):

T is Devaney chaotic =⇒ T is weakly mixing =⇒ T is hypercyclic.

Then, we say that T is supercyclic whenever there exists a vector x ∈ X whose
projective orbit, i.e. the set

Orb(Kx, T ) := {λTnx : λ ∈ K, n ∈ N0},

is dense in X. Such a vector x is called a supercyclic vector for T . Finally, recall
that T is cyclic if there exists a vector x ∈ X, called a cyclic vector for T , such
that the linear span of the orbit of x under T is dense in X. Clearly, the following
chain of implications holds:

Hypercyclicity ⇒ Supercyclicity ⇒ Cyclicity.

One of the main objectives of this paper is to relate topological dynamical sys-
tems to linear dynamical systems. Such a connection have already been explored for
instance in [16, Corollary 2.9] where it is built a universal linear operator T : X → X
in such a way that, for any compact metric space M and any continuous map
f : M → M , there is an invariant compact set K ⊂ X such that T �K is topo-
logically conjugate to f . In our work, we consider a different point of view since
we relate topological dynamical systems to linear dynamical systems by taking
advantage of the fundamental linearization property of Lipschitz-free spaces. Let
us briefly introduce the latter class of Banach spaces along with the mentioned
linearization property; a more detailed overview will be made in Subsection 1.2.

Let (M,d) be a metric space equipped with a distinguished point denoted by
0 ∈ M . Following [18], the Lipschitz-free space over M , denoted by F(M), is the
canonical predual of the real Banach space Lip0(M) of Lipschitz maps from M to
R, vanishing at 0, and equipped with the norm (the best Lipschitz constant Lip(f)
of f):

Lip(f) := sup
x 6=y∈M

|f(x)− f(y)|
d(x, y)

.

More precisely,

F(M) := span‖·‖ {δ(x) : x ∈M} ⊂ Lip0(M)∗,

where δ(x) is the evaluation functional defined by 〈f, δ(x)〉 = f(x) for any f ∈
Lip0(M). It is readily seen that δ : x 7→ δ(x) ∈ F(M) is an isometry. We wish to
point out that the class of Lispchitz-free spaces is a powerful tool which has been
used in various fields of Mathematics for proving deep results (e.g. [18]), simplifying
some proofs (e.g. [25]) and constructing counterexamples (e.g. [1]). The following
linearization property of Lipschitz-free spaces is the cornerstone of our study.

Proposition 1.1. Let M and N be two pointed metric spaces. Let f : M → N be
a Lipschitz map such that f(0M ) = 0N . Then, there exists a unique bounded linear
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operator f̂ : F(M)→ F(N) with ‖f̂‖ = Lip(f) and such that the following diagram
commutes:

M
f //

δM
��

N

δN
��

F(M)
f̂

// F(N)

In this paper, by Lipschitz operator we mean any bounded linear operator f̂ :
F(M)→ F(N) as defined in the previous proposition.

A very natural and intriguing question is whether linear properties of f̂ can be
characterised by properties on f , or vice versa. For instance, compact operators
have been considered in [12, 20]. In this note, we choose to focus on the dynamical
properties introduced above. More precisely, we are interested in the following
general questions:

Question 1. Assume that f : M →M has a given dynamical property, what can

be said about f̂ : F(M)→ F(M)?

Or conversely:

Question 2. Assume that f̂ : F(M)→ F(M) satisfies a given dynamical property,
what can be said about f : M →M?

Furthermore, another important motivation for exploring these questions is to
provide a new class of hypercyclic linear operators. As we shall explain latter,
for some metric spaces there is a good description of the associated Lipschitz-free
spaces as L1(µ) spaces. This allows us for instance to recover some well-known
examples, such as backward or forward shift operators, but also to give some new
hypercyclic operators acting on L1(µ) spaces, therefore providing a different angle
on the study of the linear dynamics on L1(µ). Of course, even when Lipschitz-free
spaces are not isomorphic to L1(µ) spaces, they give rise to interesting examples
of Banach spaces and therefore possibly interesting examples of hypercyclic linear
operators.

To the best of our knowledge, these directions are rather new and not much
explored. With respect to Question 1, some answers are given by M. Murillo-Arcila
and A. Peris in [23, Theorem 2.3]. Indeed, they prove that if T : X → X is a
bounded operator and K ⊂ X is an invariant set for T such that 0 ∈ K and T �K
is weakly mixing (mixing, weakly mixing and chaotic, respectively), then T �spanK
is also weakly mixing (mixing, weakly mixing and chaotic, respectively). Since
by the very definition of Lipschitz-free spaces we have span δ(M) = F(M), as
a direct consequence they could obtain that if a Lipschitz selfmap f : M → M

is weakly mixing (mixing, weakly mixing and chaotic, respectively) then so is f̂
(see Example 2.4 (3) in [23]). As we shall explain later, the reverse implications
are not true in general. In fact, we define in Example 4.6 a Lipschitz self-map

f : [0, 1] → [0, 1] such that f̂ is mixing and Devaney chaotic while f is not even
topologically transitive.

Let us now describe the content of the paper. In what follows, unless otherwise
specified f will stand for a base-point preserving Lipschitz mapping f : M → M
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and f̂ for its linearization obtained by Proposition 1.1. We will first introduce
below the notation as well as the main tools related to Lipschitz-free spaces which
we will use throughout the paper. Next, we shall start our study in Section 2 by

giving some properties which are preserved by the functor f 7→ f̂ . For instance, it
is easy to see that a Lipschitz map f : M → N has a dense range if and only if

f̂ : F(M)→ F(N) also has a dense range (Proposition 2.1). Similarly, it is readily
seen that if the set of periodic points of f is dense in M , then the set of periodic

points of f̂ is dense in F(M) (the converse being false; see Proposition 2.6 and
Example 3.18). Another observation is that a point x ∈M is a hypercyclic element

for f if and only if δ(x) is a cyclic vector for f̂ (Proposition 2.7). In fact, if γ is a

hypercyclic vector for f̂ then γ must be infinitely supported (Proposition 2.9).

Then, it is well-known that a bounded linear operator is weakly mixing if and
only if it satisfies the “Hypercyclicity Criterion” (shortened HC, see Section 3 for

more details). So one can use the connection between f and f̂ (that is the lin-

earization property) to transfer the conditions on f̂ stated in the Hypercyclicity
Criterion to metric conditions on f . Doing so, we obtain a criterion that we will
call ”Hypercylicity Criterion for Lipschitz operators” (shortened HCL) which turns

out to be very useful in a number of examples. Of course, if f̂ satisfies the HCL

then f̂ satisfies the HC and therefore is hypercyclic (Theorem 3.1). However the
converse is not true in general as we will show in Example 3.5. We also notice that
if M is a complete space without isolated points and if f is weakly mixing, then

f̂ satisfies the HCL (Theorem 3.4). We summarize the above mentioned general
relations in the following diagram.

f̂ mixing f̂ weakly mixing f̂ satisfies the HC

f mixing f weakly mixing f̂ satisfies the HCL

[23] [23] 3.1
3.4

3.5

Since every linear operator satisfying the Hypercyclicity Criterion is hypercyclic,
an obvious question is whether the HCL implies that f is topologically transitive
or has a dense orbit. Unfortunately, this is not the case (see Example 3.8 or
Example 4.6 for instance) and we do not know how to characterise Lipschitz maps
satisfying the HCL in dynamical terms. This is actually the point where the theory
probably becomes less obvious since many natural and tempting implications fail.

