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Matoussi Anis, ‡ Mrad Mohamed §

November 25, 2020

Abstract

This work concerns the study of consistent dynamic utilities in a financial market with jumps.
We extend the results established in the paper [EKM13] to this framework. The ideas are similar
but the difficulties are different due to the presence of the Lévy process. An additional complexity
is clearly the interpretation of the terms of jumps in the different problems primal and dual one and
relate them to each other. To do, we need an extension of the Itô-Ventzel’s formula to jump’s frame.
By verification, we show that the dynamic utility is solution of a non-linear second order stochastic
partial integro-differential equation (SPIDE). The main difficulty is that this SPIDE is forward in
time, so there are no results in the literature that ensure the existence of a solution or simply allow
us to deduce important properties, in our study, such as concavity or monotonicity. Our approach is
based on a complete study of the primal and the dual problems. This allows us, firstly, to establish
a connection between the utility-SPIDE and two SDEs satisfied by the optimal processes. Based
on this connection and the SDE’s theory, stochastic flow technics and characteristic method allow
us, secondly, to completely solve the equation; existence, uniqueness, monotony and concavity.

1 Introduction

In this work, we propose to study the consistent dynamic utilities in a financial market with jumps.
These utilities have been introduced by M. Musiela and T. Zariphopoulou [MZ03, MZ] and have
been the subject of several recent works in a continuous semimartingale framework [MZ10a, MZ10b,
BRT09, EKM13, EKHM17, Mra20] and in [BT11, EKHM18] in a model with consumption.
These dynamic utilities aim at dealing with the multitudes of inconsistencies in the classical ex-
pected utility optimization problem. Indeed, in finance for portfolio selection, the reflection on
the criterion to be optimized is rather poor: one sets an investment horizon, an increasing concave
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1. Introduction

function (to reflect risk aversion), and one tries to maximize the expected utility of the final wealth.
The optimal strategy is then highly dependent on the management horizon and the utility itself,
which is set today for a future date, does not take into account the evolution of the very dynamic
market. In investment banking, and in the futures markets in particular, part of the business in-
volves "delta-hedge" strategies, i.e., strategies that are not very sensitive to market trends and that
we wish to use as references. Moreover, many problems, including the financing of environmental
projects, relate to very long time horizons, for which it is difficult to pretend that the market
does not readjust its criteria, particularly in the case of major changes in the fundamentals of the
economy.
Moreover, forward looking (see [EKM20]) is the most adapted point of view to study several prob-
lems in vast and varied fields for example e-commerce, robot advising, artificial intelligence, etc.,
where the issue is always about learning the utility of an agent (player, e-commerce customer, rep-
resentative agent...) by observing his behavior in the face of uncertainty and also the problem of
economic equilibrium as posed by He and Leland [HL93] and solved in [EKM20]. Also for modeling
long term yield curves, it is important to have an adaptive criterion consistent with any maturity,
otherwise we get inconsistent multi-curves, see [EKHM19, EKHM14].
In the papers by Musiela and Zariphopoulou [MZ10a] and by Berrier & ali [BRT09] the authors
characterize all dynamic utilities decreasing over time, i.e. all utilities with zero volatility vector.
In El Karoui and Mrad [EKM13], a more complete study is carried out. The authors characterize
all dynamic utilities of Itô-type without restriction. The key point is that the authors show a
strong link between the SPDE, satisfied by these utility random fields and two SDEs satisfied by
the optimal processes of the primal and dual problem. The study of the solutions of such SPDEs
is then reduced to those of the SDEs. With this correspondence and with the help of the abundant
results in the SDE-theory, one can easily deduce (under simple assumptions of regularities of the
SDE’s coefficients) the existence, uniqueness, monotonicity and concavity of the solution of the
utility-SPDE.
The extension of the concept of dynamic utility to the case with consumption was at first considered
by Berrier & ali [BT11] and second by El Karoui & ali [EKHM18, EKHM19]. Other authors have
been interested in these consistent dynamic utilities. For example, G. Zitkovic [Zit08] provides
a dual formulation of consistency in addition to the primal formulation, and proves equivalence
between the two. An explicit characterization is then given in a log-affine structure, where necessary
and sufficient conditions for consistency are provided in this specific case. In [LZ17], the authors
develop a connection between the consistent dynamic utilities and infinite horizon BSDE and a
connection, for large time horizons, with a family of classical homothetic value function processes
with random endowments. Further works related to this problem are Choulli, Stricker and Li (2007)
[SCL07], Henderson and Hobson (2007) [HH07].
In this paper, we place ourselves in an incomplete market framework where assets are modeled as Itô
processes with jumps, without restrictions on volatility vectors or jump processes. We first conduct
a necessary study that will allow us to link different parameters of the primal and dual problems.
The stochastic characteristics method (an extension of the classical characteristics method for the
solving of PDEs) will allow us to characterize this class of utilities in any generality.

The paper is organized as follows, Sections 2.1 and 2.2 are quite general in which we set the
regularity conditions necessary to carry out the calculations and particularly apply the Itô-Ventzel’s
formula with jumps, recalled in (2.4). Under recalled regularity conditions, we will establish the

Version MM November 25, 2020 2/35



2. Formulation and spaces

forward dynamics of the inverse flow of a solution of a regular SDE with jumps, see Theorem 2.4.
In passing, we establish some intermediate results that will be used several times in this work:
for example equation (2.6) gives the dynamics of the product of two SDE’s solutions XY when
Corollary 2.5 yields the dynamics of the compound Y ◦X of Y and the inverse (with respect to the
initial condition) of X.
In Section 2.3, we describe the market model with jumps, the class of admissible portfolios and
characterize the dynamics of the state price density processes in this universe. In Section 3, we
introduce the notions of progressive utility and market-consistent utility. In the section 3.2, we
conduct a necessary study. Under the consistency condition and using the generalization of Ito-
Ventzel’s formula to the jump frame, we deduce the optimal strategy κ∗ and then the stochastic
partial integro-differential equations (SPIDEs) that necessarily satisfies the consistent utility U and
its marginal utility, see Theorem 3.1 and Corollary 3.2. In Section 3.3, we study in Theorem 3.3 the
dynamics of the marginal consistent utility along the optimal portfolio Uz(t,X∗t ) and then show,
in Corollary 3.4, that Uz(t,X∗t ) is a price density process.
Section 3.4, completes this study and provides us with more details on this state price. We focus
on the dual utility Ũ , we first establish, in Theorem 3.5, its dynamics and that of its marginal,
using the results of Section 2.2. Then, we establish the main result of this section, Theorem 3.6:
we study the dual optimization problem, we show that Ũ is also consistent but with the class Y
of state prices density processes and in particular the optimum is reached in Uz(t,X∗t ). This last
point shows us the equivalence between the monotonicity of x 7→ X∗t (x) and that of y 7→ Y ∗t (y).
Moreover if we note by Xt(z) the inverse of X∗ then we can completely characterize the marginal
utility Uz and thus its primitive U . Indeed in this case, see Theorem 3.8, we have

Uz(t, z) = Y ∗t
(
uz(Xt(z))

)
, uz(.) = Uz(0, .)

U(t, z) =

∫ z

z0

Y ∗t
(
uz(Xt(x))

)
dx, U(t, 0) = 0.

In this new approach, the solution of the utility SPIDE have a pathwise representation, unlike to
the characteristics method where the solutions are represented as a conditional expectation. There
are several advantages of this connection between SPIDEs and SDEs due to the existence of many
results in the SDE theory. To the best of our knowledge, there are no or few results that assert the
monotonicity or the convexity of such solutions. Also, there may be other advantages in numerical
methods and simulations of the SDE than of SPIDE as it is shown in [GM18].
In the last Section 4 of this work, we consider the inverse engineering problem. We give ourselves
an initial utility function u and two monotonic processes, a wealth process X with inverse X and a
state price density Y, and we define a new utility random field U as the primitive of Yt

(
uz(Xt(z))

)
.

We establish in Theorem 4.1 its dynamics and in Theorem 4.2, that it is X-consistent with optimal
wealth process X and optimal dual process Y.

2 Formulation and spaces

All stochastic processes are defined on a standard filtered probability space (Ω,F ,F,P), where the
filtration F = (Ft)t≥0 is assumed to be right continuous and complete such any semimartingale have
a right continuous paths with left limits. We consider a d-dimensional Brownian motion W and an
independent Lévy random measure N on [0,∞)×R with intensity measure dt×ν(de) defined on the
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probability space (Ω,F ,F,P), where ν is a positive measure on R such that
∫
R(1 ∧ e2)ν(de) < ∞.

