
HAL Id: hal-03025514
https://hal.science/hal-03025514v2

Submitted on 24 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Influence of weather natural variability on the thermal
characterisation of a building envelope

Sarah Juricic, Jeanne Goffart, Simon Rouchier, Aurélie Foucquier, Nicolas
Cellier, Gilles Fraisse

To cite this version:
Sarah Juricic, Jeanne Goffart, Simon Rouchier, Aurélie Foucquier, Nicolas Cellier, et al.. Influence of
weather natural variability on the thermal characterisation of a building envelope. Applied Energy,
2021, 288, pp.116582. �10.1016/j.apenergy.2021.116582�. �hal-03025514v2�

https://hal.science/hal-03025514v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Highlights

Influence of natural weather variability on the thermal characterisation
of a building envelope

Sarah Juricic, Jeanne Goffart, Simon Rouchier, Aurélie Foucquier, Nicolas Cellier,
Gilles Fraisse

• Thermal characterisation of a building envelope influenced by weather
conditions

• Original methodology assesses minimal measurement duration for robust
estimation

• Thermal characterisation by RC models is accurate and faster than steady-
state methods

• Necessary 11-day measurements for robust estimation sets new benchmark
value in field

• Estimations highly influenced by outdoor temperature and wind speed in
case study
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Abstract

The thermal characterisation of a building envelope is usually best performed
from on-site measurements with optimised controlled indoor conditions.
Conversely, occupant-friendly measurement conditions provide less informative
data. Notwithstanding occupancy, the boundary conditions alone contribute
to a greater extent to the energy balance, which implies that non-intrusive
conditions bring into question the reproducibility and relevance of such
measurement. This paper proposes an original numerical methodology to
assess the reproducibility and accuracy of the estimation of the overall thermal
resistance of an envelope under variable weather conditions. A comprehensive
building energy model serves as reference model to produce synthetic data
mimicking non-intrusive conditions, each with a different weather dataset. An
appropriate model is calibrated from the synthetic data and provides a thermal
resistance estimate. The accuracy of the estimates is then assessed in light of
the particular weather conditions used for data generation. The originality also
lies in the set of weather data that allow for uncertainty and global sensitivity
analyses of all estimates with respect to six weather variables. The methodology
is applied to a one-storey house reference model, for which thermal resistance
is inferred from calibrated RC models. Robust estimations are achieved within
11 days. The outdoor temperature and the wind speed are highly influential
because of the large air change rate in the case study.
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Nomenclature

Abbreviations

ARX Auto Regressive Models with eXternal inputs

IWEC International Weather for Energy Calculations

ML Maximum-Likelihood

TMY Typical Meteorological Year

Parameters of interest

HTC Heat Transfer Coefficient: overall heat transfer of the building
envelope towards exterior as defined in the ISO 13789 standard [1]
(W/K)

Req Equivalent overall thermal resistance of the envelope, inverse of
HTC (K/W)

R∗
eq Target thermal resistance: overall theoretical thermal resistance of

the reference model (K/W)

U -value Thermal transmittance of a wall (W/m2K)

Cw, Ci, Ro, Ri, Aw Parameters of the 2nd-order model TwTi RoRi Aw

Time dependent variables

Isol Solar global horizontal irradiation (W/m2)

Pheating or Ph Heating power delivered in the building (W)

Qin
storage and Qout

storage Heat transfered in or out the building envelope (W )

Qground Heat transfers from the indoors towards the ground (W )

Qsun Heat gained indoors by solar irradiation (W )

Qventilation Heat transfers by air change in the building (W )

Tw Unmeasured temperature of the building envelope (◦C)

Tin Indoor temperature (◦C)

Tout Outdoor temperature (◦C)
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1. Introduction

Background and motivation

The renovation of buildings is a growing concern with respect to the
reduction of their global energy consumption, as stated by the European
Commission in its strategic long-term policy for a climate neutral economy [2].
As underlined in the contribution Buildings to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change [3], there is a need for accurate
estimations of the thermal performance of building envelopes in order to drive
relevant energy conservation measures. Heo et al [4] show for example how the
estimation of the actual performance of a building benefits a retrofit analysis
under uncertainty. When known, the thermal performance of an investigated
building serves the energy retrofit plan by accurately reflecting on the possible
energy gains.

On-site monitoring has been shown to be a promising lead for performing an
accurate thermal characterisation of the envelope. In particular, the estimation
of the Heat Transfer Coefficient (HTC) or its inverse the overall thermal
resistance (Req) has been studied as a result of controlled experiments.

Uncertainty of the estimation of the thermal performance from on-site
measurements is indeed usually reduced by means of an optimally designed
heating or indoor temperature control in the building. By fully controlling
the indoor environment in unoccupied buildings, such experiments may last
only a few days while achieving satisfactory estimations. In Thebault and
Bouchié [5], the indoor temperature setpoint is set to 35 ◦C for four days, which
suffices for an accurate estimation of the overall thermal resistance. Ghiaus
and Alzetto explain the principles of the QUB method in [6]: it relies on a
rectangular large heating power excitation signal overnight. By monitoring the
indoor temperature and assuming that the thermal response of the building is
exponential, the slope of the monitored indoor temperature gives an estimation
of the overall HTC of the building in less than 12 h and with errors lower than
10 %. Bacher and Madsen show in [7] how to perform model selection in order
to identify the heat dynamics of a building. The authors exploit 6 days of data
collected in a house in which heating power had been delivered according to a
pseudo-random signal. The parameter estimates the authors obtained from the
selected model were found to be satisfactory. Aside from these perturbation
methods, co-heating tests also provide a fully controlled indoor environment
by setting the indoor temperature to a constant value, as detailed in [8]. This
experiment mimics steady-state conditions in the building. By daily averaging
of the collected data from measurement durations of between 12 and 18 days, the
dynamics driven by the variable outdoor condition are diminished and allow for
an accurate estimation of the HTC. The coheating test is indeed regularly used
as a benchmark for comparison of other methods, such as in Alzetto et al [9] or
in Thébault and Bouchié [5]. In a nutshell, these building-scale characterisation
methods are efficient for providing an accurate estimation of the heat transfer
coefficient HTC or the overall thermal resistance of the envelope at the expense
of a highly uncomfortable indoor environment during the experiment.
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In some cases, however, buildings are continuously occupied, such as health-
care facilities or nursing homes. Similarly, some other non-residential buildings
cannot be left vacant as it would involve a loss of income, such as hotels or
restaurants. In these building types energy conservation measures are relevant
too. Balaras et al show in [10] that hotels and restaurants as well as health-care
facilities have the highest energy use intensities in many European countries as
well as in the United States. In addition, among all non-residential buildings,
the authors found that heating was unanimously the main source of energy use.
Development of an accurate and more importantly of a non-intrusive thermal
characterisation method is therefore undisputably relevant.

The thermal characterisation of the envelope of many non-residential
buildings cannot be achieved by any of the aforementioned perturbation
methods and must instead rely on non-intrusive monitoring and a reduced
number of sensors.. This implies that the sensors should not alter the building
envelope and that occupants should not be disturbed by the monitoring
equipment. A non-intrusive approach then relies on very few sensors in non-
optimally controlled and possibly only partially known operating conditions. On
the other hand, relying on fewer sensors may positively contribute to providing
a test easier to implement and less costly, if ,however, an experiment is found
to be feasible and accurate.

Feasibility and accuracy are indeed questioned by the uncontrolled nature of
a non-intrusive experiment. The building envelope energy balance as presented
in Equation 1 in an uncontrolled experiment shows different dynamics than
in controlled experiments. The heating power delivered indoors Pheating is
less informative than when it is optimally designed. The outdoor boundary
conditions, by their contributions through Tout, Qventilation and Qsun, have
therefore a proportionally larger influence on the energy balance. This will
particularly be the case when shorter datasets are used to infer the HTC or
Req, whereas longer experiments provide de facto a wider natural variability of
the boundary conditions which should flatten the effect of uncommon specific
outdoor conditions.

HTC · (Tin(t)− Tout(t)) +Qin
storage(t) +Qout

storage(t)
+Qventilation(t) +Qground(t)− Pheating(t)−Qsun(t) = 0

(1)

In addition, the outdoor weather conditions have correlated frequencies,
which are themselves correlated with common indoor temperature setpoint
schedules. This may impede the accuracy of the estimation, let alone the
identifiability of the heat transfer coefficients.

