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Differentiable simulation for physical system
identification
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Abstract—Simulating frictional contacts remains a challeng-
ing research topic in robotics. Recently, differentiable physics
emerged and has proven to be a key element in model-based Re-
inforcement Learning (RL) and optimal control fields. However,
most of the current formulations deploy coarse approximations of
the underlying physical principles. Indeed, the classic simulators
loose precision by casting the Nonlinear Complementarity Prob-
lem (NCP) of frictional contact into a Linear Complementarity
Problem (LCP) to simplify computations. Moreover, such meth-
ods deploy non-smooth operations and cannot be automatically
differentiated. In this paper, we propose (i) an extension of the
staggered projections algorithm for more accurate solutions of
the problem of contacts with friction. Based on this formulation,
we introduce (ii) a differentiable simulator and an efficient way
to compute the analytical derivatives of the involved optimization
problems. Finally, (iii) we validate the proposed framework with
a set of experiments to present a possible application of our
differentiable simulator. In particular, using our approach we
demonstrate accurate estimation of friction coefficients and object
masses both in synthetic and real experiments.

Index Terms—Contact Modeling, Simulation and Animation,
Optimization and Optimal Control, Calibration and Identifica-
tion

I. INTRODUCTION

PHYSICAL simulation, as it allows for both training and
testing control policies, appears to be a key element in

robotics. Rigid Body Algorithms [1] provide an efficient way
to compute the forward dynamics of multi-body rigid systems
when there is no frictional contact. It is also possible to
differentiate the quantities simulated with these algorithms
with respect to the state and the control variables of the
system. Using analytical derivatives (instead of Automatic
Differentiation or finite differences) allows for efficient com-
putation [2]. Differentiable physics has proven to be very
useful for gradient-based algorithms for optimal control and
trajectory optimization [3], [4], [5], [6], [7]. However, the case
of simulation with frictional contacts remains a challenging
problem for the control community [8].

In the same vein, simulation of frictional contacts is a crucial
point when training Reinforcement Learning (RL) agents to
achieve complex control tasks involving contact interactions.
Indeed, RL is a powerful tool to learn control policies but often
requires millions of samples generated in simulation, which is
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Fig. 1: Overview of our differentiable simulator. The differ-
entiability of the simulator allows to integrate it into a larger
learning architecture and infer physical parameters such as
friction coefficients µ and mass M of the objects, from real
trajectories of these objects.

the reason why the simulator has to be efficient. Moreover, the
learned policies tend to exploit the artifacts of the simulators
due to approximations of the underlying physics which leads to
unrealistic motions that are difficult to transfer to real systems.
This mismatch between reality and simulation, known as the
reality gap [9], highly limits the ability to transfer simulation-
learnt policies to real robots. Hence, simulators should be both
fast and accurate.

Modeling frictional contacts is one of the most challenging
aspect of physical simulations given the non-linearity and
non-convexity of complementarity constraint and the maxi-
mum dissipation principle. These underlying physical laws
of rigid contact dynamics are typically simplified (spring-
damper [10]), approximated [11] or relaxed [12] in classic
physics engines. These choices aim to increase computational
efficiency but may also result in non-realistic behaviors in
simulation [13].

Simulating a system requires accurate values of its physical
parameters, such as masses and friction coefficients of objects.
Given the difficulty of estimating these parameters, however,
their values are often randomized [14]. As result, such an
approach often leads to the imprecise simulation.

In this paper, we propose an approach that guarantees
the differentiability of the simulator and also avoids error-
prone approximations of complementarity constraints and the
maximum dissipation principle. To this end, we extend the
staggered projections algorithm [15] to deal with the friction
cone constraint. In addition, we use techniques from the
field of sensitivity analysis to differentiate the result of the
simulation with respect to the physical parameters. This allows
us to design a process to infer unknown physical parameters
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of a system that are essential for simulations but complex
to measure in practice (such as friction coefficients), directly
from real data.