For instance, f having a dense orbit does not necessarily imply that f̂ does so. In

fact, f̂ might even not be supercyclic (see Example 3.11).

f̂ satisfies the HC f̂ hypercyclic f̂ supercyclic f̂ cyclic

f̂ satisfies the HCL f has a dense orbit
4.6

3.11
2.74.6

3.113.10
Open question
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Most of our “counter-examples” are built on discrete metric spaces M . This
underlines that the structure of the metric space M is as important as the Lipschitz

self-map f : M →M . For instance, there is no hypercyclic f̂ if M is bounded and
uniformly discrete (see Remark 1.3). Leaving apart those pathological examples,
one can obtain some positive results by working on non-discrete metric spaces such
as closed intervals in R. Notably, we prove in Theorem 4.1 that if f : [a, b] →
[a, b] has a fixed point c (considered to be the base-point of M = [a, b]) and is

topologically transitive, then f̂ is weakly mixing. So the following implications
hold for a base-point preserving Lipschitz self-map f defined on a closed interval
M = [a, b]:

f̂ weakly mixing and chaotic f̂ weakly mixing

f is transitivef weakly mixing f Devaney chaotic
[27]

4.14.3

[28] or 4.6

1.1. Notation. Let us now introduce the notation that will be used throughout
this paper. If (M,d) is a metric space, we will denote by B(x, r) the open ball of
center x ∈ M and radius r > 0. When E is a subset of M , we let dist(x,E) :=
inf{d(x, y) : y ∈ E} be the distance from x to E. If (N, d′) is another metric space
and f : M → N is a Lipschitz map, then we let

Lip(f) = sup
x 6=y

d′(f(x), f(y))

d(x, y)

be the smallest Lipschitz constant of f . For a Banach space X, the unit ball of
X will simply be denoted by BX and its (topological) dual space by X∗. If Y is
another Banach space, we will write X ≡ Y if there exists an isometric isomorphism
between X and Y . Finally, if f : E → F is a map between two sets and U is a
subset of E, f�U will stand for the restriction of f to U .

1.2. Lipschitz-free spaces. We wish to end this introduction by giving a more
detailed introduction to Lipschitz-free spaces theory (for the proofs, we refer the
reader to [29] where the name Arens-Eells spaces is used instead). Consider a
pointed metric space (M,d) with distinguished point 0 ∈ M . For a real Banach
space X, we denote by Lip0(M,X) the vector space of Lipschitz maps from M to
X satisfying f(0) = 0. Then Lip(·) is a norm on Lip0(M,X), and equipped with
that norm, Lip0(M,X) is a Banach space. When the range space is R, we simply
write Lip0(M) instead of Lip0(M,R). Now recall that the Lipschitz-free space over
M is the following subspace of Lip0(M)∗:

F(M) := span‖·‖ {δ(x) : x ∈M} ,

where δ(x) is the functional defined by 〈f, δ(x)〉 = f(x) for every f ∈ Lip0(M).
It is readily seen that δ(x) ∈ Lip0(M)∗ with ‖δ(x)‖ = d(x, 0). The map δM : x ∈
M 7→ δ(x) ∈ F(M) is actually an isometry which in turns implies that δ(M) is a
closed subset of F(M) whenever M is complete. In fact, if M is the completion of
M then F(M) and F(M) are linearly isometric. So, even when it is not precisely
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specified, we will always assume our metric spaces to be complete. Notice also that
F(M) is separable if and only if M is so.

Their most important application to non-linear geometry is certainly their uni-
versal extension property: for every Banach space X, for every f ∈ Lip0(M,X),
the unique linear operator f : F(M)→ X defined on span δ(M) by

f
( n∑
i=1

aiδ(xi)
)

=

n∑
i=1

aif(xi) ∈ X

is continuous with ‖f‖ = Lip(f). In other words, the map Φ: f ∈ Lip0(M,X) 7→
f ∈ L(F(M), X) is an onto linear isometry. As a direct consequence (in the case
X = R) we obtain that F(M)∗ ≡ Lip0(M). Moreover the weak∗ topology coincides
with the topology of pointwise convergence on bounded sets of Lip0(M).

Afterward, if N ⊂ M with 0 ∈ N then F(N) can be canonically isometrically
identified with the subspace span{δ(x) : x ∈ N} of F(M). This is due to a well
known McShane-Whitney theorem (see [29, Theorem 1.33] e.g.) according to which
every real-valued Lipschitz function on N can be extended to M with the same
Lipschitz constant.

Remark 1.2. In linear dynamics, one often study operators defined on complex
Banach spaces. Here we want to highlight the fact that, by construction, Lipschitz-
free spaces are Banach spaces over R. Nevertheless, one could build a complex
version of Lipschitz-free spaces by following the same steps as we did above. That
is, we may consider the complex Banach space Lip0(M,X), where X is a Banach
space over C as well, and then the evaluation functionals δ(x) ∈ Lip0(M,C)∗ are
defined in a same fashion. This leads to the complex version of the Lipschitz-free
space

FC(M) := span‖·‖ {δ(x) : x ∈M} ⊂ Lip0(M,C)∗.

One can prove that the universal extension property works perfectly fine and thus
provides FC(M)∗ ≡ Lip0(M,C). Now one should be careful since some features
of F(M) might not work equally well for FC(M) (for instance FC(N) may not
be isometric but only isomorphic to a subspace of F(M)). Up to our knowledge,
the complex version of Lipschitz-free spaces have not been much studied in the
literature (see the comments at pages 86 and 125 in [29]). In our work, we claim
that the results still hold if one replaces F(M) by FC(M).

We now recall the fundamental linearization property of Lipschitz-free spaces
(already stated in Proposition 1.1), which is a direct consequence of the universal
extension property presented above. If f : M → N is a Lipschitz map such that

f(0M ) = 0N , then there exists a linear bounded operator f̂ : F(M) → F(N) such

that ‖f̂‖ = Lip(f) and which satisfies:

For any γ =

n∑
i=1

aiδM (xi) ∈ F(M), f̂(γ) =

n∑
i=1

aiδN (f(xi)).

We recall that such an operator f̂ will be called Lipschitz operator.

In this paper, we will focus on Lipschitz self-maps f : M → M preserving the
distinguished point and we will often require that f is transitive. It is readily seen
that if f is transitive then its Lipschitz constant Lip(f) > 1. Notice also that if 0 is
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an isolated point in M , then there is no Lipschitz map f : M →M and x ∈M such
that f(0) = 0 and Orb(x, f) is dense in M (and thus no hypercyclic f : M →M).

Remark 1.3. We recall that any infinite-dimensional Banach space supports a hy-
percyclic operator [7]. Yet, for some metric spaces M there is no hypercyclic Lips-
chitz operator. For instance, let M be a countable separable pointed metric space
and suppose that:

• M is uniformly discrete, that is there exists θ > 0 such that d(x, y) > θ for
every x 6= y;
• M is bounded, i.e., rad(M) := sup

x∈M
d(x, 0) < +∞.

Then it is known [21, Proposition 4.4] that F(M) is linearly isomorphic to the
Banach space `1(N) of real sequences indexed by N whose series is absolutely con-

vergent. However, every orbit under the action of f̂ is bounded, so f̂ cannot be
hypercyclic:

∀γ =

∞∑
i=1

aiδ(xi),∀n ∈ N, ‖f̂nγ‖ ≤ rad(M)

∞∑
i=1

|ai| ≤ C · rad(M)‖γ‖.

Remark 1.4. A change of the base point in a metric space M does not affect the
isometric structure of the associated Lipschitz-free space. Indeed, if b ∈ M is the
new base point (instead of 0), then f ∈ Lip0(M) 7→ f − f(b) ∈ Lipb(M) defines
a linear and surjective isometry. Moreover, it is easy to check that this operator
is continuous with respect to the topology of pointwise convergence, which in turn
implies that it is weak∗-to-weak∗ continuous. Therefore its preadjoint is a surjective
isometry between Fb(M) and F(M), where Fb(M) is the Lipschitz-free space over
M with b considered to be the distinguished point.

Now imagine that a Lipschitz self-map f : M → M admits two fixed points,

say p and q. One can consider f̂p : Fp(M) → Fp(M) and f̂q : Fq(M) → Fq(M)
obtained by the linearization property of Lipschitz-free spaces. Let us denote by
T : Fp(M) → Fq(M) the isometry described in the previous paragraph. Then, it

is easy to check that f̂q = T ◦ f̂p ◦T−1. Therefore f̂p and f̂q are conjugate and they
will enjoy the very same dynamical properties.

To conclude this short introduction to Lipschitz-free spaces theory, we recall two
famous examples and then discuss a more generic point of view.

Example 1.5. In the sequel, L1 = L1([0, 1]) denotes the real Banach space of
integrable functions from [0, 1] to R (as usual quotiented by the kernel of ‖ · ‖1).

