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Abstract—Times series classification can be successfully tackled
by jointly learning a shapelet-based representation of the series
in the dataset and classifying the series according to this
representation. This shapelet-based classification is both accurate
and explainable since the shapelets are time series themselves
and thus can be visualized and be provided as a classification
explanation. In this paper, we claim that not all shapelets
are good visual explanations and we propose a simple, yet
also accurate, adversarily regularized EXplainable Convolutional
Neural Network, XCNN, that can learn shapelets that are, by
design, suited for explanations. We validate our method on the
usual univariate time series benchmarks of the UCR repository.

Index Terms—Time Series, Shapelets, Adversarial Networks,
Explainable AI, Convolutional Neural Networks

I. INTRODUCTION

A time series (TS) Z is a series of time-ordered values,
Z = {z(1), z(2), . . . , z(T )} where z(t) ∈ Rd, T is the length
of our time series and d is the dimension of the feature vector
describing each data point. If d = 1, Z is said univariate,
otherwise it is said multivariate. In this paper, we are interested
in classifying univariate time series. We are given a training
set T = {(Z1, y1), . . . , (Zn, yn)}, composed of n time series
Zi and their associated labels yi. Our aim is to learn a function
h such that h(Zi) = yi, in order to predict the labels of new
incoming time series. The time series classification problem
has been studied in countless applications (see for example
[1]) ranging from stock exchange evolution, daily energy
consumption, medical sensors, videos, etc.

Many methods have been developed to tackle this problem
(see [2] for a review). One very successful category of
methods consists in “finding” discriminative phase-independent
subsequences, called shapelets, that can be used to classify
the series. In the first papers about shapelet-based time series
classification [3], [4], the shapelets were directly extracted
from the training set and the selected shapelets could be
used a posteriori to explain the classifier’s decision. However,
the shapelet enumeration and selection processes were either
very costly or the selection was fast but did not yield good
performance (as discussed in Section II). Jointly learning a
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Fig. 1: The three most discriminative shapelets obtained for
the dataset DiatomSizeReduction using (left column) Learning
Shapelets or (right column) our XCNN architecture.

shapelet-based representation of the series in the dataset and
classifying the series according to this representation [5], [6]
allowed to obtain discriminative shapelets in a much more
efficient way. An example of such learned shapelets, obtained
with the method from [6], is given in blue in Figure 1 (left).
However, if the learned shapelets are definitively discriminative,
they are often very different (visually) from actual pieces of a
real series in the dataset. As such, these shapelets might not
be suited to explain a particular classifier’s decision. Note that
the same interpretability issue arises with ensemble classifiers
such as [7] where one decision depends on the presence of
multiple shapelets. One of the main challenges nowadays is to
provide Machine Learning (ML) methods that are both accurate
and self-explanatory, i.e. provide mechanisms to explain their
decisions to human users since, in many scenarios, it may be
risky, unacceptable, or simply illegal, to let artificial intelligent
systems make decisions without any human supervision [8].

In this paper, we make use of a simple convolutional
network to classify time series and we show how one can
leverage the principle of adversarial learning to regularize
the parameters of this network such that it learns shapelets
that could be more useful to interpret the classifier’s decision.
Section II presents the most related work. We detail our XCNN
method in Section III. In Section IV, we show quantitative
and qualitative results on the usual time series benchmarks [9]:
XCNN performance are on par with comparable state-of-the-art
methods and our explainable-by-design method provides new
types of explanations for neural network’s predictions.



II. RELATED WORK

In this section we review the literature on shapelet-based
Time Series Classification (TSC) and on tools for understanding
black box model predictions.

A. Time Series Classification

Shapelets are discriminative subseries that can either be
extracted from a set of time series or learned so as to minimize
an objective function. They have been introduced in [3] but
in this work, the search space of all possible shapelets is
explored exhaustively which makes the method intractable
in practice. This high time complexity has led to the use of
heuristics in order to select the shapelets more efficiently. In
Fast Shapelets (FS) [4], the authors rely on quantized time
series and random projections in order to accelerate the shapelet
search but they sacrifice the accuracy, as reported in [2]. The
Shapelet Transform (ST) [5] consists in transforming time series
into a feature vector whose coordinates represent distances
between the time series and the shapelets selected beforehand.
However as in [3], the shapelets selection step makes the
method unfit for large scale learning.