The core contributions of this work are as follows:
1) We extend the work in [15] by formulating the fric-

tional contact problem as a sequence of Quadratically
Constrained Quadratic Programming (QCQP) problems
without approximating any of the underlying physics
principles and taking elastic collisions into account.

2) We propose computation of analytical derivatives of the
solution of a QCQP as well as the efficient and robust
implementation of the solver and its derivatives.

3) We demonstrate applications of our differentiable sim-
ulation to system identification by inferring physical
properties of objects from videos of dynamical scenes.

This paper is organized as follows. Section II proposes
an overview of the work done in the area of differentiable
simulation and physical system identification. In III-A, we
introduce the mathematical framework of the problem of
frictional contacts and solve it by extending the staggered
projection algorithm. In III-B, we expose the analytical deriva-
tives of a QCQP which allow us to derive a differentiable and
accurate simulator. In Section IV, we validate our method by
applying it to the task of physical system identification and
discuss the issue of parameter observability. This leads us to
present some future research directions in Section V.

II. RELATED WORK

Physical simulation algorithms. The problem of contacts
without frictions can be formulated as a Linear Comple-
mentarity Problem (LCP) [16] and can be solved for in-
stance using the Projected Gauss-Seidel (PGS) algorithm.
This formulation can be adapted to the frictional case by
approximating the friction cone with a four sided pyramid [17]
as done in Bullet [11] or [8]. The algorithm of staggered
projections [15] introduces a formulation of the frictional
contacts problem as a fix point of coupled projections. By
also using the pyramidal approximation of Coulomb’s law,
this method achieves simulating a system after solving a
cascade of Quadratic Programming (QP) problems. Some
others approaches [18] relax the complementarity constraint in
order to transform the frictional contact problem into a single
and simple optimization one [12]. However, this relaxation
may lead to physically implausible behaviors such as object
interactions without objects being in contact [13]. In this paper,
we extend the formulation in [15] to laws of multiple elastic
collisions [19]. In addition, we adapt it to account for conic
constraints (conic friction constraint represented as ice-cream
cones). This makes it possible to write explicitly the problem
of frictional contact as a sequence of optimization problems,
where the problems become QCQP problems. The use of
intermediate QCQP problems enables us to exploit techniques
from sensitivity analysis to differentiate the solution of the
problem by back-propagating the solution over the cascade of
convex problems.
Differentiable optimization and differentiable physics en-
gine. Given that the solution of the frictional contact problem

is a solution of a sequence of optimization problems, its differ-
entiation requires derivatives of the solution of an optimization
problem with respect to its parameters. In the case of an uncon-
strained optimization problem, a solution introduced in [20]
consists in replacing the argmin operator by an approximation
with an optimization procedure such as gradient descent. In
this case, the number of gradient steps is fixed and each step
represents an operation into the computational graph of the
layer. Then, the gradient descent can be unrolled to compute
the gradient with respect to the parameters of the optimization
problem. However, this technique can lead to large computa-
tional graphs when the number of required gradient steps is
important, increasing the computational cost when performing
the backpropagation. Moreover, it is not possible to proceed
this way when considering a constrained optimization problem
because the optimization procedures often require projection
steps which cannot be differentiated. Thus, implicit argmin
differentiation which relies on the differentiation of optimality
conditions appears to be a way to deal with constrained
problems [21]. Although the implementations of this approach
allows to solve very general constrained optimization problems
and get the derivatives of the solution, they also lose efficiency
in the process. More specialized solvers [22] use an equivalent
implicit approach while taking advantages of the structure of
the problem they are solving to gain efficiency. Simulators like
[8] adapted this solver to be able to solve the LCP problem
resulting from the approximation of the friction cone, to build
a differentiable simulator. Although our work is closely related
to [8], we avoid making any approximation by exploiting our
extension of the formulation from [15] and the chain rule
to differentiate the output of our simulator by differentiating
through a sequence of optimization problems.
Generative physics model for system identification. The
field of system identification [23] intends to build a mathe-
matical model of a dynamical system from its measurements.
The related work [8], [24], [25], [26] identifies parameters
of physical systems using simulators as generative models. In
each case, the identification is done by simulating the physical
system and then optimizing the physical parameters so that
the simulations are fitting to the real scenes. In this work, we
adopt an approach close to [8], by relying on the differentiation
of our physical model to estimate its physical parameters.
However, because we avoid some of the approximations made
in [8], we are able to consider not only 2D but also 3D systems.
This allows us to apply our approach to the concrete task of
inferring physical parameters from videos [24].