(1) “(M,d) = (N, | · |)”. The linear operator satisfying T : δ(n) ∈ F(N) 7→∑n
i=1 ei ∈ `1(N) is an onto linear isometry (the sequence (en)n ⊂ `1 stands

for the canonical unit vector basis of `1).

(2) “M = ([0, 1], | · |)”. The linear operator T : δ(t) ∈ F([0, 1]) 7→ 1[0,t] ∈
L1([0, 1]) is an onto linear isometry.

More generally, we can see the two previous examples as particular cases of a
more general theorem. Indeed, A. Godard gave a very explicit formula in [17]
to prove that if M is a subset of an R-tree which contains all of its branching
points, then F(M) is isometric to an L1(µ) space. We recall that an R-tree is
an arc-connected metric space (M,d) with the property that there is a unique arc
connecting any pair of points x 6= y ∈ M and it moreover is isometric to the real
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segment [0, d(x, y)] ⊂ R. A point x ∈M is called a branching point of M if M \{x}
has at least three connected components.

In this paper we use Godard’s formula in a number of examples. We will always
give the definition of the isometries for convenience, but we will never prove that
they are indeed surjective isometries. In fact, most of the time we apply Godard’s
formula to a countably branching tree of height 1, we state the explicit isometry
here for future reference.

Proposition 1.6. Let M = N ∪ {0} be equipped with the tree metric d described
below

1 2 3 n

0
d1

d2
d3

dn

That is, for every n,m ∈ N, d(n, 0) = dn > 0 and d(n,m) = dn + dm. Then the
linear map Φ : F(M)→ `1(N) given by Φ(δ(n)) = d(n, 0)en = dnen is a linear onto

isometry. In particular, any Lipschitz operator f̂ : F(M)→ F(M) is conjugate to
a bounded operator T : `1(N)→ `1(N) such that Ten = df(n)d

−1
n ef(n).

We refer the reader to the papers [17, 4] for more details on this topic.

2. First observations

As we already mentioned, our aim is to study whether the arrow f 7→ f̂ carries on
some dynamical information. First, we note that having a dense range is preserved
through this functor.

Proposition 2.1. Let M and N be two pointed metric spaces and let f : M → N

be a Lipschitz map such that f(0M ) = 0N . Then, the range of f̂ is dense in F(N)
if and only if the range of f is dense in N .

Proof. By the very definition of f̂ , notice that f̂(span δ(M)) = span δ(f(M)).

( ⇐= ) : If f(M) is dense in N , then δ(f(M)) is dense in δ(N) because the
map δ is an isometry. Then, span δ(f(M)) is dense in span δ(N) = F(N). Since

span δ(f(M)) = f̂(span(δ(M))) ⊂ f̂(F(M)), we get that f̂(F(M)) is dense in
F(N).

( =⇒ ) : Assume that f(M) is not dense in N and let y ∈ N \ f(M). Since

dist
(
y, f(M)

)
:= inf

{
d(y, z) : z ∈ f(M)

}
> 0, we may define a Lipschitz map

g : N → R such that g(y) = 1 and g(f(M)) = {0} (such a map g exists, see for
instance the inf/sup-convolution formula [29, Theorem 1.33] to extend Lipschitz
maps). In particular g ∈ Lip0(N) and it is readily seen that 〈g, γ〉 = 0 whenever

γ ∈ f̂(F(M)). Therefore, the fact that f̂ does not have a dense range follows from
the next simple estimates:

dist
(
δ(y), f̂(F(M))

)
≥ inf
γ∈f̂(F(M))

∣∣∣∣〈δ(y)− γ, g

‖g‖

〉∣∣∣∣ =
1

‖g‖
> 0.

�

Corollary 2.2. Let M be a pointed metric space and let f : M →M be a Lipschitz

map such that f(0) = 0. If f̂ is supercyclic (or hypercyclic), then the range of f is
dense in M .
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The forward shift operator on `1(N) is cyclic, but its image is not dense in `1(N).

This allows us bellow to show that the cyclicity of f̂ does not imply that f has a
dense image in M . This also underlines the fact that the hypercyclicity of f does

not imply the supercyclicity of f̂ .

Example 2.3. Let f be the map defined on M = {1, 2, 3, ...} ∪ {0} by f(0) = 0
and f(n) = n + 1 for every n ∈ N. We equip M with the tree metric d given
by: for all n,m > 1, d(n, 0) = 1

n and d(n,m) = d(n, 0) + d(m, 0). According to

Proposition 1.6, δ(n) ∈ F(M) 7→ 1
nen ∈ `1 extends to a bijective linear isometry.

In particular, f̂ is conjugate to the operator T acting on `1 by Ten = n
n+1en+1.

Thus f̂ is cyclic while f does not have a dense range. By Corollary 2.2, this implies

that f̂ is not supercyclic. Notice also that Orb(1, f) is dense in M .

Nevertheless, the example above is somehow the only pathology that may occur,
as this is shown by the next result.

Proposition 2.4. If a Lispchitz operator f̂ : F(M)→ F(M) is cyclic, then either
f(M) is dense in M or there exists x ∈ M such that the range f(M) is dense in
M \ {x}.

Before giving the proof, let us state the following simple facts which we will use
throughout the section.

Lemma 2.5.

(1) For every n ∈ N, f̂n = (f̂)n.

(2) For every x ∈M , Orb(δ(x), f̂) = δ(Orb(x, f)).

Proof of Proposition 2.4. Assume that M \ f(M) contains at least two points, say
x1, x2 ∈ M . Set E := span(δ(x1), δ(x2)). Let P : F(M) → E be a continuous
projection from F(M) onto E such that P �span{δ(f(M))} = 0. If there exists γ ∈
F(M) such that span Orb(γ, f̂) is dense in F(M), then

P
(

span Orb(γ, f̂)
)

= span
{
P (f̂n(γ)), n ≥ 0

}
is dense in E. However, notice that for any n ≥ 1, P (f̂n(γ)) = 0. Indeed, if

y ∈ M then fn(y) 6∈ {x1, x2}, so that P (f̂n(δ(y))) = P (δ(fn(y)) = 0. By lin-

earity, this implies that P (f̂n(z)) = 0 for any z ∈ span(δ(M)). By approxima-

tion and continuity of P , we get that P (f̂n(γ)) = 0. The latter implies that

P
(

span Orb(γ, f̂)
)

= R.P (γ) which is of dimension 1 and hence cannot be dense

in the 2−dimensional space E. �

Next, we deduce from Lemma 2.5 (1) the next proposition.

Proposition 2.6. Let M be a pointed metric spaces and let f : M → M be a
Lipschitz map such that f(0) = 0. If the set of periodic points Per(f) of f is dense

in M , then the set of periodic points Per(f̂) of f̂ is dense in F(M).

Proof. Since Per(f) is dense in M , span δ(Per(f)) is dense in F(M). Now if γ =∑n
i=1 aiδ(xi) ∈ span δ(Per(f)), then for every i ∈ {1, . . . , n} there exists ni ∈ N
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such that fni(xi) = xi. We define n =
∏n
i=1 ni, notice that fn(xi) = xi for every

i ∈ {1, . . . , n}. We conclude the proof by using Lemma 2.5 (1) to show that〈
(f̂)n, γ

〉
=
〈
f̂n, γ

〉
=

n∑
i=1

aiδ(f
n(xi)) =

n∑
i=1

aiδ(xi) = γ,

which implies that span δ(Per(f)) ⊂ Per(f̂). �

Another direct consequence of Lemma 2.5 (2) is that Orb(δ(x), f̂) ⊆ δ(M), and

thus neither Orb(δ(x), f̂) nor Orb(R δ(x), f̂) (when M 6= {0, x}) can be dense in
F(M). In other words, δ(x) ∈ F(M) will never be a hypercyclic (or supercyclic)

vector for the operator f̂ . Nevertheless, δ(x) ∈ F(M) may be a cyclic vector for f̂ .

Proposition 2.7. Let M be a metric space with non-isolated distinguished point
0 ∈ M , f : M → M be a Lipschitz map such that f(0) = 0, and let x ∈ M . Then
the following assertions are equivalent:

(1) x is a hypercyclic element for f .

(2) δ(x) is a cyclic vector for f̂ .

