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Detecting Prominent Microblog Users over Crisis
Events Phases

Imen Bizida,1,, Nibal Nayefa, Patrice Boursiera, Antoine Douceta

aL3i, University of La Rochelle

Abstract

During crisis events such as disasters, the need for real-time information retrieval
(IR) from microblogs becomes essential. However, the huge amount and the va-
riety of the shared information in real time during such events over-complicates
this task. Unlike existing IR approaches based on content analysis, we pro-
pose to tackle this problem by using user-centric IR approaches with identifying
and tracking prominent microblog users who are susceptible to share relevant
and exclusive information at an early stage of each analyzed event phase. This
approach ensures real-time access to the valuable microblogs information re-
quired by the emergency teams. In this approach, we propose a phase-aware
probabilistic model for predicting and ranking prominent microblog users over
time according to their behavior using Mixture of Gaussians Hidden Markov
Models (MoG-HMM). The model utilizes a new user representation which takes
into account both the user and the event specificities over time. This user rep-
resentation comprises the following new aspects (1) Modeling microblog users
behavior evolution by considering the different event phases (2) Characterizing
users activity over time through a temporal sequence representation (3) Time-
series-based selection of the most discriminative features (4) prominent users
prediction using probabilistic phase-aware models learned a priori. We have
conducted experiments during flooding events: we trained our identification
models using a dataset relative to the “Alpes-Maritimes floods” and we tested
its identification performance using a new dataset relative to another flooding
disaster “Herault floods”. The achieved results show that our model signifi-
cantly outperforms phase-unaware models and identifies most of the prominent
users at an early stage of each event phase.
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1. Introduction

The effectiveness and ease-of-use of supported microblogging platforms –
such as Twitter – have revolutionized the communication habits in our soci-
ety. Any user can quickly and conveniently post and get information on the
latest news. During crisis events, the amount of communicated information in
such platforms increases significantly. This makes information retrieval more
challenging. Most of the shared tweets during these events are non-valuable,
redundant, outdated or incredible. Moreover, this shared data is generally ex-
pressed in several languages and various formats (i.e. texts, images, links and
videos). Thus, content-based retrieval approaches are not well suited for this
task as they are time consuming.

This information retrieval problem has been addressed in the literature by
associating the quality of tweets with the prominence of their authors in a
specific topic or event [1, 2]. In the context of this article, we define prominent
users as microblog users who are susceptible to share relevant and exclusive
information during crisis events regardless of their popularity and their domain
of expertise in the platform. To the best of our knowledge such users category
has never been targeted in the literature. However, there have been several
works targeting other categories of important authors known as domain experts
or topical authorities.

The detection of these categories has gained a wide interest in the literature.
However, the detection techniques proposed for these categories are not suitable
to identify prominent users targeted in this paper. Prominent users in the
context of crisis events cannot be systematically considered as domain experts
or topical authorities. Most of prominent users refer to ordinary users who may
provide their testimony based on what they experience in the region of a crisis.

Targeted key users in the literature are generally identified using ranking
techniques based on either a graph-based user modeling approach or a vector-
based user modeling approach. Graph-based approaches are sensitive to popular
microblog users who have a large number of connections, such as celebrities and
news outlet channels. Vector-based user modeling approaches have thus been
proposed to deal with this problem. Such approaches describe users by a vec-
tor of features reflecting the overall tweeting activity on each user based on
textual, microblogging and social network structure features. However, such
vector-based user modeling approach does neither realistically nor accurately
represent the evolution of user behavior over time. This yields weaker perfor-
mance of detection and ranking algorithms which learn to distinguish behavioral
differences among different users.

Characterizing users without considering the temporal distribution of their
activities over event phases would not reveal the real user behavior. This is due
to the following: (1) Quantitative characterization of users: Practically, such
characterization would promote users sharing much information about an event
even if this information is irrelevant or outdated. (2) Uniform user character-
ization over the event duration (from the beginning of an event until its end):
Realistically, the behavior of users may differ according to the evolution of the

2



event. (3) Overall user prominence evaluation over the event duration: Such
strategy would fail to discover true prominent users who were active in only one
– however important – event phase, because their activity statistics are lower
compared to other users who were active in prior phases.

Moreover, the problem of key users prediction has never been tackled in the
literature. Most of the proposed identification models have been modeled and
experimented to classify or/and rank such users by the end of an event and
not over time. The challenge behind our proposed model is to predict such
prominent users at an early stage of each event phase in order to track these
users and get access to the relevant information they are sharing.

This work alleviates these shortcomings by proposing a new user modeling
and prediction approach considering: -Event evolution over time, and -User be-
havioral change over event phases and over time of each phase. Crisis events –
specially natural disasters – are usually described in terms of “phases” having
their specific goals, characteristics and experts. Each phase influences users’ be-
havior differently according to their interest and involvement in that phase. This
proposed user modeling approach is implemented within prominent users predic-
tion and ranking model learned using data from prior crisis events. This model
overcomes the problem of time-consuming information retrieval techniques by
considering features which can be computed in real time and learning a priori
the identification models adapted to each category of crisis events. Through our
experiments, we have trained a model adapted for prominent microblog users
identification during flooding events.

The rest of this paper describes the integration of these ideas for prominent
users identification during crisis events. In Section 3, we describe our phase-
aware user behavior modeling approach. We list the different extracted user
features used by the feature selection process to characterize user behavior at
each event phase in Section 4. Our temporal phase-aware probabilistic model for
the classification and ranking of microblog user’s behavior is detailed in Section
5. The evaluation set-up is described in Section 6. Experimental evaluation is
presented in Section 7. Finally, we present the discussion and conclusions along
with directions for future work in Sections 8 and 9.

2. Related Work

To the best of our knowledge, the issue of prominent users identification has
not been explored in depth in the context of crisis events. However, there have
been several works which proposed models to identify other categories of key
users such as microblog influential users, topical authorities and domain experts
in a more general context [3, 2]. Such models have mainly focused on proposing a
user modeling approach that is able to highlight the differences between key and
non-key users on specific topics. Through that user characterization, machine
learning or ranking algorithms are generally explored to learn or identify similar
users behaviors. These state-of-the-art user modeling approaches fall into two
categories -A graph-based user modeling approach describing user interaction in
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the network [4, 5, 6] or a vector-based user modeling based on a list of descriptive
user behavior features [1, 2, 7].

The graph-based-user modeling approach represents users behavior by a
graph composed of nodes and edges denoting respectively users and any na-
ture of relation that may link them. Such representation is generally adopted
for both influencers [3, 8] and domain experts detection [5]. The IP-influence
model [3] – which identifies influencers – defined edges as pairwise influence and
passivity according to the retweeting activity of users. TwitterRank [5] identi-
fied domain experts using the PageRank algorithm ranking users according to
their position on Twitter graph constructed according to the tweeting activity of
users. Such user representation has been criticized as it makes the identification
process sensitive to popular users who are not necessarily prominent [1].

The vector-based user characterization has been proposed as a new alterna-
tive to address this sensitivity. This user characterization approach was firstly
introduced by Pal and Counts [1] in the context of domain experts identification.
They represented by a single vector composed of 15 features describing the user
tweeting activity in order to cluster and rank each user according to his/her
expertise. Similarly, Xianlei et al. [2] employed this same user characterization
by referring to linguistic, user activity and profile features in order to classify
them using a machine leaning algorithm. Ghosh et al. [7] represented users by
a topic vector composed of different weighted terms extracted from the Twitter
lists. Through this representation, users are ranked by computing the topical
similarity scores between the different vectors.