III. DIFFERENTIABLE SIMULATION

In this section, we show how the staggered projection algo-
rithm [15] can be adapted to handle both the friction cone and
elastic collisions. Then, we introduce the analytical derivatives
of the QCQP problem appearing in this formulation, and
propose a robust implementation that leads to a differentiable
simulator.

A. Solving the frictional contact problem
Simulating a physical system corresponds to computing

the next system state (qt+1,vt+1) and the current contact
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forces λ, given the initial state (qt,vt) , where q ∈ Rnq

and v ∈ Rnv are the vectors of generalized position and
velocities, nc being the number of contact points1. To compute
these quantities, our method relies on three main physical
laws that we are going to introduce: the Euler-Lagrange
equation of motion, the complementarity constraint between
contact normal accelerations and forces, and the Maximum
Dissipation Principle (MDP) from Coulomb’s law of friction.
From the classical Lagrangian dynamics, we get the following
generalized equations of motion in continuous time for an
unconstrained system:

Ma = τ (q,v)

where M ∈ Rnv×nv is the inertia matrix of the system,
a ∈ Rnv is the generalized acceleration and τ the vector
of generalized forces which contains Coriolis and centrifu-
gal effects, actuation, gravity and external forces. Moreover,
when the dynamical system interacts with other objects, an
additional term JTλ has to be gathered to represent the effect
of contact interaction forces:

Ma = τ (q,v) + JTλ (1)

where J ∈ R3nc×nv is the Jacobian of the contact points and
λ contains both the normal forces and the tangential friction
forces. Following the approach proposed by [15] we consider
separately the normal λt+1

n ∈ Rnc and tangential λt+1
t ∈

R2nc components of λ. We denote by Jn ∈ Rnc×nv and by
Jt ∈ R2nc×nv the projections of J on the normal and tangent
directions of contacts respectively. Thus, after discretizing (1)
with a time step ∆t, we obtain:

M
(
vt+1 − vt

)
= ∆t τ (qt,vt) + JTt λ

t+1
t + JTn λ

t+1
n . (2)

In this paper, we prefer to exploit this velocity-based formu-
lation to be able to deal with discontinuities appearing during
collisions, as we will see later. This is why we will now talk
about impulses instead of forces when evoking the contact
interaction quantity λ.

Integrating the complementary constraint that (i) rigid bod-
ies can not interpenetrate each other while (ii) contact impulses
can act only to separate them when they are in contact, leads
to the complementarity constraint:

0 ≤ Jnvt+1 ⊥ λt+1
n ≥ 0

Considering the law for multiple collision points [19] leads to
the slightly modified constraint2:

0 ≤ Jn
(
vt+1 + εvt

)
⊥ λt+1

n ≥ 0 (3)

where ε is the coefficient of restitution quantifying the elas-
ticity of the impact (when ε = 1 the impact occurs with full
restitution while ε = 0 is a completely inelastic impact).

To model frictional contacts, we adopt Coulomb’s law of
friction. It imposes that the contact impulse λ lies into a cone

1Here, we also considered that the configuration vector and its related
velocity vector may have different dimensions.

2In the same way, Baumgarte’s stabilization can be used to avoid the
point ”drift” issue, with 0 ≤ Jn

(
vt+1 + εvt + vB

)
⊥ λt+1

n ≥ 0 where
JnvB = −Ke and e the penetration error.

whose tightness is determined by the coefficient of friction
µ. At this stage, it is worth noting that µ takes two different
values depending on if the object in contact are static (µstat)
or in relative motion (µkin) and µstat ≥ µkin. This constraint
combined with MDP gives:

λt+1
t = argmax

λt s.t. ‖λt(i)‖2≤µiλ
t+1
n(i)

(
−
(
JTt λt

)T
vt+1

)
(4)

where λn,t(i) corresponds to the contact impulses of the ith

contact point. We note that the MDP (4) actually corresponds
to the dual of the least action principle, which guarantees it
to remain valid even at stiction.