Proof. (1) =⇒ (2): Thanks to Lemma 2.5, Orb(δ(x), f̂) = δ(Orb(x, f)). So, if
Orb(x, f) is dense in M then span δ(Orb(x, f)) is dense in F(M), which in turn

implies that span Orb(δ(x), f̂) is dense in F(M).
(2) =⇒ (1): Assume that Orb(x, f) is not dense in M \ {0}. So there exists

y 6= 0 ∈ M and ε > 0 such that B(y, ε) ∩Orb(x, f) = ∅. Then let F ∈ Lip0(M) ≡
F(M)∗ be such that F (y) > 0 and supp(F ) ⊆ B(y, ε) (for instance z ∈ M 7→
d
(
z,B(y, Cε)c

)
for some small enough constant C which ensures that 0 6∈ B(y, Cε)).

Clearly, for every γ ∈ span Orb(δ(x), f̂), 〈F, γ〉 = 0. However 〈F, δ(y)〉 > 0 which
implies that

distF(M)

(
δ(y), span Orb(δ(x), f̂)

)
= distF(M)

(
δ(y), span δ(Orb(x, f))

)
> 0,

which means that span Orb(δ(x), f̂) is not dense in F(M). �

2.1. Supports of supercyclic vectors. As we mentioned above, evaluation func-
tionals, that is elements with only one non-zero single point in their support, can-

not be hypercylic or supercyclic vectors for some f̂ . In fact, we can say more: if

γ ∈ F(M) is a hypercyclic (or supercyclic) vector for f̂ , then γ cannot be finitely
supported.

Definition 2.8. Let M be a pointed metric space. We say that γ ∈ F(M) is
finitely supported if

γ ∈ span{δ(x) : x ∈M}.
The support of such a γ is denoted by supp γ and is the smallest finite subset F of
M which contains 0 and such that γ ∈ span{δ(x) : x ∈ F}.

More generally [2, 3], the support of any element γ ∈ F(M), also denoted by
supp γ, is the intersection of all closed subsets K of M such that γ ∈ F(K) ⊂ F(M).
It follows from [3, Theorem 2.1] that γ ∈ F(supp γ) and of course supp γ is the
smaller closed subset with this property.

Proposition 2.9. Let M be an infinite complete metric space. If γ ∈ F(M) is a

supercyclic vector for a Lipschitz operator f̂ : F(M) → F(M), then γ is infinitely
supported.
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Indeed, any element in Orb(γ, f̂) should have a support of cardinal less or equal
to the one of γ. So our claim follows from the next result which was proved by R.
Aliaga, C. Noûs, the third named author and A. Procházka. We are deeply grateful
to them for allowing us to include their result as well as its proof.

Lemma 2.10 (Aliaga, Noûs, Petitjean and Procházka). Let M be a complete
pointed metric space. Let FSn(M) = {γ ∈ F(M) : | supp γ| ≤ n} be the set of
finitely supported elements whose support contains at most n points of M . Then
FSn(M) is weakly closed.

The proof uses the notion of support introduced above. More precisely, we will
need the following characterization (see [3, Proposition 2.7]): Let M be a complete
pointed metric space and γ ∈ F(M). Then x ∈ M lies in the support of γ if and
only if for every open neighbourhood Ux of x there exists a function f ∈ Lip0(M)
whose support is contained in Ux and such that 〈f, γ〉 6= 0.

Proof. Aiming for a contradiction, suppose (γi)i ⊂ FSn(M) is a net which weakly
converges to some γ 6∈ FSn(M). This means that supp(γ) contains at least n + 1
points x1, . . . , xn+1. Let δ > 0 be small enough so that the balls B(xk, δ), for k =
1, . . . , n+ 1, are pairwise disjoint. By [3, Proposition 2.7], there are fk ∈ Lip0(M)
such that supp(fk) ⊂ B(xk, δ) and 〈fk, γ〉 6= 0. Therefore, if i is large enough we
must have 〈fk, γi〉 6= 0 for every k, hence supp(γi) ∩B(xk, δ) 6= ∅ for every k. This
is impossible since supp(γi) only has n elements. �

2.2. Quasi-conjugacy. It is well known that, hypercyclicity and the notions of
topological dynamics introduced in the introduction are preserved under quasi-
conjugacy.

Definition 2.11. Let f : M →M and g : N → N be two continuous maps acting
on metric spaces M and N . The map f is called quasi-conjugate to g if there exists
a continuous map φ : N →M with dense range such that the diagram

N
g //

φ

��

N

φ

��
M

f
// M

commutes, that is, f ◦φ = φ◦g. In this case, we say that φ defines a quasi-conjugacy
from g to f .

Proposition 2.12. Let (M,dM ) and (N, dN ) be two pointed metric spaces, let
f : M → M , g : N → N be two Lipschitz maps such that f(0) = 0 and g(0) = 0,
and let φ : N →M be a Lipschitz map such that φ(0) = 0. Then φ defines a quasi-

conjugacy from g to f if and only if φ̂ : F(N) → F(M) defines a quasi-conjugacy

from ĝ to f̂ .

Proof. Thanks to Proposition 2.1, we have φ has a dense range if and only if φ̂ has

a dense range. So, it remains to show that f ◦φ = φ◦g is equivalent to f̂ ◦ φ̂ = φ̂◦ ĝ.
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Assume that f ◦ φ = φ ◦ g, let γ =
∑
aiδN (xi) ∈ span δ(N), we have

φ̂ ◦ ĝ(γ) = φ̂(
∑

aiδN (g(xi)))

=
∑

aiδM (φ ◦ g(xi))

=
∑

aiδM (f ◦ φ(xi))

= f̂ ◦ φ̂(
∑

aiδN (xi))

= f̂ ◦ φ̂(γ),

so f̂ ◦ φ̂ = φ̂◦ ĝ on span δ(N), which implies that f̂ ◦ φ̂ = φ̂◦ ĝ on F(N). Conversely,

suppose that f̂ ◦ φ̂ = φ̂ ◦ ĝ, let x ∈ N , we have f̂ ◦ φ̂(δN (x)) = φ̂ ◦ ĝ(δN (x)), which
is equivalent to δM (φ ◦ g(x)) = δM (f ◦ φ(x)), since δM is an isometry, we get
φ ◦ g(x) = f ◦ φ(x). �

3. Hypercyclicity Criterion for Lipschitz operators

Proving that a given operator is hypercyclic by constructing a hypercyclic vector
is not an easy task, it is sometimes easier to check the topological transitivity
condition. Nonetheless, in many concrete situations it is not obvious how to verify
the latter condition. The purpose of the Hypercyclicity Criterion is to provide
several easily verified conditions under which an operator is hypercyclic (actually
even weakly mixing). In this section, we will shift those conditions on the Lipschitz
maps themselves, which will give us a very useful tool for particular examples. Let
us start by recalling the statement of the Hypercyclicity Criterion [9, 19].

The Hypercyclicity Criterion (HC). Let X be a separable Banach space and
let T : X → X be a bounded linear operator. We will say that T satisfies the HC
if there exists an increasing sequence of integers (nk), two dense sets X0 and Y0 in
X, and a sequence of maps Snk

: Y0 → X such that

(1) Tnkx→ 0 for any x ∈ X0;
(2) Snk

x→ 0 for any x ∈ Y0;
(3) TnkSnk

y → y for each y ∈ Y0.

It is well known that if T satisfies the HC then T is hypercyclic (see [19, Theo-
rem 3.15] e.g.). Moreover, a bounded linear operator satisfies the HC if and only if
it is weakly mixing (see [10, Theorem 2.3]), and if it satisfies the HC with respect
to the full sequence (n)n∈N then it is actually mixing (see page 32 in [9]).

The linearization property stated in Proposition 1.1 allows us to formulate a

version of the HC for Lipschitz operators f̂ : F(M)→ F(M), only involving metric
conditions.

Theorem 3.1. Let (M,d) be a pointed separable metric space, f : M → M be
a Lipschitz map such that f(0) = 0 and λ ∈ R \ {0}. Assume that there exist
an increasing sequence of integers (nk)k∈N, two dense subsets D1, D2 in M and a
sequence of maps gnk

: D2 →M such that, for any x ∈ D1 and y ∈ D2 the following
conditions hold:

(1) |λ|nk d(fnk(x), 0) −→
k→+∞

0;

(2)
d(gnk

(y), 0)

|λ|nk
−→
k→+∞

0;
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(3) d(fnk ◦ gnk
(y), y) −→

k→+∞
0;

Then λf̂ satisfies the Hypercyclicity Criterion. In particular, λf̂ is hypercyclic.

