
New results on Q-routing protocol for
wireless networks∗

Alexis Bitaillou1, Benoît Parrein1, and Guillaume Andrieux2

1University of Nantes, LS2N, Polytech Nantes, Nantes, France
2University of Nantes, IETR, IUT La Roche-sur-Yon, La Roche-sur-Yon, France

In the 90s, Q-routing assisted by reinforcement learning was introduced
by Boyan and Littman with interesting results in terms of quality of service.
Some recent works continue to promote the idea through improvement of
the algorithm or specialized extensions. In this paper, we propose a simple
modification to workaround the greedy behaviour of Q-routing by considering
epoch notion. In comparison with the original Q-routing and the standard
OLSRv2 under Qualnet simulator, we show that our extension provides an
interesting improvement in terms of packet delivery ratio on the original
irregular grid of Boyan and Littman with wireless links.
Keywords: Ad-hoc networks, Q-routing, Wireless networks, Qualnet simulator

1 Introduction
In the 90s, two new approaches appears to solve routing problem: i) bio-inspired al-
gorithm and ii) reinforcement learning based algorithm. Q-routing [2] is one of the
reinforcement learning based routing algorithm appeared. In their paper, Q-routing
shown promising results. On their personal simulator, Q-routing offers a better average
end-to-end delay than the Bellman-Ford protocol in high load condition. In fact, in
congestion state, the Q-routing proposes alternative route based on the end-to-end de-
lay while Bellman-Ford protocol is focused on the shortest path in terms of hops count.
Those results have many potential applications especially for mesh and mobile ad-hoc
networks (MANET). From their original work, many derived works has been proposed.
A part of those are improvements of the algorithms such as AQFE [9]. Most of them
are evaluated on home-made simulator. But, there are also specializations of Q-routing
for specific applications such as mobility or cognitive radio.

∗Supported by the COWIN project from the RFI Wise and Atlanstic 2020, Région Pays de la Loire

1



In this paper, we demonstrate how a short congestion can potentially degrade per-
formance of Q-routing. So, we propose to integrate to Q-routing an epoch-inspired
mechanism. Epoch mechanism is a method from machine learning to prevent some side
effects of greedy behaviour such as local optimum problem. We evaluate our modified
Q-routing with epochs on several scenarios on ad-hoc wireless networks. We compare
it to the original Q-routing and nuOLSRv2, an implementation of OLSRv2 [3]. Our
results show that our modification improved slightly the performance of Q-routing. It
offers better performance than nuOLSRv2 in most our scenarios.

The organization of the paper is the following. In Section 2, we summarize some
previous works about Q-routing. In Section 3, we detail the implementation of our
distributed Q-routing protocol. Section 4 defines the experimental setup. Section 5
provides results in terms of QoS and a discussion as well. The last section concludes the
work and draws some perspectives.

2 Related work
In this section, we see in more details Q-routing algorithms and other related works.

2.1 Q-routing
Watkins and Dayan [12] created a reinforcement learning algorithm called Q-learning
in 1994. Two years later, Boyan and Littman [2] proposed to integrate Q-learning in
routing algorithm. They named their algorithm Q-routing in reference to Q-Learning.
In this algorithm, each node x looks for the lowest Q-value, defined using the Q function.
The estimated delivery time from node x to node d by node y is noted: Qx(d, y). They
define Q-value of function Q as:

∆Qx(d, y) = η(q + s+ t−Qx(d, y)) (1)

where η is the learning rate (usually 0.5 in [2]) q the unit of time spent in node x’s queue,
s the unit of time spent during the transmission between x and y and t as

t = min
z∈neighbour of y

Qy(d, z). (2)

In this case, the effective delivery time is the reward R and defined as: R = q+ s+ t.
At the beginning, the Q-values are initialized with the value 0. Q-routing has a greedy
strategy, so the first choice is very important. In order to make the first choice equitably,
an exploration phase is needed to discover all the choices. During this phase, the Q-value
is not updated.

Several networks topologies are tested in their work including an 6× 6 irregular grid.
The authors argue that only local information is used to proceed. The presented results
of [2] concern only the 6×6 irregular grid. Q-routing is compared to Bellman-Ford’s
shortest path algorithm. In their works, Q-routing is not always able to find the shortest

2



path under low network load. Nevertheless, the latency is similar to the shortest path
in low load condition. Q-routing clearly outperforms the shortest path in high load
condition (even if the high load condition is not well-defined in [2]). However, when the
traffic load decreases, Q-routing keeps the high load policy. The original approach is
thus not adapted to dynamic changes.