Ñ denotes the compensated version of N :

Ñ(dt, de) = N(dt, de)− ν(de)dt.

We first recall some notions relative to stochastic processes depending on a spatial parameter
x. For us, because of economic motivation, this parameter is the wealth of an investor, taking non
negative values in R+ = {x ≥ 0}. Sometimes, we will use the vocabulary of random field theory,
and refer to such processes as progressive random fields. As all random fields considered in the
sequel are progressive, we will often omit the mention " progressive".
(i) A progressive random field X = {X(t, x); t ≥ 0, x > 0} is a random variable measurable w.r.t.
F∞ ⊗ B(R+)⊗ B(R0

+), which is a collection of progressive processes t 7→ X(t, x).
(ii) X is said to be concave, (resp. increasing) if there exists N ∈ F∞ with P(N) = 0, such that
for any ω ∈ N c, and any t ≥ 0 x 7→ X(t, x)(ω) is concave (resp. increasing).
(iii) A random field X is said to be continuous (resp. differentiable) if there exists N ∈ F∞
with P(N) = 0, such that for any ω ∈ N c, and any t ≥ 0 x 7→ X(t, x)(ω) is continuous (resp.
differentiable). The derivative denoted Xx(t, x)(ω) generates the so-called derivative random field
Xx. When Xx has a continuous version, X is said to be C1-regular.

2.1 Regular random fields spaces

We introduce a family of Sobolev type random semi-norms to control locally or globally the growth
of the random field and its derivatives.
Definition 2.1. • A predictable random field φ : (t, x, ω) ∈ R+×R×Ω→ Rd (d ≥ 1) is said to

be in the class Cm,δ (m ∈ N, δ ∈ (0, 1]) if φ is of class Cm in x with locally bounded derivative
such that ∂mx φ is δ-Hölder.

• A predictable random field ψ : (t, x, e, ω) ∈ R+ ×R×R×Ω→ Rd (d ≥ 1) is said to be in the
class Cm,δ (m ∈ N, δ ∈ (0, 1]) if ψ is of class Cm in x, with locally bounded derivative such
that ∂mx φ is δ-Hölder.

2.1.1 Norms definition

Let φ be a continuous Rk-valued progressive random field and letm be a non-negative integer, and δ
a number in (0, 1] . We need to control the asymptotic behavior in 0 and∞ of φ, and the regularity
of its Hölder derivatives when there exist. More precisely, let φ be in the class Cm,δ(]0,+∞[), i.e.
(m, δ)-times continuously differentiable in x for any t, a.s.
(i) For any subset K ⊂]0,+∞[, we define the family of random (Hölder) K-semi-norms

‖φ‖m:K(t, ω) = supx∈K
‖φ(t,x,ω)‖

x +
∑

1≤j≤m supx∈K ‖∂jxφ(t, x, ω)‖

‖φ‖m,δ:K(t, ω) = ‖φ‖m:K(t, ω) + sup
x,y∈K

‖∂mx φ(t, x, ω)− ∂mx φ(t, y, ω)‖
|x− y|δ

.
(2.1)

The case (m = 0, δ = 1) corresponds to the local version of the Lipschitz case. When K is all the
domain ]0,+∞[, we simply write ‖.‖m(t, ω), or ‖.‖m,δ(t, ω).
(ii) The first term of these random semi-norms differs slightly from that considered by Kunita
(equations (1) and (2) p.72 of [Kun97]) because instead of dividing by 1 + |x| we divide by x on
the first terms. This does not change Kunita’s results, but allows us to obtain reasonable behavior
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in the neighborhood of x = 0 in addition to the traditional results in the neighborhood of x =∞.
(iii)When the random field Φ depends on a parameter e ∈ R, we define exactly in the same way
‖φ‖m:K(t, ω, e) and ‖φ‖m,δ:K(t, ω, e).

2.1.2 Different spaces of regular random fields

The previous semi-norms are related to the spatial parameter. We add the temporal dimension in
assuming these semi-norms (or the square of the semi-norm) to be integrable in time with respect to
the Lebesgue measure on [0, T ] for all T ≥ 0. Then, as in Lebesgue’s Theorem, we can differentiate,
pass to the limit, commute limit and integral for the random fields. Calligraphic notation recalls
that these semi-norms are random.
(i) Km,δloc (resp. Km,δloc ) denotes the set of all Cm,δ-random fields s.t. for any compact K ⊂]0,+∞[,
and any T ,

∫ T
0
‖φ‖m,δ:K(t, ω) <∞, (resp.

∫ T
0
‖ψ‖2m,δ:K(t, ω)dt <∞ ).

(ii) K̂m,δloc,ν denotes the set of Cm,δ-random fields s.t. for any compact K ⊂]0,+∞[, and any T ,∫ T
0

∫
R ‖ψ‖

2
m,δ:K(t, e, ω)ν(de)dt <∞.

(iii)When these different norms are well-defined on the whole space ]0,+∞[, the derivatives (up
to a certain order) are bounded in the spatial parameter, with integrable (resp. square integrable)
in time random bound. In this case, we use the notations Kmb ,K

m

b , Km,δb ,Km,δb , K̂mb,ν and K̂m,δb,ν .
We also introduce the following spaces of processes:
(iv)L2,d(Ω×R+) is the space of P-measurable process (Zt) with valued in Rd such that

∫ T
0
|Zs|2ds <

+∞, P− a.s where P is the σ-field of all predictable sets of [0, T ]× Ω, ∀T ≥ 0 .
(v)L2,d

ν (Ω×R+ ×R is the space of predictable processes (h(t, e)) such that
∫ T

0

∫
R |h(s, e)|2dνds <

+∞, P− a.s, ∀T ≥ 0

2.2 Itô’s semimartingale random fields with Jumps

2.2.1 Differentiability of Itô random fields

We shall discuss the regularity of a Itô semimartingale random field

F(t, z) = F(0, z) +

∫ t

0

φ(s, z)ds +

∫ t

0

ψ(s, z).dWs +

∫ t

0

∫
R
H(t, z, e)Ñ(dt,de)

in connection with the regularity of its local characteristics (φ, ψ,H). By convention, an Itô random
field F is said to be a Km,δloc -semimartingale, whenever F (0, z) is of class Cm,δ, BF (t, z) =

∫ t
0
φ(s, z)ds

is of class Km,δloc , M
F (t, z) =

∫ t
0
ψ(s, z).dWs is of class K

m,δ

loc and J F (t, z) =
∫ t

0

∫
RH(t, z, e)Ñ(dt, de)

is of class K̂m,δloc,ν . The reference to Km,δ recall that F is a random field.
Notations: To fix the notations, throughout this paper we denote by Ψz(t, z) (resp. Ψzz(t, z)) the
first (resp. the second) derivative of a random field Ψ(t, z) with respect to its spatial variable z.
As in Kunita [FK+85], we are concerned both by the regularity of F from the regularity of its local
characteristics (φ, ψ,H) and by the regularity of (φ, ψ,H) from that of F(t,x) ([FK+85, Theorem
1.3]). To be concise, we also give a sufficient conditions under which we can differentiate term by
term the dynamics of an Itô random field. This property is used in order to apply Itô-Ventzel’s
formula.
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Theorem 2.1 (Differential Rules). Let F be an Itô semimartingale random field with local char-
acteristics (φ, ψ),

F (t, x) = F (0, x) +

∫ t

0

φ(s, x)ds+

∫ t

0

ψ(s, x).dWs +

∫ t

0

∫
R
H(s, z, e)Ñ(ds, de).

(i) If F is a Km,δloc -semimartingale for some m ≥ 0, δ ∈ (0, 1], its local characteristics (φ, ψ,H) are
of class Km,εloc ×K

m,ε

loc × K̂
m,ε
loc,ν for any ε < δ.

(ii) Conversely, if the local characteristics (φ, ψ,H) are of class Km,δloc ×K
m,δ

loc × K̂
m,δ
loc,ν , then F is a

Km,εloc -semimartingale for any ε < δ.
(iii) In any cases, for m ≥ 1, δ ∈ (0, 1], the derivative random field Fx is an Itô random field with
local characteristics (φx, ψx, Hx).

This result was established by T. Fujiwara and H. Kunita in [FK+85, Theorem 1.3]. A similar
version of this result exists for SDE’s solutions, see [FK+85, Theorems 2.2 and 2.3].