Proof. Let X0 = span δ(D1) and Y0 = span δ(D2). It is clear that X0 and Y0 are
dense in F(M). Moreover, for every x ∈ D1, we have:

‖(λf̂)nk(δ(x))‖ = |λ|nk‖δ(fnk(x))‖ = |λ|nk d(fnk(x), 0) −→
k→+∞

0.

Therefore, for every x0 ∈ X0, ‖(λf̂)nk(x0)‖ −→
k→+∞

0.

Let Snk
: Y0 → F(M) be the linear map given by Snk

(δ(y)) =
1

λnk
δ(gnk

(y)), for

every y ∈ D2. We thus have

‖Snk
(δ(y))‖ =

d(gnk
(y), 0)

|λ|nk
−→
k→+∞

0

and

‖(λf̂)nk ◦Snk
(δ(y))− δ(y)‖ = ‖δ(fnk ◦gnk

(y))− δ(y)‖ = d(fnk ◦gnk
(y), y) −→

k→+∞
0.

Therefore, for every y0 ∈ Y0, Snk
y0 −→

k→+∞
0 and (λf̂)nk ◦ Snk

y0 −→
k→+∞

y0. �

Throughout this paper, we will always have gnk
= gnk for some function (always

denoted by) g, and that we will refer to as the “inverse function” of f even though
f is not a bjiection.

Definition 3.2. We will say that f̂ satisfies the hypercyclic criterion for Lipschitz
operators (shortened HCL) if f satisfies the conditions of Theorem 3.1 with λ = 1.

Here we present a setting where the HCL is satisfied.

Proposition 3.3. Let (M,d) be a complete pointed metric space, and f : M →M
be a Lipschitz map such that f(0) = 0. Assume that there exist an increasing
sequence of integers (nk)k∈N, a dense subset D in M , a subset J of M with 0 ∈ J ,
and an integer p ≥ 1 such that:

(1) For every x ∈ D, d(fpnk(x), 0) −→
k→+∞

0;

(2) fp|J : J →M is bijective and its inverse is a contraction;

then f̂ satisfies the HCL. In particular, f̂ is hypercyclic.

Proof. For each k, let gk = (fp|J)−nk : M → J . Since (fp|J)−1(0) = 0 and (fp|J)−1 is

a contraction, we get d((fp|J)−n(x), 0) −→
n→+∞

0, for each x ∈ M . In particular, for

each x ∈ M , d(gk(x), 0) −→
k→+∞

0. Moreover, it is clear that the last condition of

HCL is satisfied. Hence f̂ is hypercyclic. �

We now explore the connections between the weakly mixing property and the
HCL. This is of course motivated by the linear case since a bounded operator
T : X → X satisfies the HC if and only if it is weakly mixing [19, Theorem

3.15]. Unfortunately, if f̂ satisfies the HCL then f is not necessarily weakly mixing
(not even transitive; see Example 3.5 and Example 3.8). Nevertheless the reverse
implications holds, we omit the proof since it follows the same line as in [19, The-
orem 3.15].
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Theorem 3.4. Let (M,d) be a separable complete pointed metric space without
isolated points, and let f : M → M be a Lipschitz map such that f(0) = 0. If f is
weakly mixing then f satisfies the HCL.

In [13], M. De La Rosa and C. Read gave the first example of hypercyclic operator
which does not satisfy the Hypercyclicity Criterion. In the same direction, we do

not know whether there is a Lipschitz operator f̂ which is hypercyclic but fails

the Hypercyclicity Criterion. On the other hand, there are Lipschitz operators f̂
satisfying the HC but not the HCL.

Example 3.5. Let M be the compact space {0}∪{ 1n : n ∈ N} equipped with the
usual distance in R. Let f be the Lipschitz map defined by f(0) = 0, f(1) = 1 and
f( 1

n ) = 1
n−1 for n ≥ 2. We claim that f does not satisfy the HCL but satisfies the

usual HC.
To simplify the notation, we will write xn instead of 1

n . First, it is readily seen
that for every k 6= 0, we have that lim

n→∞
d(fn(xk), 0) = 1 6= 0 and so f does not

satisfy the HCL.
Next, it is well known that F(M) ≡ `1. Indeed, the linear operator Φ : `1 →

F(M) given by

Φ(en) =
δ(xn)− δ(xn+1)

d(xn, xn+1)

is a surjective isometry. So f̂ is conjugate to an operator T := Φ−1 ◦ f̂ ◦Φ : `1 → `1
so that T (e1) = 0 and for n ≥ 2:

T (en) = Φ−1f̂

(
δ(xn)− δ(xn+1)

d(xn, xn+1)

)
= Φ−1

(
δ(xn−1)− δ(xn)

d(xn, xn+1)

)
=

d(xn−1, xn)

d(xn, xn+1)
Φ−1

(
δ(xn−1)− δ(xn)

d(xn−1, xn)

)
=

n+ 1

n− 1
en−1.

Thus T is a weighted backward shift on `1 which is well known to satisfy the HC,

so does f̂ .

Remark 3.6. Notice that if we consider 1 to be the base point of M (instead of
0), then f satisfy the HCL. Therefore, when f as multiples fixed points, the choice
of the base point matters for studying the HCL. This is clearly in opposition with
the other dynamical properties considered in this paper. Nevertheless, the assertion

“there is a choice of the base point such that f satisfies the HCL whenever f̂ satisfies
the HC” is false. Indeed, it suffices to only modify the value of f(1) by setting for
instance f(1) = 1

2 to disprove the latter statement (1 is not an acceptable base
point anymore since it is not a fixed point for the map f).

3.1. Application. Let us first prove the following characterisation of hypercyclic-
ity for “backward shift Lipschitz operators” defined on (the Lipschitz-free space
over) countably branching tree of height one.

Proposition 3.7. Let M = N ∪ {0} be a pointed metric space and let f : M →M
be the map defined by f(0) = 0 and f(n) = n− 1 whenever n ≥ 1. Assume that M
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is endowed with a metric d such that f is Lipschitz and d(n,m) = d(n, 0) + d(0,m)
whenever n 6= m ∈ N.

(1) Then the following conditions are equivalent:
(a) lim inf

n→+∞
d(n, 0) = 0.

(b) f̂ is hypercyclic.
(2) We also have equivalence between the two stronger conditions:

(a) lim
n→∞

d(n, 0) = 0.

(b) f̂ is mixing.

Proof. According to Proposition 1.6,

ψ : δ(n) ∈ F(M) 7→ d(n, 0)en ∈ `1
induces an onto linear isometry between F(M) and `1. Hence T = ψ◦f̂ ◦ψ−1 : `1 →
`1 is quasi-conjugate to f̂ while Ten = d(n−1,0)

d(n,0) en−1 for n > 2 and Te1 = 0. Thus

T is a unilateral weighted backward shift acting on `1. According to [9, Theorem
1.40] (see also Remark 1.41 therein), we can deduce that

f̂ is hypercyclic ⇐⇒ T is hypercyclic

⇐⇒ lim sup
n→+∞

d(1, 0)

d(2, 0)
× d(2, 0)

d(3, 0)
× . . .× d(n− 1, 0)

d(n, 0)
= +∞

⇐⇒ lim inf
n→+∞

d(n, 0) = 0,

which proves (1). The proof of assertion (2) is similar (replacing lim sup by lim)
and based on the characterisation of mixing weighted backward shift acting on `1;
see [19, Theorem 4.8 and Example 4.9 (a)]. �

As an easy consequence we provide a non-hypercyclic Lipschitz map f : M →M
which satisfies the HCL. Thus, the HCL does not necessarily implies in general that
f itself is hypercyclic.

Example 3.8. Let M and f : M → M be as in the previous proposition with
d(0, n) = 1

2n for every n ∈ N. It is clear that the orbit of any point in M under
f is finite, therefore it cannot be dense. Nonetheless, the sequence (d(n, 0))n is

decreasing to 0 so that f̂ is mixing.