While most of those vector-based models which identify domain experts have
been applied in topics referring to events such as “The world cup”, these models
remain unsuitable for the context of crisis events. Firstly, prominent users – in
crisis events – are not necessarily domain experts, they may be ordinary users
who are implicated involuntarily in a particular disaster which has occurred in
their region. Thus, such users cannot be detected a priori using Twitter lists
[7]. Second, characterizing users uniformly and quantitatively during the whole
event using such representation would not reflect the real user behavior [9]. The
user behavior and interest change over time according to the evolution of the
event. Finally, the user’s prominence may not be associated with the whole
event, users may be prominent only in one particular phase.

The present contribution addresses these limitations. In a previous work [9],
we have presented a new user characterization approach consisting of represent-
ing users by a sequence of feature vectors extracted over time independently of
the event characteristics. In this paper, we propose a complete user characteri-
zation considering both the user behavior and the event evolution over time in
order to predict prominent users in real time. We also tackle the problem of
prominent users identification in terms of prediction, not classification. In other
words, we focus on learning a model which is able to predict prominent users
over time and not by the end of the event. To the best of our knowledge, such
problem has never been tackled in the literature.
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3. User Behavior Representation in the Context of Crisis Events

In order to consistently model microblog users with their realistic behavior
during events, we propose a user behavior characterization approach that allevi-
ates the shortcomings stated in Sections 1 and 2. An analyzed event is divided
into different phases according to its nature/context. This section firstly de-
scribes how we have considered event phases while representing the user behav-
ior. Then, in the second subsection, we detail our proposed per-phase temporal
characterization approach for modeling the behavior change of users over time.

3.1. Crisis Events Evolution and its Impact on the Behavior and Prominence
of Microblog Users

Like users have their own specificities, events or even topics have their own
criteria that have to be considered while modeling user behavior. In the context
of crisis events, the event time-line is generally represented as a sequence of
“phases” referring to the evolution states of the event over time. Crisis events
characteristics and level of importance change according to each event phase.
The user interest and behavior regarding a particular event differ from one
phase to another. Modeling microblog users uniformly during the whole event
would give a misleading image of the real behavior of the user over time. This
subsection describes how our proposed user behavior characterization approach
takes into account the impact of the event evolution on both the user behavior
and prominence.

This approach characterizes any crisis event by a sequence of d different
successive phases E = (P1, P2, ..., Pd). These phases are defined a priori by the
domain experts according to the crisis event context. Similarly, each microblog
user is represented by a sequence of d representations reflecting his/her behavior
at each phase.

R(u) = (RP1 , RP2 , ..., RPd
) (1)

In this paper, we consider the standard crisis events phases categorization con-
sisting of characterizing crisis events evolution – specially natural disasters – into
three main phases [10]. These phases boundaries can be automatically defined
in real time by referring to the announcement of expert official organizations
(e.g. meteorological organizations in the case of flooding). In the following, we
detail the specificities of these three different phases:
Phase 1 Preparedness: is the phase announcing a possible risk that may arise
on the next hours or minutes.
Phase 2 Response: is the most delicate phase during the disaster as it covers
the period of the disaster occurrence.
Phase 3 Recovery: refers to the actions made following a disaster in order to in-
ventory the damages and regain the usual level of functioning before the disaster.

In these following subsections, we detail the specificities of these phases and
their effect on microblog users behavior over time.
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3.1.1. Event Phases Impact on Users’ Prominence

As each crisis event phase has its particularities, we propose to associate
microblog users’ prominence to each phase rather than to the whole event.
Prominent users differ according to the disaster phase. During the first phase
while the risk is not yet confirmed, expert meteorologists are involved to ana-
lyze and communicate any news. Once the risk is confirmed and the red alert
is raised, the response phase has to be managed. Emergency first responders
such as police officers, fire-fighters, paramedics and emergency medical techni-
cians intervene in order to address the immediate threats. When the situation
becomes under control, emergency first responders retire in order to give way
to experts who are in charge of recovering the disaster consequences. Similarly,
in microblogs, not all users are interested in a disaster from its beginning to
its end. For example, prominent users in the first phase may not necessarily
remain prominent in the second or the third one.

We thus propose to characterize user’s behavior per phase in order to ensure
a fair evaluation among microblog users at each phase and a relevant per-phase
prominent users detection. The high or low activity of a particular user in a
prior phase is not considered in the next phases. All the features characterizing
the activity of users are reset to zero at the beginning of each new phase. Only
users’ activity registered at the analyzed phase is considered. Then, detected
prominent users in a particular phase would be tracked only during that phase
unless they prove their prominence in other phases. In this way, we avoid to
track users who were prominent just in a particular phase during the whole
event.

To summarize, we model the impact of event phases on users’ promi-
nence by associating the user’s prominence with his/her activeness at each
event phase rather than the whole event. Each microblog user is charac-
terized by a per-phase representation {RP1},{RP2},...,{RPd

}. Based on this
representation, each user is classified in one of these corresponding classes{
CP1

1 , CP1
2

}
,
{
CP2

1 , CP2
2

}
,..,

{
CPd

1 , CPd
2

}
. C

Pj

1 and C
Pj

2 refer respectively to

prominent and non-prominent microblog users during the phase j. The classi-
fication and prediction model appropriated for each phase will be described in
Section 5.

3.1.2. Event Phases Impact on Users’ Behavior

In the context of crisis events, user behavior differs in the first and third
phase from the second phase. Prominent microblog users in the second phase
are generally in panic and would mainly concentrate on expressing what they
are seeing and experiencing regarding the event. However, in other phases,
they will act somehow like ordinary days. Representing users differently at each
particular phase highlights users behavior specificities per phase and makes true
prominent users more discoverable.

To cover these users’ behaviors changes according to each event phase, we
model each user differently at each phase by using different features. We select
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the best k representative features reflecting users’ behavior at that phase j.

FPj = (F
Pj

1 , F
Pj

2 , ..., F
Pj

k ) (2)

The sequence of feature vectors characterizing each user RPj
is composed only

by the selected features FPj characterizing users behavior during that phase
Pj . These features are selected from a large set of raw and engineered features
characterizing user activity in microblogs using a multi-variate feature selection
algorithm Corona [11] (See Section 4). Using this strategy, we represent users
behavior differently according to the analyzed phase by using appropriate fea-
tures selected a priori. This selection is conducted by learning the behavior of
users during the different phases of similar events. The extraction and selection
processes of these features will be described in depth in the next section.

3.2. User Behavior Modeling as Temporal Sequences

In order to track the real user behavior over time, we represent each user
activity during each phase by a temporal sequence of feature vectors. These
feature vectors are computed based on the selected features reflecting the user
behavior at that specific phase. The time-line of each event phase is divided into
equispaced intervals at m time-stamps t1,t2,t3,...,tm from the beginning of the
phase Pj until its end. At each time-stamp ti, we represent each microblog user
u by a feature vector V ti

Pj
characterizing his/her behavior from the time-stamp

ti−1 to ti.

V ti
Pj

(u) = (F
Pj ,(ti)
1 , F

Pj ,(ti)
2 , ..., F

Pj ,(ti)
k ) (3)

Then, the resulted vector is added in the sequel of the temporal sequence
R

ti−1

Pj
composed of the prior calculated vectors from the beginning of that phase.