For these reasons, the estimation of the HTC or Req coefficients in non-
intrusive conditions may be considerably influenced by the boundary conditions.
The number of data needed to secure a robust and accurate HTC or Req

estimation could be significantly larger than what is usually considered in
literature for tests in a controlled framework. The risk with too short datasets is
obtaining significantly different results following identical procedures but carried
out a day, a week or a year later. Non-intrusive conditions are indeed poorly
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informative for the estimation process: the non-intrusive framework brings
into question the uncertainty level and therefore the reproducibility of such
estimation.

Estimation of the U-value, HTC or Req coefficients in non-intrusive conditions:
models, experiment duration and influence of weather conditions in the existing
literature

Previous work on thermal performance estimation of the envelope in a non-
intrusive framework has focused on the thermal characterisation of either a
single wall or the entire building envelope. To the best of our knowledge, how
variability of the weather conditions influences the accuracy of this estimation
has not been extensively investigated to date. A few papers however address
the issues of convergence of the estimation and measurement duration with, for
some of them, insight on the influence of outdoor conditions on the quality of
the results.

At wall scale, Rasooli and Itard [11] showed from numerically generated
data how solar irradiation significantly defers stability and convergence of the
estimation of the conductive thermal resistance of a wall Rc using heat flow
meters following the ISO 9869 standard [12]. Simulated data with and without
solar irradiation showed significantly different convergence towards the final
estimation value. The authors suggest using flow meters on both sides of the
walls to secure a robust and faster estimation of Rc.

Petojevic et al [13] proposed an innovative method to exploit non-intrusive
data from heat flux and temperature meters in order to determine the dynamic
thermal characteristics of a wall. The use of 12.5 day-data, although not justified
by the authors, led to acceptable accuracy in the results.

Gaspar et al [14] studied the minimal duration of a heat flux meter test for
estimating the U -value of a wall by the average and dynamic methods of the
ISO 9869 standard [12]. The authors compared the stability of the estimation
with the criteria given by the ISO 9869 standard [12], which specifies that three
conditions must be met simultaneously to end the test:

• The first condition is that the test must last 72 h or longer,

• The second condition is that the U -value obtained at the end of the test
must not deviate more than 5 % from the value obtained 24 h earlier,

• The third condition is that the U -value obtained from the first N days and
from the last N days must not deviate more than 5 %, with N = 2/3× total
duration.

Gaspar et al [14] concluded that these conditions provide trustworthy
estimations and secure convergence towards the final value within 4–5 days for
both the average and dynamic methods described by the ISO 9869 standard
[12]. The influence of weather variability on the convergence rate was not
investigated. A higher actual transmittance of the façades was found to be
the main reason for slower convergence.
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At wall scale again, Gori and Elwell [15] as well as Gori et al [16] exploited
heat flux measurements with RC models and introduced the idea of stabilisation
of the estimation: from short datasets, the estimates suffer from the prominent
noise in the data. As the dataset grows, the values stabilise towards a final
value. Applying the criteria of the ISO 9869 standard [12], they found that
a period of up to 10 days was necessary to reach stabilisation in autumn and
winter season whereas longer periods were necessary in warmer seasons. The
minimum length tested was 3 days, as demanded by the ISO 9869 standard [12],
but the authors found that shorter datasets sufficed in some cases with the use
of an RC model, implying that the three conditions of the ISO 9869 standard
[12] might be too conservative when applied to other methods.

At wall scale too, Rodler et al [17] compared a dynamic model calibrated
by Bayesian inference with the average and dynamic methods described in the
ISO 9869 standard [12] and found that the temperature difference was more
determinant than the length of the dataset, therefore confirming the significant
role of boundary conditions in uncontrolled experiments.

Deconinck and Roels [18] applied dynamic grey box modelling in a non-
intrusive framework to assess the thermal performance of a single wall based
on heat flux measurements. The authors used two different data subsets of
10 days in winter (steady indoor temperature assumed at 20 ◦C) and 9 days
in summer (free floating indoor and outdoor temperatures). They found that
winter conditions with constant indoor temperatures were not appropriate to
identify the parameters of interest, considering that temperatures are the main
variables of the differential equations used for the exploitation of the data.
Summer free-floating conditions were then found to be more informative and led
to identifiable and interpretable parameters. Let us note here that identifiability
relates to the unicity of the parameter estimation and interpretability to the
ability to give the estimation a physical meaning. Both may be confounded if
the model characterises perfectly the system.

At building scale, Reddy et al [19] identified the issue of data informativeness
as well as the influence of weather conditions when assessing the overall heat
loss and overall ventilation rate of a large commercial building. To perform the
assessment, non-intrusive measurements are averaged and exploited by a steady-
state equation. They found that daily averaged data over 1 year combined with
a multi-step regression technique, where multiple regressions are performed one
after the other to estimate parameters one by one, achieved the best results.
Parameter identification over a single season was less accurate: in winter and
summer seasons, the combined variability of the outdoor temperature and the
relative humidity was narrower than during the spring season. Large variability
of these two weather variables yielded parameters estimates with less correlation
and more accurate overall parameter identification.

More recently, Senave et al [20] studied the physical interpretation of auto-
regressive models with exogenous inputs (ARX), aiming for the estimation of the
HTC via on-board monitoring, i.e. in a non-intrusive measurement framework.
Four different indoor temperature scenarios were tested twice through 20 days
of synthetic data: once for calibration and once for validation. The building
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model is a single-zone opaque box and the study focused on the estimation of
the HTC in the case of heat losses to the ground. There is no mention of
the influence of the measurement duration on the results. In a later paper by
Senave et al [21], ARX models and linear regressions were compared to exploit
data collected from non-intrusive experiments on datasets of 26 weeks.

Grey-box models such as stochastic RC models have not been used to exploit
data at building scale, but showed promising results at wall scale as shown in
Deconinck and Roels [18] or in Gori et al [16] with shorter datasets than the
average method of the ISO 9869 standard [12]. Stochastic RC models have also
been used in controlled experiments and provide a satisfactory HTC estimation
from short datasets, as in Thébault and Bouchié [5].

In conclusion, the minimal duration for heat flow measurements to infer the
actual thermal transmittance of a single wall has been addressed in the literature
and the relevance of the ISO 9869 standard [12] criteria has been discussed. At
wall scale, accurate estimations of U-values may be performed within 1 week,
sometimes quicker in the case of low-transmittance façades. Solar irradiation
seems to influence the convergence rate.

Building-scale HTC estimation aims at a better representation of the overall
thermal performance of the envelope. The literature, however, is scarce on
non-intrusive experiments at building scale and the methods use much larger
datasets, which increases the variability of the weather conditions during the test
and therefore reduces the influence of the boundary conditions on the quality
of the results. It has also been suggested that large variability in the outdoor
temperature and relative humidity lead to a better identification.

Objectives of this work

Accurate estimation of the HTC or Req coefficients at building scale in
non-intrusive experiments would certainly be beneficial as guidance for relevant
energy conservation measures. Although the existing literature suggests that
such estimation is feasible from datasets of several weeks, shorter experiments
are desirable to decrease immobilisation of the measurement devices and the cost
of the procedure. The feasibility and accuracy of the HTC or Req identification
from shorter datasets is questionned, however, under naturally variable weather
conditions given their larger contribution to the building envelope energy
balance.

This paper therefore intends to assess the feasibility, i.e. the accuracy and
reproducibility of the Req estimation from non-intrusive experiments. The
underlying hypothesis is that there is a minimal measurement duration after
which the Req estimation keeps steady, regardless of the boundary conditions.
Provided that the measurement duration is sufficient, an Req estimation could
then start at any time and on any day under any usual weather conditions,
and the estimation should remain robust. The accuracy and feasibility of the
estimations are therefore assessed in light of the natural and local variability of
weather conditions.

7



This paper proposes performing the estimation with stochastic RC models
in the hope of achieving reasonably fast estimations of the overall thermal
resistance of the envelope Req, as was suggested by the literature review.