Corollary 2.2. Let X be an Itô semimartingale solution of a SDE(µ, σ, h),

Xt(x) = x+

∫ t

0

µ(s,Xs(x))ds+

∫ t

0

σ(s,Xs(x)).dWs +

∫ t

0

∫
R
h(s,Xs−(x), e)Ñ(ds, de).

(i) If X is a Km,δloc -semimartingale for some m ≥ 0, δ ∈ (0, 1], the SDE’s coefficients (µ, σ, h) are
of class Km,εloc ×K

m,ε

loc × K̂
m,ε
loc,ν for any ε < δ.

(ii) Conversely, the SDE’s coefficients (µ, σ,h) are of class Km,δloc × K
m,δ

loc × K̂
m,δ
loc,ν , then X is a

Km,εloc -semimartingale for any ε < δ.
(iii) In any cases, for m ≥ 1, δ ∈ (0, 1], the derivative random field Xx is an Itô semimartingale
solution of

dXx(t, x) = Xx(t−, x)
[
µz(t,Xx(t, x))dt+ σz(t,Xx(t, x))dWt +

∫
R
hz(t,Xt−(x), e)Ñ(dt, de)

]
.

2.2.2 Itô-Ventzel’s formula with jumps

In the framework of the papers [EKM13, EKHM18, MZ10b], the authors used the Itô-Ventzel’s
formula to study dynamic utilities, their dynamics, consistency and martingales properties... In
the present paper where we have in addition a jump processes, we need an even more general
Itô’s formula. Luckily, an extension of the Itô-Ventzel’s formula is established by B. Øksendal
and T. Zhang [ØZ+07][Theorem 3.1]. It gives, under regularity assumptions, the dynamics of the
compound of two random fields of Itô type with jumps. The statement of this formula, essential in
our framework, is the following.

Theorem 2.3. Let U = {U(t, z)} be a K2,δ
loc-semimartingale for some δ ∈ (0, 1] and X a semi-

martingale with jumps evolving as,
dU(t, z) = β(t, z)dt+ γ(t, z)dWt +

∫
R
H(t, z, e)Ñ(dt, de) (2.2)

dXt(x) = µX(t,Xt(x))dt+ σX(t,Xt(x))dWt +

∫
R
hX(t,Xt−(x), e)Ñ(dt, de). (2.3)
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2. Formulation and spaces

Then the compound stochastic process U(t,Xt(x)) is a semimartingale with dynamics,

dU(t,Xt(x)) =
(
β + Uzµ

X + 1
2Uzz‖σ

X‖2 + γz.σ
X
)

(t,Xt(x))dt+
(
γ + Uzσ

X
)
(t,Xt(x))dWt

+

∫
R

(
U
(
t,Xt(x) + hX(t,Xt(x), e)

)
− U(t,Xt(x))− Uz(t,Xt(x))hX(t,Xt(x), e)

)
ν(de)dt

+

∫
R

(
H(t,Xt(x) + hX(t,Xt(x), e))−H(t,Xt(x), e)

)
ν(de)dt

+

∫
R

(
U
(
t−, Xt−(x) + hX(t,Xt−(x), e)

)
− U(t−, Xt−(x))

+H
(
t,Xt−(x) + hX

(
t,Xt−(x), e

)))
Ñ(dt, de). (2.4)

The first line of this dynamic corresponds to the standard Itô-Ventzel’s formula. The rest is
only due to the presence of jumps in the dynamics of U and X.

Remark 2.1. In the particular case where U(t, z) = zYt with

dYt = µY (t, Yt)dt+ σY (t, Yt)dWt +

∫
R
hY (t, Yt− , e)Ñ(dt, de). (2.5)

The product XY follows the dynamics

d(XtYt) =
(
Xtµ

Y (t, Yt) + Ytµ
X(t,Xt) + σX(t,Xt)σ

Y (t, Yt)
)
dt+

(
Xtσ

Y (t, Yt) + Ytσ
X(t,Xt)

)
dWt

+

∫
R
hY (t, Yt, e)h

X(t,Xt, e)ν(de)dt (2.6)

+

∫
R

(
Xt−h

Y (t, Yt− , e) + Yt−h
X(t,Xt− , e) + hY (t, Yt− , e)h

X(t,Xt− , e)
)
Ñ(dt, de).

Therefore, the process (XtYt)t is a local martingale if and only if

Xtµ
Y (t, Yt) + Ytµ

X(t,Xt) + σX(t,Xt)σ
Y (t, Yt) +

∫
R
hY (t, Yt, e)h

X(t,Xt, e)ν(de) = 0, dt⊗ P.

2.2.3 Homeomorphic property of Itô random fields with jumps

As previously mentioned, we need results on the existence and the regularity of one dimensional
random fields which are also solutions of stochastic differential equations (SDE). The spatial param-
eter in this case corresponds to the initial condition. Such random fields are also called stochastic
flows and are the main subject (in the multidimensional case) of the papers [Kun04, FK+85] and
the Kunita’s book [Kun19].

It is well known in the continuous framework, under Lipschitz and regularity conditions of
the SDE’s coefficients, that the associated stochastic flow satisfies the homeomorphic property
(see Bismut [Bis80], Kunita [Kun84] and the Kunita’s book [Kun97]). But this property fails
for the solution of SDE with jumps in general. P.A. Meyer in [Mey81] (Remark p.111), gave a
counterexample with the following exponential equation:

Xt(x) = x+

∫ t

0

Xs−dZs,

where Z is semimartingale, Z0 = 0, such that Z has a jump of size −1 at some stopping time τ ,
τ > 0 a.s. Then all trajectories of X, starting at any initial value x, become zero at τ and stay there
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after τ . This may be seen trivially by the explicit form of the solution given by the Doléans-Dade
exponential:

Xt(x) = x exp
(
Zt −

1

2
[Z,Z]ct

) ∏
0<s≤t

(
1 + ∆Zs

)
e−∆Zs .

In the general setting of non-linear SDE, at the jump time τ , the solution jumps from Xτ−(x) to
Xτ−(x) + h(t,Xτ−(x)). Léandre [Léa85] gave a necessary and sufficient condition under which the
homeomorphic property is preserved at the jump time, namely, for each e ∈ R and t ∈ [0, T ], the
maps He : x 7→ x + h(t, x, e) should be one to one and onto. One can read also Fujiwara and
Kunita [FK+85], Kunita [Kun04, Kun19] and Protter [Pro05] for more details on the subject.

A first key result in this work provides, under the appropriate assumptions, the forward dy-
namics of the inverse flow X of a regular semimartingale X, monotonic with respect to its initial
condition.

Theorem 2.4. Let X be a solution of the following SDE(µ, σ, h),

dXt(x) = µ(t,Xt(x))dt+ σ(t,Xt(x))dWt +

∫
R
h(t,Xt−(x), e)Ñ(dt, de). (2.7)

Let δ ∈ [0, 1[ and assume (µ, σ, h) ∈ K2,δ
b ×K

2,δ

b × K̂
2,δ
b,ν .

(i) Then, the SDE(µ, σ, h) admits a unique strong solution X(z), starting from z at time t = 0.
(ii) If in addition, the maps z 7→ z + h(t, z, e) are homeomorphic, the map z → Xt(z) is strictly
increasing with inverse flow X (t, x) satisfying the following second order SPDE,

dX (t, x) =
[
Xx(t, x)

(
− µ(t, x) +

∫
R
h(t, x, e)ν(de)

)
+

1

2
∂x

(
Xx(t, x)‖σ(t, x)‖2

)
− X (t, x) +

∫
R
ψ(t, x, e)ν(de)

]
dt−Xx(t, x)σ(t, x)dWt

+

∫
R

(
−X (t−, x) + X (t−, ψ(t, x, e))

)
Ñ(dt, de) (2.8)

where ψ(t, z, e) is the inverse map of z 7→ z + h(t, z, e).

Remark . (i) We can also characterize the inverse process in terms of monotonic solution of a
stochastic differential equation (SDE). It suffices to use the following identities

Xt(X (t, x)) = x, Xx(t, x) =
1

Xx(t,X (t, x))
and Xxx(t, x) = − Xxx(t,X (t, x))

(Xx(t,X (t, x)))3
.

(ii) To our knowledge, the dynamics of the forward flow given by equation (2.8) has not been
established in the literature. For example in H. Kunita [Kun19] Theorem 3.7.1, p.108 or [Kun04]
Theorem 3.13, only the backward dynamic is given.

