Contribution of case based reasoning (CBR) in the exploitation of return of experience
Résumé
The study is from a base of accident scenarii in rail transport (feedback) in order to develop a tool to share build and sustain knowledge and safety and secondly to exploit the knowledge stored to prevent the reproduction of accidents / incidents. This tool should ultimately lead to the proposal of prevention and protection measures to minimize the risk level of a new transport system and thus to improve safety. The approach to achieving this goal largely depends on the use of artificial intelligence techniques and rarely the use of a method of automatic learning in order to develop a feasibility model of a software tool based on case based reasoning (CBR) to exploit stored knowledge in order to create know-how that can help stimulate domain experts in the task of analysis, evaluation and certification of a new system.