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Abstract

Data-driven surveys show that drivers do not always choose the shortest-path for their travels. The ideas of bounded
rationality have been used to model this behavior, and relax the main assumption of travel time minimization of the
User Equilibrium principle. In this paper, we propose an extension of an existing dynamic traffic assignment frame-
work, for aggregated traffic models based on the Macroscopic Fundamental Diagram and regional networks, that
extends the principle of the User Equilibrium to account for bounded rational drivers. We focus on drivers with indif-
ferent preferences, and with preferences for more reliable travel times. The network equilibrium is calculated through
Monte Carlo simulations and the classical Method of Successive Averages. We first investigate how the drivers’ pref-
erences for reliable travel times influences the traffic dynamics in the regional network. We then discuss a potential
application example of the proposed methodological framework for estimating the emissions of Carbon Dioxide CO2
and Monoxide NOx at the network level. The results shed light on the importance of properly accounting for more
realistic drivers’ behavior for estimating emissions. The main contributions of this study lie on the edge between the
disciplines of traffic flow theory and network modeling, with a great potential of application for practitioners to assess
traffic emissions on large metropolitan areas.

Keywords: regional dynamic traffic assignment, Macroscopic Fundamental Diagram, bounded rational drivers, value
of reliability, emissions

Highlights1

• We propose an extension of a Regional Dynamic Traffic Assignment model that accounts for bounded rational2

drivers.3

• We consider drivers with indifferent preferences and preferences for reliable travel times.4

• Monte Carlo simulations are used to account for uncertainty on the trip lengths and traffic dynamics in the5

regions.6

• We show that the Value of Reliability has a significant influence on the traffic dynamics during the congested7

periods.8

• We show that the total concentrations of CO2 and NOx increase as the Value of Reliability also does.9

1. Introduction10

The aggregated traffic models attracted more interest from the traffic flow theory community after the works of11

Daganzo (2007) and Geroliminis and Daganzo (2008). For this kind of traffic models, the city network depicted in12
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Figure 1: (a) City network. (b) Partition of the city network. (c) Regional network.

Figure 1 (a) is partitioned into regions (Figure 1 (b)), where the traffic conditions are approximately homogeneous. The13

partitioning can be done using any of the approaches discussed in the literature (e.g. Saeedmanesh and Geroliminis,14

2016; Lopez et al., 2017; Saeedmanesh and Geroliminis, 2017; Casadei et al., 2018; Ambühl et al., 2019). Let X15

be the set of regions. In each region, the traffic conditions are governed by a Macroscopic Fundamental Diagram16

(MFD). The MFD is a relationship between the average circulating flow of vehicles qr ([veh/s]) and the accumulation17

nr ([veh]) in a given region r. The evolution of the traffic dynamics, nr, depends on the balance between the inflow18

Qin,r(t) and outflow Qout,r(t), for each region r ∈ X:19

dnr(t)
dt
= Qin,r(t) − Qout,r(t), t > 0 (1)

In the literature, one can distinguish between two MFD-based models. The accumulation-based model (Daganzo,20

2007; Geroliminis and Daganzo, 2008) assumes that the vehicles outflow of a given region r is proportional to an21

average travel distance Lr common to all vehicles traveling in that region, i.e. Qout,r(t) =
Pr(nr(t))

Lr
where Pr(nr(t)) is22

the production-MFD. In the case of the trip-based model (Arnott, 2013; Fosgerau, 2015; Lamotte and Geroliminis,23

2016; Mariotte et al., 2017; Leclercq et al., 2017; Mariotte and Leclercq, 2019; Vickrey, 2020), the inflow Qin,r(t)24

and outflow Qout,r(t) are determined by noting that the travel distance L of a vehicle entering a given region r, at time25

t − T (t) satisfies: L =
∫ t

t−T (t)
Pr(nr(s))

nr(s) ds. We refer the reader to Mariotte et al. (2017) for more details about theoretical26

background of these two MFD models, as well as their implementation details.27

The partition of the city network, depicted in Figure 1 (b), allows to define the regional network (Figure 1 (c)),28

where routing options are defined. Scaling-up a city into a simpler regional network brings several challenges for29

dynamic traffic assignment and network loading (Yildirimoglu and Geroliminis, 2014; Batista and Leclercq, 2019a,b).30

The main reason is related with the definition of paths in the regional network. Figure 2 (a) depicts an example of31

three trips in the city network. We observe that these three trips cross a different sequences of regions, following the32

definition of the city network partitioning. This ordered sequence of crossed regions from the Origin to the Destination33

region is called regional path. Figure 2 (b) shows the two regional paths associated to the three trips. One can also34

observe that both the green and blue trips have different travel distances inside each region they cross. This defines35

trip length distributions for each regional path inside each region, contrarily to the links in the city network that have36

a fixed physical length. Another important aspect is the correlation between regional paths. The correlation dictates37

the sharing of information between paths and how the path choices of drivers affect each other. Figure 2 (c) zooms38

the grey region, where the blue and green regional paths are correlated due to the MFD assumption of homogeneous39

traffic conditions. Inside the grey region, all vehicles travel at the same average speed given by the MFD, independent40

of their regional path. One vehicle that enters the grey region and travels on the blue regional path will reduce the41

mean speed of all vehicles traveling on this region due to the MFD assumption of homogeneous speed.42
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Figure 2: (a) Trips in the city network. (b) Regional paths. (c) Zoom in the grey region.

Up to now, the question of dynamic traffic assignment on regional networks has received little attention in the43

literature. Yildirimoglu and Geroliminis (2014) are certainly the first that tried to address this question. Their frame-44

work is based on the Multinomial Logit model, and therefore does not capture the correlation between regional paths.45

The trip lengths are also implicitly calculated. Batista and Leclercq (2019b) discuss a regional dynamic traffic assign-46

ment framework for MFD traffic models based on the simple User Equilibrium description, but incorporates explicitly47

calculated trip length distributions as well as the evolution of the regional mean speeds. The authors show that the48

variability of trips lengths cannot be neglected in the calculation of the regional network equilibrium. The correla-49

tion between regional paths can be accounted for through the variability of the regional mean speeds in the dynamic50

network loading.51

Data surveys (e.g. Zhu and Levinson, 2015) show that drivers do not always choose path with the minimal travel52

times. In this paper, we propose to extend the principle of the User Equilibrium to account for bounded rational drivers53

when calculating the regional network equilibrium. We focus on the regional dynamic traffic assignment framework54

designed by Batista and Leclercq (2019b), and extend it to consider bounded rational drivers with indifferent prefer-55

ences (Mahmassani and Chang, 1987; Di and Liu, 2016; Batista et al., 2018) and bounded rational drivers that have56

preferences for more reliable travel times. We first investigate how the drivers’ preferences for travel times reliability57

influences the traffic dynamics in the regions. We then discuss a potential application example of this R-DTA frame-58

work for estimating the emissions of Carbon Dioxide CO2 and Monoxide NOx at the regional level. In this matter,59

we investigate how the different preferences of bounded rational drivers affect the emissions of CO2 and NOx. The60

multidisciplinarity of this paper lies on the edge between two distinct disciplines on traffic and network modeling,61

i.e. on one side traffic flow theory and on the other econometric/random utility and bounded rationality theories. This62

paper also shows the great potential of the proposed methodology for assessing traffic emissions in large urban areas.63