Rti
Pj

(u) = (V t1
Pj

(u), V t2
Pj

(u), ..., V
ti−1

Pj
(u), V ti

Pj
(u)) (4)

Segmenting the sequence of user activity at each phase into time-series fea-
ture vectors offers a rich and personalized user representation. Users sharing the
same quantity of information would not be represented similarly. By highlight-
ing the temporal activity of each user, it becomes easier to differentiate between
users interacting and sharing exclusive news at the beginning of each phase and
users sharing the same information at its end. Our user modeling approach
offers a full vision of users behavior by taking into account the evolution of both
users and events over time. It provides a detailed user representation closer to
his/her real behavior in microblogs. Such representation eases the identification
of users behavior regularities, similarities and dissimilarities at each phase.

4. Extraction and Selection of Microblog Users’ Features

In order to efficiently model the user behavior particularities at each phase,
we evaluate the effectiveness of a large set of features X composed of state-of-
the-art and our new proposed raw and engineered features. Based on this set,
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we select a subset of features Xs that could best reflect the real user’s behavior
according to each phase. Both the features extraction and features selection
steps are processed off-line using prior disaster datasets. Trough these processes,
the best representative features of users behavior per phase can be selected. The
following subsections describe these two off-line processes in detail.

4.1. Features Extraction

At each phase, we extract and compute the following set of raw and en-
gineered features for each microblog user u and each time-stamp ti during a
particular event phase Pj . These features are computed by considering our on-
and off-topic user interactions categorization that was introduced in our prior
work [12]. On-topic refers to any user activity containing a subset of a list of
keywords and hashtags which are defined to describe the event under consid-
eration and not including any keywords reflecting non-serious or non-valuable
contents (i.e. lol, mdr, rent...). Off-topic refers to any activity that was not
recorded as an on-topic one.

4.1.1. Raw Features

We define raw features as statistics collected to quantitatively measure the
data characterizing different natures of the user interactions in a microblog. The
feature values are computed by analyzing raw users activities.

We compute these features by considering mainly the three natures of user
interactions extractable from the user time-line: original tweets (T) are tweets
originally expressed by the user, retweets (RT) recognizable with “RT@” prefix
are tweets already shared by another microblog user and forwarded later by the
user, and mentions (M) are tweets addressed to one or several users mentioned
using the “@” symbol. Table 1 summarizes the extracted features from both
our proposed and state-of-the-art metrics.

As it has been shown in our prior work [12], characterizing microblog users
using only simple raw metrics, hides many interesting characteristics of users’
behavior. Such features have many correlations between them that have to be
exploited. For example, features extracted from tweets having the same nature
(e.g. RT1 and RT2; R1on and R1off ) can be combined in order to construct
more representative engineered features.

4.1.2. Engineered Features

Engineered features are defined as higher level hand-designed features which
are usually constructed by combining and enhancing simple raw features and
studying the relationships among them. The goal is typically to get additional
relevant and more discriminative features characterizing user behavior in order
to increase the predictive power of learning algorithms.

By exploring the possible combinations between the raw extracted features,
we propose a set of engineered features (i.e. adjusted and not adjusted) detailed
in Table 2. The rationale behind the adjustment of on-topic features with the
off-topic ones is to penalize users – such as news outlets – who toggle among
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Table 1: List of raw features describing on- and off-topic user’s behavior during each time-
stamp of each event phase. (new) denotes our proposed features. Note that these features
are computed twice for on- and off-topic user activity.

Original tweets

T1
Pj,(ti) : #original tweets [1, 2]

T2
Pj,(ti) : #links shared [13]

T3
Pj,(ti) : #keyword and hashtags [1]

T4
Pj,(ti) : #favorites of original tweets (new)

T
Pj,(ti)
5 : #tweets geo-located in the event area (new)

Retweets

R1
Pj,(ti) : #retweets of other’s tweets [14, 2]

R2
Pj,(ti) : #unique users retweeted by the evaluated user (new)

R3
Pj,(ti) : #retweets of the tweets of the evaluated user (new)

R4
Pj,(ti) : #unique users who retweeted the tweets of the evaluated user [14]

Mentions

M1
Pj,(ti) : #mentions of other users by the evaluated user [15, 1]

M2
Pj,(ti) : #unique users mentioned by the evaluated user [15, 1]

M3
Pj,(ti) : #mentions by others of the evaluated user [15, 1]

M4
Pj,(ti) : #unique users mentioning the evaluated user [15, 1]

Graph

G1
Pj,(ti) : #active followers [4]

G2
Pj,(ti) : #active followees [4]

several topics, and who may share outdated information. In the following, we
describe these engineered features:

EF1 and EF2 refer respectively to the influence of user’s original tweets in
the network, and the user’s productivity and involvement regarding the event.

EF3 and EF4 measure respectively the impact of the event-related tweets
on the user retweeting activity and the other users reaction regarding the user’s
own tweets.

EF4 and EF5 analyze respectively the user received mentions and the sent
mentions addressed to other users.

EF6 refers to the centrality degree of each user regarding the event.
Once both raw and engineered features are computed at each time-stamp

during each event phase, we represent each user u by an initial feature vector
ṼPj

characterizing his/her activity at each time-stamp ti during each phase Pj .
Each feature vector is composed of the complete features set X (i.e. 30 raw
features and the 14 engineered features).

Ṽ ti
Pj

(u) = (T1Pj ,(ti)
on , T1

Pj ,(ti)
off , ..., EF6

Pj ,(ti)
NAdj ) (5)

By assembling the different feature vectors computed at each time-stamp ti
during Pj , we associate each user with an initial temporal sequence of vectors

R̃Pj describing the user behavior at that phase.

R̃ti
Pj

(u) = (Ṽ t1
Pj

(u), Ṽ t2
Pj

(u), Ṽ t3
Pj

(u), ..., Ṽ ti
Pj

(u)) (6)
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4.2. Features Selection

Once all features characterizing microblog users behavior are extracted, we

select the best representative features set X
Pj
s for each phase Pj . Through

this process, we can reduce the dimensionality of each feature vector Ṽ ti
Pj

(u)

and obtain an optimal user characterization RPj
(u) = R̃∗

Pj
(u) at each phase by

eliminating redundant and irrelevant features.
As we modeled users by a Temporal Sequence of Feature Vectors (TSFV)

R̃Pj (u) to ensure the characterization of each user behavior over time, we use
Corona [11], a supervised feature subset selection technique for TSFV. Using
Corona, we select the top relevant features at each event phase. This process
occurs off-line during training the model on data from previous events. Corona
was selected for this task as it maintains the correlation between the different
feature vectors Ṽ t1

Pj
(u) computed at different time-stamps ti corresponding to

the same event phase Pj .
Corona computes at first the correlation coefficient matrix of each TSFV

using Equation 7. This correlation matrix represents the relationship between
each two feature vectors included in the TSFV at each phase according to the
used training data. Assume that a and b refer respectively to the feature vector
Ṽ ti
Pj

(u) characterizing the user behavior at time-stamp ti and the feature vector

Ṽ
t(i+1)

Pj
(u) of the same user at time-stamp ti+1. The dimension of those vectors

is l = 44. This number corresponds to the initial number of features.

corr(a, b) =

∑l
k=1(ak − ¯(a))(bk − ¯(b))

(l − 1)σaσb
(7)

Where ¯(a) and ¯(b) are respectively the averages of the feature vectors computed
at time-stamp ti and time-stamp ti+1; σa and σb are the standard deviations of
a and b.

Each resulted correlation coefficient matrix is then vectorized. Using these
vectors, we subsequently train a SVM model to obtain the weights relative to
each feature included in the training stage. We then aggregate the resulted
weights in order to have one weight value relative to each feature. Based on
these aggregated values, we select the worst feature using a greedy approach
consisting of identifying the feature whose maximum weight is the minimum
compared to all the other features weight. Subsequently, we remove the selected
worst feature.