Proof. Statement (i) is established in [Kun04, Theorem 3.1]. To show the second one, we use
the results of [Kun04, Theorems 3.3, 3.5, 3.11 and 3.13] which ensure the homeomorphic and
differentiability properties of the solution X (of class K2,ε

loc,∀ε < δ) and that its inverse flow X is
also a semimartingale. We thus proceed by identification. Assume that the dynamics of X is the
following

dXt(x) = µ̄(t,Xt(x))dt+ σ̄(t,Xt(x))dWt +

∫
R
h̄(t,Xt−(x), e)Ñ(dt, de). (2.9)
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2. Formulation and spaces

Applying Itô-Ventzel’s formula to X(t,X (t, x)) = x, one gets

dX(t,X (t, x)) =
[
µ(t, x) +Xx(t,X (t, x))µ̄(t,Xt(x)) +

1

2
Xxx(t,X (t, x))‖σ̄(t,Xt(x))‖2

+ Xx(t,X (t, x))σx(t, x)σ̄(t,X (t, x))
]
dt+

(
σ(t, x) +Xx(t,X (t, x))σ̄(t,X (t, x))

)
dWt

−
∫
R

(
Xx(t,X (t, x))h̄(t,X (t, x), e) + h(t, x, e)

)
ν(de)dt

+

∫
R

(
Xt−(X (t−, x) + h̄(t,X (t−, x), e)) + h

(
t,Xt−

(
X (t−, x) + h̄(t,X (t−, x), e)

))
− x
)
Ñ(dt, de)

= 0.

Which is equivalent, by identification, to

µ(t, x) +Xx(t,X (t, x))
(
µ̄(t,Xt(x)) + σx(t, x)σ̄(t,X (t, x))

)
+

1

2
Xxx(t,X (t, x))‖σ̄(t,Xt(x))‖2

−
∫
R

(
Xx(t,X (t, x))h̄(t,X (t, x), e) + h(t, x, e)

)
ν(de) = 0, (2.10)

σ(t, x) +Xx(t,X (t, x))σ̄(t,X (t, x)) = 0, (2.11)

Xt−(X (t−, x) + h̄(t,X (t−, x), e)) + h
(
t,Xt−

(
X (t−, x) + h̄(t,X (t−, x), e)

))
− x = 0, (2.12)

which hold ∀x, e, dt⊗dP a.s. At first, let us denote φ(t, z, e) the map z 7→ X(t, z) +h(t,X(t, z), e).
As z 7→ z + h(t, z, e) is assumed to be monotonic, φ(t, z, e) is monotonic with respect to z and we
denote by ψ(t, z, e) its inverse. Thus equation (2.12) is equivalent to

φ(t,Xt−
(
X (t−, x) + h̄(t,X (t−, x), e)

)
, e
)

= x,

or equivalently, by inverting simultaneously φ and Xt−

h̄(t,X (t−, x), e) = −X (t−, x) + X (t−, ψ(t, x, e)). (2.13)

Secondly, equation (2.11) implies σ̄(t, x) = −σ(t,Xt(x))
Xx(t,x) . Subsequently, using the identities

Xx(t,X (t, x)) =
1

Xx(t, x)
and

Xxx(t,X (t, x))

X3
x(t, x)

= −Xxx(t, x).

It follows, arranging the terms

Xx(t,X (t, x))σx(t, x)σ̄(t,X (t, x)) +
1

2
Xxx(t,X (t, x))‖σ̄(t,Xt(x))‖2

=
1

Xx(t, x)

(
−Xx(t, x)σx(t, x)σ(t, x) +

1

2

Xxx(t,X (t, x))

X3
x(t,X (t, x))

‖σ(t, x)‖2
)

= − 1

Xx(t, x)

(
Xx(t, x)σx(t, x)σ(t, x) +

1

2
Xxx(t, x)‖σ(t, x)‖2

)
= −1

2

1

Xx(t, x)
∂x

(
Xx(t, x)‖σ(t, x)‖2

)
.

Injecting this identity in (2.10), leads to

µ(t, x) +
1

Xx(t, x)
µ̄(t,Xt(x))− 1

2

1

Xx(t, x)
∂x

(
Xx(t, x)‖σ(t, x)‖2

)
− 1

Xx(t, x)

∫
R

(
−X (t−, x) + X (t−, ψ(t, x, e))

)
ν(de)−

∫
R
h(t, x, e)ν(de) = 0.
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2. Formulation and spaces

That is,

µ̄(t,X (t, x)) = Xx(t, x)
(
− µ(t, x) +

∫
R
h(t, x, e)ν(de)

)
+

1

2
∂x

(
Xx(t, x)‖σ(t, x)‖2

)
+

∫
R

(
−X (t−, x) + X (t−, ψ(t, x, e))

)
)ν(de). (2.14)

The proof is now complete.

The second result of this section consists in a Itô-Ventzel’s formula for a compound map Y ◦ X
where Y is a regular SDE’s solution and X is the inverse flow of some monotonic SDE’s solution
X.

Corollary 2.5. Let Y be a K2,δ
loc-semimartingale and X a K3,δ

loc-semimartingale for some δ ∈]0, 1[,
satisfying the dynamics

dXt(x) = µ(t,Xt(x))dt+ σ(t,Xt(x))dWt +

∫
R
h(t,Xt−(x), e)Ñ(dt, de), (2.15)

dYt(y) = µY (t, Yt(y))dt+ σY (t, Yt(y))dWt +

∫
R
hY (t, Yt−(y), e)Ñ(dt, de). (2.16)

Assume X to be monotonic with respect to its initial condition and let X denotes its inverse flow.
Then the compound map Φ(t, x) := Yt(X (t, x)) satisfies the following second order SPDE

dΦ(t, x) =
(
µY (t,Φ(t, x))− Φx(t, x)

[
µ(t, x) + σYy (t,Φ(t, x))σ(t, x)

]
+ 1

2∂x

(
Φx(t, x)‖σ(t, x)‖2

))
dt

+

∫
R

(
H(t, x, e)− hY (t,Φ(t, x), e) + Φx(t, x)h(t, x, e)

)
ν(de)dt

+
(
σY (t,Φ(t, x))− Φx(t, x)σ(t, x)

)
dWt +

∫
R
H(t, x, e)Ñ(dt, de)

with H(t, x, e) := Φ
(
t−, ψ(t, x, e)

)
+ hY (t,Φ(t−, ψ(t, x, e)), e)− Φ(t−, x).

This result, established here in a general way, will be very useful to us in the sequel and will be
used several times.

Proof. From (2.8), we know that the inverse flot X evolves as

dX (t, x) =
[
Xx(t, x)

(
− µ(t, x) +

∫
R
h(t, x, e)ν(de)

)
+

1

2
∂x

(
Xx(t, x)‖σ(t, x)‖2

)
− X (t, x) +

∫
R
ψ(t, x, e)ν(de)]dt−Xx(t, x)σ(t, x)dWt

+

∫
R

(
−X (t−, x) + X (t−, ψ(t, x, e))

)
Ñ(dt, de).
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2. Formulation and spaces

It suffices to apply the generalized Itô-Ventzel’s formula (2.4), to get

dY (t,X (t, x)) =
(
µY (t, Y (t,X (t, x))) + Yy(t,X (t, x))

[
Xx(t, x)

(
− µ(t, x) +

∫
R
h(t, x, e)ν(de)

)
+ 1

2∂x

(
Xx(t, x)‖σ(t, x)‖2

)
−X (t, x) +

∫
R
ψ(t, x, e)ν(de)

]
+

1

2
Yyy(t,X (t, x))X 2

x (t, x)‖σ(t, x)‖2

−Xx(t, x)Yy(t,X (t, x))σYy (t, Y (t,X (t, x))).σ(t, x)
)
dt

+
(
σY (t, Y (t,X (t, x)))−Xx(t, x)Yy(t,X (t, x))σ(t, x)

)
dWt

+

∫
R

(
Y
(
t, ψ(t, x, e)

)
− Y (t,X (t, x))− Yy(t,X (t, x))(−X (t, x) + X (t, ψ(t, x, e)))

)
ν(de)dt

+

∫
R

(
hY (t, Y (t,X (t, ψ(t, x, e)), e)))− hY (t, Y (t,X (t, x)), e)

)
ν(de)dt

+

∫
R

(
Yt−
(
X (t−, ψ(t, x, e))

)
− Yt−(X (t−, x)) + hY (t, Yt−(X (t−(ψ(t, x, e))), e)

)
Ñ(dt, de).