The remainder of the paper is organized as follows. In Sect. 2, we do a literature review of traffic assignment64

models in city networks. In Sect. 3, we describe the methodological framework and introduce the proposed extensions65

to the R-DTA. In Sect. 4, we discuss the influence of the drivers’ indifferent preferences and preferences for more66

reliable travel times on the traffic dynamics in the regions and on the emissions of CO2 and NOx at the regional level.67

In Sect. 5, we outline the conclusions of this paper. In Sect. 6, we provide a general and critical evaluation of the68

proposed methodological framework, stressing its main advantages and limitations with respect to other approaches69

in the literature.70

2. Dynamic traffic assignment on city networks: a literature review71

The initial ideas of traffic assignment date back to the work of Knight (1924). The goal of traffic assignment72

models is to reproduce the travel patterns in a city network. These models require:73

• the definition of the trip choice set Ωod, for each origin-destination (od) pair of the set Ξ of all od pairs in the74

city network.75
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• the specification of the utility function Uod
k for trip k that connects the od pair.76

The first step of traffic assignment models consists in identifying the trip set Ωod,∀(o, d) ∈ Ξ. It is composed by77

trips in the city network that drivers consider for their travels. Note that, trips in the city network are represented78

by a sequence of links that have a fixed physical length. Several authors propose different models and approaches to79

determine Ωod, such as the constrained k-shortest paths (van der Zijpp and Catalano, 2005), the link penalty (de la80

Barra et al., 1993), the link elimination (Azevedo et al., 1993), the labeling approach (Ben-Akiva et al., 1984), the81

branch-and-bound algorithm (Prato and Bekhor, 2006), the simulation approach (Nielsen, 2000; Nielsen et al., 2002),82

the sampling of trips (Frejinger et al., 2009; Flötteröd and Bierlaire, 2013) or a dynamic setting of a link-choice based83

model (Dial, 1971; Fosgerau, 2013).84

The next step is related with the setting of the utility function Uod
k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ. In general, drivers85

evaluate their trips choices by balancing the trip monetary cost TCod
k and the perceived travel time TT od

k :86

Uod
k = TCod

k + β
odTT od

k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (2)

where βod is the Value of Time (VOT) (e.g. Zhang et al., 2013), that is the marginal cost between the trip monetary87

cost and its travel time. The monetary costs can be associated with tolls or public transport tickets, to name a few88

examples.89

The first ideas of traffic assignment and network equilibrium were introduced by the two principles of Wardrop90

(1952). The principle of the User Equilibrium or Deterministic User Equilibrium (DUE) assumes that drivers are91

selfish and foresee to minimize their own travel times, i.e. drivers have a perfect rationality. In this case, they perceive92

the exact travel times. But, traffic conditions change over time, originating congestion patterns in the city network that93

are difficult to predict. This induces uncertainty in the trips travel times. We then rewrite the perceived utility of trip94

k, Uod
k , to include the uncertainty term ϵod

k as:95

Uod
k = TT

od
k + ϵ

od
k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (3)

where TT
od
k is the average travel time for trip k; and ϵod

k is the uncertainty term or, as often referred to in the literature,96

the error term. In this case, the city network equilibrium corresponds to the Stochastic User Equilibrium (SUE)97

(Daganzo and Sheffi, 1977; Daganzo, 1982). Random Utility theory (McFadden, 1978) is usually used to incorporate98

ϵod
k in the modeling of drivers trip choices. One can distinguish between two main groups of Random Utility models99

applied to traffic assignment: the group of the Logit models (Chen et al., 2012; Cascetta et al., 1996; Ben-Akiva100

and Bierlaire, 1999; Bovy et al., 2008; Prashker and Bekhor, 2000; Bekhor and Prashker, 2001; Prashker and Bekhor,101

1998); and the group of the Probit model (Daganzo and Sheffi, 1977). The latter model is only used in few applications102

in the literature. The main reason is because this model requires the integration of a multi-normal variate distribution103

over the number of trips connecting the od pair, requiring a large computational cost. One solution is to solve these104

integrals through Monte Carlo simulations (Sheffi, 1985). For this, one has to discretize the trip travel times into105

several realizations or draws and locally solve deterministic assignment problems. The final choices correspond to the106

average of all local choices.107

The previous definitions of the network equilibria have been extended in two directions to incorporate different108

kinds of drivers’ behavior as well as heterogeneous drivers. We first focus on the relevant literature that discusses109

extensions of traffic assignment models for different kinds of drivers’ behavior. The utility minimizers assumption of110

the User Equilibrium is then relaxed to account for bounded rational drivers. The concept of bounded rationality was111

introduced to the economic field by Simon (1957, 1966, 1990, 1991). These ideas were later adapted to the context of112

traffic assignment by Mahmassani and Chang (1987), Di et al. (2013, 2014) and Di and Liu (2016). Drivers choose113

any trip(s) of which the perceived utility Uod
k is/are inferior to a pre-defined threshold called the Aspiration Level114

ALod, i.e. Uod
k ≤ ALod,∀(o, d) ∈ Ξ. This behavior is coined as satisficing, which results from the concatenation of115

the words suffice and satisfy. By other words, the driver(s) is/are satisfied if the travel time of their chosen trip(s)116

is inferior to the ALod. The Aspiration Level ALod is calculated through the definition of the indifference band ∆od
117

(Mahmassani and Chang, 1987):118

ALod = min(V⃗)(1 + ∆od),∀(o, d) ∈ Ξ (4)
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where V⃗ is the vector containing all average travel times of all regional paths listed in Ωod. The question now is how119

drivers are assigned to the satisficing trips. Batista et al. (2018) assigned drivers to satisficing trips based on indifferent120

and strict preferences. In this paper, we target bounded rational drivers with indifference preferences (Batista et al.,121

2018). In this case, the demand of each od pair is equally split over all satisficing trips. Other studies focused on122

regret-averse drivers (Chorus, 2012a,b, 2014; Li and Huang, 2016), where they aim to minimize their own regret in123

relation to the unselected trips. Kazagli et al. (2016) presented an innovative methodological framework where traffic124

is assigned according to mental representations (MRIs) of drivers.125

We now focus on the relevant literature that discusses the extensions of traffic assignment models to heterogeneous126

users. The drivers’ heterogeneity is included in the definition of the utility function Uod
k ,∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ127

through the Value of Time (VOT) (e.g. Dafermos, 1972; Smith, 1979; Dafermos, 1980, 1982) and/or the Value of128

Reliability (VOR) (e.g. Jackson and Jucker, 1982; Small, 1982). In this paper, we focus on the latter. The literature129

there are several models that incorporate the VOR, such as the mean-variance model (Jackson and Jucker, 1982), the130

scheduling-delay (Small, 1982), the late-arrival penalized User Equilibrium (Watling, 2006), the travel time budget131

(Shao et al., 2006; Shao et al., 2006; Lo et al., 2006; Lam et al., 2008), the percentile User Equilibrium (Nie, 2011), the132

bi-criterion User Equilibrium proposed by Wang et al. (2004), the added-variability model (Ordóñez and Stier-Moses,133

2010) and the mean-excess traffic equilibrium (Chen and Zhou, 2010; Chen et al., 2011b).134