In order to face the high complexity that comes with search-
based methods, other strategies have been designed for shapelet
selection. On the one hand, some attention has been paid to
random sampling of shapelets from the training set [10]. On
the other hand, [6] showed that shapelets could be learned
using a gradient-descent-based optimization algorithm. The
method, referred to as Learning Shapelets (LS) in the following,
jointly learns the shapelets and the parameters of a logistic
regression classifier. This makes the method very similar in
spirit to a neural network with a single convolutional layer
followed by a fully connected classification layer and where
the convolution operation is replaced by a sliding-window local
distance computation. A min-pooling aggregator should then
be used for temporal aggregation.

Closely related to shapelet-based methods (as stated above),
variants of Convolutional Neural Networks (CNN) have been
introduced for the TSC task [11]. These are mostly mono-
dimensional variants of CNN models developed in the Com-
puter Vision field. Note however that most models are rather
shallow, which is likely to be related to the moderate sizes of
the benchmark datasets present in the UCR/UEA archive [9].
A review of these models can be found in [2].

Finally, ensemble-based methods, such as COTE [7] or
HIVE-COTE [12], that rely on several of the above-presented
standalone classifiers are now considered state-of-the-art for
the TSC task. Note however that these methods tend to
be computationally expensive, with high memory usage and
difficult to interpret (as stated in Section I) due to the
combination of many different core classifiers.

In this paper, we propose a method that is scalable (compared
to methods such as Shapelets [3] or ST [5]), yields interpretable
results which can be used to explain the classifier’s decisions
(compared to ensemble approaches or unconstrained approaches
such as [6] or [12]), and exhibits good classification accuracy
(compared to FS [4]).

B. Model Interpretability

Among the vast number of existing classifiers, some are
considered self-explanatory (e.g. decision trees, classification
rules), while others are difficult to interpret (e.g. ensemble
methods, neural networks that can be considered as black-
boxes). Interpretation of black box classifiers usually consists
in designing an interpretation layer between the classifier and
the human level. Two criteria refine the category of methods to
interpret classifiers: global versus local (i.e. dedicated to one
sample) explanations, and black-box dependent versus agnostic.
In this category, state-of-the-art methods are Local Interpretable
Model-agnostic Explanations (LIME and Anchors) [13], [14]
and SHapley Additive exPlanations (SHAP) [15]. SHAP values
come with the black-box local estimation advantages of LIME,
but also with theoretical guarantees. A higher absolute SHAP
value of an attribute compared to another means that it has
a higher predictive or discriminative power. However, these
methods, contrarily to XCNN, are not able to show what has
been learned and is used by the classifier to explain a particular
decision.

GradCAM [16] is a popular local visualization method
designed to explain neural networks decisions on image
classification tasks. It uses gradient-based methods to highlight
(with a heat map) the discriminative pixels on a given input
test image. This method was adapted in MTEX-CNN [17]
as an explanation and feature selection tool for multivariate
time series (MTS) classification tasks which is a closer setting
to ours. In [17], the authors proposed to stack 2D and 1D
convolution sequentially to capture the important feature(s)
and the important time stamp(s) for the time series. The
prediction results are explained by inspecting the input MTS
using GradCAM on both the variable and temporal dimensions.

[18] has a similar goal as ours (to produce interpretable
discriminative shapelets) and build on both the work from [5]
(in this case the candidate shapelets are extracted with a piece-
wise aggregate approximation) and from [6] to automatically
refine the “handcrafted” shapelets. Contrarily to our method,
there is no explicit constraint on the learning process that
ensures the interpretability of the shapelets. Besides, their
experimental validation makes it hard to fully grasp the benefits
and limitations of the proposed method since the algorithm
is evaluated on a small subset of UCR/UEA datasets [9] and
they provide visualizations for only a couple of the learned
shapelets.