2.2 Q2-routing
The original Q-routing considers only the latency. Q-routing will select a low latency
route even if the path loss more packets. Recently, Hendriks et al. [7] proposed an
extension of Q-routing considering also the packet delivery ratio and the jitter. Their
algorithm is called Q2-routing. They adapted the Q function to include these QoS
metrics:

Qx(d, y) = (Cd × Cj × Cl)((1− α)Qx(d, y) + αr) (3)

where C are coefficient depending on the traffic QoS requirement, α is the learning rate
and r is q + s+ t in (1).

In their paper, they evaluated Q2-routing on a topology composed of 3 paths on ns-3.
It compared to an implementation of the original Q-routing and AODV [5]. Packets loss
and delay appeared during the simulation on different paths in order to test Q2-routing
features. According to their results, Q2-routing outperforms AODV and Q-routing in
most of the test cases in terms of PDR, average delivery time and jitter. However, their
scenario is designed to advantage Q2-routing as the simulation event can only detect by
Q2-routing and some of them by Q-routing.

2.3 AQ-routing
Q-routing is a greedy algorithm. The mobility can easily degrade the performances.
Serhani et al. [11] proposed an extension for Q-routing in order to improve performances
in mobility scenario. They named their extension Adaptive Q-routing (AQ-routing).
AQ-routing takes several concepts from OLSR [4] such as HELLO packets but also ETX
metric [6]. Unlike the original Q-routing, AQ-routing doesn’t use latency as routing
metric. It uses a metric based on link stability:

Qmetricij = αij · φ(MF j) + (1− αij) · λETX ij (4)

where MF is the Mobility Factor, α the learning rate, φ(MF j) is defined as: φ(MF j) =
a

1−e
−MFj

b

. In their paper, they compared AQ-routing to OLSR (standard and with ETX

metric version) on ns-3. On static test case, AQ-routing offers the best PDR but the
worst average delivery time. On mobility test case, AQ-routing provides a stable average
delivery time and the best PDR. Start to 4 m/s, the average delivery time is better with
AQ-routing than with OLSR ETX. To obtain this performance, Serhani et al. have
increased the complexity of Q-routing especially the computation of the reward.

3



2.4 Other extensions and derived works
There are many other extensions and derived works of Q-routing. For example, Kavalerov et
al. [8] have improved Q-routing ”Full Echo” with Adaptive Q-routing Full Echo (AQFE)
and Adaptive Q-routing Random Echo (AQRE). AQFE improved the stability Q-routing
Full Echo by adding a second dynamic learning rate. AQFE outperforms Q-routing on
the original test cases of Boyan and Littman [2]. After the learning phase, AQFE can
become unstable under some conditions. In order to reduce this instability, AQRE
doesn’t send update to all neighbours but to a set randomly chosen. Finally, they
proposed Adaptive Q-routing with Random Echo and Route Memory (AQRERM) [9],
an improved version of AQRE. However, AQFE and its derived have only been tested
on home-made simulator. So, other quality of service metrics such as PDR are not
evaluated.

Besides improvements, specialized extensions have been made. For example, Paul et
al. [10] created an extension of Q-routing for cognitive radio. Zhang and Ye [13] made a
Q-routing optimized for optical networks-on-chips.

3 Q-routing implementation details
In this section, we describe our implementation of Q-routing fully distributed and de-
ployable on wired and wireless networks.

3.1 Implementation overview
We do not implement Q-routing from scratch, but our implementation is based on the
Bellman-Ford basic implementation of Qualnet simulator. This basic implementation is
bare-bones, there is no auxiliary function as we can have in OLSR [4] for example. We
redefine the maximum route length (16 hops), the timeout delay (120 s), the maximum
number of routes per packet (32 routes per packets), and the periodic update delay
(10 s). Nodes have access to local information only. Additionally, we add the parameter
η from Eq. (1) and the exploration phase duration. The routing table has been replaced
by the function Q inspired of Eq. (1). The two next subsections describe how we totally
distributed our implementation of the Q-routing protocol.