In this paper, we focus our attention on the mean-variance model (Jackson and Jucker, 1982), where the perceived135

utility for trip k and driver m is:136

Uod
km = TCod

k + TT
od
k + VORm × σod

k ,∀m ∧ ∀k ∈ Ωod ∧ ∀(o, d) ∈ Ξ (5)

where VORm is the value of reliability for driver m. In the case where all drivers have the same preferences for the137

reliability of travel times, the term VORm reduces to VOR =⇒ Uod
km = Uod

k . The term TCod
k represents the travel138

cost associated with each trip k. This travel cost can come from tolls, the fuel consumed during the trip, ticket costs,139

maintenance and insurance costs of the private car, to name a few examples.140

The implementation of traffic assignment models in a dynamic context (i.e. with a traffic simulator that allows141

to determine travel times that account for dynamic effects such as shockwaves propagation and spillback effects)142

has significantly evolved since the initial works of Merchant and Nemhauser (1978a) and Merchant and Nemhauser143

(1978b). In the literature one can distinguish between two approaches to solve dynamic traffic assignment problems.144

The analytical approach (e.g. Wie et al., 2002; Szeto and Lo, 2006; Iryo, 2011; Corthout et al., 2012) is used to study145

the existence and uniqueness of the city network equilibrium. The simulation approach (e.g. Ben-Akiva et al., 2012;146

Mahmassani et al., 2013; Shafiei et al., 2018; Ameli et al., 2020) makes use of traffic simulators to determine time-147

dependent trip travel times that account for dynamic effects, such as congestion, shock-waves and spillback effects. In148

this paper, we focus our attention in this second approach. Drivers are assigned based on a quasi-static approximation,149

i.e. the total simulation period T is split into several time intervals δt where the network equilibrium is calculated.150

The trip flows are kept constant during each δt. The length of these time intervals can be adjusted to update the trip151

flows more frequently for cases when the demand suffers quick changes or when the traffic states change rapidly. We152

also refer the reader for the comprehensive review papers of Peeta and Ziliaskopoulos (2001) and Viti and Tampère153

(2010).154

3. Methodological framework155

In this section, we start by recalling the Regional Dynamic Traffic Assignment framework proposed by Batista156

and Leclercq (2019b) (Sect. 3.1). We then discuss the proposed extensions to incorporate bounded rational drivers157

with indifferent preferences and with preferences for more reliable travel times (Sect. 3.2).158

3.1. Regional Dynamic Traffic Assignment R-DTA159

The R-DTA proposed by Batista and Leclercq (2019b) includes several steps:160

1. The definition of a set of trips in the city network.161

2. The calculation of paths on the regional network based on the set of trips.162
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3. The characterization of the distributions of travel distances of the regional paths.163

4. The determination of the travel times of the regional paths for performing the network loading.164

The first step consists on defining a set of trips in the city network. One solution is to utilize real trajectories of165

drivers that are gathered from Global Positioning System (GPS) traces, i.e. using a data-driven method. However, the166

information about the full daily trip patterns is unknown, and only a partial set of real trips is available. The challenge167

here is to infer a level of confidence regarding how this partial set is representative of the full daily trip patterns. While168

this is still a question of research, in this paper we follow the idea proposed by Batista and Leclercq (2018) and Batista169

et al. (2019), to construct a set of virtual trips. The authors propose to randomly sample several origin and destination170

pairs of nodes in the city network, and then to determine the shortest-path in distance between each of them. Each171

virtual trip represents an individual driver traveling in the city network.172

The next step consists in identifying the regional paths based on the set of virtual trips and on the definition of173

the city network partitioning. The regional paths are gathered by scaling-up these virtual trips following the sequence174

of regions they cross according to the definition of the city network partitioning (Batista and Leclercq, 2018), see175

Figure 2. For each regional Origin-Destination (OD) pair, the regional paths are ranked by their level of significance,176

i.e. the number of virtual trips each regional path has associated. Note that, regional paths can also be gathered177

directly from the daily trip patterns of drivers or from data analysis, to name two other examples. The most significant178

regional path of one OD pair is the one that has the largest number of virtual trips associated. We set the composition179

of the regional choice set, ΩOD, for the most significant regional paths.180

In the third step, we characterize the distributions of travel distances of the regional paths. Let Lrp be the trip181

length distribution of a generic regional path p in a generic region r. Batista et al. (2019) proposes a methodological182

framework to explicitly calculate these distributions, given the set of virtual trips and different levels of information183

from the regional network. The latter ranges from no prior information about the previous and next regions to be184

traveled by the virtual trips, to the related regional path. In this paper, we calculate the trip length distributions Lrp185

following the related regional path associated to the virtual trips. We refer the reader to Batista et al. (2019) for more186

details about the description of this methodological framework. Again, data-driven methods may also be used here to187

derive the trip length distributions of regional paths.188

The fourth step consists on determining the travel times of regional paths, for performing the network loading. In189

regional networks the travel time of a regional path p is influenced by the empirical set of trip lengths {Lrp} and the190

time varying speed-MFD set vr(nr) of each region r that defines p. The travel time of a regional path p, TT OD
p , is then191

calculated as:192

TT OD
p =

∑
r∈X

(
Lrp

vr(nr)

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (6)

where W is the set of all regional OD pairs; and δrp is a binary variable that equals 1 if regional path p crosses region193

r, or 0 otherwise.194

Batista and Leclercq (2019a) and Batista and Leclercq (2019b) target the User Equilibrium, considering different195

formulations of the utility function UOD
p . The utility functions are determined based on a first order Taylor’s expansion196

of the TT OD
p equation (see Eq. 6) around the mean values of Lrp and vr.197

For the Deterministic User Equilibrium (DUE), none of the terms are considered to be distributed. The utility198

function UOD
p then becomes:199

UOD
p =

∑
r∈X

(
Lrp

vr

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (7)

While, for the Stochastic User Equilibrium (SUE), both Lrp and vr(nr) are considered to be distributed. The utility200

function UOD
p is then:201

UOD
p =

∑
r∈X

(
Lrp

vr
+

Lrp

vr
−

Lrpvr

v2
r

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (8)
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In the classical DUE and SUE, drivers seek to minimize their own perceived travel times. The numerical scheme202

for determining these network equilibria are discussed in Batista and Leclercq (2019b), and summarized in Algorithm203

1.204

3.2. Extension of the R-DTA for bounded rational drivers205

In this paper, we propose to extend the R-DTA framework proposed by Batista and Leclercq (2019a) and Batista206

and Leclercq (2019b), to account for bounded rational drivers with indifferent preferences as well as preferences for207

more travel time reliability.208

We first focus on bounded rational drivers with indifferent preferences (Batista et al., 2018). For simplicity, we209

only focus on the travel time component, TT OD
p , to define the utility function, UOD

p , of a generic regional path p, i.e.210

UOD
p = TT OD

p ,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W. Bounded rational drivers with indifferent preferences choose any regional211

path(s) that is/are perceived as satisficing, i.e. the one(s) that has/have the travel time(s) inferior to the aspiration level212

or that respect the condition UOD
p ≤ ALOD,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W. The aspiration levels are calculated through213

the definition of the indifference band ∆OD as defined in Eq. 4, but set at the regional OD level. The question now214

is how drivers choose among the satisficing regional paths. For this, we follow the idea proposed by Batista et al.215

(2018) where the demand of each regional OD pair is equally split over all satisficing regional paths. The network216

equilibrium corresponds to the Bounded Rational User Equilibrium (BR-UE).217

We now focus on bounded rational drivers with preferences for more reliable travel times. To include the Value of218