This whole process is then repeated until the k best features that reflect
users behavior at each phase Pj are obtained. The selected features are then
used to represent each microblog user at that phase.

5. Learning to Predict and Rank Phase-aware Users’ Prominence

In this Section, we describe our phase-aware probabilistic model for promi-
nent microblog users prediction during crisis events. Figure 1 describes how this
model is learned off-line and how it works on-line during crisis events. During
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Figure 1: Block diagram of real-time prominent microblog users identification model during
crisis events.

Figure 2: The different ergodic MoG-HMM models trained for prominent users detection at
each event phase.

the off-line stage, the model learns (selects) which features to compute for each
event phase as shown in Box A. Then, the phase-aware model is built by learning
the different behaviors of prominent and non-prominent microblog users during
each phase of similar previous disasters. Once the model has learned to differ-
entiate between prominent and non-prominent users behavior over time, it can
be applied in real time during similar disasters. In the on-line stage, each mi-
croblog user behavior has to be represented by the TSFV user’s representation
corresponding to each phase. Hence, the features are automatically extracted
according to the analyzed disaster phase. In the following, we detail further
the learning step described in the Box B of Figure 1 and the prediction model
process in real-time as represented in Box C.
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In order to evaluate the prominence of each new microblog user interacting
during the analyzed phase, we aim to learn a priori the phase-aware prediction
models for each crisis event category and test the resulted model in similar
events. As described in Figure 1, these learned models have to classify over time

each microblog user behavior characterized by the TSFV Rti
Pj

in either class C
Pj

1

or C
Pj

2 referring respectively to whether the user is classified as prominent or
not at the analyzed event phase Pj . The TSFV representation step is processed
once the keywords and hashtags describing the analyzed event are defined and
the current event phase is identified.

Learning such binary classification models is especially critical in crisis events

context, where training data from the positive class C
Pj

1 are inherently rare,
and are costly to analyze. In fact, although there is a huge amount of disaster-
related-information shared in microblogs during the different disasters phases,
the number of real prominent users who provide valuable information is small.
Thus, collecting samples describing prominent microblog users’ behavior during
crisis events for the model learning remains difficult.

Taking into account the stated training data limitations, we address promi-
nent user’s behavior identification problem using generative classification meth-
ods. Indeed, both theoretical and empirical studies pointed out that while
discriminative models achieve lower asymptotic classification error, generative
methods tend to be superior when training data are limited [16].

The generative approach of MoG-HMMs for classification and ranking can
be suited to our problem. Thus, we train separate ergodic MoG-HMM mod-
els for each class at each time-stamp during each event phase as described
in Figure 2. Each MoG-HMM model HPj is represented by 4 parameters
HPj

= {SPj
, πPj

, APj
, BPj

} described in Equation 8. We optimize these pa-
rameters using the Baum-Welch algorithm [17] based on the EM algorithm
selecting the maximum probability that fits better the observed user behavior
in the training data from the beginning of the analyzed event phase at each
timestamp ti.

HPj
(ti) = argmax

HPj
(ti)

P (Rtraining
Pj

(ti)|HPj
(ti)) (8)

Where:

SPj
= S1, S2, S3, ..., Sf refers to the set of f hidden states describing the

levels of users activities at each timestamp of the phase Pj . The state of a user
at time t can expressed by (Xt ∈ S)ti1 ≤ i ≤ m refers to the user’s behavior
state at a particular time-stamp ti.
πPj

denotes the initial probability of the different states. APj
= aij is the

state transition probability matrix to change from state Se to Sl where aij =
P (Xt+1 = Sj |Xt = Si)1≤i,j≤f .
B refers to the continuous output probability matrix where the probability
BPj = bi(V

t) represents the probability of observing a feature vector V t from a
state Si, where bi(t) = P (V t|Xt) = (Si)1≤i≤k.

In order to transform the sequence of feature vectors into a sequence of dis-
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crete states, we generate a continuous observation probability density function
(PDF) matrix B according to the training data using equation 9.

be(V
t) =

M∑
k=1

cekN [V t, µek,Wek] (9)

where cek is the mixture weight, N is the normal density, µek is the mean vector
and Wek is the covariance matrix for the kth mixture component in state Se.

Once the HMM-MoG models HC1

Pj
(ti) and HC2

Pj
(ti) parameters correspond-

ing to each phase are optimized using the training dataset, each microblog
user can be classified into one of the analyzed event phase classes by com-
puting the following probabilities P (Rti

Pj(u)|HC1

Pj
(ti)) and P (Rti

Pj(u)|HC2

Pj
(ti)).

These probabilities are computed given the two learned models and the user
behavior from the beginning of that phase until ti using the forward-backward
algorithm [18]. If the returned probability by the model HC1

Pj
(ti) is greater

than P (Rti
Pj(u)|HC2

Pj
(ti)), then this user is classified as prominent and has to be

tracked until the end of the phase Pj .
In order to rank the selected prominent users, we sort the likelihood

P (Rti
Pj(u)|HC2

Pj
(ti)) of the different microblog users sequences regarding the

model HC2

Pj
(ti)). The smaller this probability, the bigger the prominence of

that user. Our rationale behind ranking users by referring to their likelihood re-
garding MoG−HMMC2

rather than MoG−HMMC1
consists of targeting the

model which tends to be the most precise. MoG−HMMC2
is generally learned

using a consistent number of samples covering most of the non-prominent users
behaviors, thus, its returned likelihood regarding a new evaluated microblog user
behavior tends to be more precise than the one returned by MoG −HMMC1

trained using limited data.

6. Performance Evaluation

6.1. Datasets Description

There are various publicly available datasets for information retrieval com-
munity for dealing with information retrieval challenges during crisis events.
The most popular ones are those published in CrisisLex [19]. However, to the
best of our knowledge, such datasets are not adapted to test user-centered in-
formation retrieval approaches. To test these approaches, in particular the one
proposed in this paper, both on- and off-topic user activities during particular
disasters are needed.

Moreover, motivated by the access to domain experts able to label new data,
we have implemented our own data collection system adapted to this purpose.
This system named MASIR is based on a multi-agent architecture enabling
an extensive tweets extraction process. The specificity of MASIR is its ability
to boost the number of tracked microblog users and extracted tweets using
multiple hosts and Twitter developers accounts to cope with the extraction
limits of Twitter APIs. More details about the architecture of MASIR can be
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found in our previous work [20]. To perform data collection for the following
experiments, MASIR extraction module was executed using 5 hosts and 30
developer accounts. This module proceeds in two steps:

The first step consists of extracting any shared tweet containing at least one
hashtag or keyword describing the analyzed disaster. Table 3 lists the different
defined keywords for the collection of these tweets during the the Herault and
Alpes-Maritimes flooding events. These keywords were defined by selecting the
main frequent key terms used by Twitter users to identify these analyzed events.
The key terms identification process could also be automated using existing key-
words extraction techniques [21, 22]. Once these tweets are extracted, MASIR
identifies each microblog user who has shared them.

The second step consists of crawling the profiles of these identified users. Any
tweet shared by the identified users has to be extracted even if it is not related
to the disaster event. The idea behind storing all users’ shared information is
to have a complete view of their behavior from the beginning of the analyzed
disaster until its end.

Table 3: Selected keywords for the extraction of tweets describing the Herault and Alpes-
Maritimes floodings.

AlpesMarDB HeraultDB

Keywords AlpesMaritimes, Orage, Alpes-
Maritimes, Intenpries, Orages,
Antibes, Nice, Nice06, Cannes,
Inondations, ...

Herault, Hrault, Crue, Crues, Or-
age, Orages, Intempries, Flooding,
Montpelier, Alert, RedAlert, ...