As another application of Theorem 3.1, we can state a modified version of [15,
Theorem 3]. It corrects the former statement which does not hold in general, as we

will see in Example 3.10. Note that the case when f̂ is the backward shift on (a
copy of) `1 is included in the following proposition (see again Example 3.10).

Proposition 3.9. Let (M,d) be a pointed metric space, and let f : M → M be
a Lipschitz map such that f(0) = 0. Let (Mn)n≥0 be a partition of M such that
M0 = {0}, and for every n ≥ 1, f|Mn+1

is injective, and

f(Mn+1) = Mn.

Let λ ∈ R be such that
d+n
λn

→
n→∞

0, where d+n = supx∈Mn
d(x, 0). Then λf̂ is mixing.

Proof. We apply Theorem 3.1 with D1 = D2 = M , nk = k and gk = gk where
g : M → M is the map defined as follow: g(0) = 0, and for every n ≥ 1 and
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y ∈Mn, g(y) = x where x is the unique element of Mn+1 such that f(x) = y.
Let us check the three conditions of Theorem 3.1:

(1) For every x ∈M , fn(x) = 0 when n is large enough and hence the condition
(1) of Theorem 3.1 is satisfied.

(2) Let k ∈ N and y ∈Mk. If k = 0 and y = 0 so that gn(y) = 0. If k ≥ 1 then
gn(y) ∈Mk+n and we have

d(gn(y), 0)

|λ|n
= |λ|k d(gn(y), 0)

|λ|k+n
≤ |λ|k

d+k+n
|λ|k+n

→
n→∞

0.

(3) For every y ∈M , fn ◦ gn(y) = y and hence d(fn ◦ gn(y), y) = 0.

Thanks to Theorem 3.1, we conclude that λf̂ satisfies the Hypercyclicity Criterion
with respect to the full sequence, so it is mixing. �

We give a counter-example to Proposition 3.9 in the case when
d+n
λn does not

converge to 0. Moreover, this provides an example of a Lipschitz operator f̂ which
is supercyclic but not hypercyclic.

Example 3.10. Once more, let M and f : M →M be as in Proposition 3.7 with
d(0, n) = n! for every n ∈ N. Recall that Φ : δ(xn) ∈ F(M) 7→ n! en ∈ `1 defines

an isometry and f̂ : F(M)→ F(M) is conjugate to T : `1 → `1 given by

T (en+1) =
en

n+ 1
.

If λ ∈ R then notice that λT is compact and therefore not hypercyclic. Therefore

λf̂ is not hypercyclic as well, while∣∣∣∣d+nλn
∣∣∣∣ =

n!

|λ|n
→ +∞.

In order to check that f̂ is supercyclic, it is easy to see that the conditions of
Theorem 3.13 below are satisfied.

Next there is a Lipschitz map f : M → M such that f has an orbit which is

dense in M while f̂ is cyclic but it is not supercyclic.

Example 3.11. Let M = N ∪ {0} be as in Proposition 3.7, where (dn)n :=
(d(0, n))n is decreasing and tending to zero. This time we let f : M → M be
the 1-Lipschitz map defined by f(0) = 0 and f(n) = n + 1 otherwise. Then the

orbit of 1 under f is dense in M , and since ‖f̂‖ = Lip(f) 6 1, we get that f̂ is not

hypercyclic. Let us show that f̂ is not even supercyclic. As usual f̂ is conjugate to

an bounded operator T : `1 → `1 given by T (en) =
dn+1

dn
en+1. It is clear that e1

is a cyclic vector for T , but T is not supercyclic because it does not have a dense
range.

Finally, the following example shows that there is a pointed metric space M and

a Lipschitz map f : M →M such that both f and f̂ are hypercyclic.

Example 3.12. Let
∑

2 be the space of 0-1-sequences, that is,
∑

2 = {(xn)n∈N :
xn ∈ {0, 1}}. The sequence (0)n∈N is considered to be the base point of M . Let d
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be the metric on
∑

2 defined by:

d(x, y) =

+∞∑
n=1

|xn − yn|
2n

where x = (x1, x2, . . .) and y = (y1, y2, ...). We consider the following map:

σ :
∑

2 −→
∑

2

(x1, x2, x3, . . .) 7−→ (x2, x3, x4, . . .)

The dynamical system (
∑

2, σ) is often called the backward shift on two symbols.
Note that σ(0) = 0 and σ is 2-Lipschitz. It is well known that σ is Devaney choatic
([19, Theorem 1.36]) and mixing ([19, Exercice 1.4.1]). Consequently, σ̂ is also
Devaney choatic and mixing thanks to [23, Theorem 2.3].

We wish to recall that σ is quasi-conjugate to a map acting on the unit circle T
be endowed with the normalized distance d defined by:

∀ θ1, θ2 ∈ [0, 1[, d(e2πiθ1 , e2πiθ2) =

{
|θ1 − θ2| if |θ1 − θ2| 6 1

2

1− |θ1 − θ2| if |θ1 − θ2| > 1
2

,

Indeed, let D : T → T be the doubling map Dz = z2. It is known [19, Example
1.37] that the map

(1)
φ :

∑
2 −→ T

(xn) 7−→ exp
(

2πi
∑∞
n=1

xn
2n

)
defines a quasiconjugacy from σ to D. Note that φ(0) = 1 and φ is 1-Lipschitz. By

Proposition 2.12, D̂ : F(T)→ F(T) is Devaney choatic and mixing as well.

3.2. Some other criteria. In the same way as we did for the HC, we may also
“push downward” the conditions of other well-known criteria to obtain metric con-
ditions for Lipschitz operators. We will quickly mention two examples: the “Su-
percyclicity Criterion” (see [9, Theorem 1.14]) and the “Chaoticity Criterion” (see
[9, Theorem 6.10]).

Theorem 3.13 (Supercyclicity Criterion for Lipschitz Operators).
Let (M,d) be a pointed separable metric space, f : M →M be a Lipschitz map such
that f(0) = 0. Assume that there exist an increasing sequence of integers (nk)k∈N,
two dense subsets D1, D2 in M and a sequence of maps gnk

: D2 → M such that,
for any x ∈ D1 and y ∈ D2 the following conditions hold:

(1) d(fnk(x), 0) d(gnk
(y), 0) −→

k→+∞
0;

(2) d(fnk ◦ gnk
(y), y) −→

k→+∞
0;

Then f̂ is supercyclic.

Corollary 3.14. Let M = N∪{0} be a pointed metric space endowed with a metric
d such that the map f : M → M defined by f(0) = 0, f(1) = 0 and f(n + 1) = n

is Lipschitz. Then f̂ is supercyclic.

Theorem 3.15 (A Chaoticity criterion for Lipschitz operators).
Let (M,d) be a pointed separable metric space and let f : M → M be a Lipschitz
map such that f(0) = 0. Assume that there exist a dense subset D in M and a map
g : D → D such that, for any x ∈ D the following conditions hold:
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(1)
∑∞
n=0 d(fn(x), 0) and

∑∞
n=0 d(gn(x), 0) are convergent;

(2) f ◦ g = IdM ;

Then f̂ satisfies the Chaoticity Criterion.

Remark 3.16. The map f given in Example 3.5 does not satisfy the chaoticity

criterion for Lipschitz operators but f̂ satisfies the chaoticity criterion.

Similarly as in Proposition 3.7, we characterise below the chaoticity for “back-
ward shift Lipschitz operators” defined on (the Lipschitz-free space over) countably
branching tree of height one.

Proposition 3.17. Let M = N∪{0} be a pointed metric space and let f : M →M
be the map defined by f(0) = 0 and f(n) = n− 1 whenever n ≥ 1. Assume that M
is endowed with a metric d such that f is Lipschitz and d(n,m) = d(n, 0) + d(0,m)
whenever n 6= m ∈ N. Then the following conditions are equivalent:

(1) f̂ is Devaney chaotic.
(2) The series

∑∞
n=1 d(n, 0) converges.

If moreover the sequence
(
d(n, 0)

)
n

is decreasing, then the two above conditions are
equivalent to

(3) f satisfies the chaoticity criterion for Lipschitz operators.

Proof. As in the proof of Proposition 3.7, the operator f̂ is conjugate with the
weighted backward shift operator T defined on `1 by

Te1 = 0 and ∀n > 2, T en =
d(n− 1, 0)

d(n, 0)
en−1.