The investigation of the feasibility of such estimation in non-intrusive
measurement conditions is based on an original numerically based methodology.
Indeed, simulated datasets from a reference model are used to calibrate a
stochastic RC model and to infer an estimation of Req. The characteristics
of the reference model and the case study that served for data generation are
presented in Section 2, which also details how natural weather variability is
introduced by the use of multiple weather datasets for the simulations of the
reference model. In particular, the weather datasets used are stochastically
generated so as to explore to full extent the natural variability that can be
expected in a typical January in Geneva. The reproducibility of the estimation
of the thermal resistance is then discussed in Section 3.1. Section 3.2 examines
the influence of the six stochastically generated weather variables on the thermal
resistance estimates. Section 4 finally puts the results into context with the
previous literature review and discusses the relevance of using the ISO 9869
standard [12] criteria to assess the convergence of an estimation.

2. Methodology

To assess the accuracy and reproducibility of the thermal resistance Req

estimation of a building envelope while accounting for natural weather variability,
the general idea is to study how different yet coherent weather conditions
influence such estimations. The methodology developed for this paper is detailed
in this section.

2.1. Overview of the applied methodology

The objective is to collect a number of measurement datasets, each obtained
under different weather conditions. Each set is expected to provide measurement
data of indoor and outdoor conditions so as to enable the calibration of an
appropriate modelM. The modelM is calibrated from each dataset, providing
as many estimations of its parameters θ as there are datasets. From the hence
estimated parameters θ, an estimation of Req is inferred. Measurement duration
and variability in the weather conditions themselves will then influence the
accuracy and uncertainty of the estimations. In principle, for a certain minimal
measurement duration, the final estimates are expected to show robustness and
to remain significantly similar regardless of the natural variability in weather
conditions.

The essence of the methodology is therefore to use multiple datasets, each in
different weather conditions. Datasets from actual on-site measurements during
an entire heating season, or better yet during several heating seasons would
concededly ensure strong realism. However, the use of real datasets may only
deliver an incomplete view of the issue and be difficult to analyse. Indeed, as
the initial conditions and the thermal state of the envelope would be different
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for each dataset given the previous days, analysing the variability of the Req

estimations could not be attributed only to weather variability.
To avoid this pitfall, the original methodology proposed here relies on a fully

numerical four-step procedure, as illustrated in Figure 1:

• A computer-based model serving as reference model is implemented in a
program for dynamical thermal simulations (here, Energy Plus). Figure
2 illustrates this point and shows how synthetic data is generated from a
certain case study, based on appropriate modelling choices. The building
energy modelling choices are detailed in section 2.2.1 and the case study
that served in this study is described in section 2.2.2. As also described
in Figure 2, given that the reference model is purely numerical, a precise
value of the target R∗

eq can be calculated, as is detailed in section 2.2.3.

• Simulation and output processing (step I part 1): a dynamical simulation
of the reference model is run under known boundary weather conditions.
The choice of a set of synthetic weather datasets to perform the simulation
is detailed in section 2.3. The simulation output provides synthetic data
of the resulting indoor conditions. White noise is added to mimic actual
measurements of indoor and outdoor variables. Step (I) is repeated n
times, each time with a different weather dataset. Section 2.3 gives
further details on the weather data that are used to perform the energy
simulations.

• Data subset extraction (step I part 2): Seven subsets of data are extracted
from each simulated dataset, all starting on January 2nd with growing
lengths from 2 days to 25 days. Simulation parameterisation and data
selection are described in section 2.4.

• Calibration (step II): Model M under study, chosen to provide an
estimate of Req, is calibrated on each subset of the simulation output
data. Model calibration is performed from a frequentist approach with a
BFGS algorithm minimising the negative log-likelihood. The calibration
procedure is thoroughly described in 2.5.2. A Req estimation can be
derived from the estimated parameters of each calibrated model M.
Overall, step (II), which comprises the parameter estimation of model
M and subsequent Req inference, is performed 7×n times. All steps from
the choice of model to Req inference are detailed in section 2.5.

• Accuracy assessment (step III): the estimated Req is compared with the
target value R∗

eq of the reference model by means of a novel interpretability
indicator, described in section 2.6, which reflects on both the uncertainty
and the relative error to the target value. The variability and accuracy of
the Req estimation are assessed by studying the evolution with growing
measurement duration of the total variance of the maximum-likelihood
estimates as well as that of the interpretability indicator.
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Figure 1: Methodology overview to assess the influence of weather variability on the accuracy
of a Req estimation. In the end, each estimation is compared with the target value by means
of a novel interpretability indicator.
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Figure 2: Hypotheses behind the synthetic datasets: given certain modelling choices and given
a case study, a dynamical thermal simulation provides synthetic datasets that are used for
Req estimations. The building energy model of the case study is simulated with constant
boundary conditions to provide an estimation of its theoretical thermal resistance R∗

eq .

2.2. Reference model and description of the case study

The methodology developed and applied in this paper is based on a numerical
reference building energy model. Therefore, the objective is, given a case study
and certain boundary conditions, to provide synthetic measurements as realistic
as possible of the indoor temperature and the heating power delivered in the
building. To meet this objective, the modelling choices were carefully made and
are detailed in this section. The case study and its thermal characteristics are
also presented in this section.

2.2.1. Relevant modelling choices for providing synthetic data

Various choices can be made for the reference model to account for heat
and mass transfer modelling, solar irradiation, etc. The choices made for the
reference model are therefore driven by the purpose of this study, i.e. thermal
behaviour, but also by the need for a reasonable simulation duration since many
simulations are planned for the Req estimation assessment.

Among the different algorithms EnergyPlus has implemented for heat and/or
moisture transfers in the building, the Conduction Transfer Function seems to
be an appropriate option: it is a heat-only algorithm and does not account for
moisture storage and diffusion. Using heat and moisture transfer algorithms will
only slow down the simulation time without adding significant improvements
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to the assessment methodology. The Conduction Transfer Function algorithm
is fast as it relies on a state space representation with the finite difference
wall temperatures as variables [22]. From the state-space representation, it
is possible to formulate the model output as a direct function of the input,
without calculating storage and temperatures at the discretisation nodes in the
wall.

As for heat transfers through ventilation and infiltration, EnergyPlus has
two possible options: the DesignFlowRate module and the Airflow Network
model. The Airflow Network model, based on pressure and airflow calculations
with temperature and humidity calculations, however, has been developed to
simulate with accuracy air distribution systems and their performance, such
as supply and return duct leaks, multi-zone airflows driven by outdoor wind
and mechanical ventilation. Although such detail is without question physically
more accurate, it is also much more computationally consuming. The DesignFlowRate
module, concededly simple, has been chosen instead for the reference model.
Infiltration and ventilation flow rates are accounted for by the same module,
but in separate inputs so as to enable different values. It relies on equation 2 to
calculate the airflow rate at each time step:

Q(t) = Vdesign·Fschedule·(A+B·|Tzone−Todb|+C ·WindSpeed+D·WindSpeed2)
(2)

where Vdesign the air flow rate (m3/s)
Fdesign an optional schedule that can vary over time,
A, B, C and D coefficients between 0 and 1,
Tzone the zone indoor air temperature (◦C),
Todb the outdoor dry bulb temperature (◦C).

A, B, C and D are fixed identically to the default BLAST (EnergyPlus
predecessor) [23]:

A = 0.606, B = 0.03636, C = 0.1177, D = 0

Solar irradiation plays a large role in the building energy balance. In
particular as the window blinds are maintained open in the simulations,
solar irradiation entering the building through the windows comes from
multiple sources: direct beams with time-dependent values for each wall,
diffuse irradiation via the environment, reflections of direct irradiation on the
environment as well as indoor diffuse reflections. To account for such details,
the Full Interior And Exterior With Reflections EnergyPlus module is used.