Reliability in the R-DTA, we consider the mean-variance model (Jackson and Jucker, 1982). We then set the utility219

function defined by Eq. 5 to the regional OD level. Furthermore, for the sake of simplicity, we assume that all drivers220

sharing the same regional OD pair have similar preferences. The perceived utility of regional path p is expressed as:221

UOD
p = TCOD

p + VOTpE(TT OD
p ) + VORpVar(TT OD

p ),∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (9)

where E(TT OD
p ) is the expected travel time; and Var(TT OD

p ) is the variance of the travel time distribution.222

The expected travel time E(TT OD
p ) is calculated as:223

E(TT OD
p ) =

∑
r∈X

(
Lrp

vr(nr)

)
δrp (10)

The variance Var(TT OD
p ) is calculated as:224

Var(TT OD
p ) =

∑
r∈X

(
Lrp

vr(nr)

)2(Var(Lrp)

L
2
rp

+
Var(vr(nr))

v2
r (nr)

− 2
Cov(Lrp, vr(nr))

Lrpvr(nr)

)
δrp (11)

We refer the reader to Appendix A for the full derivation of Eq. 11.225

In the same spirit as in the case of indifferent preferences, drivers choose any regional path(s) that is/are perceived226

as satisficing (i.e. UOD
p ≤ ALOD). The difference is that the regional path utility UOD

p is calculated by the mean-227

variance model defined in Eq. 9.228

3.3. Numerical scheme and implementation algorithm229

In this paper, we determine the regional network equilibrium using the classical Method of Successive Averages230

(MSA). The good convergence properties of the algorithm are guaranteed by the appropriate choice of the descent step231

α j, where j is the descent iteration. In this paper, we choose α j =
1
j (see e.g. Polyak (1990); Liu et al. (2007); Taale232

(2008); Chen et al. (2011a) for different settings of α j). Monte Carlo simulations (Sheffi, 1985) are used to account233

for the empirical distributions of trip lengths, Lrp, and the speed-MFD, vr(nr), as in the same spirit of Batista and234

Leclercq (2019a) and Batista and Leclercq (2019b). The goal is to draw samples from the distributions Lrp and vr(nr)235
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and locally solve deterministic problems. At each descent step j of the MSA, the new regional path flows QOD, j+1
p are236

updated as follows:237

QOD, j+1
p = QOD, j

p + η j{QOD,∗
p − QOD, j

p },∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (12)

where QOD, j
p represent the regional path flows at iteration j and QOD,∗

p ,∀(O,D) ∈ W represent the new temporary238

regional path flows. The question now is how to determine QOD,∗
p . For the Deterministic and Stochastic User Equi-239

librium, drivers are assigned to the regional path with the lowest travel time, for each regional OD pair, based on an240

all-or-nothing principle. In the case of bounded rational drivers, they are assigned to the satisficing regional paths241

according to the assignment rules discussed in the previous section, for both cases. The term QOD,∗
p is then updated by242

averaging over all local choices of drivers.243

The regional network equilibrium is achieved (Sbayti et al., 2007) when the relative Gap is inferior to a pre-defined244

tolerance tol and the number of violations N(λ) is inferior to a pre-defined threshold Φ. We also set a maximum245

number of descent step iterations Nmax. The number of violations represents the difference of the regional path flows246

between consecutive descent step iterations of the Method of Successive Averages. The relative Gap as defined by247

Sbayti et al. (2007) not only acts as a convergence criterion, but also as a quality indicator that tells how far the solution248

determined is from the User Equilibrium conditions. In case of the DUE, the MSA should convergence to a solution249

where Gap ∼ 0. While, in the case of the SUE, the value of the Gap is larger than 0, however small. This happens250

because of the uncertainty associated with the trip length distributions Lrp as well as due to the evolution of the traffic251

conditions in the regions (i.e. nr(nr) over time. In this paper, we utilize the definition of the Gap as introduced by252

Sbayti et al. (2007), for setting the convergence for both the DUE and SUE. The Gap is determined as:253

GapUE =

∑
O
∑

D
∑

p∈ΩOD QOD
p (
−→
UOD

p −min(
−→
UOD))∑

O
∑

D QOD min(
−→
UOD))

(13)

where
−→
UOD

p is a vector that contains all the values of the utility functions for all regional paths p that connect the254

regional OD pair.255

In the case of the Bounded Rational User Equilibrium, we utilize the definition of the Gap as introduced by Batista256

et al. (2018). It is determined as:257

GapBR−UE =

∑
O
∑

D
∑

p∈ΩOD QOD
p ·max(

−→
UOD − ALOD, 0)∑

O
∑

D QOD · ALOD (14)

In this paper, we assign drivers based on a quasi-static approximation as function of the regional paths travel times,258

as described in Sect. 2.259

Algorithm 1 summarizes the implementation of the numerical scheme for solving for the DUE, SUE or BR-UE260

by means of the Method of Successive Averages and utilizing a quasi-static approximation.261

4. Model implementation262

In this section, we start by introducing the city network and demand scenarios in Sect. 4.1. We then investigate263

how the preferences for more reliable travel times of bounded rational drivers influences the traffic dynamics in the264

regions (Sect. 4.2). In Sect. 4.3, we investigate how the level of bounded rational drivers influences the NOx and CO2265

emissions at the regional network level.266

4.1. Definition of the case study267

The test network depicted in Figure 3 (a) and includes the 3rd and 6th districts of Lyon and the city of Villeurbanne268

(L63V network) in France. The network has 3127 nodes and 3363 links and is divided into seven regions. The269
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Algorithm 1: Pseudo-code algorithm used to determine the User Equilibrium or Bounded Rational User Equilib-
rium on regional networks.

Input the regional choice set ΩOD,∀(O,D) ∈ W, the set of trip lengths Lrp,∀p ∈ Ψ ∧ ∀r ∈ X, demand
scenario, simulation duration T and the convergence tolerances tol, ϕ and Nmax. Input also the indifference
band ∆OD if one targets the BR-UE.

for i=1 to T
δt do

Initialize j = 1, α j=1 = 1 and the temporary path flows QOD, j+1
p .

if i=1 then
Initialize the path flows QOD, j=1

p ,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W. Also initialize the aspiration levels ALOD

(Eq. 4), if one targets the BR-UE.
Perform an initial network loading.

else
Initialize QOD, j=1

p ,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W from the path flows at equilibrium from the previous
period i − 1.

end
while Gap ≥ tol and/or N(λ) ≥ Φ and j ≤ Nmax do

Set QOD, j
p = QOD, j+1

p ,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W.
For all regions r ∈ X, calculate the average mean speed vr based on vr.
if DUE then

Determine the regional path utilities according to Eq. 7.
Assign drivers based on all-or-nothing procedure to the regional path(s) with the minimal UOD

p ,
and update QOD,∗

p ,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W.
end
if SUE then

Perform Monte Carlo simulations to account for the distributions of Lrp and vr(nr), and determine
the determine the regional path utility UOD

p (Eq. 8) for each realization or draw.
Assign drivers based on all-or-nothing principle to the path with the minimal utility UOD

p , for each
realization.