So f̂ is chaotic if and only if T is so. Therefore, by [9, Theorem 6.12], we obtain

f̂ chaotic ⇐⇒
∑
n>1

(
d(1, 0)

d(n, 0)

)−1
< +∞

⇐⇒
∞∑
n=1

d(n, 0) < +∞,

which proves (1)⇐⇒ (2). It is clear that (3)⇒ (1), so let us show that (2)⇒ (3).
Let g : M → M be the map defined by g(0) = 0 and g(n) = n + 1. Fix m > 1.
Since d(gn(m), 0) 6 d(n, 0) and

∑∞
n=1 d(n, 0) converges, we have that the series∑∞

n=1 d(gn(m), 0) also converges. Moreover, we have f ◦ g = IdM and the series∑∞
n=1 d(fn(m), 0) converges as well. �

Recall that we proved in Proposition 2.6 that if Per(f) is dense in M , then Per(f̂)
is dense in F(M). We claim that the reverse implication is not true.

Example 3.18. Let M and f : M →M be as in Proposition 3.17, with d(0, n) =
1
2n for every n ≥ 1. Clearly Per(f) = {0} is not dense in M . On the other hand,
since

∞∑
n=1

d(n, 0) =

∞∑
n=1

1

2n
< +∞,

f̂ is Devaney chaotic thanks to Proposition 3.17.
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4. The particular case of compact intervals

From now on, we will consider metric spaces M = [a, b], where a < b ∈ R, and
f : M →M will be a Lipschitz map having (at least) one fixed point c ∈ [a, b]. For
such metric spaces M , we have a surjective isometry Φ : δ(x) ∈ F(M) 7→ 1[c,x] ∈
L1([a, b]) (where 1[c,x] is understood as −1[x,c] when x ≤ c). Thus, f̂ : F(M) →
F(M) is conjugate to an operator T : L1([a, b])→ L1([a, b]). This operator acts on
indicator functions as follows: if a ≤ s ≤ t ≤ b, we have

T (1[s,t]) =

{
1[f(s),f(t)], if f(s) ≤ f(t)

−1[f(t),f(s)], if f(t) ≤ f(s).
(2)

The next theorem will give sufficient conditions on f which ensure that f̂ is hy-
percyclic, and so this will exhibit a new class of hypercyclic operators acting on
L1([a, b]). To our knowledge, there is not much study on hypercyclic operators
defined on L1(I) when I is a bounded interval in R. If I = [0,+∞) or I = R,
operators of translation Tt : f 7→ f(· + t) have been studied as well as the dy-
namical properties of the C0-semigroup (Tt)t≥0 on weighted Lp-spaces Lp(I, ωdλ),
where λ is the Lebesgue measure and ω is a weight on I. For instance, in [14],
necessary and sufficient conditions are given in terms of the weight ω that ensure
the hypercyclicity of Tt or (Tt)t≥0.

Theorem 4.1. If f : [a, b] → [a, b] is a Lipschitz and topologically transitive map

with a fixed point c ∈ [a, b], then f̂ is weakly mixing.

If moreover f admits at least two fixed points, then f̂ is mixing.

Proof. Our main ingredient is a result due to Barge and Martin (see [8, Theorem 3]),
the next formulation can be found in [26, Theorem 2.19]. It states that, since f is
topologically transitive, one of the following cases holds:

(i) f is mixing.
(ii) c ∈ (a, b) is the unique fixed point of f , f([a, c]) = [c, b], f([c, b]) = [a, c]

and both maps f2|[a,c], f
2
|[c,b] are mixing.

If f has at least two fixed points then it is mixing, and f̂ is also mixing thanks
to [23, Theorem 2.3]. Otherwise, c ∈ (a, b) is the unique fixed point of f and
f([a, c]) = [c, b], f([c, b]) = [a, c] and both maps f2|[a,c], f

2
|[c,b] are mixing. Let

ha = f2|[a,c] and hb = f2|[c,b]. By the latter, we have that

ĥa : F([a, c])→ F([a, c]) and ĥb : F([c, b])→ F([c, b])

are mixing. It is enough to show that f̂2 is mixing. To do so, we will show that

the corresponding conjugate map associated to f̂2 (see (2)), say T : L1([a, b]) →
L1([a, b]), is mixing. We will consider L1([a, c]) and L1([c, b]) as subspaces of
L1([a, b]). Let B(u, r), B(v, r′) ⊂ L1([a, b]) be two open balls and write u =
u1 + u2, v = v1 + v2 where u1, v1 ∈ L1([a, c]) and u2, v2 ∈ L1([c, b]). The oper-
ator T maps L1([a, c]) into L1([a, c]) and L1([c, b]) into L1([c, b]). Its restrictions to
these two spaces, that we will denote by T1 and T2 respectively, are mixing. Indeed,

T1 is conjugate to ĥa while T2 is conjugate to ĥb. Hence, there exists N ≥ 1 such
that for any n ≥ N ,

Tn1 (B(u1, r/2)) ∩B(v1, r
′/2) 6= ∅ and Tn2 (B(u2, r/2)) ∩B(v2, r

′/2) 6= ∅.
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Then, for every n ≥ N , there exist u1,n ∈ B(u1, r/2) and u2,n ∈ B(u2, r/2) such
that

Tn1 (u1,n) ∈ B(v1, r
′/2) and Tn2 (u2,n) ∈ B(v2, r

′/2).

We deduce that un := u1,n + u2,n ∈ B(u, r), where we naturally see L1([a, c]) and
L1([c, b]) as subspaces of L1([a, b]). Moreover, we have

Tn(un) = Tn1 (u1,n) + Tn2 (u2,n) ∈ B(v1, r
′/2) +B(v2, r

′/2) ⊂ B(v, r′).

We proved that for every n ≥ N , Tn(B(u, r))∩B(v, r′) 6= ∅, which shows that T is
mixing. �

Remark 4.2. If c = a or c = b, then necessarily f has another fixed point. Indeed,
assume that c = a, the case c = b being similar. The map f is continuous and
transitive, so it must be onto. In particular, there exists y ∈ (a, b] such that
f(y) = b. Hence, the continuous function h(x) = f(x) − x satisfies h(y) ≥ 0 and
h(b) ≤ 0 so it vanishes at some point which is a fixed point of f , distinct from a.

Corollary 4.3. Let f : [a, b]→ [a, b] be a Lipschitz and topologically transitive map

with a fixed point c ∈ [a, b]. Then f̂ is Devaney chaotic.

Proof. It is known [27] that a continuous map g : I → I, where I is a real interval,
is topologically transitive if and only if it is Devaney chaotic. By assumption, our
Lipschitz map f : [a, b] → [a, b] is transitive, so it is Devaney chaotic as well. By

Proposition 2.6, the set of periodic points of f̂ is dense in F(M). Moreover f̂ is

hypercyclic thanks to Theorem 4.1. Therefore, f̂ is Devaney chaotic. �

Remark 4.4. We do not know whether f̂ : F(R) → F(R) is hypercyclic whenever
f : R → R is a transitive Lipschitz map (having a fixed point). In fact, the
decomposition given by [26, Theorem 2.19] was crucial to our proof (see also [5,
Theorem 2.2] for a similar statement in the more general setting of locally connected
compact metric spaces). We do not know if a comparable result holds in the case
of unbounded intervals. Nevertheless, any weakly mixing Lipschitz maps f : R →
R produces a weakly mixing Lipschitz operator acting on L1(R) thanks to [23,
Theorem 2.3] (see [24] at page 2 for an example).

4.1. Application. In this subsection we will provide two Lipschitz self-maps f
defined on [0, 1] which illustrate the two cases in [26, Theorem 2.19]. They are
hypercyclic so that their linearization are both mixing and Devaney chaotic, thanks

to Theorem 4.1. Also, the obtained operators f̂ acting on L1([0, 1]) will be made
explicit.