Let A be a convex set, we denote by:

PA(x) = argmin
z∈A

1

2
(x− z)M−1(x− z)

the operator of projection on the set A under the met-
ric induced by the inertia matrix M . We also note re-
spectfully the sets C = {JTn λn, λn ≥ 0} and
F(λn) = {JTt λt, ∀i ‖λt(i)‖2 ≤ µiλn(i)}, the sets of admissi-
ble normal and tangential contact impulses. For the following,
we also note vp ∈ Rnv the contact-free velocity which verifies
M (vp − vt) = ∆t τ (qt,vt).

Finally, (2), (3) and (4) correspond to the three physical
principles we consider to simulate our system and compute
the three unknowns vt+1, λt+1

t and λt+1
n . As demonstrated

in [15], the λt+1
t and λt+1

n solving these three equations
equivalently verify the following staggered projections :

PC(−M
(
vp + εvt

)
− JTt λt+1

t ) = JTn λ
t+1
n

PF (λt+1
n )(−Mv

p − JTn λt+1
n ) = JTt λ

t+1
t

and expanding the PC and PF (λt+1
n ) operators leads to the

interdependant QP and QCQP:

λt+1
n = argmin

λ≥0

1

2
λTGnλ+ λT gn

λt+1
t = argmin

‖λt(i)‖2≤µiλ
t+1
n(i)

1

2
λTGtλ+ λT gt

(5)

where:

Gn = JnM
−1Jn

T , gn = Jn
(
vp + εvt

)
+Gntλ

t+1
t

Gt = JtM
−1Jt

T , gt = Jtv
p +Gnt

Tλt+1
n

with Gnt = JnM
−1JTt . The formulation of (5) naturally

induces a fix point algorithm to solve for λt+1
t and λt+1

n .
Finally, by fixing the number of fix point iterations to nstep
(a convergence analysis similar to [15] finds nstep ∈ [3, 10] to
have reasonable computation time and a precision sufficient
for most of applications) , λt+1

t and λt+1
n can be computed

by solving a sequence of optimization problems alternating
between a QP and a QCQP (at lines 8 and 10 of Algo. 1).
To compute the argmin operation, we avoid classic Primal
Dual Interior Point Method solvers and rely on a regularized
ADMM algorithm. As we detail it in Appendix V-A, this
allows us to solve QCQPs in a way requiring as much as
computation as QPs, but also to deal with over-constrained
situations making the problems (5) ill conditioned while
requiring only tens of iterations to converge.
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Algorithm 1: Extended staggered projection
Input: Initial state, physical parameters and external

forces: vt,M, J, µ, τ (qt,vt)
Output: Next state: vt+1

1 vp ← vt +M−1∆tτ (qt,vt);
2 λt ← λtt;
3 Gn ← JnM

−1JTn ; Gt ← JtM
−1JTt ;

4 Gnt ← JnM
−1JTt ;

5 for i← 0 to nstep do
6 gn ← Jn (vp + εvt) +Gntλt ;
7 λn ← argmin

λ≥0

1
2λ

TGnλ+ λT gn;

8 gt ← Jtv
p +Gnt

Tλn;
9 λt ← argmin

‖λt(i)‖2≤µλn(i)

1
2λ

TGtλ+ λT gt;

10 end
11 λt+1

t ← λt ; λt+1
n ← λn;

12 vt+1 ← vp +M−1
(
JTt λ

t+1
t + JTn λ

t+1
n

)

We can already notice that using the chain rule allows to
differentiate the computed velocity vt+1 and contact impulses
λt+1
t and λt+1

n as long as we know how to differentiate the
successive argmin operators.