Determine QOD,∗
p by averaging the drivers choices over all Monte Carlo realizations.

end
if BR-UE then

if Indifferent preferences then
Determine the regional path utilities UOD

p according to Eq. 7.
end
if Strict preferences then

Determine the regional path utilities UOD
p according to Eq. 9.

end
Update QOD,∗

p by equally splitting the demand over all satisficing paths, i.e. paths that respect the
condition UOD

p ≤ ALOD.
Update the aspiration levels ALOD,∀(O,D) ∈ W according to Eq. 4.

end
Update the path flows QOD, j+1

p based on Eq. 12.
Run the MFD-based model (either the accumulation- or trip-based MFD model).
Update vr,∀r ∈ X, based on the traffic states resulting from the MFD-based model.
Determine the Gap according to Eq. 13 (if DUE or SUE) or Eq. 14 (if BR-UE) and the number of
violations N(λ).

Update α j =
1
j .

Set j = j + 1.
end

end
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MFD functions are shown in Figure 3 (b), and have been fitted considering microscopic simulations from Symuvia270

(Leclercq, 2007). The simulated data is fitted using a bi-parabolic shape.271

The calibration of the trip lengths distributions and the calculation of the regional paths are based on a set of272

3.000.000 virtual trips (Batista and Leclercq, 2018; Batista et al., 2019). The regional paths are ranked according to273

their level of significance.274
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Figure 3: (a) Villeurbanne and the 3rd and 6th districts of Lyon (France) traffic network, divided into seven regions. (b) Calibrated MFD function
of each region.

In this paper, we consider two distinct scenarios:275

• Scenario 1: The first scenario is calibrated to investigate the role of the VOR in the traffic dynamics in the276

regions (Sect. 4.2). It is composed by two OD pairs: 2-4; and 5-1. The regional choice sets ΩOD contain the277
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two most significant regional paths for each OD pair. Table 1 lists the regional paths as well as the calculated278

average trip lengths (L) and standard deviations (σL) of the trip lengths distributions. Figure 4 (a) depicts the279

demand levels for this scenario.280

Table 1: Average and standard deviations of the trip lengths distributions (L ± σL) (m) calculated for the four regional paths in each region. The
total average trip length L for each regional path is also listed.

Regional path Region
L1 2 3 4 5

2-3-4 ∼ 652 ± 312 1092 ± 218 1097 ± 760 ∼ 2841
2-1-3-4 431 ± 181 512 ± 308 780 ± 214 1877 ± 1313 ∼ 3599
5-3-2-1 901 ± 494 460 ± 58 797 ± 24 ∼ 1289 ± 598 3447
5-3-1 900 ± 437 ∼ 1398 ± 309 ∼ 919 ± 461 3217

In this first scenario, we fix the indifference band ∆OD to 1 and set three VOR values: 0, 1 × 10−3, and 10.281

• Scenario 2: The second scenario is more complex and is calibrated to investigate how the bounded rational282

behavior of drivers influences the emission levels of NOx and CO2 at the regional network level (Sect. 4.3).283

The latter includes bounded rational drivers with indifferent preferences and drivers with preferences for more284

reliable travel times. This scenario is composed by eight OD pairs: 1-4; 2-5; 4-7; 5-1; 5-2; 6-2; 6-5; and 7-1.285

The regional choice sets ΩOD includes the three most significant regional paths for each OD pair. This yields a286

total of 24 regional paths. Figure 4 (b) depicts the demand levels for the eight OD pairs of this scenario. For the287

bounded rational drivers with indifferent preferences, we set three values of ∆OD: 0, 1 and 100. While, for the288

bounded rational drivers with preferences for more reliable travel times, we fix ∆OD = 1 and set three values for289

VOR: 0, 1 × 10−3 and 1.290

The total simulation periods are T = 8000 seconds for Scenario 1, and T = 15000 seconds for Scenario 2. We291

assume a quasi-static approximation for determining the network equilibrium, and the total simulation period T is split292

into several time intervals of amplitude δt = 200 seconds. The network equilibrium is calculated for each interval293

δ, during which the regional path flow distributions are maintained constant. The classical MSA algorithm is used294

to calculate the regional network equilibrium. We set the MSA convergence tolerances to tol = 10−2, Φ = 0 and295

Nmax = 250. For the Monte Carlo simulations, we consider 10000 samples from each Lrp and vr(nr) distributions.296

The traffic dynamics is simulated using an accumulation-based MFD traffic model (Daganzo, 2007; Geroliminis and297

Daganzo, 2008), and the implementation details follow Mariotte et al. (2017). However, we stress out that the proposed298

methodological framework in this paper is also valid for the application of the trip-based MFD model to mimic the299

traffic dynamics in the regions.300

4.2. Influence of travel time reliability on the traffic dynamics in the regions301

In this section, we investigate the influence of the choices of bounded rational drivers with preferences for more302

reliable travel times on the traffic dynamics in the regions. Figure 5 shows the evolution of the traffic dynamics in303

regions 1 to 5 as well as the evolution of the regional path flows for p = {234}, p = {5321} and p = {531}. Regions 6304

and 7 are omitted since they are not crossed by any of the previous regional paths.305

We start by analyzing the regional path flows at equilibrium. The quasi-static assignment approximation plays an306

important role on the influence of the regional speed vr(nr) on the calculation of the network equilibrium. Batista and307

Leclercq (2019a) and Batista and Leclercq (2019b) show that the regional speed vr(nr) has a more significative influ-308

ence during the charging and discharging period of the regions. However, the variance of the mean speed distribution309

vr(nr), i. e. Var(vr(nr)), is generally smaller than the variance of the trip length distribution Lrp, i. e. Var(Lrp). This310

means that:311

∑
r∈X

(
Var(Lrp)

L
2
rp

)
δrp ≫

∑
r∈X

(
Var(vr(nr))

v2
r (nr)

− 2
Cov(Lrp, vr(nr))

Lrpvr(nr)

)
δrp (15)
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Figure 5: Evolution of the regional mean speed v(t) for Scenario 1. The results are shown for the DUE and different settings of the VOR. The
indifference band ∆OD is fixed to 1 and five values of VOR are considered: 0, 1 × 10−3 and 10. The evolution of the regional path flows QOD

p for
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Outside the congestion periods and offset in the regions, we also have that: Var(vr(nr)) = 0 =⇒312

Cov(Lrp, vr(nr)) = 0. From Eq. 9 to Eq. 11, we can further simplify the regional path UOD
p . In this case:313

UOD
p =

∑
r∈X

(
Lrp

vr(nr)
+ VOR

Var(Lrp)

v2
r

)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (16)

We emphasize that when VOR is set to 0 in Eq. 16, the regional network equilibrium reduces to the Deterministic314

User Equilibrium. This is also confirmed by the results shown in Figure 5. We observe that by setting VOR = 0, we315

obtain similar evolution trends of the regional path flows as well as similar traffic dynamics in the regions, compared316

to the DUE. We can also observe from Figure 5, that drivers always choose the regional path p = {234} over the whole317

simulation period, since its travel time is more reliable. The speeds v2, v3 and v4 influence equally the utilities of318

both regional paths p = {234} and p = {2134}. The differences between the regional path utilities arise from the trip319

length distributions. From Table 1, we observe that both the average trip lengths as well as the standard deviations are320

approximately equal for regions 2 and 3 and for both regional paths p = {234} and p = {2134}. The difference lies in321

region 4. The average trip length and standard deviations assigned for region 4, are much larger for the regional path322

p = {2134} than for p = {234}. The travel time is then more reliable for p = {234}. For the OD pair 5-1, we observe323

that drivers initially choose regional path p = {531}. At ∼ 2000 seconds, region 3 becomes congested because there324

are more vehicles traveling on regional path p = {234} (see Figure 4 (a)). This leads to a switch of the regional paths325

chosen by drivers traveling on the OD 5-1. The average trip length and standard deviations assigned for region 3, is326

much larger for regional path p = {531} than for p = {5321} (see Table 1). Then, as the vehicles’ accumulation in327

region 3 increases, the travel time of p = {5321} becomes more reliable and drivers switch to this path. An inverse328

trend is observed when region 3 is discharging. We also notice that as VOR increases, the term
∑
r∈X