3.2 Latency measurement and header format
Q-routing aims to minimize the average delivery time. The Q function uses the duration
of the transmission and the duration in-queue. To measure these times, we extend the
header of the routing packet. The header of the routing packet contains a timestamp.
Thanks to this information, the receiver can estimate the delay. The delay is sent back
during the next update. This method has a little network overhead but needs two
assumptions to work correctly. The latency is computed by the difference between the
timestamp in the header and the moment when the packet is received according the local
clock. So, the clock of the nodes needs to be synchronized to compute this difference.

4



As the reward uses the latency in micro-second, the synchronization need optimally to
be of the order of the micro-second. In fact, the synchronization can be less precise, but
the difference between the clocks has to smaller than the lowest latency. This is the first
assumption. This mechanism can be replaced by using the ”echo” function of ICMP.

The second assumption concerns the number of queues. Nodes need to have only one
queue. If a node has more than one queue, the measure of duration in-queue will depend
on the number of queues, the quantity and the priority of packets in the queues and
finally the scheduler. So, in order to not depend on these parameters, the measure of
the duration in-queue is more accurate when nodes have only one queue.

3.3 Route update mechanism
As nodes have only access to local information only, our protocol needs a mechanism to
update their routing table. We propose to reuse the routing management to propagate
routes. There are two types of update: periodic and triggered. During a periodic update,
all nodes broadcast all their routes to their 1-hop neighbourhood. Periodic updates occur
every 10 s. As broadcast a new route will be too slow with periodic updates, there is
triggered and asynchronous update. To broadcast a new with periodic updates only, it
needs in the worst case 10 s per hop. For example, on a topology in line of 6 nodes, the
new route will broadcast from an end to the other in 50 s in the worst case. Triggered
update happens when a new route is available, or a route has been modified. A triggered
update is not sent if a periodic update will be sent in less than 150 ms.

We define a route as triplet value: destination, mask and next hop. We complete the
structure by adding a timestamp, the value of the t from (1) and the current latency.
The timestamp comes from the last timestamp of the routing packet of the destination.
A new route is accepted if the distance is less than 16 hops. As we explained, the
routing packets are timestamped. The timestamp is also integrated to data structure of
the original route and acts as sequence number. A route update is always accepted if
the timestamp of the update is newer than the current timestamp. If the timestamp of
the update is equal to the current timestamp, the update is only accepted if it minimizes
the Q-value of Eq. (1).

3.4 Epoch mechanism
In order to limit the greedy behaviour of Q-routing, we propose to add epoch-inspired
mechanism. Epoch mechanism is a concept from machine learning in order to reset
reward periodically and workaround the problem of local optimum. We define arbitrary
the duration of the epoch to 300 s. At the end of the epoch, Q-routing creates a new
empty Q-table. Q-routing starts an exploration phase, in which the new Q-table is filled.
During this phase, the current Q-table works normally. At the end of the learning phase,
the new Q-table replaces the current Q-table. This mechanism helps also to purge stale
routes.

5



4 Experimental set-up
In this section, we describe the complete experimentation set-up and the results of our
simulation. Our experimental plan concerns two wireless topologies: one simple with
two main paths and the adaptation of 6×6 grid of Boyan and Littman [2]. The Table 3
sums up the modified or specific parameters. We use the default value for the other
parameters. We benchmark three routing protocols: our implementation of Q-routing,
our Q-routing with epoch mechanism and nuOLSRv2 (OLSRv2 [3] Niigata University
implementation). OLSRv2 is the successor of OLSR, it is standardized routing protocol
specialized in mobile ad-hoc networks (MANETs). We use Scalable Qualnet 8.2 as
network simulator. 30 seeds are used for each combination of parameters.

1

2

5

6

3

4

7

CBR stream

Background tra c (after 8 mn)

Figure 1: Our wireless toy example.
Numbers correspond to the
node ID.

13 19

14 20

27 33

28 34

35

30 36

5

6 12

15 21

16 22

18 24

25 31

26 32

1 7

2 8

3 9

4 10

Figure 2: Adapted wireless irregular grid.
Numbers correspond to the
node ID.