Using MASIR, we have collected two disaster datasets relative to two dif-
ferent flooding events: “Herault floods” and “Alpes-Maritimes floods”. These
two events have occurred respectively in the south-east and south of France
in September 2014 and October 2015. To evaluate the extraction performance
of MASIR, we compared its extracted tweets for a sample of 20 crawled users
profiles from each dataset to those displayed in the web interface of the users’
profiles. We found that between 80% to 100% of these users’ tweets were fully
and correctly extracted. To recover the missing tweets, a recovering process was
launched by MASIR to extract any detected missing tweet.

As the targeted events fall in the same category of natural disasters, we used
the first dataset to train our model and the second one to test the learned model
performance for prominent users identification during similar flooding cases.

During the training and testing of our models, a disaster is considered as
a sequence of three phases: P1, P2 and P3 referring to the standard disaster
phases Preparedness, Response and Recovery respectively. The phases bound-
aries were set by referring to the official meteorological organizations of the
regions threatened and affected by the disaster. Such organizations determine
and announce the alert level and the state of the disaster evolution during nat-
ural disasters. Table 4 shows statistics of the collected tweets at each phase in
both datasets.

The first dataset “Alpes-MaritimesDB” is used to build our user behavior
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Table 4: Number of the different natures of tweets recorded in the two datasets AlpesMarDB
and HeraultDB at each phase.

Event Phases #OnT #OnRT #OnM #OffT #OffRT #OffM

AlpesMarDB

P1 155 91 32 1506 788 434
P2 6692 4046 300 5840 3547 1064
P3 22343 13579 1960 51596 28736 9693

HeraultDB

P1 513 329 36 9102 4333 2165
P2 3357 2480 202 5823 2904 1427
P3 2229 1260 208 4586 2293 1083

characterization and prediction model. This dataset refers to the floods that
have occurred in the Alpes-Maritimes area between the 3rd and 7th October
2015. 152, 402 tweets shared by 21, 364 users were collected during this event.
The different disaster phases P1, P2 and P3 have lasted 3.5, 18.5 and 72 hours
respectively according to the information provided by the meteorological vigi-
lance center of Provence-Alpes-Cote d’Azur.

The second dataset “HeraultDB” is used in order to test the model learned
using the first dataset. “HeraultDB” refers to the floods that have occurred
from 29th to 30th September 2014 in the Herault area. This dataset consists of
44, 330 on- and off-topic tweets shared by 3, 338 users during the whole event.
The different disaster phases P1, P2 and P3 of this described event have lasted
15, 17, 15 hours respectively according to the information provided by the me-
teorological center of Aix-en-Provence.

6.2. Ground-truth Description

To create the ground-truth of our two collected datasets, we conducted a
subjective user study for manually labeling each user at each phase Pj as C1Pj

“prominent” or C2Pj “non-prominent”. As “Alpes-MaritimesDB” includes a
huge number of microblog users that requires a long time and a great effort to
label it. We filter this dataset by retaining only microblog users who have shared
at least one event-related tweet during the evaluated phase j to be manually
labeled. The non-retained ones are automatically labeled in C2Pj . The label-
ing of the retained users in our two datasets is conducted by three participants
having known the two flooding disasters’ areas and having followed these two
disasters. These participants were also required to be familiar with the concept
of tweets and fluent with the languages (i.e. french, english) used by microblog
users interested in the analyzed disasters. Two of these participants were sepa-
rately asked to manually label all the microblog users according to the relevance
and exclusiveness of their shared disaster tweets at each phase. To check the
exclusivity of user tweets, we have provided these participants a report listing
in a chronological order most of the important disaster news with their time of
first announcement. Once, all the users were labeled by the first two partici-
pants, the third participant is asked to break the labels’ disagreement between
these two participants. The final ground-truth results of the two datasets are
described in Tables 5 and 6.
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A second study is then conducted to rank the users labeled as prominent.
The same participants have been asked to attribute a score on a scale from 4 to
10 to each user labeled as prominent. Each score has to reflect the relevance and
freshness of each user tweets shared during the analyzed phase. The average of
scores set for each user is then calculated and retained.

Table 5: Results of the subjective user study for the ground-truth construction of the two
datasets according to each phase.

Event Phases #Prominent users #Non-prominent users

AlpesMarDB

P1 20 21344
P2 99 21265
P3 157 21207

HeraultDB

P1 35 3303
P2 87 3215
P3 67 3271

Table 6: Common (∩) and distinct (∪) prominent users in the different phases of each dataset.

Prominent users sets AlpesMarDB HeraultDB{
CP1

1 ∩ CP2
1

}
12 21{

CP2
1 ∩ CP3

1

}
31 20{

CP1
1 ∪ CP2

1 ∪ CP3
1

}
233 148

In order to evaluate the quality of the constructed ground-truth, we conduct
an evaluation study by calculating the inter-annotator agreement (IAA) scores
and the Pearson rank correlation coefficient. IAA scores are calculated in order
to measure the level of disagreement between the first two annotators for the
microblog users classification task. The Pearson rank correlation coefficient
scores are measured to evaluate the scores given separately by each annotator
to rank the users.

According to this study, the Herault floodings constructed ground-truth has
an IAA of 0.89 and a Pearson score of 0.75 and Alpes-Maritimes flooding one
has an IAA score of 0.85 a Pearson score of 0.7. These results show that there
has not been much disagreement between the first two annotators. The high
registered IAA and Pearson scores show the high level of agreement of the
different annotators regarding the same data.

We conclude that judging the prominence of users is a tricky task even for
human annotators. The annotators evaluating users regarding the exclusiveness
and relevance of their tweets have been in doubt in some cases regarding the
prominence of such users. Therefore, the identification of the prominent users
would be trickier for our model. Such model has to judge each user only regard-
ing his/her behavior independently of the relevance and exclusiveness of his/her
tweets. Using our proposed identification model, we aim to reach the same level
of results as those provided by the two first annotators.
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6.3. Evaluation Metrics

To evaluate our learned models and set its parameters, we use standard eval-
uation metrics: recall and ranking measures such as Recall@10 and Precision@K
where K = #number of ground truth prominent users.

• Recall@10 = #detected top10 ground-truth prominent users
10

• Precision@K = #detected true prominent users ranked in the top K
K

6.4. Experimental Set-up

In order to set a proper value to the time interval m for user behavior
modeling, we tune m from 15 minutes to 9 hours while extracting time series
feature vectors representing each user in our training dataset. This parameter
m does not vary across different phases. For example, after 4 hours from the
beginning of a particular phase Pj , each microblog user would be represented
by a sequence of 8 vectors of features if m = 30 minutes and a sequence of 2
feature vectors if m = 2 hours.

Figure 3 shows the prediction results in terms of RecallC1 and Precision@k
at the one-third, half, two-third and the end of each Alpes-Maritimes event
phase, while tuning the temporal sequences’ interval m. According to the ob-
tained results, we note that representing microblog users behavior into short
sequences of vectors erodes the model ranking and classification results. How-
ever, representing users using very long sequences is not recommended either
(as the case with m = 15 minutes). Recognizing relevant patterns in very long
input sequences can turn out to be difficult to analyze [23]. Thus, we set m to
30 minutes while representing users temporal sequences of vectors both in the
training and test phase.