The EnergyPlus simulation run period extends from approximately
November 1st to March 31st to cover a winter season. Furthermore, accurate
estimations are expected to be larger in the coldest months, from December to
February. This is due to the larger temperature difference between indoors
and outdoors and lower solar gains. This implies that the energy balance
during winter days is more sensitive to the thermal performance of the building
envelope. It is, however, important to start the simulation period earlier as
to avoid any impact of the warm-up runs performed by EnergyPlus. Indeed,
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the software runs multiple times on the same first day, beginning at an indoor
temperature of 23 ◦ C until convergence of the indoor conditions is met. The
warm-up allows for credible initial conditions for the rest of the simulation.
But, as the first weather day of the simulation period is random, it might place
a particular weight on a possibly unusual cold or warm day, thus misleading
the first hours and days of simulation, depending on the thermal mass of the
building. It is therefore safe to start early in the winter period and then discard
the first 15 days of simulation. In the end, the simulation run period starts on
November 15thand finishes on February 15th.

As for the simulation time step, it should not be longer than approximately
15 minutes, and preferably shorter in the case that this reference model has lower
characteristic times. Time steps longer than 15 minutes could hide aliasing in
the data: short but influential phenomena are not seen. Aliasing in data then
leads to potentially dramatically wrong estimations [24]. In this case study, the
time step is fixed at 10 minutes.

One of the identified pitfalls for a generalisable model assessment framework
is the fact that the simulation outputs are ”ideal” measurements: the simulation
output is deterministic. There are no systematic errors and no random
measurement errors. To maintain the focus on the influence of weather
variability on thermal characterisation, systematic errors will not be added to
the outputs. Measurement random errors on the other hand are a non-negligible
part of the issue of solving inverse problems [25]. White noise is added to the
following simulation outputs following normal distributions in agreement with
the undermentioned literature sources:

• temperatures: addition of a normal noise N (0, 0.2 ◦C), in agreement with
Leroy [26],

• heating power: addition of a normal noise N (0, 20.0 W ), in agreement
with Sengupta et al [27],

• solar irradiation: addition of a normal noiseN (0, 5.0W/m2), in agreement
with Stoffel et al [28].

2.2.2. The case study

The case study to which the methodology is applied in this paper is a multi-
zone building of a one-storey house, as shown in Figure 3. The heated space
is approximately 98 m2 and has a total volume of approximately 250 m3. The
building is equipped with convective heaters. The air change rate is 1.0 volume
per hour.

The building has unheated and unventilated crawlspace and attics. Heat
losses towards the crawlspace may be considered insignificant, as the insulation
layer under the concrete slab of the ground floor has been set at 30 cm. As for the
rest of the building envelope, exterior walls are made up of a 20 cm brick wall,
with 10 cm insulation and 1 cm plaster on the interior side whereas the attics
and the indoor space are separated by a 1 cm plaster and 30 cm insulation. All
windows, frames included, have U-values between 1.3 and 1.6 W/m2K. Total
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Figure 3: Floor plan of the one storey house serving as reference model

window surfaces add up to 15.9 m2, among which 0.6 m2 north, 5.4 m2 east,
6.7 m2 south and 3.2 m2 west. The shading facilities are not activated and
therefore allow for solar gains. South- and east-facing facades have a shading
overhang, designed to avoid solar irradiation in summer. In winter conditions,
most of the irradiation enters the envelope. Table 1 summarises the thermal
properties of interest in this case study and Figure 3 shows how the building is
configured.

Vertical insulation thickness 10 cm
Attic insulation thickness 30 cm

Ground floor slab insulation thickness 30 cm
Air change rate 1.0 h−1

Table 1: Thermal characteristics of the case study used in this application

The indoor temperature setpoint schedule is designed to mimic occupant-
friendly conditions to meet the objective of studying how poorly informative
data influences interpretability. Seeing that dynamic models such as RC models
cannot adequately learn from data in conditions close to steady state, a realistic
temperature setback is therefore scheduled and follows a usual occupant-related
schedule. The indoor temperature schedule is set to reach 20 ◦C in the morning
and in the evening for workdays, and all day long during week-ends and on
Wednesdays. The rest of the time, the temperature is scheduled to remain at
17 ◦C. Figure 4 illustrates a week of simulated indoor temperature with such
schedule. Noteworthy in this figure is that, as the indoor temperature setpoint
is based on the operative temperature, there are slight differences between the
simulated indoor air temperature and the temperature setpoint.
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Figure 4: Illustration of 1 week of simulated indoor temperature with added noise: Wednesdays
and week-ends have different temperature setpoints.

2.2.3. Thermal performance of the case study

As mentioned earlier, basing the procedure on simulated data offers the
advantage that a theoretical thermal resistance of the envelope is known. In our
case, it is determined by a simulation run with constant boundary conditions:
no solar irradiation, constant indoor and outdoor temperatures. Wind speed,
however, is non-null and is kept at the values of the TMY file of Geneva.
Removing the wind speed would have decreased the overall heat loss coefficient,
by diminishing the heat losses through ventilation as ventilation has been modelled
to be wind speed dependent. Since in the synthetic experiment the ventilation
is not stopped, the Req estimations would not have converged towards a target
value calculated without wind.

With these steady-state boundary conditions, the dynamic terms Qin
storage

and Qout
storage in the energy balance from Equation 1 become negligible and

Equation 3 therefore perfectly describes the linear relationship between the
heating power and the indoor-outdoor temperature difference:

Pheating = HTC × (Tin − Tout) = 1/R∗
eq × (Tin − Tout) (3)

A least squares regression is performed on daily averaged data from January,
February and March (92 days) and gives R∗

eq = 5.19×10−3 K/W = 5.19 K/kW
with a Pearson (R2) coefficient of the linear regression of 0.999, showing an
excellent fit. This value is from now on called target R∗

eq. Means of comparison
of an estimated Req to the target value R∗

eq are described in section 2.6.

2.3. Providing weather data to the simulation step (I)

2.3.1. Using actual weather data: a limited insight

As a first attempt to understand the influence of weather conditions, the
reference model was run with 10 years of historical winter weather data in
Geneva (Switzerland), from 1990 to 1999 included. From each simulation,
subsets of data of variable durations are extracted: 2, 3, 5, 8, 11, 15 and 25
days. Model TwTi RoRi Aw as in Equation 4 is then calibrated. An estimation
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Figure 5: Evolution of the variability in the estimation of Req from 2-, 3-, 5-, 8-, 11-, 15- and
25-day data subsets: data simulated with historical weather data for

of Req is inferred for each subset and shown in Figure 5: each dot represents
the maximum likelihood (ML-) estimate and the bars represent the confidence
intervals. As will be specified in 2.5.2, the ML-estimates are the most likely
values for the parameters given the collected data.

Preliminary results can be inferred from Figure 5:

• Short datasets provides Req estimations with a large variability and high
uncertainty. There seems indeed to be no agreement in the ML-estimates
(visible as dots) and the confidence intervals are large. This suggests in
particular that 2 or 3 days are insufficient for a robust estimation of Req.

• Variability of the ML-estimates decreases as the measurement duration
increases. All ML-estimates converge within a 5 % error band around the
target R∗

eq with 25-day datasets.

• Regardless of the measurement duration, the significant variability of the
ML-estimates can only be attributed to weather variability induced by
the different weather datasets used for simulation. However, the particular
conditions that cause under- or overestimation can however not be inferred
from this first application.

These preliminary results suggest a decrease in variability with growing
measurement duration. However, seeing that this first application is performed
on only 10 weather datasets, concluding on a minimal length would be
statistically weak. In addition, the datasets do not allow to attribute the
estimation variability to one or more specific weather variables.
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2.3.2. Stochastic weather data to perform global sensitivity analysis

To perform a more exhaustive assessment of the Req estimations under
variable weather conditions, the proposed methodology is now applied to a
set of 2000 synthetic weather datasets with which a variance-based sensitivity
analysis is possible [29].

A total of six weather variables are stochastically generated to be
representative of the usual weather conditions in Geneva in winter, following the
methodology described in [29], as a time series constructed by a combination
of statistical and deterministic features. The characteristics are extracted on
the basis of the IWEC weather data file (International Weather for Energy
Calculations) [30] from Geneva. IWEC files are built like TMY weather files
[31] for locations outside the United States and Canada. The TMY file, standing
for Typical Meteorological Years, is built by concatenation of typical months.
Each month is chosen from 30 years of actual data: each monthly dataset is
weighted as a sum of 13 Finkelstein–Schafer statistics [32] from the temperature,
wind and solar radiation data. In the end, the monthly dataset chosen is
the one that shows statistics closest to the mean, median of the 30-year data
distribution, after having discarded years with exceptionally long periods of
consecutive warm, cold or low radiation days. The stochastic generation [29]
thus contains as much variability than in the TMY file: if the TMY has for
one particular variable a lower variability than the rest of the 30-year actual
weather data, it will reflect this in the synthetic data.