The work from [19] is the closest to ours. Contrarily to ours,
they decouple the shapelet learning phase and the classification
process resulting in a quite different adversarial architecture.
Their classification process is made using the shapelet transform
method [5] but, in this case, the candidate shapelets are
dynamically generated for each input time series. In our case,
this is learned by a simple CNN for all the dataset. In [19], an
adversarial regularization is also used to constrain the generated
shapelets to be similar to real pieces of the series. However, the
regularization is imposed on the result of the convolutions (i.e.
the feature maps) and not on the convolutions themselves as we



propose to do in this paper. This is a different philosophy: we
believe that the pattern detectors, i.e. the convolutions, are the
shapelets. They believe that the shapelets are the series output
by the convolution operation which might, in our opinion,
have a very different shape than the original input signal. This
difference of regularization may hinder the interpretability of
the learned shapelets but this aspect is not studied in details
in [19]. Besides, the proposed method does not allow global
explanations (in addition to local ones) as can be done with
our method. However, according to the results reported in [19],
their method is more accurate than ours since it gives better
results than LS [6], which gives similar results to our method,
as shown in the experiments. The work proposed in [19] thus
has a different trade-off explainability/accuracy than us.

Finally [20] also proposes a time series classification method.
The authors propose to extract various symbolic representations
from the time series and train a logistic regression model on
top of these representations. The logistic regression weights
are then inspected (using GradCAM) to extract the most
discriminative features and localize the most important time
series subparts. This method necessitates to discretize the
original signal (and thus lose some information), it is not
self-explanatory (the explanations are post-hoc) and we believe
that showing the shapelets, as we can do in our method, is an
important feature for explaining decisions.

III. TS CLASSIFICATION WITH REGULARIZED SHAPELETS

In this section, we present our architecture, XCNN, to
learn interpretable discriminative shapelets for time series
classification. Our base time series classifier is a Convolutional
Neural Network (CNN). As explained in Section II, this model
is very similar in spirit to the Learning Shapelet (LS) model
presented in [6]. Both LS and CNN slide the shapelets on the
series to compute local (dis)similarities. LS uses a squared
Euclidean distance between a portion of the time series Z
starting at index i and a shapelet S of length L:

D(zi:i+L, S) =

L∑
l=1

(
z(i+l−1) − S(l)

)2
.

The smaller this distance, the closer the shapelet is to the
considered subseries. In a CNN, the feature map is obtained
from a convolution, and hence encodes cross-correlation
between a series and a shapelet:

D(zi:i+L, S) =

L∑
l=1

z(i+l−1) · S(l).

Note that here, the higher D(zi:i+L, S), the more similar
the shapelet is to the subseries. We will loosely refer to the
convolution filters of our classifier as Shapelets in the following.

A. XCNN Architecture

Inspired by previous work on adversarial training (e.g. [21]),
in addition to our CNN classifier, we make use of an adversarial
neural network (the discriminator at the top of Figure 2) to
regularize the convolution parameters of our classifier. This

regularization acts as a soft constraint for the classifier to
learn shapelets as similar to real pieces of the training time
series as possible. To obtain the best trade-off between the
discriminative power of the shapelets (i.e. the final classification
performance) and their interpretability, our training procedure
alternates between training the discriminator and the classifier.
The training procedures are explained in the next subsection.

Contrarily to GANs, our adversarial architecture does not
rely on a generator to produce fake samples from a latent space.
XCNN iteratively modifies the shapelets (i.e. the convolution
filters of the classifier) such that they become close to subseries
from the training set. The type of data given as input to the
discriminator is another major difference between a GAN and
XCNN: in a GAN, the discriminator is fed with complete
instances, while in XCNN, the discriminator takes subseries as
input. These subseries can either be shapelets from the classifier
model (denoted as x̃ in Figure 2), portions of training time
series (denoted as x) or interpolations between shapelets and
training time series portions (x̂, see the following section for
more details on those). This process allows the discriminator
to alter the shapelets for better interpretability.

B. Loss Function

As for GANs, our optimization process alternates between
losses attached to the subparts of our model. Here, each training
epoch consists of three main steps that are (i) optimizing the
classifier parameters for correct classification, (ii) optimizing
the discriminator parameters to better distinguish between real
subseries and shapelets and (iii) optimizing shapelets to fool the
discriminator, so that the regularized-shapelets become similar
to a subsequence of time series. Each of these steps is attached
to a loss function that we describe in the following.