Var(Lrp)
v2

r
δrp becomes329

more important in the regional path utility defined in Eq. 16. In the case of OD 5-1, the increase of VOR penalizes330

more the utility of the regional path p = {531} as its average trip length and standard deviation of the trip length331

distribution for region 3, are much larger than the ones calculated for regional path p = {5321}. The travel time332

reliability of p = {531} increases as VOR also does, leading drivers to switch to this regional path.333

We now briefly analyze the traffic dynamics depicted in Figure 5 for the five regions. We start by region 2, that334

is the origin one for the regional path p = {234}. Between ∼ 1500 and 3500 seconds, we observe a decrease in the335

mean speed v2 due to an increase of the demand traveling on regional path p = {234}. After completing their travels336

in regions 2, vehicles cross to region 3 and then 4, leading to a decrease in the mean speeds v3 and v4, between ∼ 1800337

and 4000 and ∼ 2000 and 4000 seconds, respectively. We also observe that as VOR increases, the vehicles’ speed338

reduces in region 2 while it increases in region 3. The increase of VOR leads drivers to switch from regional path339

p = {531} to p = {5321}, as previously explained, reducing the mean speeds in these regions. This routing of vehicles340

reduces the accumulation in region 3, slightly increasing its mean speed v3. An opposite trend is verified in region341

2. We also observe two interesting trends in the mean speed profiles of regions 2 and 3, between ∼ 4000 and 6000342

seconds. These profiles are originated by vehicles traveling in the OD pair 5-1. The average trip length calculated for343

region 3 and regional path p = {531} is 1398 meters (see Table 1). While, for regional path p = {5321} is 797 meters.344

A larger trip length means that a region is a potential bottleneck for the regional path. Due to the homogeneous speed345

assumption of the MFD, for larger trip lengths drivers require more time to complete their travels in the region. This346

increases the accumulation and decreases the region mean speed. In the case of region 3, vehicles switch to regional347

path p = {5321} as VOR increases. The lower trip length allows vehicles to complete their trips faster, reducing the348

accumulation and increasing the mean speed. In the case of region 2, the mean speed decreases for a longer period as349

there are more vehicles traveling on regional path p = {5321}.350

4.3. Estimation of emissions of CO2 and NOx351

Road traffic is a major source in the air quality degradation in large urban areas. The greenhouse effect is one of352

the main environmental issues. It is mainly caused by CO2 emissions. These emissions are originated by the fuel353

consumption of motorized vehicles. On the other hand, the NOx emissions represent a serious issue for public health.354

They are mainly related with accelerations and decelerations of vehicles. This is why when the mean speed is low355

we observe a significant increase of the emission function since such speed is related to congested traffic conditions356
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with frequent stop-and-go phases. In this section, we investigate how drivers’ rationality (i.e. DUE, SUE and BR-UE)357

influences the CO2 and NOx emissions at the regional network level. We estimate these concentrations using the358

COPERT IV model (Ntziachristos et al., 2009). Note that, COPERT IV is an aggregated model, i.e. applicable to a359

region or zone of a city network, that takes as an input an average speed and total travel distance. For each mean speed360

value, the model already includes the driving cycles that account for accelerations and decelerations of vehicles. The361

calculation of the Emission Factors of CO2 (EFCO2 ) and NOx (EFNOx ) are based on reference emission data recorded362

for a mean speed profile of private cars. We further assume a homogeneous fleet over the whole network. Figure 6363

depicts the emission laws for the Emission Factors of CO2 and NOx.364
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Figure 6: Emission laws for CO2 (panel a) and NOx (panel b).

Figure 7 depicts the evolution of the vehicles’ mean speeds vr(nr) for the DUE, SUE and the three settings of365

∆OD for the bounded rational users with indifferent preferences. Figure 8 shows similar results, but for the bounded366

rational drivers with preferences for more reliable travel times and for the three settings of VOR. Figure 9 shows367

the relative differences θ between the different settings of the bounded rational models and the DUE and SUE. The368

relative differences θ are calculated as:369

θ =
EFw,z

x − EFy
x

EFy
x

× 100, x = {CO2,NOx} ∧ y = {DUE, S UE} (17)

where w represents the value of ∆OD; and z represents the VOR.370

We first focus on the analysis of the results for bounded rational drivers with indifferent preferences. One can371

observe in Figure 7 that for ∆OD = 0, the evolution of the mean speed vr(nr) is similar to the SUE. In fact, when372

∆OD = 0, drivers seek to minimize their own travel times and the bounded rational stochastic user equilibrium reduces373

to the classical SUE. As ∆OD increases, drivers are able to choose regional paths with longer travel times, and that also374

correspond to regional paths with larger travel distances. A longer travel distance inside a region means a potential375

bottleneck, since drivers need more time to complete their trips. We recall that drivers travel at the same speed inside376

the regions because of the homogeneous speed assumption of the MFD model. This increases the accumulation of377

vehicles for a longer period of time, decreasing the mean speed in the regions. This can be observed in Figure 7,378

for example, for regions 3, 4 and 5. As ∆OD → ∞, the regional path flows tend to 1/K, where K is the number of379

regional paths listed in ΩOD. This represents the drivers indifference for their regional path choice when all paths are380

perceived as satisficing, explaining why vr(nr) decreases in some regions as ∆OD increases. Figure 9 shows that as381

∆OD increases, the concentrations of CO2 and NOx also do with respect to the benchmark models.382

The indifferent preferences lead drivers to choose any of the satisficing regional paths, meaning that for larger383

∆OD more drivers will choose regional paths with longer travel distances. This increases the total travel distance of all384

drivers, explaining the increase of the emission factors of CO2 and NOx as observed in Figure 9. We observe that the385

complete indifference of drivers for their regional path choice, i.e. ∆OD = 100, leads to an increase of ∼ 20% of CO2386

and NOx emissions compared to the benchmark DUE and SUE models, i.e. perfect rational drivers. The observed387

trend for CO2 and NOx emissions is directly related with the increase of the travel distances, as previously explained.388

For larger ∆OD, drivers choose longer regional paths, requiring more time to complete their trips in the regions. This389
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Figure 7: Evolution of the mean speed vr(nr) for the seven regions and for the DUE, SUE, and bounded rational drivers with indifferent preferences.
The indifference band values ∆OD are set to 0, 1 and 100.
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Figure 8: Same as in Figure 7, but for the bounded rational drivers with preferences for more reliable travel times. The indifference band ∆OD is
set to 1. The VOR values are set to 0, 1 × 10−3 and 10.
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Figure 9: Relative differences between the estimated total emissions of CO2 and NOx (in kg/km) between the different settings of the bounded
rational drivers with indifferent preferences (panels a and b) and with preferences for more reliable travel times (panels c and d), and the DUE and
SUE. The orange bars represent the relative differences with respect to the DUE, while the blue ones are with respect to the SUE.
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Figure 10: Temporal evolution of EFCO2 and EFNOx for the whole network. The results are depicted for the different settings of the bounded
rational models, where drivers have indifferent preferences (panel a and b) as well as preferences for reliable travel times (panel c and d), and the
benchmark DUE and SUE. The emission factors are determined for time periods of 10 seconds.