Now using the identities,

Xx(t, x)Yy(t,X (t, x)) = ∂x(Y (t,X (t, x))),

Yyy(t,X (t, x))X 2
x (t, x) + Yy(t,X (t, x))Xxx(t, x) = ∂2

xx(Y (t,X (t, x))),

and the notation H(t, x, e) := Φ
(
t−, ψ(t, x, e), e)

)
−Φ(t−, x)+hY (t,Φ(t−, ψ(t, x, e)), e), the dynam-

ics of the random map Φ(t, x) := Y (t,X (t, x)), becomes, after simplifications

dΦ(t, x) =
(
µY (t,Φ(t, x))− Φx(t, x)

[
µ(t, x) + σYy (t,Φ(t, x))σ(t, x)

]
+ 1

2∂x

(
Φx(t, x)‖σ(t, x)‖2

))
dt

+

∫
R

(
H(t, x, e)− hY (t,Φ(t, x), e) + Φx(t, x)h(t, x, e)

)
ν(de)dt

+
(
σY (t,Φ(t, x))− Φx(t, x)σ(t, x)

)
dWt +

∫
R
H(t, x, e)Ñ(dt, de).

2.3 The market model with jumps

The securities market which consists of d+1 assets, one of them being riskless. Their prices (Si)di=0

are assumed to be positive semimartingales defined on the filtered probability space (Ω,Ft≥0,P).
The riskless asset evolves as dS0

t = S0
t rtdt where r. is the short rate of the financial market. The

risky assets are also denoted by S = (Si)di=1.
A self-financing portfolio is a pair (x, φ), where x is the positive wealth invested in the portfolio
at time 0, and the column vector φ = (φi)1≤i≤d is a predictable S-integrable process specifying
the amount of each asset held in the portfolio. The value process, also called wealth process,
Xφ = (Xφ

t )t≥0 of such portfolio φ is determined by the self-financing constraint,

Xφ
t

S0
t

=
x

S0
+

∫ t

0

φα
S0
α

.d(
Sα
S0
α

), (2.17)

In the following, to limit the purely technical difficulties, we only consider portfolios with positive
value. This naturally leads us to characterize portfolios by means of relative weights π in place of
the amounts φ. The relation between these two notions is easy since φt = (π1

tX
φ
t (x), .., πdtX

φ
t (x))T ,
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2. Formulation and spaces

where the transpose operator is denoted by T . The advantage of the second formulation is that the
assumption of positive wealth is automatically satisfied, since the previous equation becomes with
the notation Xπ in place of Xφ,

dXπ
t

Xπ
t

= rtdt+ πt.
(dSt
St
− rt1dt), (2.18)

where the d-dimensional vector denoted by 1 is such all components are equal to 1.
Let us now recall that a probability measure Q ∼ P is called an equivalent local martingale measure
if, for any positive wealth process, X

S0 is a local martingale under Q. To ensure the absence of
arbitrage opportunities, we postulate that the family of equivalent local martingale measures is
not empty, (see [DS94] and [DS98] for a precise statement and references). The existence of many
equivalent martingale measures implies the incompleteness of the market.

Itô’s Market Using vector and matrix notation, the dynamics of the vector prices S = (Si)i=1,...,d

under this probability measure is described by the following equation:

dSt = St− [btdt+ σtdWt +

∫
R
σth

S(t, e)Ñ(dt, de)]

b = (bi)i=1,...,d is a column vector d× 1 which belongs to L2,d(Ω×R+), the coefficient bi represents
the appreciation rate by time unit of the asset i. σ is the volatility matrix n×d (n lines d columns)
which belongs to L2,n×d(Ω× R+), whose ith line is the vector σi ∈ Rd of of the asset i. The jump
coefficient hS is a column vector d× 1 s.t. σhS ∈ L2,d

ν (Ω× R+ × R) and hS(t, .) ∈ L1,d
ν (R) for any

t.
In this model setup, the wealth process dynamics (2.18) become,

dXπ
t = Xπ

t−

[(
rt + πt.(bt − rt)1

)
dt+ σtπt.

(
dWt +

∫
R
hS(t, e)Ñ(dt, de)

)]
. (2.19)

As usual, the basic risky assets family S is assumed to be non-redundant, (that is for any i ∈ 1..d,
the asset Si can not be replicated by an admissible portfolio). Therefore the matrix (σσT )(t, ω) is
non-singular.

The existence of an equivalent local martingale measure in this framework implies that the excess
of return vector belongs to the range of volatility matrix: in other words, there exists a F-non
anticipating process η ∈ Rn such that bt − rt1 = σTt ηt. Additional integrability assumptions are
necessary to ensure that the exponential martingale generated by η.W is the density of some
probability measure. So, we assume that η ∈ L2,d(Ω× R+) and r ∈ L1,1(Ω× R+).
Herein, the dynamics of portfolios is

dXπ
t = Xπ

t−

[
rtdt+ σtπt.(dWt + ηtdt) + σtπt

∫
R
hS(t, e)Ñ(dt, de)

]
.

As the key role is played by the volatility vector σπ, in order to facilitate the exposition, we denote
it by κ := σπ. To fix the notation, let Rt ⊂ Rn the range of σt, and R⊥t the orthogonal vector
subspace. By assumption, κt is required to lie at any time t in Rt. Note that under market
assumptions (σTt σt non-singular) there exists a unique vector πt such that κt = σtπt. Replacing
Xπ by Xκ, the above equation becomes

dXκ
t = Xκ

t−

[
rtdt+ κt.(dWt + ηtdt+

∫
R
hS(t, e)Ñ(dt, de))

]
, κt ∈ Rt. (2.20)
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Definition 2.2. (i) A positive process Xκ satisfying (2.20) with κt ∈ Rt for any t a.s., is said
an admissible wealth process and xκ the associated admissible strategy if κ ∈ L2,d(Ω × R+) and
κhS ∈ L2,d

ν (Ω× R+ × R) .
(ii) The set of all admissible portfolios will be denoted by X.

The following short notations will be used extensively. Let R be a vector subspace of Rn. For
any α ∈ Rn, αR is the orthogonal projection of the vector α onto R and α⊥ is the orthogonal
projection onto R⊥, the orthogonal linear space of R.

Remark . Without loss of generalities, since κ.η = κ.ηR and κ.hS = κ.hS,R, we can assume in
all the following that η and hS are in R.

State price density processes: In any portfolio optimization problem, adjoint processes,
also called state price density processes, play an important role. We give a definition and then
characterize all these processes by identifying their dynamics.

Definition 2.3. A positive semimartingale Y is a state price density process if and only if for any
portfolio process Xκ, XκYt is a local martingale. The set of such processes is denoted by Y.

Next result, characterizes the dynamics of any state price density process.

Lemma 2.6. Any state price density process Y ∈ Y is necessarily a solution of a dynamic of the
form,

dY ν,ht

Y ν,ht−

= −rtdt+
(
νt − ηt −

∫
R
hY (t, e)hS(t, e)ν(de)

)
dWt +

∫
R
hY (t, e)Ñ(dt, de), (2.21)

for some random vector ν ∈ R⊥ and random jump hY ∈ R such that ν ∈ L2,d
ν (Ω × R+), hY hS ,∈

L2,d
ν (Ω× R+ × R) and hY ∈ L2,1

ν (Ω× R+ × R).

We will come back to this dynamic in the continuation of this work and more particularly when
studying the dual problem.

Remark . If hY ≡ 0, we find the dynamics of standard states price density processes in a market
without jumps.

Proof. Assume the semimartingale Y to satisfies the dynamic,

dYt = µYt dt+ σYt dWt +

∫
R
hY (t, e)ν(de),

and let Xκ be an admissible wealth process satisfying the dynamics (2.20),

dXκ
t = Xκ

t−

[
rtdt+ κt.(dWt + ηtdt+

∫
R
hS(t, e)Ñ(dt, de))

]
, κt ∈ Rt.

According to Remark 2.1, Y Xκ is a local martingale is equivalent to

Xκ
t µ

Y
t + Yt(X

κ
t rt +Xκ

t κ(t,Xt)ηt
)

+Xκ
t κ(t,Xt)σ

Y
t

+

∫
R

(Xκ
t κ(t,Xt)h

S(t, e))hY (t, e)ν(de) = 0, ∀κ ∈ R dt⊗ P. (2.22)

Differentiating with respect to the vector Xκκ, follows

< L, Ytηt + σYt +

∫
R
hS(t, e)hY (t, e)ν(de) >= 0, ∀L ∈ R dt⊗ P. (2.23)
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3. Progressive and consistent dynamic utilities

So that, for any t, σYt + Ytηt +

∫
R
hS(t, e)hY (t, e)ν(de) ∈ R⊥t . In other words, there exists an

optional process ν ∈ R⊥ such that;

σYt = Yt(νt − ηt)−
∫
R
hS(t, e)hY (t, e)ν(de). (2.24)

As a consequence we have necessarily, µYt = −Ytrt.