Firstly, a multi-class cross entropy loss is used for the
classifier. It is denoted by Lc(θc) where θc is the set of all
classifier parameters. Secondly, our discriminator is trained
using a loss function derived from the Wasserstein GANs with
Gradient Penalty (WGAN-GP) [22]:

Ld(θd) = E
x̃∼PS

[D(x̃)]− E
x∼Px

[D(x)]

+ λ E
x̂∼Px̂

[
(||∇x̂D(x̂)||2 − 1)2

]
where PS is the empirical distribution over the shapelets,

Px is the empirical distribution over the training subseries, and
x̂ = εx + (1 − ε)x̃, where ε is drawn uniformly at random
from the interval [0, 1].

Thirdly, shapelets are updated to fool the discriminator by
optimizing on the loss Lr(θs) where θs ⊂ θc is the set of
shapelet coefficients:

Lr(θs) = − E
x̃∼PS

[D(x̃)] (1)

IV. EXPERIMENTS

In this section, we will detail the training procedure for
XCNN and present both quantitative and qualitative experi-
mental results.
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Fig. 2: Adversarial architecture of our proposed explainable CNN (XCNN).

A. Experimental Setting

1) Competitors: We provide experiments about the quality
(for explanations) of our learned shapelets as well as their
quality for classification. As explained in Section II, our most
relevant competitor is Learning Shapelets (LS) from [6] as it
also describes a shapelet-based model where the shapelets are
learned and where a single model is used for classification. The
quality (for explanations) of the shapelets produced by [3] and
[4] is, by design, perfect since the shapelets are true subpart of
the original series so we do not compare with them but only
with the shapelets learned by [6]. However, we compare our
classification performance to [3], Fast Shapelets [4] and the
recent ELIS [18].

2) Datasets: We use the 85 univariate time series datasets
from the UCR/UEA repository [9] for which most of our
baselines results are already available.1

Note that our CNN-based method may also be suited for
multivariate time series but giving “intuitive” explanations
for multivariate data is far from obvious and we decided to
focus only on univariate ones in this paper. The datasets are
significantly different from one to another, including seven
types of data with various number of instances, lengths, and

1See http://www.timeseriesclassification.com/singleTrainTest.csv for all used
datasets and baseline results.

classes. The splits between training and test sets are provided
in the repository.

3) Architecture details and parameter setting: We have im-
plemented the XCNN model using TensorFlow [23] following
the general architecture illustrated in Fig. 2. The classifier is
composed of one 1D convolution layer with ReLU activation,
followed by a max-pooling layer along the temporal dimension
and a fully connected layer with a soft-max activation. The
shapelets use a Glorot uniform initializer [24] while the other
weights are initialized uniformly (using a fixed range). For
each dataset, three different shapelet lengths are considered,
inspired by the heuristic from [6] but without resorting to hyper-
parameter search: we consider 3 groups of 20× ncl shapelets
of length 0.2T , 0.4T and 0.6T , where ncl is the number of
classes in the dataset and T is the length of the time series at
stake.

The convolution filters of the classifier, i.e. the shapelets,
are given as input to the discriminator which has the same
structure as the classifier, but with shorter convolution filters
(100 filters of size 0.06T , 0.12T and 0.18T ) and a single-
neuron tanh activation instead of the soft-max in the last layer.
For optimization, we use Adam optimizer with a standard
parameterization (α = 10−3, β1 = 0.9 and β2 = 0.999) and
each epoch consists in nc = 15 (resp. nd = 20 and nr =
17) mini-batches of optimization for the classifier loss (resp.

http://www.timeseriesclassification.com/singleTrainTest.csv


discriminator and regularizer losses).
Experimental results are reported in terms of test accuracy

and aggregated over five random initializations. All experiments
are run for 8, 000 training epochs.

B. Qualitative results for explainability

We first illustrate the evolution of a shapelet during the
training process. Then we describe how we compute the
shapelet contributions to the classification of one (or multiple)
example(s) and validate that our adversarial regularization
actually ensures that shapelets are visually similar to the
training data. And finally we show, in three different ways, how
shapelets that look like subseries are better suited to explain
decisions.

We believe that the Euclidean distance is the most under-
standable distance for human eyes so all the figures that show
shapelets and series will be displayed using this distance even
though it is not the one optimized during XCNN training.