From the TMY file, Goffart et al [29] selected six weather variables to
stochastically generate 2000 weather files; the rest of the variables were left
unchanged. The generated variables are exterior dry bulb temperature, relative
humidity, direct normal solar irradiation, horizontal diffuse solar irradiation,
wind speed and wind direction.

Finally, the weather data are generated to calculate sensitivity indices
through a Sobol variance method able to cope with groups of time-dependent
inputs, like the time dependency of each weather variable here. Sensitivity
indices by groups estimate the effect of the entire time series of the
meteorological variable under study. The sensitivity indices are therefore scalars
even though the variables are time series. The indices are calculated from
two sets of 1000 samples, each sample of the first 1000 being defined by the
characteristic features extracted from the TMY file of each weather variable,
the second 1000 samples being a rearrangement of the first.

In this study, the output of interest for the sensitivity analysis is the Req

estimation and in particular the weather conditions leading to an increased or
decreased ML-estimation and accuracy.

In order to check the representativeness of the generated weather data,
Figure 6 compares the synthetic data with the actual historical data from
Geneva and with the TMY data. The figure shows the empirical cumulative
distributions of the six weather variables for the month of January of the
historical weather data in black thin lines and in orange the TMY data. The
grey areas represent the 50 %, 75 % and 95 % quantiles of the synthetic data.
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Figure 6: Representativeness of the stochastic weather data with respect to real weather data:
the lines represent the cumulative distributions of all six weather variables. The generated
outdoor temperature and direct normal irradiation data in grey are representative of historical
data whereas wind speed is instead in the generated data than in the historical measurements
in Geneva.

The lines represent the cumulative distributions of all six weather variables. The
higher the line, the lower the values of its time series. For example, the wind
speed in the TMY file, in orange, is lower than any other historical weather
data, which means that the TMY file is in overall more windy in January than
the 10 years of historical weather data.

From Figure 6, it can be inferred that:

• Synthetic outdoor dry bulb temperatures seem to be representative of the
historical measurements. Synthetic wind direction is in good agreement
with the historical measurements as well.

• Synthetic relative humidity seems to be lower than some of the historical
measurements. The synthetic diffuse radiation on the contrary seems to
be slightly overestimated, as does the wind speed.
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• The direct normal radiation data generated do not cover a range as wide
as the actual data: some of the real data may have much higher or lower
direct radiation. This might have an impact on the following results and
will be discussed later.

2.4. Step (I): Simulation, output processing and data subset selection

For the purpose of the study, the thermal simulation of the multi-zone
reference model needs to be performed so as to deliver energy consumption
and temperature. Let us also shortly recall that the reference model is run on
a winter season, from November 15th to February 15th. The time step of the
output is set at 10 minutes in order to catch higher-frequency phenomena and
improve the accuracy of the estimation [33]. Winter season secures outdoor
temperatures below 15 ◦C, which creates a significant temperature difference
with indoors and enhances the practical identifiability of the parameters of
interest.

Aiming at a comprehensive comparison, the studied model is calibrated on
several subsets of each dataset: 2, 3, 5, 8, 11, 15 days. As shown in Figure 7,
all subsets start on January 2nd, i.e. far from the warm-up period of Energy
Plus, which might have affected the realism of the data. January 2nd is also at
the beginning of the month of interest, representative of winter conditions.
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Figure 7: Selection of the data subsets from the stochastic data: 2, 3, 5, 8, 11 and 15 days
starting January 2nd

2.5. Step (II): Req inference

Inferring a physical property from data means solving an inverse problem.
To do so, as detailed in this section, an appropriate model is chosen and its
parameters estimated so that the model prediction fits the data. The physical
property of interest, here the overall thermal resistance, Req, is inferred from
the estimated model parameters.

2.5.1. The choice of stochastic RC models

The limited number of sensors encourages to consider grey-box models as a
data analysis tool. Indeed, Foucquier et al [34] distinguish three levels of thermal
modelling of buildings: white-, grey- and black-box modelling. Comprehensive
thermal dynamic models, i.e. white-box models, rely on an extensive number of
parameters as they accurately describe the physical behaviour of a building.
Therefore, white-box models calibrated from poorly informative data will
most certainly lead to overfitting and non-interpretable parameter values. By
contrast, black-box models rely exclusively on statistics and cannot be physically
interpreted. In between, grey-box models are a combination of both, with
physically inspired mathematical structures and statistical modelling to achieve
reliable simulation results [35]. In particular, grey-box models can use a naive
description of the building physics to limit the number of parameters [36]
and still achieve satisfactory modelling through a stochastic diffusion term in
the model. In a comprehensive review of energy modelling of buildings, Li
and Wen [37] also underline that grey-box models cut computational costs
while maintaining physical meaning. Grey-box models therefore offer a good
compromise in a non-intrusive framework.

The numerical procedure is applied to a lumped capacitance model:
TwTi RoRi Aw. It is a low-order model in the sense that it relies on a system of
two differential equations. It incorporates two thermal resistance parameters Ro

and Ri, two thermal capacitance parameters Cw and Ci and a single coefficient
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for solar aperture hereafter named Aw. RC models are indeed simplified lumped
models of the otherwise non-linear thermal exchanges of the building envelope
and have physical meaning: thermal capacitances or thermal resistances can be
proven to be the lumped capacitances or, respectively, lumped resistances of
each layer of the envelope [38, 39].

As with any simplified model, RC state-space models have an intrinsic
model error, which can be taken into account as an ad hoc term in the
model formulation [40]. If not, Brynjarsdottir and O’Hagan [41] showed that
disregarding model discrepancy may lead to biased and over-confident parameter
estimation. Therefore, stochastic differential equations [42] are chosen to
formulate the RC model, as described in Equation 4.


[
Ṫw
˙Tin

]
=

[
− 1
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1
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− 1
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] [
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]
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]ToutIsol
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] [Tw
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]
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(4)
First and foremost, the structural identifiability needs to be proven, meaning

that in theory, given hypothetical ideally informative data, calibrating the model
will result in a unique solution. The structural global identifiability of the model
is derived by a differential algebra algorithm [43] implemented by Bellu et al
[44] in the tool DAISY.

From the estimation of the thermal resistance parameters Ro and Ri of the
RC model, Req can be derived as shown in Equation 5. Equivalent standard
deviations are obtained from Equation 6. For readability, the Req estimations
will be given in K/kW, which is equivalent to the order 103 K/W .

Req = Ro +Ri (5)

σReq
=
√
σ2
Ro

+ σ2
Ri

+ 2× σRo
σRi

(6)

2.5.2. Model calibration

To infer an estimation of the overall thermal resistance, the parameters of
the model of interest need to be estimated so as to fit the data. This calibration
process is performed by a quasi-Newton optimisation using the BFGS algorithm,
operated in the pySIP python library [45]. In particular, the BFGS algorithm
minimises the negative log-likelihood of the model prediction which resumes in
finding the most likely set of parameters that fit the selected dataset.

The model calibration is performed through a frequentist approach, where
all information about the parameters is hypothesised to be acquired in the
collected data and where the estimation is supposed to have a Gaussian
error. Another option, yet more computationally costly, would be to use
a Bayesian approach where prior information about the parameter values is
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incorporated in the calibration process as a prior probability density. However,
this paper investigates how natural weather variability influences the amount
of information in the data itself and how that reflects on the accuracy and
robustness of the estimation of Reqs. From this perspective, a frequentist
approach makes perfect sense.

As a result, the estimation with the BFGS optimisation provides maximum-
likelihood (ML-) estimates of the parameters of the selected RC model, with a
Gaussian error uncertainty. Both ML-estimates and their uncertainty need to
be considered when assessing the outcome of an estimation.

2.5.3. Model selection and validation

Good practice in model calibration demands that model selection be made
so as to infer results from one best fitting the data. The best-fitting model might
be different between short- and long-duration datasets. For this reason, even if
model selection is performed on a 3-day dataset, the residuals of prediction of
a 15-day dataset are verified as well, in order to ensure the selected model still
performs well on larger datasets.