increases both the length and congestion levels in the regions, leading to a larger reduction of the mean speed vr, and390

consequently to more frequent stop-and-go phases for larger ∆OD values during the charging periods of the regions.391

Figure 10 (a-b) depicts the temporal evolution of CO2 and NOx emissions, for drivers with indifferent preferences. We392

observe an increase of the emissions, between ∼ 1000 and 2000 seconds, which corresponds to the moment when the393

demand in the network also increases (see Figure 4 (b)). This leads to an increase of the accumulation, reducing the394

traveling mean speed in the regions and increasing the frequency of stop-and-go phases. An opposite trend is observed395

during the discharging of the regions between ∼ 6000 and 7000 seconds, reducing the CO2 and NOx emissions. The396

travel distances then directly influence the CO2 and NOx emissions.397

We now focus on the analysis of the results for bounded rational drivers with preferences for more reliable travel398

times. We set the indifference band ∆OD to 1, and vary VOROD. For VOR = 0, drivers do not have a preference399

for more reliable travel times and only the expected travel time E(TT OD
p ) matters in their choices. The network400

equilibrium is reduced to the Bounded Rational Deterministic User Equilibrium that is calculated for ∆OD = 1. The401

drivers’ preferences for more reliable travel times increase with VOR. As VOR increases, drivers switch to paths that402

have more reliable travel times. Regional paths with the more reliable travel times are not necessarily the ones that403

have the shortest travel distances, as depicted in Figure 11. The latter can be analyzed in two different perspectives. In404

one hand, for an average path travel distance Lp of ∼ 3.5 kms, the standard deviation σL ranges from ∼ 1 to 2 kms. On405

the other hand, for a standard deviation value σL around ∼ 0.95 kms, the average travel distances can range from ∼ 2406

to 4 kms. So, in a first approximation (see Eq. 16), the switch of drivers to paths with more reliable travel depends on407

the balance between the average travel distance and the variance of the trip length distributions of the regional paths.408
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In Scenario 2, there are some examples of the latter. In the regional choice set Ω14, the regional path p = {134} has409

the shortest travel distance but its trip length distribution has the largest variance. While, regional path p = {1234}410

has a slightly larger trip length than p = {134}, but the variance of the trip length distribution is much lower. Another411

example is the regional choice setΩ25, where the regional path p = {235} has an average travel distance of 2725 meters412

and standard deviation 923 meters. While, the regional path p = {2345} has an average travel distance of 3075 meters413

and standard deviation of 861 meters. Since drivers switch to regional paths with more reliable travel times, which414

for several OD pairs also have longer travel distances, they need more time to complete their trips in the regions. The415

congestion then lasts longer and the mean speed in the regions decreases. This can clearly be observed in Figure 8, for416

regions 3, 4 and 6, between the period ∼ 1000 and ∼ 6000 seconds. On the other hand, the total distance traveled by417

drivers increases as VOR also does, as inspected from Figure 11. For VOR = 0, the network equilibrium reduces to418

the classical DUE, and then θ ∼ 0%, see Figure 9 (c-d). Drivers choose paths with more reliable travel times as VOR419

increases, which do not necessarily correspond to the shortest paths in distance as previously discussed. This induces420

an increase of the CO2 and NOx emissions in the whole network. The larger total distance traveled by drivers, for421

VOR = 1 compared to VOR = 0, increases the congestion level in the regions and then the stop-and-go phases. An422

opposite trend is observed during the discharging period of the regions, decreasing the CO2 and NOx emissions, see423

Figure 10 (c-d) between ∼6000 and 7000 seconds. One can also observe in Figure 9 that the relative differences θ are424

much smaller when drivers have preferences for more reliable travel times than when they are completely indifferent425

for their path choices. The largest relative differences for both NOx and CO2 are ∼ 6% when compared to the DUE,426

and ∼ 3% when compared to the SUE. In the case of indifferent preferences, θ is ∼ 15% when compared to the427

DUE, and ∼ 12% when compared to the SUE. Note that here, we analyze the θ values for ∆OD = 1 for both kinds of428

preferences. This difference is explained by the fact that the total traveled distance by drivers is larger in the case of429

indifferent preferences. This result sheds light on the importance of properly accounting for drivers’ behavior for the430

path choices in the estimation of CO2 and NOx emissions at the network level.431
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Figure 11: Relationship between the standard deviation σL and average travel distance Lp of all 24 regional paths of Scenario 2.

5. Conclusions432

In this paper, we propose an extension of the R-DTA framework discussed by Batista and Leclercq (2019a) and433

Batista and Leclercq (2019b) to account for bounded rational drivers with indifferent preferences as well as drivers434

with preferences for more reliable travel times. We show that: (i) it is important to properly account for more realistic435
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drivers’ rationality as it changes the estimation of emissions; and (ii) it is clear that making the system closer to the436

User Equilibrium (when compared to more realistic network equilibria, in terms of the drivers’ behavior) would be437

beneficial for the environment. These results enhance the importance of developing efficient travel time information438

systems, e.g. Advanced Travel Information Systems (ATIS), such that drivers favor best choices knowing is reli-439

able. As future research directions, we envision the experimental calibration and validation our framework using real440

observations.441

6. Discussion442

This paper discusses an extension of the R-DTA framework to account for more realistic drivers’ behavior to-443

wards their regional path choice, by relaxing the principle of the User Equilibrium. We then shed light on potential444

applications for estimating the network-wide emissions of CO2 and NOx. Macroscopic emissions models can indeed445

be directly plugged on the traffic simulation outputs. The resulting emission calculations take then into account the446

regional urban dynamics resulting from the spread of congestion inline with the drivers routing behavior.447

The main advantage of our framework for this kind of application lies in the computational efficiency and the low448

calibration requirements to set up the simulation scenario. The other alternative would be microscopic simulations449

if we still want to consider traffic dynamics. It comes at considerable costs in terms of network implementation,450

model calibration, and even more critical the demand estimation. As microscopic simulations resort to the real road451

network, multiple origins and destinations should be considered, which complexifies the origin-destination flows452

estimation particularly for large city networks. This explains why emission calculations at the city level are still often453

performed in practice using inventory methods or simple static approximations, which completely disregard the effects454

of congestion. The introduction of the concept of regional networks, let us focus on an aggregated vision of the whole455

system, which simplifies both the calibration and the demand estimation. It makes this framework easily scalable456

for different demand patterns. Preparing the simulation scenarios is also much lighter when compared to classical457

microscopic approaches at a large city scale.458

Another main advantage of this methodological framework is the considerable simplification of the network equi-459

librium calculations compared to more classical approaches. The characterization of the regional network lengths460

adds an extra step, but it can be done one for all before simulating all different scenarios. As the regional network461

is represented by a graph with few edges and nodes by definition, all paths discovery and cost assessments are swift462

and the convergence to equilibrium much faster, simply because the problem is made much smaller. The classical463

DTA modules for city networks work with the full vision of the road network. It brings several challenges. The first464

lies in identifying plausible trips to travel by drivers (path discovery step). For large metropolitan areas, the number465

of origin-destination pairs as well as trips to consider is infinite, and the DTA model quickly becomes untraceable.466

On the contrary, the R-DTA framework starts from partitioning the city network into a limited number of regions467