To learn the different models H
t(i)
c1 and H

t(i)
c2 for predicting user prominence

over time at each phase, we use “Alpes-MaritimesDB” dataset as our training
dataset. Once the sequence interval is set up, we represent each user in this
dataset by a sequence of features vector characterizing his/her behavior during
each phase. Thus each user who has interacted during the Alpes-Maritimes
flooding event would be represented by a sequence of 7 feature vectors at P1,
a sequence of 37 feature vectors at P2 and 144 feature vectors at P3. The
length of these sequences was defined according to the duration of each phase.
For example, as phase P1 has lasted 3.5 hours, each user has to be represented
by a sequence of 7 feature vectors at the end of P1. However, the duration
of each phase would not be common to the same phase of all crisis events.
Such duration varies from a disaster to another. To adjust this duration, we
extend the duration of short phases of the Alpes-Maritimes flooding event by
padding the sequences with zeroes so that all sequences extracted during the
event considered for training and test have the same length and can be evaluated
correctly. This padding technique is a common technique to deal with the
problem of classifying sequences of variable length[24]. It has been already
used in the literature for the classification of sentences of variable length, the
translation of sentences, etc.
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Figure 3: Prediction results comparison at one-third, half, two-third and theend of each
disaster phase using different temporal sequence intervals (m) for user representation. m =
30min is selected herein as the best interval value for temporal user behavior representation.

In other words, the fixed length of sequences used for padding the extracted
sequences of vectors at each phase is defined in our experiments by selecting
the longest duration among the phases characterizing the two analyzed flooding
events. In order to make the trained model suitable for any flooding indepen-
dently of the duration of its phases, sequence length could be defined a priori by
domain experts by setting the longest duration that a phase could last during
flooding disasters. This is also the case for sentences analysis or/and translation.

After representing each user by a sequence of vector characterizing his/her

behavior at each phase, we proceed to the training of the different models H
t(i)
c1

and H
t(i)
c2 . Starting from the 1st hour of each phase of the Alpes-Maritimes

flooding event, a new model is learned at each time-stamp m until the end
of each phase. We thus learn 29 Hc1 models instead of 6 Hc1 (where m = 30
minutes and P1 duration 3.5 hours) as we have extended the length of sequences
at P1 to 30 in order to have the same sequence length in the test dataset for
phase P1.

The parameters of the different H
Pj

c1 and H
Pj

c2 models are chosen as follows.
We evaluate the models performance with tuning the parameters values relative
to the number of states (1−−4) and the number of multivariate Gaussian (1−
−4) with the training dataset. For each phase model, we select the parameters
that yield the best Precision@K relative to the class C1Pj .

7. Experimental Results

To experimentally validate our prominent microblog user prediction model
during specific events, we compared its performance with several baselines as
described below:
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Ours: This refers to our proposed model which represents each user by a
sequence of feature vectors characterizing the user behavior from the beginning
of each analyzed phase independently of the other ones as described in Sections
3 and 4. It uses an additional Boolean feature Bf indicating if the user was
detected as prominent in the previous phase or not. This feature is automatically
extracted in the beginning of each new phase and set to 1 if the user was detected
as prominent in the previous phase, or set to 0 if he/she was not.

Pal: This refers to the system built by Pal and Counts [1]. This system
represents microblog users uniformly during the whole event by a single feature
vector composed of 15 features. It classifies and ranks users according to their
behavior from the beginning of the event without considering event phases.
Through this state-of-the-art model, we aim to prove that considering the user
activity during the previous event phases would erode the results.

Pal*: This baseline uses the same specificities of Pal model presented above,
however, it considers the different event phases while representing user’s activ-
ities. Through this baseline, we aim to prove that our phase-aware modeling
approach can improve the prediction results of Pal.

b1: This baseline uses the same specificities of our model, but, it does not
consider the Boolean feature Bf . Through this baseline, we want to evaluate
the contribution of the Boolean feature Bf on enhancing the prediction results
over time.

b2: This baseline follows the same user representation and classification
principles used in our model. However, it is learned at each phase by referring

to all the prominent microblog users
{
CP1

1 ∪ C
P2
1 ∪ C

P3
1

}
independently of their

phase of prominence. Through this baseline, we aim to validate our assumption
considering that user prominence has to be associated to each phase rather than
the whole event.

b3: This model has the same specificities as our model. However, it char-
acterizes users uniformly during the whole event. The model uses Corona to
select the relevant features that better reflect users’ behavior during the whole
event and not during each particular phase. Through this baseline, we evaluate
the efficiency of our user behavior modeling consisting of characterizing user
behavior differently at each phase.

7.1. Efficacy of the Real-time Prominence Prediction Model

Through the conducted experiments in this subsection, we evaluate the ef-
ficiency of our phase-aware model to predict prominent users. By comparing
ourmodel performance with Pal, we evaluate the impact of considering the Bf
feature, as the only indication of the user activity in the previous phase. We
also evaluate the importance of characterizing and evaluating users per phase
by comparing Pal and Pal∗ prediction results.

Figure 4 shows the prediction results obtained by the ours, b1, Pal and Pal*
baselines at each time-stamp relative to each phase in terms of Recall and rank-
ing (Precison@K). Additionally, Table 7 reports more detailed results of these

baselines in terms of Recall@10, RecallPj
C2, CommonP1P2 and CommonP2P3
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Figure 4: Comparing the prediction results of ours model with Pal*, Pal and b1 baselines
in terms of RecallC1Pj

and Precision@K during each phase. Alpes-MaritimesDB is used for
training and HeraultDB for testing. At the first phase, b1 and Ours are identical. Similarly,
Pal* and Pal are similar in P1 as there are no prior phases. The different results were
registered while testing the model at different timestamps during the Herault floods.
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Figure 5: Prediction results comparison of ours, Pal*, Pal and b1 baselines in terms of
RecallC1Pj

and Precision@K during each phase. HeraultDB is used for training and Alpes-

MaritimesDB for testing. At the first phase, b1 and Ours are identical. Similarly, Pal* and
Pal are also identical in P1 as there are no prior phases. The different results were registered
while testing the model at different timestamps during the Herault floods.
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at the beginning, one-third, half and the end of each phase. CommonP1P2
and CommonP2P3 refer to the detection rate of the common prominent users

defined in the
{
CP1

1 ∩ C
P2
1

}
and

{
CP2

1 ∩ C
P3
1

}
ground-truth prominent users

sets respectively.
According to the prediction results based on the RecallPj

C1 and RecallPj
C2

measures, our model detects most of the prominent users at an early stage
of each phase and discards a large number of the non-prominent ones. By
evaluating the ranking results indicated by the Precision@K curves described
in Figure 4, we observe that most of prominent users were detected and top
ranked by our model at an early stage of the different Herault phases.

We also note that our model has detected all the top 10 prominent users (i.e.
100% Recall@10) after a few hours of each phase. Comparing these results with
Pal, Pal* and b1 baselines, our model performs the best in terms of prediction
and ranking. Using the Bf feature, we succeed to identify more prominent users
at the beginning of each phase compared to the b1 model. This feature helps to
identify common prominent users between the current and the previous phase as
shown through CommonP1P2 and CommonP2P3 measures results. We also
observe that Pal slightly outperforms our model and Pal* at the beginning of
P2 and P3 as it detects most of the prominent users that were already detected
in the previous phases by considering their tweeting activity from the beginning
of the event. However, the performance of the baseline Pal erodes further with
time as it is not able to detect the new prominent users relative to the current
phase. Moreover, we note that Pal* which does not consider any information
about user activity in prior phases outperformed Pal results after few hours.
This validates our assumption. Using the phase-unaware model Pal, the new
prominent users will not be favored with respect to the prior ones. To deal with
our model “cold start” and obtain results similar or better results compared to
those obtained by Pal at the beginning of each new phase, it would be more
rational to keep tracking prominent users identified in the prior phase during
the first 2 hours of the next phase in order to ensure the tracking of the common
prominent users.