4.1 Q-routing and its greedy behaviour, a toy example
Before evaluating Q-routing and Q-routing epoch on a complex topology, we evaluate
them on a simple test case as depicted on Figure 1. Our test CBR is between node 1 and
node 4 which are the source and the destination respectively. In this simple network,
large background traffic appears on the shortest path between node 2 and node 3. In
order to have two distinct paths, we move path away each other. The CBR source starts
sending at 60 s and stop 60 s before the end of the simulation. The interval between
two messages is 10 ms. To be sure that the routes are stables when background traffic
appears, it starts after 8 minutes of simulation.

4.1.1 Scenario 1: one second congestion

For the first test, the background traffic appears at 8 minutes and stopped just a second
after. The background traffic throughput is 5120 kb/s. The objective is to demonstrate
the disadvantage of the greedy behaviour of Q-routing. In order to observe the clear

6



change of the average hop count, the simulations run over 30 minutes. We benchmark
Q-routing and our Q-routing epoch.

4.1.2 Scenario 2: alternative path

The goal is simply to verify that our Q-routing implementation prefers the longer path
(through node 5) as soon as congestion occurs. The background traffic start at 8 minutes
and stop one minutes before the end of the simulation. The simulation time is 15 minutes
because it is enough for this simple test case. We benchmark Q-routing, our Q-routing
epoch and nuOLSRv2.

4.2 Adapted wireless irregular grid
In [1], we used the irregular 6×6 grid in [2]. But, when we replaced basically the wired
link by wireless link, the irregular grid becomes a regular grid. We changed the location
of some nodes. The topology is composed of two grids 4 nodes by 3 linked by two paths.
Four nodes have been removed compared to the wired grid to keep the irregularity
property. The Figure 2 illustrates this topology in a logical and compact form. For
example, the node 9 can only communicate with nodes 3, 10 and 8. We benchmark
Q-routing, our Q-routing epoch and nuOLSRv2.

4.2.1 Scenario 3: located congestion

In this case, there are 4 CBR streams on the adapted irregular wireless grid. The CBR
streams start one minute after the beginning and stop one minute before the end of the
simulation. All the CBR streams have the same throughput. The location of the CBR
streams is detailed in Table 1. This test case shares the same idea of the tests on the
toy example. The goal is to verify that Q-routing can balance CBR streams between
two paths. The simulation time is 15 minutes

Source (Node ID) Destination (Node ID)
35 5
4 34
9 27
26 8

Table 1: CBR streams location on the wireless grid (scenario 3)

4.2.2 Scenario 4: diffused traffic

In this case, there are 15 CBR streams on the adapted irregular wireless grid. The
location of those CBR streams has been defined randomly. Their starting time and
their stop time have been defined randomly but the CBR streams must start after one
minute. All CBR streams have the same throughput. The settings of the CBR streams

7



are defined once and don’t change between the simulations. The location of the CBR
streams is detailed in Table 2. The goal is to evaluate Q-routing and Q-routing epoch on
the adapted wireless grid with non-constant traffic. The simulation time is 30 minutes

Source (Node ID) Destination (Node ID) Start (s) End (s)
19 12 62 721
28 9 175 537
31 35 217 1262
28 22 371 665
2 5 463 1088
14 15 632 951
25 6 832 1714
7 15 1006 1653
26 8 1168 1212
30 9 1241 1713
3 32 1303 1569
21 4 1592 1683
6 32 1613 1715
21 14 1661 1755
20 7 1705 1762

Table 2: CBR streams location on the wireless grid (scenario 4)

Feature Parameter Value
Network Link Wireless IEEE 802.11a 9 Mb/s link

IEEE 802.11e link layer
Topologies Ring and irregular grid

Node Number of queues 1 FIFO queue
Mobility No

CBR Message size 512 bytes
Start 1 min (scenario 2 and 3)
End 1 min before the end (case 2 and 3)

Simulation Seed 30 different seeds
Duration 15 min (scenario 2 and 3)

30 min (scenario 1 and 4)
Q-routing Exploration 15 s (scenario 1 and 2)

45 s (scenario 3 and 4)
Epoch 300 s
η 0.9

Table 3: Simulation parameters

8



5 Results
In this section, we present the results of the experimentation. We focus on three metrics:
the average end-to-end delay (or average delivery time), the packet delivery rate (PDR)
and the jitter. All those metrics are measured at the application layer (layer 7). Disor-
dered messages are dropped by the receiver. Only the messages received and accepted
contribute to the average delivery time and the jitter. The throughput of the CBR
streams is expressed at the application layer.