First-order RC models may be quickly discarded as they visibly fail to
capture the physics compared with a second-order model, as can be seen in
Figure 8a. The residuals of a first-order model are highly auto-correlated, see
Figure 8b, which again is proof that such a model does not correctly fit the data.
The residuals of a second-order model are indeed much closer to white noise for
a 3-day calibration. When a 15-day calibration is performed, the residuals show
that the first-order model is still highly auto-correlated and that the second-
order model still performs well. Higher-order models achieved highly correlated
parameter estimations, which is very undesirable when the parameters need to
be physically interpreted.

2.6. Interpretability: a novel indicator to assess the Req estimations (step III)

This section proposes a novel scalar indicator, called the interpretability
indicator, to assess the closeness of the estimation to the target value.

The need for a novel indicator comes from the observation that a
straightforward relative error of the ML-estimator to the target value is not
representative of the uncertainty of such estimation. A relative error cannot in
fact discriminate between accurate and uncertain ML-estimations. For example,
in Figure 9, the case 1 estimation is less desirable than the case 2 estimation:
both are equally inaccurate from a relative error point of view, but the case 2
reflects the inaccuracy appropriately through a large confidence interval.

In order to better discriminate between the less desirable estimations from
the others, an interpretability indicator is proposed. This indicator represents
the area under the bell curve that is ±5 % of the target R∗

eq. The interpretability
indicator therefore takes values between 0 and 1. For example, in Figure 9, the
case 1 estimation scores close to 0 whereas the case 2 estimation scores at 0.24.
Estimations may be considered satisfactory if they score above 0.5, such as case
3 estimation in Figure 9.
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certain delay, i.e. a lag. Model Ti RA shows a significant autocorrelation of its residuals, which
implies systematic errors in the prediction. Significant physical phenomena are missing in the
model.

Figure 8: Graphical visualisation of how models Ti RA and TwTi RoRi Aw fit the data
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3. Results

3.1. Decreasing variability of the Req estimation with experiment duration

As described in the previous section, the assessment methodology was
applied to generate 2000 simulations from 2000 different weather datasets.
Each simulation provides seven synthetic datasets of growing duration used
for the calibration of model TwTi RoRi Aw. In section 3.1.1, we show how the
natural weather variability influences a 2-day calibration and in section 3.1.2,
we establish a minimal duration for a robust estimation of Req.

3.1.1. Variability with a 2-day calibration

For each of the 2000 data sets and for each subset, the stochastic RC
model TwTi RoRi Aw is calibrated. In each case, Req is inferred as the sum
of the resistive parameters estimations. Figure 10 shows on the left hand
side 50 randomly picked ML- estimates of Req with their confidence interval,
in order to illustrate the variability of the estimations. The estimations are
coloured according to the previously defined interpretability indicator. As a
short reminder, it takes values between 0 and 1: the closer to 1, the greener and
the closer the estimation to the target value.

Looking at these individual results, three cases can be distinguished:

• The Req estimation is close to the target R∗
eq value: the estimation is

accurate and the confidence interval includes the target Req. This case,
visible in the greener colours, is the most desirable case.

• The Req estimation is far from the target R∗
eq value but the confidence

interval includes the target R∗
eq or the ML-estimate is accurate but with

very large uncertainty: the estimation is not accurate but the credible
interval relates to this inaccuracy, which keeps the result trustworthy.
This case is rendered in orange.
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• The Req estimation is far from the target R∗
eq value and the confidence

interval does not include the target R∗
eq: not only is the result inaccurate

but it also give a false sense of confidence in an inaccurate result. These
results are visible in red.

The last case is the least desirable one but occurs with many estimations.
The right hand side of Figure 10 displays a boxplot af all Req ML-estimates
(dots only) and shows a wide variability: the median of the 2000 ML-estimates
falls at 5.36 K/kW with a standard deviation of 0.35 K/kW (5th quantile
4.82 K/kW and 95th quantile 5.98 K/kW ). The outlier estimates show absolute
errors beyond 20 % of the target R∗

eq. This variability confirms the preliminary
outcomes by suggesting that the influence of weather conditions on the ML-
estimates of Req is not negligible. A data subset longer than 2 days is certainly
needed to decrease this variability.

3.1.2. Minimal measurement duration for robust model calibration

The results so far suggest that a period of more than 2 days is necessary
to achieve a robust Req estimation. Figure 11a shows how the variability of all
2000 Req ML-estimates varies with the seven data subsets: model calibration
from 2-, 3-, 5-, 8-, 11-, 15- and 25-day data. From the figure, it can be inferred
that the longer the data subset, the lower the variability. There is distinctively
a decrease in total variance towards a median value slightly above the target
value R∗

eq. Calibrations from 11-day data and more show all estimated Req

values within 10 % of their median value, hence ensuring low variability in the
Req estimation with respect to weather influence.

To validate the impression of a decrease in variability on the left hand side
in Figure 11a, the right hand side shows for each data subset the evolution of
the total variance of ML-estimates. From the 2-day and 3-day data subsets, the
Req ML-estimates have a total variance of approximately 1.2 × 10−7 K2/W 2.
With 8-, 11- and 25-day data subsets, the total variance decreases respectively
by a factor 3, 4 and 6. The evolution of the partial variances will be discussed
further in the next section.

Studying the variability and variance of the ML-estimates, however, does
not reflect properly on the accuracy of the estimation when considering its
uncertainty. Figure 11b thus shows the evolution of the interpretability indicator
described in section 2.6 with growing datasets. Longer datasets provide increasing
interpretability indicator scores. Considering the minimal score of 0.5 as satisfactory,
80 % of the 8-day estimations score higher than 0.5, 90 % of the 11-day estimations
and 95 % of the 25-day estimations. Estimations from a period of 8 days and
more datasets can therefore be considered as accurate in overall, with a low
uncertainty.

As a partial conclusion, 11-day datasets suffice to reduce the error below
±10 % and provide in 90 % of all cases an acceptable interpretability score.
Longer datasets still significantly reduce the overall variance. However, from a
practitioner’s point of view, longer experiments might be unnecessary, as this
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(a) 2000 Req ML-estimates for datasets with growing duration: datasets over 11 days are all
within ±10 % error to the target R∗

eq . Total variances indeed decrease with longer calibration
datasets.

(b) Evolution of the 2000 interpretability indicators with growing
measurement duration: 80 % of the 8-day estimations score higher than 0.5,
as do 90 % of the 11-day estimations and 95 %of the 25-day estimations.

Figure 11: Assessing the quality of the Req estimations through convergence of the ML-
estimates within a 10 % error band and through the interpretability indicator.

would immobilise the experimental setup almost twice as long for a relatively
small decrease in uncertainty.
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3.2. Influential weather variables on an Req estimation

As mentioned in section 2.3.2, the synthetic weather files allow for a global
sensitivity analysis with respect to six weather variables. The variability of the
Req ML-estimates can be attributed to the natural variability of these weather
variables. Figure 12a shows the sensitivity indices of the estimations of some
parameters with respect to the weather variables: Req. The sensitivity indices
are calculated for all seven data subsets. The indices shown in Figure 12a are
the first-order indices, meaning that they only show the direct influence of each
weather variable. If the sum of each first-order index is close to 1, it would
imply that there were almost no second-order effects, i.e. combined effects of
the weather variables. Let us also finally recall that values of sensitivity indices
are always simply estimated. The indices given in Figure 12a should mainly
be interpreted as order of magnitudes. Indices below 0.1 may be considered
insignificant, given the uncertainty of their estimation.

From Figure 12a, it can be seen that the variability of the Req ML-estimates
is mainly influenced by the outdoor temperature and the wind speed. With
shorter datasets, the sum of the first-order indices is significantly inferior to
1. This means that the variability is also explained by interactions of weather
variables. Variability with longer datasets is by contrast almost only explained
by the variability of outdoor temperature and wind speed, seeing that the indices
add up to 1. Let us also note that neither the relative humidity nor the wind
direction were expected to have an influence on the estimations as they are not
used in the infiltration and ventilation model of EnergyPlus. Their sensitivity
indices are indeed insignificant.