1) Evolution of a shapelet during training process: We
illustrate our training process and its impact on a single shapelet
in Figure 3. In this figure, we show the evolution of a given
shapelet for the Wine dataset at epochs 20, 200, 800 and
8,000. One can see from the loss values reported in Figures 3a
and 3d that these correspond to different stages in our learning
process. At epoch 20, the Wasserstein loss is far from the 0
value (Ld = 0 corresponds to a case where the discriminator
cannot distinguish between shapelets and real subseries), and
this indeed corresponds to a shapelet that looks very different
from an actual subseries. As epochs go, both the Wasserstein
loss Ld and the cross-entropy one Lc get closer to 0, leading
to both realistic and discriminative shapelets.

2) Shapelet contributions: The computation of the contri-
bution of a shapelet to a decision is based on GradCAM
(“Gradient-weighted Class Activation Mapping”) [16]. Grad-
CAM is a very popular method used in computer vision to
understand which parts of an original image is used by a trained
neural network to make a particular classification decision. The
“interesting” parts are shown using a heat map on the original
image. We recall that in a convolutional neural network, a
feature map is the output of a particular layer of neurons. It
somehow (ignoring the activation function) shows the response
of a given convolution filter to the output of the previous layer.
GradCAM computes the feature importance αc

k of the feature
map Ak on the classification decision c. This is computed after
the final pooling layer which transforms all spatial positions
(for images) Ak

ij of the kth feature map to a single value
F k. The filter importance weight αc

k, for a given input image
(omitted for conciseness), is calculated with: αc

k = ∂yc

∂Fk where
yc is the output of the network for class c.

Compared to the image classifiers used in [16], in our time
series classification problem (1-dimensional) we are interested
in both the positive and negative contributions of each
learned shapelet on the classification of the (set of) series
(whereas in [16] only the positive contributions matter). Those
contributions are defined for a trained network and a given

time series Zi (implicitly present in the partial derivatives) as:
pk(Zi) = ReLU

(
∂yc

∂Fk

)
and nk(Zi) = −ReLU

(
− ∂yc

∂Fk

)
As F k is obtained from a global max pooling (F k =

maxtA
k
t ), each shapelet contribution can be associated to

a timestamp t = argmaxt′ A
k
t′ , allowing us to localize

the contribution. To produce a heat map with the positive
contributions, we follow the same principle as in [16]:
Lmask(Zi) =

∑
k pk(Zi)Ãk(Zi). where Ãk is a vector of all

zeros but at position t = argmaxt′ A
k
t′ (where Ak

t is stored).
To obtain the global positive contribution of a shapelet k

given a set of n time series examples, we compute

gpk =
1

n

n∑
i=1

pk(Zi). (2)

The shapelets shown in Fig. 4 are the 3 most contributing
shapelets, according to this global criterion. In Fig. 4, the
shapelets learned by XCNN seem visually closer to the time
series than the shapelets learned by LS. We then computed the
average L2 between a shapelet and a subpart of a time series
over all the shapelets learned by XCNN and by LS for a given
dataset, computed at the best matching point of the closest
time series in the dataset (also in terms of L2). The results
are given in Fig. 5. This scatter-plot shows that, even if the
optimized distance between the shapelets and the input series
in the neural network is not the L2 one (it is the dot product),
our adversarial regularization allows XCNN to obtain closer
(in terms of L2) shapelets than LS which are deemed more
suited for explanations.

3) Gradient-based explanations with XCNN shapelets: Since
we use a neural network classifier, we could directly benefit
from the standard gradient-based explanations, as also discussed
in [25], to show what parts of a given time series example is
important for the classifier to take its classification decision.
These explanations would also be the ones produced by post-
hoc methods such as LIME [13]. For lack of space, we do not
show examples of such explanations but the interested reader
can find many examples in [25] or in [20].

These, nowadays standard, gradient-based explanations are
interesting but do not show the inner working of the classifier
and, in particular, the reason why some parts of the input
series were particularly useful for the classification. We believe
that our ability, with XCNN, to show the shapelets that were
learned and used to make the classification gives a different
type of information than the gradient-based one. To illustrate
this, we overlay in Fig. 6 and 7 the three most positively (resp.
negatively on the right) contributing shapelets on the time
series at their best matching location (using L2 distance), with
number of total positively and negatively shapelets noted in
the captions. Note that on the left side, the horizontal axis
gives the length of the series (in black) while on the right, it
gives the length of the shapelets which is at most 60% of the
length of the series. We do not show the original series for the
negative shapelets since, by definition, they are very far from
the original series. In Fig. 7 there is no negative shapelet used
to discriminate the series of this dataset. This is due to the fact
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Fig. 3: Illustration of the evolution of a shapelet during training (for the Wine dataset).