5.1 Toy example
5.1.1 Scenario 1: one second congestion

For this first test case, we benchmark Q-routing and our modified Q-routing with epoch.
We focus on the average hop count for the CBR stream. The Figure 3 shows the box
plot of the average hop count for Q-routing over the time. Start to the congestion, the
average delivery time increases. Q-routing uses the longer alternative path and stills
use it after the congestion up to the end of the simulation. According to the Figure 4,
Q-routing epoch uses also the longer alternative path, but unlike Q-routing, it finally
returns on the shortest path. This little test case shows the advantage of the epoch-
inspired mechanism. It makes Q-routing less sensitive to very short congestion. The
reactivity of Q-routing could be increased by decreasing the epoch duration.

120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680
Time (s)

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Av
er
ag
e 
ho
p 
co
un
t (
#)

Eta: 0.9, Background throughput: 5120 kb/s

Figure 3: Average hop count for Q-routing
(scenario 1).

120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680 1740
Time (s)

3.0

3.1

3.2

3.3

3.4

Av
er
ag
e 
ho
p 
co
un
t (
#)

Eta: 0.9, Background throughput: 5120 kb/s

Figure 4: Average hop count for our Q-
routing with epochs (scenario
1).

5.1.2 Scenario 2: alternative path

On this second test, we benchmark Q-routing and our modified Q-routing epoch and
nuOLSRv2. We focus on the packet delivery ratio (PDR), the average delivery time
and the jitter. The background traffic doesn’t contribute to the average delivery time,
the PDR and jitter. The Figure 5 shows the packet delivery ratio in function of the
background traffic for Q-routing, Q-routing epoch and nuOLSRv2. According to our
results, Q-routing and nuOLSRv2 have the same performance up to 3.5 Mb/s. Q-
routing with ”epochs” is less stable, the standard deviation is higher. nuOLSRv2 and

9



Q-routing with ”epoch” have a singularity between 4.5 Mb/s and 4.8 Mb/s. From
4 Mb/s to 4.55 Mb/s, the packet delivery ratio falls suddenly to 70 % and increased up
to 72 % between 4.55 Mb/s and 4.8 Mb/s. From 4.2 Mb/s, nuOLSRv2 drops a large
part of the packet. The packet delivery ratio falls under 70 %. With Q-routing, the
average PDR is higher (over 70 %), but the standard deviation is quite high. Q-routing
epoch offers the better average packet delivery ratio than nuOLSRv2 from 4.8 Mb/s.
The two versions of Q-routing outperform nuOLSRv2 in PDR only under high load
condition (above 4.55 Mb/s). The Figure 6 shows the average delivery time in function
of the background traffic for Q-routing, Q-routing epoch and nuOLSRv2. According to
our results, the three protocols offer a comparable average delivery time up to 3.4 Mb/s.
With nuOLSRv2, the average delivery time increases from 3.4 Mb/s up to peak at 260 ms
at 3.56 Mb/s. It decreases after 3.56 Mb/s but the number of packets contributing to the
metric decreases also. There is a singularity for nuOLSRv2 and Q-routing with ”epochs”
around 3.8 Mb/s. The singularity between 4 Mb/s and 4.8 Mb/s present in PDR is also
present in average delivery time. With Q-routing, the average delivery time increased
from 3.56 Mb/s to 3.9 Mb/s. It peaks at 60 ms on average. Q-routing offers the best
average delivery time except on singular points. The Figure 7 shows the average jitter in
function of the background traffic for Q-routing, Q-routing epoch and nuOLSRv2. The
three protocols offer a comparable average jitter up to 3.4 Mb/s. The Q-routing with
”epochs” has a better jitter than the original.

Our Q-routing epoch doesn’t improve performances in terms packet delivery ratio and
in average delivery time. It improves slightly the jitter on a range of background traffic
throughput compared to the original. Q-routing delivers the best performance in terms
of PDR and average delivery time under high load condition (above 4.5 Mb/s). The
high standard deviation can be explained by the instability of the measured latency
in wireless communication. This leads Q-routing making some wrong routing choice.
This scenario by design puts nuOLSRv2 in difficulty as the best solution is to use the
alternative path for the CBR stream.