The influence of outdoor temperature and wind speed is also evident in
the evolution of the partial variances of each weather variable shown in Figure
12b. Let us recall that the total variance is the sum of the first-, second- and all
higher-order partial variances. The figure shows the first-order partial variances,
i.e. the partial variances due to the effect of each weather variable individually.
With these elements in mind, it is evident that the total variance of the 11-,
15- and 25-day datasets is solely explained by first-order effects of the weather
variables, mainly outdoor temperature and wind speed.

Let us now examine how outdoor temperature and wind speed influence
the Req ML-estimates. Figure 13 shows how the Req ML-estimates from 11-
day datasets vary with the average outdoor temperature on the abscissa and
the average wind speed on the ordinate. Warmer periods tend towards over-
estimations and colder days towards under-estimations. At the same time, non-
windy days produce overall over-estimations, windy days under-estimations.

At the same time, an interaction can also be seen in Figure 13: calibration
from warm and unwindy days results in over-estimation, cool and windy days
in under-estimations.

This outcome is in agreement with the hypothesis that the large air change
rates in the reference model are a cause of inaccuracy in the estimation of
the overall thermal resistance. As the ventilation-related heat losses have
been modelled in the EnergyPlus simulation environment, there is a direct
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Figure 12: Individual effect of weather inputs on the estimations of Req

relationship between the difference in indoor and outdoor temperature and
wind speed. Ventilation-related heat losses are greater with cold outdoor
temperatures and with high wind speed and on the contrary smaller with warmer
and/or non-windy days. It could therefore be expected that acceptable and
robust estimations be achieved in less than 11 days in buildings with lower air
change rates.

Finally, Figure 14 shows more clearly how the influence of outdoor
temperature and wind speed on the Req ML-estimates evolves from short to
longer datasets.

As seen earlier, this figure, too, shows the decrease in total variance of
the Req ML-estimates with longer calibration sets: the vertical spread of all
estimations are narrower with the 11-day calibration. Interestingly, while
the total variability does decrease, the angle representative of the correlation
remains relatively similar whatever the measurement duration. Longer datasets
produce averages that are less horizontally spread, but the relationship between
temperature and Req estimation is almost unaltered.
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Figure 13: Variability in the Req ML-estimates from 11-day calibration with respect to outdoor
temperature and wind speed. Colours refer to ±10 % errors to target R∗

eq .

A natural assumption would have been to consider that colder days lead to
more accurate estimations than warmer days, as colder days increase the heat
losses and thus the heating power needed to keep up with the indoor temperature
setpoint. This assumption does not seem to hold here. If it were, the variance
would be significantly narrower during cold days than during warm days. Here,
there is no significant difference in vertical spread between cold and warm days,
nor is there any between windy and non-windy days.
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4. Discussion

The results show that, in the particular location, climate and season
conditions of this study and in the specific case study, the calibration needs
to be based on at least 11 days to ensure convergence within ±10 % of the
target value R∗

eq. They also show that the longer the dataset, the smaller the
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total variance of separate estimations. Calibration from shorter datasets will
lead to uncertain results and the variability of the estimations will mainly be
due to the variability of the weather conditions. Compared with controlled
tests with optimised heating or temperature patterns for which a measurement
of a few days is sufficient, 11-day measurements is significantly longer. But
considering that optimised heating or temperature patterns create richer and
less correlated data, it is quite consistent to find 11 days as a minimum in
non-intrusive conditions.

In addition, as non-intrusive measurement design is considered here, 11 days
or more is not a prohibitive duration: as long as the test remains user-friendly,
leaving data loggers for a few weeks is most probably neither burdensome for
the building occupants nor for the expert carrying out the diagnosis. All the
more so, compared with data exploitation at building scale by other low-order
models such as auto-regressive models as suggested in [20] or with energy
signature methods, stochastic RC models have been shown to be a faster
approach for exploiting the data, as long as temperature is not kept constant by
the occupants. All-day-long constant temperatures would necessitate choosing
models which have the heating power as output to exploit the data.

On another note, the results are certainly specific to this case study. Let
us indeed recall that the study was conducted in winter conditions, concededly
typical, and on a particular building type in Geneva which has a temperate
oceanic climate [46]. Whether it is safe to extrapolate the results to other
seasons, climates or building types is debatable and needs to be discussed.

Regarding the seasonal and climate-related variability of the results, it
can be inferred from the results that larger solar irradiations, lower outdoor
temperatures or higher wind speeds will affect the outcomes. This might be the
case when this experiment is performed in autumn or spring weather, or in colder
or more windy climates. Yet, let us also recall that the same building in different
locations will have a different target value R∗

eq as it includes heat losses by
infiltration. In the end, the results will probably slightly change in much colder
or more windy locations, but the extrapolation would still be feasible. It could
then be expected that the order of magnitude of the calibration duration would
be approximately similar. Such extrapolation would, however, be more risky if
the natural variability of one of the weather variables is significantly larger or
narrower than that in Geneva. In a colder climate, for example, but with little
variability in a winter month, lower outdoor temperatures will certainly have
an influence on the amount of heat losses through air change in the building,
but will also affect the target value through its air change rate component. In
the end, regardless of how cold it might be, low natural variability in outdoor
temperatures will barely affect the variability of the Req estimations. For these
reasons, the results of this paper can still be viewed as a benchmark in the field
of non-intrusive measurements exploitation. The 11-day minimal duration can
then serve as a comparison for other locations, as long as the natural variability
of the weather variables is considered.

Summer conditions, as well as dry or tropical climates where active cooling
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is needed, are, however, completely out of the scope of the conditions tested
in this paper because the proposed experiment uses a heating power signal as
model input. If a cooling power-based appropriate methodology were to be
developed, the present study may suggest that the variability of the thermal
characterisation estimation could be influenced by much larger solar irradiation,
correlated with high outdoor temperatures. A minimal measurement duration
could not, however, be safely determined from the outcomes of this study and
would need further dedicated investigations.

Another distinctive feature of this study is the particularity of the case
study: a one-storey internally insulated house, with high insulation in the attics
and under the ground floor. Although already discussed, its large air change
rate is also a particularity. Whether the outcomes are valid for building with
heated or unheated neighbouring zones, for other levels of insulation or for
larger buildings such as apartment blocks remains uncertain, not only because
the effect of weather variability on the thermal resistance estimation would be
different, but also because these conditions raise questions of the feasibility of
such non-intrusive experiment in the first place. Further work will be necessary
to confirm the feasibility of non-intrusive thermal characterisation in other
building types.

A future major development would also be to exploit an actual measurement
campaign and for that purpose, an important indicator would be to consider the
convergence of the estimation. Let us therefore take the opportunity to make
a distinction between convergence of a single estimation and reproducibility of
such an experiment. At the scale of a specific measurement campaign, the
stop factor would be convergence of the estimation results: continuing the
measurements does not significantly change the results.

Although tools for assessing the convergence are not the purpose of this
study, one may extrapolate the well-established ISO 9869 standard [12] criteria
for wall-scale characterisation to building scale and for results from RC models.
First, the Req estimation should not deviate more than 5% from the 24 h earlier
estimation. Secondly, with N the total duration of measurements, the Req value
inferred from the last 2/3N days is within 5 % of the first 2/3N days.

The second ISO 9869 standard criterion is roughly applied with the available
data in Figure 15. The estimation from a 3-day dataset is compared with that
from a 2-day dataset by calculating a deviation percentage: δi = (R3 days

eq −
R2days

eq )/R2days
eq ∗ 100. Then, the estimation from a 5-day dataset is compared

with that from a 3-day dataset and so forth. The deviation calculated from the
previous estimation is considered satisfactory when it scores below 5 %.

All 2000 deviations calculations are represented as grey shaded areas with
50 %, 75 % and 95 % quantiles. Interestingly, a large majority of cases show
a convergence in the sense of the second ISO 9869 standard criteria within 5
days. Eight-day datasets are sufficient for convergence in more than 95 % of all
cases. Yet at the same time, reproducibility as defined previously is not quite
achieved: the variance caused by weather conditions is still significant.
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Figure 15: Second ISO 9869-1 convergence criteria: the estimations from N-day measurements
should not deviate from the previous (N-1)-day estimations by more than 5 %. Applied here,
the second ISO 9869-1 convergence criteria would indicate that a period of 8 days is sufficient.