Fig. 4: Three most discriminative shapelets obtained for the
datasets Beef, ECG200, GunPoint, Herring, OliveOil (rows 1
to 5, resp.) using (left column) LS or (right column) XCNN.
The average discriminative power of the shapelets is evaluated
using Eq. 2 and each shapelet is superimposed over its best
matching time series in the test set.

that the series for all the classes are very similar except for
very small changes in the slope of the bump or in the size of
the plateau at the top of the bump. These small changes can
be captured by the positive shapelets but many of them are
used to succeed in discriminating the classes.

We can also use our method to show the shapelets that
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Fig. 5: Average over all the shapelets learned by XCNN and by
LS for a given dataset, of the L2 distances between a shapelet
and a subpart of a time series at the best matching point of
the closest time series in the dataset.

most contribute to the classification of all examples of a given
class. This is useful when one wants to understand the class
characteristics. The global relative positive contribution of one
shapelet considering all series from a given class is:

rpk(c) = ReLU

 1

N c

Nc∑
i=1

pck(Zi)−
1

ncl − 1

ncl−1∑
j=1
j 6=c

pjk(Zi)




where N c is the number of examples in class c, and ncl is the
total number of classes in the dataset. One can compute rnk(c)
similarly by replacing pjk with njk. The time series shown in
black in Fig. 8 and 9 is the average over all examples of a given
class. With these figures, we can draw similar conclusions as
the previous ones but for an entire class.

C. Quantitative Results

XCNN is able to learn, by design, shapelets that are
discriminative and suited for explanations. We want to quantify
if this is achieved at the expense of classification accuracy
and/or computation time. Our goal is to be much faster
than exhaustive shapelet search methods (our baseline is



Fig. 6: Three most positively (left) and negatively (right)
contributing shapelets for a random series (in black) of some
of the classes (class 0, 1, 2, resp.) of the Car test set. Note
that there were different positive and negative for different
series, e.g. there were in total 92 positive shapelets used for
the decision of the first test series and 148 negative ones.

Fig. 7: Three most positively (left) and negatively (right)
contributing shapelets for a random series (in black) of some
of the classes (class 0, 1, 2, resp.) of the DiatomSizeReduction
test set. Note that there were different positive and negative for
different series, e.g. there were in total 240 positive shapelets
used for the decision of the first test series and 0 negative ones.

Shapelets [3]), much more accurate than very fast random
shapelet selection-based methods (our baseline is FS [4]) and as
accurate and as fast as single model shapelet learning methods
(our baselines are LS [6] and ELIS [18]).

1) Accuracy: We analyze the accuracies obtained by FS,
LS, ELIS and our XCNN method on the 85 datasets using
scatter plots. We compare FS versus XCNN in Fig. 10, LS
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Fig. 8: Three most positively (left) and negatively (right)
globally contributing shapelets for some of the classes (class
0, 1, 3, resp.) of the Car test set.
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Fig. 9: Three most positively (left) and negatively (right)
globally contributing shapelets for some of the classes (class
0, 1, 2, resp.) of the DiatomSizeReduction test set.

versus XCNN in Fig. 11 and ELIS versus XCNN in Fig. 12.
We also show how a simple CNN (without the adversarial
regularization) compares against LS in Fig. 13. We indicate
the number of win/tie/loss for our method and we provide
a Wilcoxon significance test [26] with the resulting p-value
(> 0.01: none of the two methods is significantly better
than the other). The points on the diagonal are datasets for
which the accuracy is identical for both competitors. Fig. 10
shows that, as expected, our method yields significantly better
performance than FS. It gives similar results (not significantly
better nor worse on average) than ELIS for 52 datasets for
which ELIS terminated in 48 hours. However for 33 datasets
ELIS took more than 48 hours to complete. Compared to
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Fig. 10: Accuracy comparison between Fast Shapelets (FS)
and XCNN on 85 datasets (each point is a dataset) of the
UCR/UEA repository [9].
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Fig. 11: Accuracy comparison between Learning Shapelets
(LS) and XCNN on 85 datasets (each point is a dataset) of the
UCR/UEA repository [9].