5.2 Adapted wireless irregular grid
We evaluate Q-routing, Q-routing epoch and nuOLSRv2 on the wireless grid on the two
tests cases. The average delivery time, the packet delivery ratio and the jitter are the
average of all the CBR streams.

5.2.1 Scenario 3: located congestion

The four CBR streams contribute to the average delivery time, the packet delivery ratio
and the jitter. The Figure 8 shows the packet delivery ratio following the throughput
per CBR stream for Q-routing, Q-routing epoch and nuOLSRv2. Q-routing outperforms
nuOLSRv2. The PDR with Q-routing is up to 44 % (at 410 kb/s per CBR) better than
with nuOLSRv2. There is no significant difference between Q-routing and Q-routing
epoch. The Figure 9 shows the average delivery time in function of the throughput per
CBR stream for Q-routing, Q-routing epoch and nuOLSRv2. Q-routing provides low

10



0 1000 2000 3000 4000 5000
Background traffic throughput (kb/s)

50

60

70

80

90

100

Pa
ck
et
 D

el
iv
er
y 
Ra

tio
 (%

)

Q-routing
OLSRv2-NIIGATA
Q-routing with "epochs"

Figure 5: Packet delivery ratio on the toy
example (scenario 2).

0 1000 2000 3000 4000 5000
Background traffic throughput (kb/s)

0

50

100

150

200

250

Av
er
ag

e 
De

liv
er
y 
Ti
m
e 
(m

s)

Q-routing
OLSRv2-NIIGATA
Q-routing with epochs

Figure 6: Average delivery time on the
toy example (scenario 2).

0 1000 2000 3000 4000 5000
Background traffic throughput (kb/s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
er
ag

e 
jit
te
r (
m
s)

Q-routing
OLSRv2-NIIGATA
Q-routing with epochs

Figure 7: Average jitter on the toy exam-
ple (scenario 2).

latency under low load condition (up to 820 kb/s). The latency increased up to overtake
the latency with nuOLSRv2. There is no significant difference between Q-routing and Q-
routing epoch. The Figure 10 shows the jitter following the throughput per CBR stream
for Q-routing, Q-routing epoch and nuOLSRv2. nuOLSRv2 has the worst average jitter.
Q-routing outperforms nuOLSRv2. There is no significant difference between Q-routing
and Q-routing epoch.

The two versions of Q-routing outperforms under low load condition because Q-routing
can more easily balance the CBR streams. The CBR streams (4, 34) and (35, 5) can
use the ”upper” path even if the path is longer. nuOLSRv2 uses the upper path only
for the CBR stream (5, 35) in the best case. As the link between the nodes 16 and
22 is saturated, nuOLSRv2 loses packets, but also increases the average delivery time.
Interestingly, when the throughput per CBR increased, Q-routing loses its advantage in
terms of average delivery time face to nuOLSRv2.

11



0 250 500 750 1000 1250 1500 1750 2000
Throughput per CBR stream (kb/s)

20

40

60

80

100

Pa
ck

et
 D
el
iv
er
y 
Ra

tio
 (%

)

Q-routing
OLSRv2-NIIGATA
Q-routing with epochs

Figure 8: Packet delivery ratio on the sce-
nario 3

0 250 500 750 1000 1250 1500 1750 2000
Throughput per CBR stream (kb/s)

0

5

10

15

20

25

Av
er
ag
e 
De
liv
er
y 
Ti
m
e 
(s
)

Q-routing
OLSRv2-NIIGATA
Q-routing with epochs

Figure 9: Average delivery time on the
scenario 3

0 250 500 750 1000 1250 1500 1750 2000
Throughput per CBR stream (kb/s)

0

20

40

60

80

100

120

Av
er

ag
e 

jit
te

r (
m

s)

Q-routing
OLSRv2-NIIGATA
Q-routing with epochs

Figure 10: Average jitter on the scenario
3.