B. Differentiating the solution

As explained in III-A, differentiating the outputs vt+1,
λt+1
t , λt+1

n of the simulation requires to compute the deriva-
tives of the solution of the QCQP and QP problems that are
involved in the algorithm 1. Thus, in the same way as it is done
in [22], we implemented the function solving the particular
case of QCQP (we do not detail the QP case as it is already
studied in [22]) appearing during the step of projection onto
F(λn). This function can be written as:

zi+1 = argmin
‖zt(i)‖2≤µ(zi)‖λn(i)(zi)‖2

1

2
zTG(zi)z + g(zi)

T z (6)

where zi is an input variable (µ, J , M , λn, τ , vt in
our case) parameterizing the QCQP and zi+1 ∈ R2nc its
solution. Using the implicit differentiation approach [27], we
implemented the analytical derivatives that allow to compute
∂zi+1

∂zi
which is necessary when performing a backward pass.

The Karush-Kuhn-Tucker optimality conditions of the QCQP
can be written:

Diag(‖zi+1t(i)‖
2
2 − µ2

iλ
2
n(i))γ = 0

Gzi+1 + g + 2Diag (Γγ) zi+1 = 0

where γ ∈ Rnc corresponds to the dual solution associated to
the constraints and where Γ ∈ R2nc×nc :

Γ =



1 0 0 . . . 0
1 0 0 . . . 0
0 1 0 . . . 0
0 1 0 . . . 0
...

. . .
...

0 . . . . . . 0 1
0 . . . . . . 0 1



Then, it is possible to differentiate these equations to get the
following system where the unknowns are the variations of
the primal and dual solutions dzi+1 and dγ:

∆

(
dγ

dzi+1

)
= δ (7)

where:

∆ =

(
∆11 ∆12

∆21 ∆22

)
, δ =

(
δ1dµ+ δ2dλn
−dGzi+1 − dg

)
and:

∆11 = Diag(‖zi+1t(i)‖
2
2 − µ2

iλ
2
n(i)),

∆12 = 2Diag(γ)ΓTDiag(zi+1),

∆21 = 2Diag(zi+1)Γ,

∆22 = G+ 2Diag (Γγ) ,

δ1 = 2Diag(γiµiλ
2
n(i)), δ2 = 2Diag(γiµ

2
iλn(i))

Solving (7) allows to compute the derivatives dzi+1 of the
solution of our QCQP with respect to G, g, µ and λn. It
is important to notice that those derivatives remain true as
long as the matrix ∆ is invertible. For instance, when all
constraints are inactive and G has an high condition number,
it is not possible to invert ∆. In this case we use iterative
refinement as it is introduced in [28], to solve the system.
This allows to solve approximately systems like Ax = b
even when A is ill-conditioned. To do so, we intend to
solve the problem min

x

1
2‖Ax − b‖

2
2, but the solution of this

problem requires to compute the pseudo-inverse of A by
applying a shift to the original problem to regularize it. Instead,
iterative refinement uses an iterative process defined by :
xk+1 = argmin

x

1
2‖Ax− b‖

2
2 + ρ

2‖x− x
k‖22 which converges

to the solution of the least squares problem and only requires
the computation of a regularized pseudo-inverse.

However, in many cases such as in IV-B, we do not want to
compute the variations of the primal and dual variables dzi+1,
dγ but rather the gradient of a loss L formed with zi+1 that
we are minimizing with respect to the parameters zi. As done
in [22], we proceed by directly computing the product with
the previous backward pass vector ∂L

∂zi+1
as follows:

dL =
∂L
∂zi+1

dzi+1

=

(
0(

∂L
∂zi+1

)T)T ( dγ
dzi+1

)

=

(
bγ

bzi+1

)T
δ

where
(

bγ
bzi+1

)
= ∆−T

(
0(

∂L
∂zi+1

)T). Using the expression

of δ, we get:

∂L
∂λn

= δT2 bγ ,
∂L
∂µ

= δT1 bγ ,

∂L
∂g

= −bzi+1
,
∂L
∂G

= −bzi+1
zTi+1
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Fig. 2: Experimental setup to determine the physical properties of the cube. We considered two different scenes : in the first
one, the unknown cube is sliding on the floor, starting with a given initial velocity v0; in the second setup, the same cube
collides with a second cube whose characteristics are known.