The third criterion is not directly applicable to the data from this paper,
but one may extrapolate that there could be up to 10 % deviation between the
first 2/3 ·N days inference and the last 2/3 ·N days inference, for example when
the first days are particularly cold and the last particularly warm or vice versa.
However, with similar consecutive weather conditions, convergence would be
considered ”achieved” rather quickly.

To summarise the convergence topic, according to these criteria, convergence
could in some cases be considered as achieved with fewer measurements than
the results from this paper would suggest to reach reproducibility.

The question is then perhaps not to look at deviation in the specific Req

result but instead quantify the information learnt from the data and their
evolution, bearing in mind the representativeness of the weather conditions. In
this regard, it is a call for a Bayesian perspective on the results: the important
outcome to consider is the complete posterior distribution and not the single
most probable value of interest. If upon significant variation of weather there
is no more information gained from the data, i.e. there is no further change in
the posterior distribution, then the measurements may stop.

Figure 16 illustrates for one case how the posterior distribution of a Req

estimation varies with a longer dataset. As a comparison, a 5 % error area
around the target value is represented in grey. An estimation from a 2- or 3-day
dataset does not provide a satisfactory estimation, seeing that the uncertainties
are large. This means that the amount of useful information in short datasets
is insufficient for trustworthy estimation. A 5-day calibration provides an under-
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Figure 16: Illustration of the interpretability indicator: the most important is that most of
the posterior distribution is satisfactorily close to the target value. Although not perfectly
accurate at peak, the posterior distribution is overall within the boundaries of the grey target
area, provided there are sufficient data for calibration.

estimation, which is probably related to particular weather conditions. Estimations
from 8- or 11- day datasets are relatively similar and could be considered
satisfactory. This suggests that data from 8 or 11 days are sufficiently rich
to provide a Req estimation. Finally, estimations from 15 or 25 days are very
accurate as their interpretability indicator scores at almost 1.0.

Thus, Figure 16 illustrates how a posterior distribution provides a wider
perspective on the convergence of the estimation than the only ML-estimator
as suggested in the ISO 9869 standard [12]. The interpretability indicator as
defined in relation to the target and henceforth known value can obviously not be
a metric for convergence. However, it supports the idea of judging convergence
through posterior distribution, by the use of a divergence metric such as the
Kullback Leibler divergence. Furthermore, it would make sense to exploit data
in a Bayesian approach and, for example, use in-line calibration algorithms such
as Sequential Monte Carlo (see [47]).

5. Conclusion

Establishing reliable methods for estimating the thermal performance of
buildings remains a challenging issue under the constraint of a non-intrusive
measurement framework: the data are collected in non-intrusive conditions,
where the indoor air temperature is controlled so as to provide occupant-friendly
conditions and are thus less informative. Such data may therefore lead to errors
in the thermal diagnosis and the outcome may be uncommonly influenced by
the boundary conditions, i.e. the weather conditions.

In this context, this paper has developed an original model assessment
framework to investigate the influence of weather conditions on the
reproducibility and hence feasibility of the thermal characterisation of a building
envelope from measurements in non-intrusive conditions. The methodology
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relies on a sensitivity and uncertainty analysis of the overall thermal resistance
Req estimation with respect to six weather variables.

The proposed methodology has proven to be effective for assessing the
robustness of the overall thermal resistance estimation. Through the analysis
of the variability of all estimations over different measurement durations and
through the analysis of their partial variances and sensitivity indices, the
minimal measurement duration can be assessed and the main influential weather
variables identified.

The paper shows how the methodology is applied to a case study and how
a stochastic RC model is used to exploit the data generated by the model
assessment framework. After comparing 2, 3, 5, 8, 11, 15 and 25 days of model
calibration, it was found that 11 days and longer provide reproducible results
regardless of the outdoor conditions.

The variability of the overall thermal resistances Req estimations from 11
days and longer observed in the outcomes is in the present case study exclusively
due to the variability of outdoor temperature and wind speed. This case study
has indeed large air change rates which would emphasise the effect of these two
weather variables on the overall heat transfers.

Although the 11-day duration is strictly speaking specific to the particular
climate conditions and the particular case study, the strength of the uncertainty
and sensitivity analysis of this methodology allows us to prudently extend the
validity of the results to other cases, as long as similar weather variability
remains. Indeed, the robustness of the overall thermal resistance estimation
is not simply studied in relationship to the weather conditions seen as absolute
values, but rather to weather variability itself. The minimal duration of 11
days found in this application thus gives a sense of the order of magnitude of
duration that can be expected from the exploitation of data with stochastic RC
models and may serve as a benchmark for future investigations. In addition, the
results call for further efforts in establishing reliable tools for the assessment of
convergence from a given dataset to later exploit actual on-site experiments.
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Outils spécifiques de conduction inverse et de régularisation, Techniques
de l’ingénieur (2011) 1–2.

[26] M. Leroy, Note technique num. 37 Classification de performance maintenue,
Technical Report, METEO FRANCE, 2010.

[27] M. Sengupta, A. Habte, S. Kurtz, A. Dobos, S. Wilbert, E. Lorenz, et al.,
Best Practices Handbook for the Collection and Use of Solar Resource
Data for Solar Energy Applications (www.nrel.gov/publications), Technical
Report February, National Renewable Energy Laboratory, 2015. doi:10.
1016/j.solener.2003.12.003.

[28] T. L. Stoffel, I. Reda, D. R. Myers, D. Renne, S. Wilcox, J. Treadwell,
Current issues in terrestrial solar radiation instrumentation for energy,
climate, and space applications, Metrologia 37 (2000) 399–402.

[29] J. Goffart, T. Mara, E. Wurtz, Generation of stochastic weather data for
uncertainty and sensitivity analysis of a low-energy building, Journal of
Building Physics 41 (2017) 41–57.

[30] ASHRAE, International Weather for Energy Calculations (IWEC Weather
Files) Users Manual and CD-ROM, 2001.

[31] G. Pernigotto, A. Prada, A. Gasparella, J. L. Hensen, Analysis and
improvement of the representativeness of EN ISO 15927-4 reference years
for building energy simulation, Journal of Building Performance Simulation
7 (2014) 391–410.

[32] J. M. Finkelstein, R. E. Schafer, Improved goodness-of-fit tests, Biometrika
58 (1971) 641–645.

[33] G. Ramos Ruiz, C. Fernández Bandera, Analysis of uncertainty indices
used for building envelope calibration, Applied Energy 185 (2017) 82–94.

38

https://bigladdersoftware.com/epx/docs/8-6/input-output-reference/group-airflow.html{#}zoneventilationdesignflowrate https://bigladdersoftware.com/epx/docs/8-6/engineering-reference/infiltration-ventilation.html{#}infiltrationventilation
https://bigladdersoftware.com/epx/docs/8-6/input-output-reference/group-airflow.html{#}zoneventilationdesignflowrate https://bigladdersoftware.com/epx/docs/8-6/engineering-reference/infiltration-ventilation.html{#}infiltrationventilation
https://bigladdersoftware.com/epx/docs/8-6/input-output-reference/group-airflow.html{#}zoneventilationdesignflowrate https://bigladdersoftware.com/epx/docs/8-6/engineering-reference/infiltration-ventilation.html{#}infiltrationventilation
https://bigladdersoftware.com/epx/docs/8-6/input-output-reference/group-airflow.html{#}zoneventilationdesignflowrate https://bigladdersoftware.com/epx/docs/8-6/engineering-reference/infiltration-ventilation.html{#}infiltrationventilation
https://bigladdersoftware.com/epx/docs/8-6/input-output-reference/group-airflow.html{#}zoneventilationdesignflowrate https://bigladdersoftware.com/epx/docs/8-6/engineering-reference/infiltration-ventilation.html{#}infiltrationventilation
http://dx.doi.org/10.1016/j.solener.2003.12.003
http://dx.doi.org/10.1016/j.solener.2003.12.003


[34] A. Foucquier, S. Robert, F. Suard, L. Stéphan, A. Jay, State of the
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de thermique, Nantes, 2019.

[46] M. C. Peel, B. L. Finlayson, T. A. McMahon, Updated world map of
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