5.2.2 Scenario 4: diffused traffic

The 15 CBR streams contribute to the average delivery time, the packet delivery ratio
and the jitter. The Figure 11 shows the packet delivery ratio following the throughput
per CBR stream for Q-routing, Q-routing epoch and nuOLSRv2. The three routing
protocol have the same shape. The packet delivery ratio decreases when the throughput
per CBR increases. Q-routing epoch offers the best packet delivery. However, the
difference with Q-routing and nuOLSRv2 is limited. There is 8 % between Q-routing
epoch and nuOLSRv2 and 3 % between the two Q-routing in the best case (at 820 kb/s).
The Figure 12 shows the average delivery time in function of the throughput per CBR
stream for Q-routing, Q-routing epoch and nuOLSRv2. As the packet delivery ratio,
the curves of the average delivery time have the same shape. On average, nuOLSRv2
is the slowest of the three protocols. Q-routing is up to 1 s faster. Q-routing epoch
improve slightly this metric. The Figure 13 shows the jitter following the throughput

12



per CBR stream for Q-routing, Q-routing epoch and nuOLSRv2. nuOLSRv2 has the
worst average jitter. Q-routing epoch offers the best average except between 1.6 Mb/s
and 2.7 Mb/s where there is an instability.

0 500 1000 1500 2000 2500 3000 3500 4000
Throughput per CBR stream (kb/s)

20

40

60

80

100

Pa
ck

et
 D
el
iv
er
y 
Ra

tio
 (%

)

Q-routing
OLSRv2-NIIGATA
Q-routing with epochs

Figure 11: Packet delivery ratio on the
scenario 4.

0 500 1000 1500 2000 2500 3000 3500 4000
Throughput per CBR stream (kb/s)

0

2

4

6

8

10

Av
er

ag
e 

De
liv

er
y 

Ti
m

e 
(s

)

Q-routing
OLSRv2-NIIGATA
Q-routing with epochs

Figure 12: Average delivery time on the
scenario 4.

0 500 1000 1500 2000 2500 3000 3500 4000
Throughput per CBR stream (kb/s)

0

5

10

15

20

25

30

Av
er
ag
e 
jit
te
r (
m
s)

Q-routing
OLSRv2-NIIGATA
Q-routing with epochs

Figure 13: Average jitter on the scenario
4.

This scenario is the less static in terms of traffic so the performance of Q-routing
was quite unexpected due to its greedy behaviour. Q-routing epoch provides a slight
improvement but less than expected. The difference of performance between Q-routing
and nuOLSRv2 can be explained by the unneeded verbosity of nuOLSRv2. In fact,
nuOLSRv2 broadcasts more packets than Q-routing. Those packets are useful in mobility
scenarios but this one.

5.3 Discussion
The tests over a simple wireless topology were very encouraging. Q-routing epoch gives
the results expected. It returns on the shortest path when the congestion is finished.

13



It also chooses the alternative path to bypass the congestion. Q-routing outperforms
nuOLSRv2 and Q-routing in PDR and in average delivery time up to 4.8 Mb/s. For the
jitter, the improvement is not so obvious. On the wireless grid, the difference between
Q-routing and Q-routing epoch is very slight, even on the scenario designed to favour
Q-routing epoch (scenario 4).

Q-routing epoch has a higher computational cost and memory requirement than Q-
routing. During the exploration phase, it has to maintain two Q-tables. The size of the
Q-table is proportional to the number of 1-hop neighbour and the number of destinations.
However, Q-routing epoch can remove staled routes from the Q-table at the end of the
exploration phase. The size of the Q-table has an impact on update. On the wireless
grid, each node broadcast up to 4 packets per update, so the routing overhead is high.
This routing overhead can be reduced but at cost of a computation overhead. Those
observations are agreed to [7] on difficulties for Q-routing to scale to large networks.

Another point concerns nuOLSRv2. The different scenarios are not designed to ad-
vantage nuOLSRv2. They don’t include mobility. Their size in number of nodes is
quite limited. For example, the wireless grid is composed of only 32 nodes. nuOLSRv2
implements advanced draft of OLSRv2. But, nuOLSRv2 is not totally compliant with
the rfc7181. However, we think reasonably that the performance of nuOLSRv2 reflects
the performance of a rfc7181-compliant implementation.

6 Conclusion
In this paper, we present an evaluation of our modification of Q-routing on the wireless
standard IEEE 802.11. We experienced it on the professional packet driven simulator
Qualnet on several scenarios. Q-routing epoch reacts as expected on the first scenario.
The second scenario shows that our modification doesn’t improve the performance of Q-
routing. However, Q-routing epoch give a slight improvement on the wireless irregular
grid compared to the original Q-routing. The two versions of Q-routing outperforms in
PDR nuOLSRv2 in all our tests. Except the scenario 2 where the results are similar,
they also clearly outperforms in average jitter nuOLSRv2. Nevertheless, the results in
average delivery time depend on the scenario. We show that Q-routing doesn’t need to
be modified to give good results on our wireless grid even with diffused and changing
traffic. However, our implementation of Q-routing doesn’t have the auxiliary function of
OLSRv2 and can’t scale like it. So, our results can hardly generalize on specific scenarios
or bigger topologies.