Fig. 3: Comparisons of runtime performances between [21]
and ours, on randomly generated QCQPs of the form (6)

.
And finally, the gradient we are interested in ∂L

∂zi
is obtained

with the chain rule:
∂L
∂zi

=
∂L
∂λn

∂λn
∂zi

+
∂L
∂µ

∂µ

∂zi
+
∂L
∂g

∂g

∂zi
+
∂L
∂G

∂G

∂zi
.

Eventually, we observe on Fig. 3, that on our particular
QCQP/QP problems, our solver is efficient and robust during
both the forward and backward passes. Indeed, the regularized
ADMM of V-A and the iterative refinement respectively allow
to solve ill-conditioned problems and compute their deriva-
tives. This point is determinant as it makes it possible to deal
with the case of G only being positive semi-definite, which
is occurring often in robotics when G is Delassus’ matrix for
over-constrained systems. The code of our solver is publicly
available at https://github.com/quentinll/diffqcqp.

IV. EXPERIMENTS

In this section, we show through experiments how the
differentiability of our simulator can be exploited to retrieve
the physical parameters of a system from its trajectories. In
addition, we show that it is possible only under the condition
that the trajectory contains enough information to avoid any
ambiguity, which leads us to some experiments on the ob-
servability issue. A video illustrating our work is available at
https://youtu.be/d248IWMLW9o.

A. Experimental setup

In our experiments, we intend to estimate the physical
parameters of a cube from simulated and real dynamical
scenes. The second part of experiments involves another cube
whose properties were known (Fig. 2).

For our simulator, we used the Pinocchio library [29], [30]
for the implementation of the rigid body algorithms from [1]

and for collisions detection algorithm, and PyTorch [31] for
the implementation of backward Automatic Differentiation.

B. Physical parameters inference from trajectories

To exhibit the new ability of our simulator we will consider
the scenario of an object interacting with the floor (a cube
sliding on the floor but it could be a more complicated scenario
like a walking robot), where every parameters (the inertias
M , external forces τ ) are known except for the coefficient
of kinetic friction µkin of the object with the floor (we could
do the same with others parameters). We will also consider
that we dispose of a trajectory (x0, x1, . . . , xT ) of this object
interacting with the floor, where x = (q,v,a). Here, we
cover two cases: either (i) x is generated in simulation so
we know precisely the ground truth parameters of the system
(Fig. 4a,4b,5,6), or (ii) the trajectory x is extracted with a
pose estimation algorithm from videos of real experiments
(Fig. 4c). It is worth noting that the simulated trajectories were
generated with an algorithm (PGS-NCP from [13]) and a time
step different from the ones of the differentiable simulator used
for the inference, and that we also added white noise (variance
of 10−3m) to make sure that results from simulations do not
depend on the way trajectories are simulated.

We note the ”simulator function” gµ : xt 7→ x̂t+1 whose
computational graph corresponds to the Algorithm 1 and
whose only unknown parameter is µ. Then, we can defined
the MSE loss:

L(µ) =

T∑
t=1

‖xt − x̂t‖22 =

T∑
t=1

‖xt − gµ(xt−1)‖22

which is the sum of the errors made by the simulator at
each time step. Using the differentiability of the ”simulator
function” gµ with respect to µ, it is possible to compute ∇µL
by backpropagating the loss using the Automatic Differenti-
ation tool of PyTorch [31], as illustrated on Fig. 1. Then, we
minimize L with respect to µ using Adam algorithm [32] .

https://github.com/quentinll/diffqcqp
https://youtu.be/d248IWMLW9o
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(a) (b) (c)

Fig. 4: Results of the inference process of physical parameters from simulated (Fig. 4a,4b) or real (Fig. 4c) trajectories. When
the inference is done from simulated trajectories, our method always converges to the ground truth value. When trajectories
come from real experiments (Fig. 4c), the ground truth value of µkin is not available but we observe that our system converges
to µkin = 0.13 for every initialization and this value is consistent with the tables [33] and the coefficient of static friction we
measured µstat = 0.18.