In order to prove the efficacy of our model for prominent users prediction
independently of the duration of the crisis events phases, we train our model this
time using HeraultDB and we test it using Aples-MaritimesDB. The prediction
results of the obtained models are illustrated in Figure 5. According to these
results, we observe that our model has detected most of prominent users even
during the first phase which is characterized by a short duration of 3.5 hours.
The obtained experimental results also confirm the comparison findings pointed
through comparing the different models learned using Aples-MaritimesDB and
tested using HeraultDB.

We conclude that the phase-unaware baseline Pal considering all the users’
activities in the previous phases leads to better results in the first hours of
each phase compared to our phase-aware model. However such recorded prior
activities would erode the model performance after few hours (Pal vs. Pal* ).
The obtained results also demonstrate the positive impact of the Bf feature

23



which improves the prediction results during the first hours of each new phase
(Ours vs. b1 ). Such feature promotes users who were previously detected as
prominent without biasing the real user activity and prominence during the
analyzed phase.

7.2. Phase-aware vs Phase-unaware Models

Through the conducted experiments in this section, we aim to validate our
assumption considering that the user prominence and behavior have to be asso-
ciated with each event phase rather than the whole event. Thus, we compare our
model with the phase-unaware baseline b2, and the phase-unaware-model Pal
with Pal*. Both Pal and b2 consider that user prominence has to be evaluated
according to their prominence during the whole event and not per event phase.
In this experiment, we evaluate the different baselines’ performance to identify
prominent users at the end of each phase. Figure 6 reports the prominent users’
classification results of each baseline by the end of each phase of the Herault
event.

According to the obtained results, we observe that phase-aware-models (Pal
vs. Pal* ) (Ours vs. b2 ) perform better than phase-unaware-models. The
classification results of Pal and Pal* models are the same at P1, as it is the
first phase and all the users’ features are already set to zero for the two models.
However, Pal* performs better than Pal in the next phases. The phase-unaware-
users’ representation of Pal promotes users who were prominent in the prior
phases over the new prominent ones.

Comparing our phase-aware model with the phase-unaware model b2, we
observe that b2 registers low results at P1 and good results close to ours at P2
and P3 in terms of RecallPj

C1. These results can be explained by the fact that
learning identification models by referring to all prominent users independently
of their phases of prominence tends to bias the learning of the classification and
ranking model.

To determine whether our model yields a statistically significantly higher
precision than other models, we compare the aggregate Precision@K registered
over time by our model using one-sided paired t-tests with the null hypothesis
(H0) that the average Precision@K of the two models are the same and hy-
pothesis Ha, that the mean Precision@K of our model is higher, within a 99%
confidence interval. We have chosen to apply the one-sided t-test for our exper-
iments as we have to test the statistical significance in one direction. We need
to prove that Ha is valid (i.e. the mean of precision@K results obtained by our
model at each phase are greater than those obtained by the other models).

Table 8 shows t-test results of our model versus the other baselines. We reject
H0 in all the cases except for b1 at the different phases. Overall, we establish
that Precision@K scores registered by our model are higher than the other
baselines. As H0 is rejected for b1, we note here that the bf feature added in our
model did not significantly help to improve the detection of prominent users over
time. We establish that the other baseline models except b1 performed worse,
and we thus conclude that our model outperformed all four baseline models (i.e.
b2, b3, Pal and Pal*) at the different phases.
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Table 8: Our model vs the other baselines models. One sided t-test of registered Precision@K
per model during each phase. H0 is rejected in all cases except for b1 at the different phases
for a significance level of 0.01.

Baselines Phase 1 Phase 2 Phase 3

b1 0.011 0.011

b2 0.006 0.001 0.001

b3 0.005 0.001 0.001

Pal 0.001 0.001 0.001

Pal* 0.002 0.004 0.001

Overall, we conclude that the consideration of event phases for representing
user activity during the event leads to a better prominent users detection. Eval-
uating and representing microblog users according to their prominence at each
phase would guarantee the construction of a more efficient prediction model (As
demonstrated by the comparison of Ours vs. b2 ) and ensure a fair evaluation
for all users at any time of the event (As demonstrated by the comparison of
Pal* vs. Pal).

7.3. Phase-based User Characterization

Through the conducted experiments in this subsection, we aim to prove the
importance of modeling users behavior differently according to the particulari-
ties of each phase. Our model is compared with the b3 model which characterizes
users uniformly using the same features during the different phases. Figure 6
reports the results of this experiment.

By referring to the different evaluation metrics, our approach performs bet-
ter than b3 for both the classification and ranking of prominent users in the
different phases. b3 failed to identify the prominent users in P1. It registered
a Precision@K of 40% and 50% respectively at P1 and P3 (e.g. only 40% of
prominent users were ranked on top K at P1). We also observe that modeling
users uniformly during the whole event leads to good results only for phases
characterized by high activity of prominent users such as P2. b3 registered a
high Precision@K score of 90% at P2 which is a phase characterized by a high
activity of users. However, it has failed to identify the prominent ones during
phases recording a low activity regarding the event topic such as P1 and P3.

Characterizing users’ behavior differently at each phase would highlight the
relevant users behavior features relative to each phase. As demonstrated in
these experiments, such characterization improves the identification results.

In order to better understand users behavior differences at different phases,
we analyzed in Table 9 the nature of features selected by Corona at each phase
in the pre-processing step. According to the obtained results, we observe that
the number of selected on-topic features is close to the number of off-topic ones
in P2 which is not the case in P1 and P3. This can be explained by the fact that
the behavior of prominent microblog users during P1 and P3 would be similar
to their behavior in regular days as the danger is either not yet confirmed or
discarded. In such situations, users would share relevant information regarding
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Figure 6: Comparison of the classification and ranking results of our model (ours), and other
phase-unaware models Pal, b2 and b3 at the end of the different phases P1, P2 and P3.

the disaster but keep also tweeting about other topics. Thus, there is no need
to penalize them regarding their off-topic behavior.

However, during P2, prominent microblog users who are generally concerned
by the disaster would be in panic and would frequently share updates describing
what they are seeing, hearing and experiencing. They would focus mainly on
sharing the disaster event news. Thus, it is more rational to consider off-topic
features (i.e. on-engineered features adjusted by the off-topic ones or off-topic
raw-features) in order to penalize users toggling among different topics and
who are not necessarily concerned by the disaster. Using this strategy, the
identification model would rank users active only regarding the disaster higher
than those who are extremely active in several topics (e.g. news outlet users).

Through these experiments, we have shown the importance of selecting the
most appropriate features for each event phase. This phase-based feature selec-
tion highlights the behavioral differences between prominent and non-prominent
users, and hence improves the precision and the efficiency of the prediction
model.

7.4. Adequacy of the Feature Selection Algorithm

Through the previous experiments, we have shown the importance of the
feature selection process per phase. In these experiments, we evaluate the ap-
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Table 9: Statistics about the selected feature categories using the different feature selection
algorithms. On and Off refer respectively to on- and off-topic raw and engineered (Eng)
features.

Phase 1 Phase 2 Phase 3
Raw vs Eng On vs Off Raw vs Eng On vs Off Raw vs Eng On vs Off

Algorithm Raw Eng On Off Raw Eng On Off Raw Eng On Off

Corona 6 3 6 3 5 4 5 4 6 3 7 2
Clever 4 5 5 4 4 6 3 6 6 3 7 2
ReliefF 4 5 8 1 4 6 5 4 4 5 7 2

Average 0,52 0,48 0,7 0,3 0,48 0,59 0,48 0,52 0,59 0,41 0,78 0,22

Table 10: Performance comparison of different feature selection algorithms for the detection

of prominent users at each phase in terms of RecallPj
C1 and Precision@K.