3 Progressive and consistent dynamic utilities

In a dynamic and stochastic environment, the classical notion of utility is not flexible enough to
help us to make good choices in the long run. M. Musiela and T. Zariphopoulou [MZ03, MZ10b,
MZ10a, MZ] were the first to suggest to use instead of the classical criterion the concept of pro-
gressive dynamic utility, consistent with respect to a given investment universe in a sense specified
below. The concept of progressive utility gives an adaptative way to include new information on
environment evolution available to economic agents. More recently, Fritelli [FM11] introduced very
closed notion called stochastic dynamic utility, in view of study the certainty equivalent. Since
these utility functions are stochastic, time dependent and moving forward, we consider them as a
family of Itô’s semimartingales depending on a parameter, the wealth of the agent in our economic
context.

Progressive utility and its Fenchel conjugate We start with the definition of a progres-
sive utility as progressive random field with concavity property.

Definition 3.1 (Progressive Utility). A progressive utility is a càdlàg progressive random field on
R0

+, U = {U(t, z); t ≥ 0, z > 0} such that,
(i) Utility property: U is strictly concave, strictly increasing, and non negative
(ii) Regularity property: U is a C2-random field, with continuous first and second deriva-

tives random fields Uz and Uzz.
(ii) Inada conditions: U goes to 0 when x goes to 0 and the derivative Uz goes to ∞ when

z goes to 0, and to 0 when z goes to ∞.

Given its importance in convex analysis, we introduce together with any progressive utilityU, its
convex conjugate Ũ (also called conjugate progressive utility (CPU)), that is the Fenchel-Legendre
transform of the convex random field −U(,−.).

Definition 3.2 (Progressive conjugate utility). The convex conjugate of the progressive utility U

is the progressive random field Ũ defined on R0
+ by Ũ = {Ũ(t, y); t ≥ 0, y > 0}, where

Ũ(t, y)
def
= max

z>0,z∈Q+

(
U(t, z)− z y

)
.

(i) Under Inada condition, Ũ is twice continuously differentiable, strictly convex, strictly decreasing,
with Ũ(., 0+) = U(+∞), Ũ(.,+∞) = U(0+), a.s.

(ii) The marginal utility Uz is the inverse of the opposite of the marginal conjugate utility Ũy,
that is Ux(t, .)−1(y) = −Ũy(t, y), with Inada conditions Ũy(., 0+) = −∞, Ũy(.,+∞) = 0.
(iii) The bi-dual relation holds true U(t, z) = infy>0,y∈Q+

(
Ũ(t, y) + z y

)
.

Moreover Ũ(t, y) = U
(
t,−Ũ(t, y)

)
+ Ũy(t, y) y, and U(t, z) = Ũ

(
t, Uz(t, z)

)
+ z Uz(t, z).
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Consistent dynamic utility In the following, we are interested in the progressive utilities
which are consistent with the class X of admissible wealth processes. The definition of these utilities
is the same as in the continuous case.

Definition 3.3 (X-consistent dynamic utility). A X-consistent dynamic utility U = {U(t, z); t ≥
0, z > 0} is a progressive utility with the following additional properties:

Consistency with the test-class: For any admissible wealth process X ∈ X,

E(U(t,Xt)/Fs) ≤ U(s,Xs), ∀s ≤ t a.s.

Existence of optimal wealth: For any initial wealth x > 0, there exists an optimal wealth
process X∗ ∈ X such that X∗0 = x, and for all s ≤ t,

U(s,X∗s ) = E(U(t,X∗t )/Fs) ∀s ≤ t a.s.

In short for any admissible wealth X ∈ X, U(., X.) is a positive supermartingale and a martingale
for the optimal-benchmark wealth X∗.

3.1 Itô Progressive Utility

In this paper, we focus on progressive consistent utilities U which are a collection of Itô’s semi-
martingales: for any z, U(., z) is a Itô semimartingale, driven by the d-dimensional Brownian
motion W and the Lévy random measure N defined on the filtered probability space (Ω,F ,F,P)

(see Section 2). In other words, for a given initial condition u(z) = U(0, z), U is assumed to satisfies
the dynamics

dU(t, z) = β(t, z)dt+ γ(t, z).dWt +

∫
R
H(t, z, e)Ñ(dt, de), U(0, z) = u(z), (3.1)

where (β, γ,H) = {(β(t, z), σ(t, z), H(t, z, e)); t ≥ 0, z > 0, e ∈ R} are the local characteristics
of U assumed to be progressive random fields, with values in R, Rd and Rd respectively. β is
called the drift characteristic, γ the diffusion characteristic and H the jumps characteristic. We
refer to the books of H. Kunita [Kun97, Kun19] for all technical results concerning the theory
of semimartingale random fields with and without jumps. The assumption of finite dimensional
Brownian motion greatly simplifies the theory.

3.2 Consistency and the utility HJB-SPDE

In this Section, we are concerned by establishing a sufficient condition on the characteristics
(β, γ,H) of the utility random field U ensuring the consistency property. For this, we proceed
by verification in order to establish a HJB-type condition.
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3. Progressive and consistent dynamic utilities

To begin, let us apply at first the Itô-Venzel’s formula. The process U(t,Xκ
t ) evolves as follows,

dU(t,Xκ
t ) =

(
β(t,Xκ

t ) +Xκ
t Uz(t,X

κ
t )rt +

1

2
Uzz(t,X

κ
t )‖Xκ

t κt‖2

+ Xκ
t

[
γz(t,X

κ
t ) + Uz(t,X

κ
t )ηt

]
.κt

)
dt

+

∫
R

(
U
(
t,Xκ

t

(
1 + κt.h

S(t, e)
))
− U(t,Xκ

t )− Uz(t,Xκ
t )Xκ

t κt.h
S(t, e)

)
ν(de)dt

+

∫
R

(
H
(
t,Xκ

t (1 + κt.h
S(t, e))

)
−H(t,Xκ

t , e)
)
ν(de)dt+

(
γ +Xκ

t Uzκ
)
(t,Xt)dWt

+

∫
R

(
U
(
t,Xκ

t−(1 + κt.h
S(t, e))

)
− U(t,Xκ

t−) +H(t,Xκ
t−(1 + κt.h

S(t, e)))
)
Ñ(dt, de)

=
(
β(t,Xκ

t ) +Xκ
t Uz(t,X

κ
t )rt −

∫
R

(
U(t,Xκ

t ) +H
(
t,Xκ

t , e
))
ν(de) +Q(t,Xκ

t , κt)
)
dt

+
(
γ(t,Xt) +Xκ

t Uz(t,Xt)κt
)
dWt

+

∫
R

(
U
(
t,Xκ

t−(1 + κt.h
S(t, e))

)
− U(t,Xκ

t−) +H
(
t,Xκ

t−(1 + κt.h
S(t, e))

))
Ñ(dt, de).

Where, denoting by αt :=
∫
R h

S(t, e)ν(de), the quantity Q is defined by

Q(t, z, κ) :=

∫
R

(
U +H

)(
t, z(1 + κt.h

S(t, e))
)
ν(de) +

1

2
Uzz(t, z)‖zκt‖2

+ zκt.
(
γz + Uz(t, z)(ηt − αt)

)
, (3.2)

which rewrites

Q(t, z, κ) :=

∫
R

(
U +H

)(
t, z(1 + κt.h

S(t, e))
)
ν(de)

+
1

2
Uzz(t, z)

[
‖zκt +

γz(t, z) + Uz(t, z)(ηt − αt)
Uzz(t, z)

‖2 − ‖γz(t, z) + Uz(t, z)(ηt − αt)
Uzz(t, z)

‖2
]
.

From this, observe that Optimizing over the class R of admissible policies κ ∈ R, consists on
maximizing the quantity Q.

To ensure the existence of a finite maximum of this form, we make the following assumption for
the rest of this work.