(a) (b)

Fig. 5: Limitations of simulators approximating the friction
cone with a pyramid [8],[11],[24],[26]. On Fig. 5a, the darker
pyramid corresponds to the worst case, when the pyramid
is rotated with an angle π/4 with respect to the contact
velocity. As predicted, Fig. 5b shows that the inferred value
µest1

kin converges towards 0.141 = µkin/
√

2.

Proceeding this way allows to retrieve the coefficient of
kinetic friction µkin from both simulated (Fig. 4a) or real
(Fig. 4c) trajectories when all others parameters are known.
The same method makes it possible to also infer the mass of
the cube M (Fig. 4b) or any other physical parameter (external
forces, initial state, etc).

Moreover, Fig. 5 demonstrates why our choice of modeling
the friction as an ice-cream cone (instead of a pyramid) is
determinant to ensure the success of the inference. Indeed,
when such a pyramidal approximation is made, the value of
µest

kin depends on the choice of orientation between the axes
of the pyramid and the contact point velocity, as illustrated
by Fig. 5a. Thus in 3D, because pyramidal cones are not
isotropic, a same friction coefficient value may lead to two
different simulated trajectories when using formulations based
on this kind of approximation [8],[11],[24],[26]. Similarly, in
the context of friction estimation, the same observed motion
may then lead to two different friction values depending on the
orientation of the frictional pyramid (Fig. 5a,5b). This effect
could be limited by approximating the cone by a polyhedron

with more faces, which also comes at the cost of a larger
computational time.

C. Parameters observability

In the context of inferring several physical
parameters at the same time, we aim at minimizing
L(µ,M, ε) =

∑T
t=1 ‖xt − gµ,M,ε(x

t−1)‖22. When optimizing
the model parameters, our approach would allow to get
one of the possible combinations of parameters (in the
sense that several combinations of parameters may lead to
the observed trajectories), but it may not be the true one.
This limitation directly comes from the observability of the
physical parameters. In the same way, for instance, it would
be impossible to infer the friction coefficient of the cube with
the floor if there was no contact between the cube and the
floor in the given trajectory because, in this case, any value
of µkin would be possible. Thus, the trajectory given for
the inference process needs to make the desired parameters
observable by excluding others possible values. This leads to
other very interesting questions: How to generate a trajectory
that allows to expose some particular properties of the
system? Is it possible to infer physical characteristics of an
object using information only coming from trajectories?

This last question refers to the case where the number of pa-
rameters we try to infer becomes important (which can happen
when inferring shapes for instance) and leads to ambiguities
that would require adding visual or material information to
be solved. However, in this work, we only address the first
question. We show that using more complex trajectories where
the object whose characteristics are unknown is interacting
with other known objects allows to avoid some of the possible
ambiguities. We proceed by using a setup similar to the
previous, except that the unknown cube collides with a known
one during the experiment. We observe on Fig. 6 that this
enables us to infer the mass of the cube M , together with
its friction coefficient µ and the elasticity parameter ε at the
same time. Although the collision introduce a new parameter
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(a) (b) (c)

Fig. 6: The collision with an object, whose physical characteristics are known, allows to solve the ambiguity and retrieve the
true parameters µ and M simultaneously, which was not possible previously. In the same time, we are also able to find the
value of the coefficient of restitution involved in the collision.

ε, it does not make the parameters harder to observe because
ε can be determined independently using ε = −v+rel/v

−
rel.

D. Limitations of the approach

Even if they were not apparent during the previous exper-
iments, we noticed two limitations to our framework that are
inherent to the staggered projections algorithm [15]. Indeed,
as shown in [15], the algorithm is not monotone, thus, it does
not have theoretical convergence guarantees. Demonstrating
possible guarantees for the staggered projections algorithm
would be an interesting work to be done. In addition, our
approach also requires to solve a cascade of optimization
problems at each step which is why it is accurate, but it
can also appear costly compared to algorithms linearizing the
friction cone and solving only one LCP.