References
[1] Bitaillou, A., Parrein, B., Andrieux, G.: Q-routing: From the Algorithm to the

Routing Protocol. In: Boumerdassi, S., Renault, r., Mühlethaler, P. (eds.) Machine
Learning for Networking. pp. 58–69. Lecture Notes in Computer Science, Springer
International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-45778-
5_5

14



[2] Boyan, J.A., Littman, M.L.: Packet routing in dynamically changing networks: A
reinforcement learning approach. In: Advances in neural information processing
systems. pp. 671–678 (1994)

[3] Clausen, T.H., Dearlove, C., Jacquet, P., Herberg, U.: The Opti-
mized Link State Routing Protocol Version 2. RFC 7181 (Apr 2014).
https://doi.org/10.17487/RFC7181, https://rfc-editor.org/rfc/rfc7181.txt

[4] Clausen, T.H., Jacquet, P.: Optimized Link State Routing Proto-
col (OLSR). RFC 3626 (Oct 2003). https://doi.org/10.17487/RFC3626,
https://rfc-editor.org/rfc/rfc3626.txt

[5] Das, S.R., Perkins, C.E., Belding-Royer, E.M.: Ad hoc On-Demand Distance Vec-
tor (AODV) Routing. RFC 3561 (Jul 2003). https://doi.org/10.17487/RFC3561,
https://rfc-editor.org/rfc/rfc3561.txt

[6] De Couto, D.S.J., Aguayo, D., Bicket, J., Morris, R.: A high-
throughput path metric for multi-hop wireless routing. In: Proceedings
of the 9th annual international conference on Mobile computing and net-
working. pp. 134–146. MobiCom ’03, Association for Computing Machin-
ery, San Diego, CA, USA (Sep 2003). https://doi.org/10.1145/938985.939000,
https://doi.org/10.1145/938985.939000

[7] Hendriks, T., Camelo, M., Latré, S.: Q2-Routing : A Qos-aware Q-Routing algo-
rithm for Wireless Ad Hoc Networks. In: 2018 14th International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob). pp.
108–115 (Oct 2018). https://doi.org/10.1109/WiMOB.2018.8589161, iSSN: 2160-
4886

[8] Kavalerov, M., Likhacheva, Y., Shilova, Y.: A reinforcement learning approach to
network routing based on adaptive learning rates and route memory. In: South-
eastCon 2017. pp. 1–6 (Mar 2017). https://doi.org/10.1109/SECON.2017.7925316

[9] Kavalerov, M., Shilova, Y., Likhacheva, Y.: Adaptive Q-Routing
with random echo and route memory. In: 2017 20th Conference of
Open Innovations Association (FRUCT). pp. 138–145 (Apr 2017).
https://doi.org/10.23919/FRUCT.2017.8071304, iSSN: 2305-7254

[10] Paul, A., Banerjee, A., Maity, S.P.: Residual Energy Maximization in Cogni-
tive Radio Networks With Q-Routing. IEEE Systems Journal pp. 1–10 (2019).
https://doi.org/10.1109/JSYST.2019.2926120

[11] Serhani, A., Naja, N., Jamali, A.: AQ-Routing: mobility-, stability-aware
adaptive routing protocol for data routing in MANET–IoT systems. Cluster
Computing 23(1), 13–27 (Mar 2020). https://doi.org/10.1007/s10586-019-02937-x,
https://doi.org/10.1007/s10586-019-02937-x

15



[12] Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (May
1992). https://doi.org/10.1007/BF00992698

[13] Zhang, W., Ye, Y.: An Approximate Thermal-Aware Q-Routing for Optical NoCs.
In: 2019 IEEE/ACM Workshop on Photonics-Optics Technology Oriented Network-
ing, Information and Computing Systems (PHOTONICS). pp. 22–27 (Nov 2019).
https://doi.org/10.1109/PHOTONICS49561.2019.00009

16