Assumption 3.1. For any t ∈ R+ and e ∈ R, U(t, .) +H(t, ., e) is strictly concave and there exist
two positive random fields C1(t, e) and C2(t, e) and a real number p > −1 such that

Uz(t, z) +Hz(t, z, e) ≤ C1(t, e)z−p + C2(t, e), ∀z, (3.3)∫
R×[0,T ]

(
C1(t, e) + C2(t, e))ν(de)dt < +∞, a.s. ∀T. (3.4)

This assumption implies that Q is a strictly concave function of xκ and goes to −∞ when
‖xκ‖ → ∞. Indeed, this hypothesis implies that U(t, z)+H(t, z, e) ≤ 1

1−pC1(t, e)z1−p+C2(t, e)z+

C3(t), ∀z and then the behavior of Q in the neighborhood of infinity, because 1− p < 2, is that of
1
2Uzz‖zκ‖

2, Uzz < 0.
Consequently, the supremum of Q(t, z, κ) in the above expression is reached at the optimal

policy κ∗ characterized by the following formula,

< ∇κQ(t, zhS(t, e), κ∗), L > := <

∫
R

(
Uz +Hz

)(
t, z(1 + κ∗t .h

S(t, e)
)
hS(t, e)ν(de), L >

+ < Uzz(t, z)zκ
∗
t + γz(t, z) + Uz(t, z)(ηt − αt), L >= 0, ∀L ∈ R,
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3. Progressive and consistent dynamic utilities

which holds only in the case where the orthogonal projection onto R of the vector ∇κQ(t, z, κ∗) is
the null vector. In other words, the optimal policy is given by

zκ∗t (z) = −γ
R
z (t, z) + Uz(t, z)(ηt − αt)

Uzz(t, z)
−

∫
R

(Uz +Hz)
(
t, z(1 + κ∗t (z).h

S(t, e)
)
.hS(t, e)ν(de)

Uzz(t, z)
. (3.5)

We recognize here the policy −γ
R
z (t,z)+Uz(t,z)ηt

Uzz(t,z) which corresponds to the optimal strategy in case
without Jumps, see [EKM13]. Plugging expression (3.5), we get after easy calculations

Q(t, z, κ∗) =

∫
R

(U +H)
(
t, z(1 + κ∗t (z).h

S(t, e)
)
ν(de)− 1

2Uzz
‖γRz + Uz(t, z)(ηt − αt)‖2

+
1

2Uzz(t, z)
‖
∫
R

(Uz +Hz)
(
t, z(1 + κ∗t (z).h

S(t, e)
)
hS(t, e)ν(de)‖2. (3.6)

We are now able to state the following verification Theorem.

Theorem 3.1. Assume U to be a X-consistent dynamic utility of class K2,δ
loc, δ ∈]0, 1[ and let

(β, γ,H) denote its local characteristics. Suppose Assumption 3.1 holds, then
(i) The characteristic coefficient β is given by the following HJB-condition

β(t, z) = −zUz(t, z)rt +

∫
R

(U(t, z) +H(t, z, e))ν(de)−Q(t, z, κ∗). (3.7)

(ii) The optimal policy is unique and is given by

zκ∗(z) = −γ
R
z (t, z) + Uz(t, z)(ηt − αt)

Uzz(t, z)
−

∫
R
(Uz +Hz)

(
t, z(1 + κ∗t (z).h

S(t, e)
)
hS(t, e)ν(de)

Uzz(t, z)
. (3.8)

(iii) Furthermore, its optimal portfolio is solution of the following SDE(κ∗) with jumps:

dX∗t = X∗t−
[
rtdt+ κ∗t (X

∗
t ).(dWt + ηtdt+

∫
R
hS(t, e)Ñ(dt, de))

]
. (3.9)

As a direct consequence of this Theorem, we have easily the following result.

Corollary 3.2. Under Assumptions of Theorem 3.1, a market-consistent dynamic U is solution
of the following SPDE with Jumps,

dU(t, z) =
(
− zUz(t, z)rt +

∫
R

(U(t, z) +H(t, z, e))ν(de)−Q(t, z, κ∗)
)
dt

+ γ(t, z)dWt +

∫
R
H(t, z, e)Ñ(dt, de). (3.10)

Moreover, by regularity of U , its derivative, by Theorem 2.1, satisfies

dUz(t, z) =
(
− (Uz(t, z) + zUzz(t, z))rt +

∫
R

(Uz(t, z) +Hz(t, z, e))ν(de)−Qz(t, z, κ∗)
)
dt

+ γz(t, z)dWt +

∫
R
Hz(t, z, e)Ñ(dt, de). (3.11)

Remark . Note that the equation (3.10) is a fully nonlinear SPDEs driven by a Lévy noise., see
[PZ07]. There is few studies in the literature of this type of fairly complex equations, especially
concerning the existence, uniqueness and regularity properties of solutions. However, using similar
ideas as the characteristics method, we give, in what follows, sufficient conditions ensuring these
properties and the characterization of solutions for this class of SPIDEs. The key point is to link
this equations to two SDEs with jumps.
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3.3 Marginal dynamic utility dynamics

In this section, we are particularly interested in the dynamics of marginal utility along the optimal
portfolio. We show in particular that the process Uz(t,X∗t ) is a state price density process (Defi-
nition 2.3). This allows us later to establish the link with the dual problem and then a connection
between the utility-SPIDE (3.11) and two SDEs satisfied by the optimal processes (dual and primal
one) and finally to characterize the class of solutions, under some regularity conditions.
Let us at first study the dynamics of marginal utility along the optimal portfolio X∗.

Theorem 3.3. Under Assumptions of Theorem 3.1, the marginal utility along the optimal choice
X∗ is a state price density process.

dUz(t,X
∗
t ) = −Uz(t,X∗t )rtdt+

(
γz(t,X

∗
t ) + Uzz(t,X

∗
t )X∗t κ

∗
t (X

∗
t )
)
dWt (3.12)

+

∫
R
H̄z(t,X

∗
t−, e)Ñ(dt, de), (3.13)

H̄z(t, z, e) = Uz
(
t, z(1 + κ∗t−(z)hS(t, e))

)
− Uz(t, z) +Hz(t, z(1 + κ∗t−(z).hS(t, e)), e).

Proof. The Itô-Ventzel’s formula, combined with (3.11) and (2.20) (κ = κ∗), implies

dUz(t,X
∗
t ) =

[
− Uz(t,X∗t )rt −X∗t Uzz(t,X∗t )rt +

∫
R

(Uz(t,X
∗
t ) +Hz(t,X

∗
t , e))ν(de)

− Qx(t,X∗t , κ
∗) +X∗t Uzz(t,X

∗
t )rt +

1

2
Uzzz(t,X

∗
t )‖X∗t κ∗t (X∗t )‖2

+ X∗t κ
∗
t (X

∗
t )
[
γxx(t,X∗t ) + Uzz(t,X

∗
t )ηt

]]
dt+

(
γz(t,X

∗
t ) + Uzz(t,X

∗
t )X∗t κ

∗
t (X

∗
t )
)
dWt

+

∫
R

[
Uz
(
t,X∗t (1 + κ∗t (X

∗
t )hS(t, e))

)
− Uz(t,X∗t )− Uzz(t,X∗t (x))X∗t κ

∗
t (X

∗
t )hS(t, e)

+ Hz(t,X
∗
t (1 + κ∗t (X

∗
t )hS(t, e))−Hz(t,X

∗
t , e)

]
ν(de)dt

+

∫
R

((
Uz +Hz(., ., e)

)(
t,X∗t−(1 + κ∗t (X

∗
t−)hS(t, e)

)
− Uz(t,X∗t−)

)
Ñ(dt, de).

Which becomes after a few simplifications and by arranging the terms

dUz(t,X
∗
t ) =

[
− Uz(t,X∗t )rt −Qx(t,X∗t , κ

∗)

+
1

2
Uzzz(t,X

∗
t )‖X∗t κ∗t (X∗t )‖2 +X∗t κ

∗
t (X

∗
t ).
(
γxx(t,X∗t ) + Uzz(t,X

∗
t )(ηt − αt)

)]
dt

+
(
γz(t,X

∗
t ) + Uzz(t,X

∗
t )X∗t κ

∗
t (X

∗
t )
)
dWt

+

∫
R

(
Uz
(
t,X∗t (1 + κ∗t (X

∗
t )hS(t, e))

)
+Hz

(
t,X∗t (1 + κ∗t (X

∗
t )hS(t, e))

))
ν(de)dt

+

∫
R

((
Uz +Hz(., ., e)

)(
t,X∗t−(1 + κ∗t (X

∗
t−).hS(t, e))

)
− Uz(t,X∗t−)

)
Ñ(dt, de)

where we have used the fact that

−
∫
R
Uzz(t,X

∗
t )X∗t κ

∗
t (X

∗
t ).hS(t, e)ν(de) = −Uzz(t,X∗t )X∗t κ

∗
t (X

∗
t ).αt.