V. DISCUSSION AND FUTURE WORK

In this work, we extended the formulation proposed by
Kaufman et al. of the frictional contact problem that allows
to write the contact impulses as a solution of a sequence
of convex optimization problems. Then we introduced the
analytical derivatives of the various optimization problems that
are involved in this formulation, and, proposed a simple but
efficient implementation for these solvers and their analytical
derivatives. We showed experimentally that our approach is
able to infer physical parameters directly from videos of
the evolution of interacting rigid body systems. Our exper-
iments also allowed to demonstrate the importance of the
observability issue when addressing this kind of a task. More
generally, we believe that the efficiency and robustness of
our differentiable simulator can lead to concrete applications
involving real physical scenes and large amount of data, in
particular in the context of robotic dexterous manipulation.

In future work, we intend to extend our framework to also
include the inference of the position of contact points and the
shape of objects directly from videos. Learning these quantities
can require the introduction of many additional parameters, so
we expect the observability issue to be central. In the present
work, we only used videos to retrieve objects’ trajectories, and

we can expect that using additional advanced computer vision
algorithms will provide precious information to solve this is-
sue. Finally, exploiting the differentiable dynamics introduced
in this paper in the frame of model-based control approaches
(e.g. optimal control or model-based reinforcement learning)
appears as another exciting research direction.
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APPENDIX

A. Projecting on the set of frictional impulses with ADMM

In order to improve the performances of our extension of the
staggered projections algorithm we implemented with PyTorch
[31] a solver for the specific QCQP problem appearing during
the projection step on F(λn). To solve this problem we used the
ADMM algorithm from [34]. The problem can be re-written:

min
x,z

f(x) + g(z) s.t. x = z

where f(x) = 1
2x

TPx + qTx and g(z) = IC(z), with IC
the characteristic function of C = {z, ∀i ‖zt(i)‖2 ≤ µiλn(i)}.
Thus, the ADMM algorithm can be written:

xk+1 = argmin
x

Lρ(x, zk, yk)

zk+1 = argmin
z

Lρ(xk+1, z, yk)

yk+1 = yk + ρ(xk+1 − zk+1)

where y is the dual variable of the problem and Lρ(x, z, y) =
f(x) + g(z) + yT (x− z) + ρ

2 ||x− z||
2
2 is the associated aug-

mented Lagrangian. We also chose to add the term α
2 ||x−x

k||22
to the objective function f , which corresponds to a proximal
regularization. Indeed, this term modifies P̃ = P + α Id and
q̃k = q − αxk. This regularization of P allows to handle
ill-conditioned cases. In addition, it also induces that the
smallest eigenvalue of P̃ is equal to α, and, using the work
from [35], we can automatically scale the parameter ρ of the
augmented Lagrangian, with ρ =

√
L α

(
L
α

)0.4
where L is the

biggest eigenvalue of P . Moreover, we observe that the step
zk+1 = argmin

z
Lρ(xk+1, z, yk) can be seen as a projection

step on the convex set C. We adapt ρ during the optimization,
in the way proposed by [34]. That way, when the ratio between
the primal and dual residual is over a threshold (we fixed it to
10), we correspondingly adapt ρ by multiplying or dividing by
the conditioning number

(
L
α

)0.1
. Due to this automatic scaling

of ρ, the ADMM algorithm allows to solve the QCQP problem
in a very efficient way and stable way for a large class of
rigid body systems. Because the dual variable of the problem
is computed iteratively, another advantage of the ADMM
algorithm is that it induces a natural optimality criterion which
is the verification of the KKT optimality conditions on the
gradient of the Lagrangian ‖Px+ q + y‖∞ < ε.

http://pybullet.org

	Introduction
	Related Work
	Differentiable Simulation
	Solving the frictional contact problem
	Differentiating the solution

	Experiments
	Experimental setup
	Physical parameters inference from trajectories
	Parameters observability
	Limitations of the approach

	Discussion and Future Work
	References
	Projecting on the set of frictional impulses with ADMM