Phase 1 Phase 2 Phase 3

Algorithm Recall C1 Precision@K Recall C1 Precision@K Recall C1 Precision@K

Corona 0.91 0.89 0.95 0.95 0.95 0.59
Clever 0.42 0.7 0.94 0.43 0.74 0.51
ReliefF 0.31 0.6 0.82 0.5 0.62 0.48

propriateness of the chosen feature selection algorithm. Thus, we compare our
adopted algorithm Corona with the following two feature selection algorithms:

Clever [25] belongs to the family of unsupervised feature subset selection
methods for multivariate time-series based on principal component analysis.

ReliefF [26] is a supervised feature selection algorithm which selects relevant
features which works only on vectorized data. To apply this technique, we
vectorized each time-series sequence representing each user by summing the
values of the same features recorded at each time-stamp.

Table 9 describes the statistics of the different categories of the selected
features by each algorithm. According to these statistics, we observe that the
number of selected raw, engineered, on- and off-topic (except P1 for on and
off) by the different algorithms is nearly the same for the different phases. For
the phases P1 and P2, we note that there is a low number of off-topic features
considered compared to the number of on-topic ones.

As the selected features by the different algorithms are not necessarily the
same even if they belong to the same category, we trained our model using the
selected features by each feature selection algorithm in order to evaluate their
effectiveness. Table 10 describes the obtained results by the different models
for the selected prominent users class C1 at the end of each phase in terms of
RecallPj

C1 and Precision@K. We observe that the features selected by Corona
give the best results.

Through these experiments, we have shown that the vectorization of the
time-series representation without taking into account the different correlations
of data hides the real importance of each feature. Thus, the choice of an appro-
priate feature selection algorithm has to take into consideration the temporal
distribution of user behavior over time.
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8. Discussion

The presented phase-aware probabilistic model performs prominent microblog
users prediction during crisis events. The level of importance of these events
evolves over time. This evolution has to be considered while modeling users
behavior and evaluating users prominence over time. Figure 7 shows a compar-
ison of the ROC curves of our model considering the impact of this evolution
and all the other considered baselines in our experiments. These curves confirm
the importance of considering the user behavior change over event phases when
evaluating their prominence over time.

Figure 7: Comparison of the ROC curve of our model (ours) with the other baselines Pal∗,
Pal, b1, b2 and b3 at the end of each different phases P1, P2 and P3.

Prominent users change at each new phase. As demonstrated by our ground-
truth study, only few prominent users have been prominent from the first phase
until the last one. We have also noted that only 2% of all the users who have
interacted regarding the disaster were labeled as prominent. Such statistics
were expected. During crisis events, many microblog users share or/and report
event-related-information. However, few of them would share the exclusive and
relevant information required by emergency teams. Through our experiments,
we have also shown that neglecting users prominence phase in the user behavior
learning step would lead to overfitting. A learned model in a such way would
not be able to differentiate between the true prominent users over phases (b2
vs. Ours).

By comparing Pal vs. Pal* prediction results described in Figure 6, we have
observed that a per-phase user behavior modeling approach improves signifi-
cantly the identification results. In phases two and three, Pal* has detected
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most of the prominent users relative to each phase. However, Pal has not suc-
ceeded to detect most of prominent users from phase to phase. A phase-unaware
modeling approach cannot ensure a fair evaluation for all users at any time of
the event.

Our strategy to model users behavior change according to the event evolu-
tion has also proved its effectiveness. We have shown that representing users
uniformly using the same features (b3 vs ours) would not reflect the real be-
havior of users at each particular phase. Users behavior changes during the
event according to the event evolution. As reported in Table 9 which details
the statistics of the selected features at each phase using different algorithms,
around 48% of the selected features were on-topical and 52% were off-topical
in the second phase. This can be argued by the fact that real prominent users
during this phase are generally in panic, so, they tend to focus their attention
only on what is happening during the disaster by sharing only on-topical in-
formation. Thus, by considering fairly both on- and off-topical metrics in such
phase, the identification model will be able to distinguish between microblog
users who are toggling between several topics and those active only regarding
the disaster. We also note that during the first and last phase, the off-topical
features were not extensively considered by the selection algorithms. This can
be explained by the fact that in such phases there is no potential danger thus
even prominent users tend to be active regarding on- and off-topics. In such
cases, the off-topical features can not make prominent and non-prominent users
more distinguishable.

We have also shown that our temporal sequence representation approach
characterizing the user activity details at different timestamps of each event-
phase has proved its importance. In Figure 3, we have shown that our model
performance tends to decrease if we consider longer intervals between the differ-
ent timestamps. The more we detail the user activities differences by considering
several timestamps, the more the identification results are better. Highlighting
the temporal distribution of user activity can point out the hidden patterns re-
flecting the prominence of each user according to his behavior over time during
each phase.

Lastly but most importantly, we have demonstrated that our model can
identify prominent users in real time at an early stage of each event phase. For
example, 63% of prominent users were detected after two hours from the begin-
ning of the most important phase which is the second one. Even with learning
our classification models a priori using similar events data, as described in
Figure 4, our model outperforms the state-of-the-art phase-aware and unaware
models (Pal and Pal*) which are using unsupervised algorithms for classifying
and ranking microblog users. We have also shown that with considering the
user prominence in prior phases –using the Bf feature– , we can detect more
prominent users at the first hours of each event phase. As reported in Table 7
by referring to the CommonProm measure results of b1 and Ours, we succeed
to detect the common prominent users relative to the prior and the current
phases from the first hours. However, we note that the Pal models outperform
our model on the first hours of each phase.
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9. Conclusion and Future Work

This paper has proposed a phase-aware prediction model for detecting promi-
nent microblog users during unexpected events. It is based on a new user model-
ing approach taking into account both the user behavior and the event evolution
over time. Using this approach, microblog users are characterized differently in
the beginning of each event phase using the best relevant features that can
characterize their behavior according to the analyzed event phase particulari-
ties. Users are evaluated according to their prominence per phase in order to
ensure a fair evaluation.

Through the conducted experiments, we showed that our prediction model
significantly outperforms state-of-the-art models by detecting most of the promi-
nent users at an early stage of each phase. We also proved that associating
user’s prominence with event phases ensures a fair evaluation for all users at
each phase. We also demonstrated that our proposed user modeling approach
characterizing users using different features at each event phase improves the
detection results and helps to highlight the user behavior differences according
to each phase specificities. We showed that the choice of the feature selection
algorithm has to be in harmony with the selected user characterization.

Overall, we conclude that the different aspects considered in our model have
each contributed to reach these results. This model is not designed only for
flooding events. It could also work for other types of crisis events by using other
datasets reflecting user behavior during similar events. This would not require
changing the features characterizing user behavior, since the features proposed
in this paper can also be used to describe microblog users in the context of any
event type. At the same time, new features can easily be integrated into our
model.

For future work, we aim to automatically extract the keywords related to
each disaster phase. We thus can study if the extraction of phase-aware key-
words would improve the model performance or not. We also wish to propose a
more dynamic user behavior modeling approach by automatically detecting the
user behavior state change over time. Users would not be necessarily character-
ized by temporal sequences having the same length at a specific time-stamp. We
also aim to reduce the length of sequences, with a new modeling approach based
on sessions series rather than time series. We also wish to detect the bound-
aries of the different phases by automatically analyzing information provided by
meteorological departments on Twitter.
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