(typically ten regions or less for large metropolitan areas). The origin-destination pairs of nodes in the city network468

are aggregated to Origin-Destination pairs of regions. Since the number of regions is low, this drastically reduces the469

number of plausible paths. Such a scale-up process of the information reduces the computational burden required by470

the R-DTA compared to the classical link-based assignment models and microscopic simulations. Ameli et al. (2020)471

discusses the computational complexity of classical link-based DTA models on city networks. The authors targeted472

the network equilibrium on the same city network utilized in this study and depicted in Figure 3 (a), considering 94473

origin and 227 destination nodes. The city network was loaded with 47,341 travelers. The authors show that using474

classical methods, like the Method of Successive Averages for determining the equilibrium on this medium-sized city475

network, takes about a week of computational time. Even with advanced meta-heuristics approaches based on the476

Simulated Annealing and the Genetic Algorithms, the authors were unable to reduce the computational times below477

36 hours. This drastically reduces the number of scenarios that can be explored in practice. The R-DTA framework we478

are investigating here determines the equilibrium solution on the same network in a matter of minutes. Such a feature479

is priceless for decision-making in practice, as it highlights the stakeholders with the benefits of multiple options.480

Nevertheless, the low computational effort required by the R-DTA and aggregated traffic models based on the MFD481

has some drawbacks. The aggregation step from the city to the regional networks leads to loss of information, mostly482

in the description of distance traveled. In a nutshell, the city network description provides an accurate description of483

every trip distances. Such trips are aggregated into a single path at the regional level as long as they come and end484

into the same regions. Regional paths are characterized by a mean distance value and the standard deviation of the485
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related distribution. As far as emission calculations are concerned, the related bias should still be precisely quantified.486

However, as vehicular emissions are proportional to the distance travel, we can claim that the bias between the sum of487

distance and a mean value applied to all vehicles should be low when the total number of vehicles is high (law of large488

numbers). Another potential bias is if the trip distributions appear significantly different between equilibria derived489

at different scales (city or regional ones). This question would require significant research efforts that are out of the490

scope of the current study, being a potential future research direction. Note that recent efforts about experimental491

validation of MFD models show promising results about the reproduction of overall traffic dynamics Mariotte et al.492

(2020). It is not entirely conclusive about the specific question of the vehicle distribution over the network, but traffic493

dynamics would not be accurate if this would have been wrong.494

About the emission calculation itself, the use of macroscopic models, like COPERT, looks relevant in our frame-495

work as the traffic simulation outputs fit the model input requirements, i.e. mean speeds and travel distances estima-496

tion. Such models have been proven accurate at large-scale as long as multiple trips are considered together (Lejri497

and Leclercq, 2020). One can claim that more accurate results can be obtained when coupling microscopic traffic and498

emission models. It would require that the speed evolution calculated by the traffic models be very accurate, which499

has not been proven yet. Microscopic emission laws are sensitive to acceleration and deceleration values. To our best500

knowledge, no microscopic traffic simulator has demonstrated high accuracy to this respect as they have been mainly501

designed to reproduce traffic flows and not kinematics.502

Finally, we would like to stress that our framework has been designed to ensure consistency between the local trips503

in the city network and the regional paths (Batista and Leclercq, 2018), as well as the travel distances. It means that our504

model can adequately capture at the regional scale travel distances, which is one of the main elements for calculating505

traffic-related emission. As discussed in Mariotte et al. (2020), multi-regional systems are sufficient to reproduce506

the mean-speed dynamics inside each region. It means that our multi-regional framework directly determines the two507

main variables for emission calculations (mean speeds and travel distances) at the macroscopic level while considering508

traffic dynamics. The purpose of this paper is to show that our framework fulfills the requirements for emission509

calculations and can then be used to compare the drivers’ rationality for their chosen path.510
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Appendices514

A. Mathematical derivation of the variance of the travel time distribution515

In this section, we discuss the derivation of the mathematical expression utilized to characterize the variance of516

the distributions of travel times TT OD
p (see Eq. 11). From the definition of the variance, we have that:517

Var(TT OD
p ) = E{[TT OD

p − E(TT OD
p )]2} (A.1)

We start by recalling the reader that the travel time TT OD
p (see Eq. 6) of a regional paths is determined by means518

of a first order Taylor’s expansion around the mean values of Lrp and vr (Batista and Leclercq, 2019b). We then obtain519

that:520

TT OD
p =

∑
r∈X

(
Lrp

vr
+

1
vr

(Lrp − Lrp) −
Lrp

v2
r

(vr − vr)
)
δrp,∀p ∈ ΩOD ∧ ∀(O,D) ∈ W (A.2)
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By plugging Eq. A.2 and Eq. 10 into Eq. A.1, we have that:521

Var(TT OD
p ) = E

{∑
r∈X

[
Lrp

vr(nr)
+

1
vr(nr)

(Lrp − Lrp) −
Lrp

v2
r (nr)

(vr(nr) − vr(nr)) −
Lrp

vr(nr)

]2

δrp

}
(A.3)

From Eq. A.3 we reorganize the terms:522

Var(TT OD
p ) = E

{∑
r∈X

[
1

vr(nr)
(Lrp − Lrp) −

Lrp

v2
r (nr)

(vr(nr) − vr(nr))
]2

δrp

}
(A.4)

We now develop the quadratic term in Eq. A.4, and do some arithmetic calculations to re-organize the terms:523

Var(TT OD
p ) = E

{∑
r∈X

[
1

v2
r (nr)

(Lrp − Lrp)2 +
L

2
rp

v4
r (nr)

(vr(nr) − vr(nr))2 − 2
Lrp

v3
r (nr)

(Lrp − Lrp)(vr(nr) − vr(nr))
]
δrp

}
(A.5)

We determine the expected value E(.) of the right term in Eq. A.5, and we obtain that:524

Var(TT OD
p ) =

∑
r∈X

{
1

v2
r (nr)

E((Lrp − Lrp)2) +
L

2
rp

v4
r (nr)

E((vr(nr) − vr(nr))2) − 2
Lrp

v3
r (nr)

E((Lrp − Lrp)(vr(nr) − vr(nr)))
}
δrp

(A.6)

Note that, in Eq. A.6, E(Lrp) = Lrp and E(vr(nr)) = vr(nr). The terms E((Lrp − Lrp)2), E((vr(nr) − vr(nr))2) and525

E((Lrp − Lrp)(vr(nr)− vr(nr))) in Eq. A.6, represent the variances the distributions of travel distances Lrp, distributions526

of mean speeds vr(nr) and the covariance between these two distributions, respectively. We then substitute these terms527

in Eq. A.6 and we have that:528

Var(TT OD
p ) =

∑
r∈X

{
1

v2
r (nr)

Var(Lrp) +
L

2
rp

v4
r (nr)

Var(vr(nr)) − 2
Lrp

v3
r (nr)

Cov(Lrp, vr(nr))
}
δrp (A.7)

From Eq. A.7, we isolate the term
(

Lrp

vr(nr)

)2

. We then obtain our final expression (also present on Eq. 11) for the529

variance of TT OD
p :530

Var(TT OD
p ) =

∑
r∈X

(
Lrp

vr(nr)

)2(Var(Lrp)

L
2
rp

+
Var(vr(nr))

v2
r (nr)

− 2
Cov(Lrp, vr(nr))

Lrpvr(nr)

)
δrp (A.8)
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