LS, for most datasets, the difference in accuracy is low,
with a small edge (significant) for LS. On three datasets
(namely HandOutlines, NonInvasiveFetalECGThorax1 and
OliveOil), our XCNN method and its regularization seems
to be strongly positive (and detrimental on one dataset), in
terms of generalization. A simple CNN that would correspond
to the classifier of our XCNN alone seems to give slightly better
(non significant) results than LS (and thus than our XCNN).
This means that our backbone neural network architecture is
a good candidate to jointly learn interpretable shapelets and
classify time series with little loss on accuracy.

TABLE I: Complexity of four different shapelet-based TSC
algorithms (Shapelet [3], FS [4], LS [6] and XCNN). n is the
number of examples in the training set, T is the average length
of the time series, nshap is the number of selected shapelets (if
set a priori), and ncl is the number of classes.

Shapelet FS LS and XCNN (per epoch)
O(n2 · T 4) O(n · T 2) O(n · (T 2nshap + nshap · ncl))

2) Training Time: We provide a theoretical complexity study
(see Table I) of all the baselines and of our XCNN method. Our
method is based on a classifier and a discriminator, and both
of them are simple CNNs. So the complexity of our algorithm
(O(n · (T 2nshap + nshap · ncl))) is related to training a CNN
and should depend mainly on the number of examples (n),
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Fig. 12: Accuracy comparison between ELIS and XCNN on
85 of the UCR/UEA [9] datasets.

0.00 0.25 0.50 0.75 1.00
Accuracy for CNN

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy
fo

r
L

S

win: 42
tie: 5
loss: 38
p-value:3.60e-01

Fig. 13: Accuracy comparison between Learning Shapelets
(LS) and a simple CNN on 85 of the UCR/UEA [9] datasets.

the average length of the time series (T ), and the number of
classes (ncl), since the latter is used to decide the number of
shapelets to be learned. Note that for both LS and XCNN,
the provided complexity is the one for a single iteration of
the algorithm since the number of iterations required for such
algorithms to converge is highly data dependent.

To have a better grasp on the actual training time of all meth-
ods, we ran the methods on a single dataset (ElectricDevices)
and recorded the CPU time. The experiments were conducted
on a Debian Cluster using Intel(R) Xeon(R) CPU E5-2650 v4
Processor (12 core 2.20 GHz CPU) with 32GB memory. The
results are averaged over five runs. The implementation code
of our baselines is taken from [2] (as for the accuracy results).
As expected, the original Shapelet [3] method does not finish
in 48 hours for this medium size dataset. FS finishes in 12.1
minutes, LS finishes in 2323 minutes, and our method takes
142 minutes. The theoretical complexity of LS and XCNN is
identical so these results were surprising. We suspected that the
JAVA implementation of LS was not well optimized and we
used the implementation of LS method from tslearn [27] using
Keras2 with TensorFlow as backend. With this implementation,
the training phase took only 71 minutes for LS on this dataset
(compared to 142 for XCNN) which shows that the time
difference between the two algorithms is mainly related to
the implementation (and the hyper-parameters related to the

2https://keras.io/

https://keras.io/


number of epochs).

V. CONCLUSION

We have presented a new shapelet-based time series clas-
sification method that produces shapelets that are, by design,
better suited to explain decisions. The method is based on a
novel adversarial architecture where one convolutional neural
network is used to classify the series and another one is used
to constrain the first network to learn both discriminative but
also meaningful shapelets. Our results show that the expected
trade-off between accuracy and interpretability is satisfactory:
our classification results are comparable with similar state-of-
the-art methods but with shapelets that can be used in many
different way to explain the decisions.

In future work, we would like to first investigate the use
of an additional regularization term to be able to determine
automatically a minimal set of necessary shapelets. We also
want to use our regularization on other types of data (such as
multivariate time series, spatial data, graphs) and in a deep(er)
CNN. Furthermore, we would like to adapt our approach to
explain anomaly detections using neural network architectures
such as convolutional auto-encoders or generative networks.
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