Example 4.5. The map f : [0, 1] → [0, 1] defined below is often called the tent
map, it is transitive as it is explained in [19, Examples 1.12 (a)]. Here we consider
0 to be the base point of [0, 1].

f(x) =

{
2x if 0 ≤ x ≤ 1

2 ,

2− 2x if 1
2 ≤ x ≤ 1.

x

y
f(x)

0 11
2

1
4

3
4

1

1
2

1
4

3
4
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Consequently f̂ is mixing thanks to Theroem 4.1. The latter fact can also be

checked by showing that f̂ satisfies the HCL with respect to the full sequence,

where g(x) = x
2 stands for the “inverse” mapping. We also know that f̂ is Devaney

chaotic thanks to Corollary 4.3. As explained at the beginning of this section, f̂
is conjugate to an operator T : L1([0, 1]) → L1([0, 1]) which maps any indicator
function 1[a,b], a < b, to

T (1[a,b]) =

{
1[2a,2b] if b ≤ 1

2 ,

−1[−2b+2,−2a+2] if a ≥ 1
2 .

One can check that T acts as a kind of backwards shift on the haar basis (hm)m
of L1([0, 1]) (more details will be given in the second example). Of course, this
is not always the case: for instance the tent map is conjugate to the “logistic
map” L(x) = 4x(1− x) (see [19, Example 1.6]), and the operator T ′ : L1([0, 1])→
L1([0, 1]) associated to L̂ does not necessarily send a haar function to another.

We now study another well-known example. It is a Lipschitz map f : [0, 1] →
[0, 1], with only one fixed point 1/2, and such that f is Devaney chaotic but not
weakly mixing.

Example 4.6. Let us consider the following Lipschitz map:

f(x) =


1
2 + 2x if 0 ≤ x ≤ 1

4 ,

3
2 − 2x if 1

4 ≤ x ≤
1
2 ,

1− x if 1
2 ≤ x ≤ 1.

x

y

f(x)

0 11
2

1
4

3
4

1

1
2

1
4

3
4

Note that here the metric space that we consider is M = [0, 1] with 1
2 being the

distinguished point of M . In what follows, it will be quite convenient to consider
the second iterated of f , so we give its definition explicitly bellow.

f2(x) =


1
2 − 2x if 0 ≤ x ≤ 1

4 ,

− 1
2 + 2x if 1

4 ≤ x ≤
3
4 ,

5
2 − 2x if 3

4 ≤ x ≤ 1.
x

y
f2(x)

0 11
2

1
4

3
4

1

1
2

1
4

3
4

We then have the following claims with respect to f and f̂ .

(i) The map f is Devaney chaotic, but not weakly mixing (see [26, Exam-
ple 2.21]).

(ii) The map f2 is not topologically transitive. Indeed, notice that f2([0, 12 ]) ⊂
[0, 12 ] and f2([ 12 , 1]) ⊂ [ 12 , 1].
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(iii) The map f̂2 satisfies the HCL. Indeed, we claim that f̂2 has the HCL where
the “inverse” map g is defined for every x ∈ [0, 1], by g(x) = x

2 + 1
4 .

(iv) The operator f̂ is mixing and Devaney chaotic. First, since f is transitive,

notice that we can deduce that f̂ is weakly mixing and Devaney chaotic
by applying Theorem 4.1 and Corollary 4.3. Furthermore, one can prove

directly that actually f̂ satisfies the HCL condition with respect to the full
sequence, where the “inverse” map g is defined by

g(x) =

{
1− x if 0 ≤ x < 1

2 ,
− 1

2x+ 3
4 if 1

2 < x ≤ 1.

We consider the Dyadic numbers D in [0, 1] as the dense subset of M on
which one has to check the conditions given by the HCL. Since we do not

pass to a subsequence for proving those conditions, f̂ is mixing.

Remark 4.7. Since g = f2 is not topologically transitive but ĝ is Devaney chaotic
and mixing, the implication “ĝ Devaney chaotic and mixing =⇒ g transitive” does
not hold in general.

We now descirbe the operator S : L1([0, 1]) → L1([0, 1]) conjugate to f̂ by its
action on the Haar basis (hm)m. Recall that the Haar functions (hm)m≥0 are given
by h1 = 1[0,1] and for every n ≥ 0 and every 1 ≤ k ≤ 2n:

h2n+k(t) = 1[ 2k−2

2n+1 ,
2k−1

2n+1 ](t)− 1[ 2k−1

2n+1 ,
2k

2n+1 ](t), t ∈ [0, 1].

It is well-known that (hm)m≥0 is a Schauder basis of L1([0, 1]). We have

S(h1) = S(1[0,1]) = −1[f(1),f(0)] = −1[0, 12 ],

S(h2) = 1[0, 12 ], S(h3) = 21[ 1
2 ,1]

, S(h4) = 1[0, 14 ] − 1[ 1
4 ,

1
2 ].

Now let n ≥ 2. We distinguish three cases:
• If 0 ≤ k ≤ 2n−2, the two intervals defining h2n+k are included in

[
0, 14
]

so that

S(h2n+k) = 1[ 1
2−

2k−2
2n , 12−

2k−1
2n ] − 1[ 1

2−
2k−2
2n , 12−

2k−1
2n ]

= 1[
2(2n−1+k)−2

2n ,
2(2n−1+k)−1

2n

] − 1[
2(2n−1+k)−1

2n ,
2(2n−1+k)

2n

]
= h2n−1+2n−2+k.

• If 2n−2 + 1 ≤ k ≤ 2n−1, the two intervals that define h2n+k are included in
[
1
4 ,

1
2

]
and with similar computations we get

S(h2n+k) = h2n−1+3.2n−2−k+1.

• Finally, if 2n−1 + 1 ≤ k ≤ 2n, both intervals that define h2n+k are included in[
1
2 , 1
]

and we have

S(h2n+k) = h2n+2n−k+1.

4.2. An extension to some compact R-trees. Our Theorem 4.1 can actually be
extended to a more general setting. Recall that an R-tree is an arc-connected metric
space (M,d) with the property that there is a unique arc connecting any pair of
points x 6= y ∈M and it moreover is isometric to the real segment [0, d(x, y)] ⊂ R.
A point x ∈M is called a branching point if M \ {x} has at least three connected
components; we let Br(M) the set of all branching point of M . The main ingredient
for proving Theorem 4.1 was the decomposition given by [26, Theorem 2.19]. A
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similar result actually holds for compact trees M such that M \Br(M) has finitely
many connected components: If f : M → M is a continuous and transitive map,
then

• Either f is mixing,
• Or there is a positive integer n0 such that there are an interior fixed point c

and subtrees M1, . . . ,Mn0 of M with ∪iMi = M , Mi ∩Mj = {c} whenever
i 6= j and f(Mi) = Mi+1(mod n0) for 1 ≤ i ≤ n0. Moreover, fn0�Mi

is
mixing for every 1 ≤ i ≤ n0.

The previous statement can be found in [28, Proposition 2.6] and it is based on [6,
Proposition 3.1]. Therefore, we can state the following (the proof is similar to the
one of Theorem 4.1 and left to the reader).

Theorem 4.8. Let M be a compact R-tree such that M \Br(M) has finitely many
connected components, and let f : M → M be a Lipschitz and topologically transi-

tive map with a fixed point c ∈ M . Then either f̂ is mixing or there exists n0 ∈ N
such that f̂n0 is mixing. In any case, f̂ is weakly mixing.

It is proved in [22] that a separable metric space (M,d) is locally arcwise con-
nected and uniquely arcwise connected if and only if it admits an equivalent metric
d′ such that (M,d′) is an R-tree. Since F(M,d) and F(M,d′) are isomorphic, the
previous theorem therefore applies to an even more general class of spaces. In the
same way we can also state the following extension of Corollary 4.3.

Corollary 4.9. Let M be a compact R-tree such that M \Br(M) has finitely many
connected components. Let f : M → M be a Lipschitz and topologically transitive

map with a fixed point c ∈M . Then f̂ is Devaney chaotic

Proof. It is proved in [28, Lemma 2.3] that f : M →M is topologically transitive if
and only if it is Devaney chaotic. Therefore, exactly as in the proof of Corollary 4.3,
we use Proposition 2.6 as well as Theorem 4.8 to conclude. �
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[20] A. Jiménez-Vargas, J.M. Sepulcre and M. Villegas-Vallecillos, Lipschitz compact operators,

J. Math. Anal. Appl. 415 (2014), no. 2, 889–901.
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