To go further in the calculations, we now calculate the quantity Qx(t,X∗t , κ
∗). To do this, we start

from the definition of this operator;

Q(t, x, κ∗) :=

∫
R

(
U +H

)(
t, x(1 + κ∗t (x)hS(t, e))

)
ν(de)

+
1

2
Uzz(t, x)‖xκ∗t (x)‖2 + xκ∗t (x)(γz(t, x) + Uz(t, x)(ηt − αt)).
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Differentiating with respect to x, one gets

Qx(t, x, κ∗) =

∫
R

(
Uz +Hz

)(
t, x(1 + κ∗t (x)hS(t, e))

)
(1 + (xκ∗t (x))xh

S(t, e))ν(de)

+
1

2
Uzzz(t, x)‖xκ∗t (x)‖2 + xκ∗t (x)

(
γRzz + Uzz(t, x)(ηt − αt)

)
+ (xκ∗t (x))x

(
Uzz(t, x)xκ∗t (x) + γRz (t, x) + Uz(t, x)(ηt − αt)

)
,

which equivalent, using (3.8), to

− Qx(t, x, κ∗) +

∫
R

(
Uz +Hz

)(
t, x(1 + κ∗t (x).hS(t, e))

)
ν(de)

+
1

2
Uzzz(t, x)‖xκ∗t (x)‖2 + xκ∗t (x)(γRzz + Uzz(t, x)(ηt − αt))

= (xκ∗t (x))x

(
Uzz(t, x)xκ∗t (x) + γRz (t, x) + Uz(t, x)(ηt − αt)

+

∫
R

(
Uz +Hz

)(
t, x(1 + κ∗t (x).hS(t, e))

)
ν(de)

)
.

Now according to Theorem 3.1, the quantity in parenthesis in the last term is zero. So,

− Qx(t, x, κ∗) +

∫
R

(
Uz +Hz

)(
t, x(1 + κ∗t (x).hS(t, e))

)
ν(de)

+
1

2
Uzzz(t, x)‖xκ∗t (x)‖2 + xκ∗t (x).

(
γRzz + Uzz(t, x)(ηt − αt)

)
= 0.

Injecting this identity in the dynamics of Uz(t,X∗t ) above, follows

dUz(t,X
∗
t ) = −Uz(t,X∗t )rtdt+

(
γz(t,X

∗
t ) + Uzz(t,X

∗
t )X∗t κ

∗
t (X

∗
t )
)
dWt

+

∫
R

(
Uz
(
t,X∗t−(1 + κ∗t (X

∗
t−).hS(t, e)

)
− Uz(t−, X∗t−)

+ Hz(t,X
∗
t−(1 + κ∗t (X

∗
t−).hS(t, e), e)

)
Ñ(dt, de).

This achieves the proof.

We now interpret the dynamics (3.13) as that of a state price density process by identifying it
with that of the form (2.21). We have the following characterization of Uz(t,X∗t ).

Corollary 3.4. Under Assumptions of Theorem 3.3, the positive process Uz(t,X∗t (x)), is a state
price density process Y U , starting from the initial condition uz(x), satisfying the dynamics

dY Ut
Y Ut−

= −rtdt+
(
νU (t, Y Ut )− ηt −

∫
R
hS(t, e)hU (t, Y Ut , e)ν(de)

)
dWt +

∫
R
hU (t, Y Ut , e)Ñ(dt, de)),

νU (t, y) =
γ⊥z (t,−Ũy(t, y))

y
, where − Ũy(t, .) = (Uz)

−1(t, .), (3.14)

hU (t, y, e) = H̄z(t,−Ũy(t, y), e).

Proof. To show this corollary, simply combine the results of Theorem 3.3 with those of Theorem
3.1. Indeed, from this last one, equation (3.8), the optimal strategy, recalling the notation αt =∫
R h

S(t, e)ν(de), is given by

xκ∗t (x) = −γ
R
z (t, x) + Uz(t, x)(η − α)

Uzz(t, x)
−

∫
R

(Uz +Hz)
(
t, x(1 + κ∗t (x)hS(t, e)

)
.hS(t, e)ν(de)

Uzz(t, x)
.
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That is, the volatility vector of Uz(t,X∗t ) in the dynamics (3.13) is

γz(t,X
∗
t ) + Uzz(t,X

∗
t )X∗t κ

∗
t (X

∗
t )

= γ⊥z (t,X∗t )− Uz(t,X∗t )ηt

−
∫
R

[(
Uz +Hz

)(
t,X∗t + κ∗t (X

∗
t ).hS(t, e)

)
− Uz(t,X∗t )

]
hS(t, e)ν(de)

= γ⊥z (t,X∗t )− Uz(t,X∗t )ηt −
∫
R
H̄z(t,X

∗
t , e)h

S(t, e)ν(de)

= γ⊥z (t,−Ũy(t, Uz(t,X
∗
t ))− Uz(t,X∗t )ηt −

∫
R
H̄z

(
t,−Ũy(t, Uz(t,X

∗
t ), e)

)
hS(t, e)ν(de),

where we have used the identity X∗t = −Ũy(t, Uz(t,X
∗
t )) in the last line.

3.4 Duality

In this section we are interested in the Fenchel-Transform Ũ of the consistent utility U . It is
a complementary but necessary study, since it enables us to better understand the role of the
volatility γ and the jump characteristics H of U . Indeed, we know from the equation (3.8) that
the orthogonal projection γRz of γz partly characterizes the optimal strategy κ∗, but we know little
about the role of the orthogonal component γ⊥z . In [EKM13], the duality has allowed the authors to
show that γ⊥z characterizes in turn the optimal dual and thus they have succeeded in characterizing
a large class of these utilities. The approach is thus similar to the one developed in this last paper.
First, we establish the dynamics of the marginal dual utility Ũy using the fact that −Ũy is the
inverse map of Uz and then integrate to get that of Ũ . Second, we study the dual optimization
program and the we show the main result of this section that states that the optimal dual process
is Uz(t,X∗t (x)).

3.4.1 Dynamics of the conjugate of consistent utility

In this section, we are concerned with the dynamics of the Ũ conjugate of consistent utility. This
allows us in the following to establish a link between the primal optimization problem and the dual
one. The proof of the following Theorem is based on the results of Theorem 2.4, since −Ũy is the
inverse flow of Uz whose dynamic is given by (3.11). We first establish the dynamics of Ũy and
then that of Ũ by a simple integration.

Theorem 3.5. Let U be a regular consistent dynamic utilities of class K3,δ
loc with characteristics

(β, γ,H) satisfying the HJB-SPDE (3.10) and Assumption 3.1. Then
(i) The maps z → Uz(t, z) + Hz(t, z, e) is invertible for any t ∈ R+ and e ∈ R a.s. Let Ψ(t, ., e)

denotes it inverse.
(ii) Let Φ(t, y, e) denotes the primitive of −Ψ(t, y, e) and Q the quadratic operator defined by (3.6).
The marginal dual utility Ũy satisfies the SPIDE

dŨy(t, y) = ∂y

[
yŨyrt −Q(t,−Ũy(t, y), κ∗) +

∫
R

(
Φ(t, y, e)− yŨy(t, y)

)
ν(de)

]
dt

− Ũyy(t, y)γz(t,−Ũ(t, y))dWt +

∫
R
∂y
[
Φ(t, y, e)− Ũ(t, y)

]
Ñ(dt, de). (3.15)
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(iii) The dual utility Ũ satisfies the SPDE

dŨ(t, y) =
[
yŨyrt −Q(t,−Ũy(t, y), κ∗) +

∫
R

(Φ(t, y, e)− yŨy(t, y))ν(de)
]
dt

+ γ(t,−Ũ(t, y))dWt +

∫
R

(
Φ(t, y, e)− Ũ(t, y)

)
Ñ(dt, de), (3.16)

Proof. From the definition of the Fenchel-transform, the marginal dual utility −Ũy is the inverse
maps (with respect to the spatial parameter z) of the marginal utility Uz which satisfies, from
Corollary 3.2,

dUz(t, z) =
(
− (Uz(t, z) + zUzz(t, z))rt +

∫
R

(Uz(t, z) +Hz(t, z, e))ν(de)−Qx(t, z, κ∗)
)
dt

+ γz(t, z)dWt +

∫
R
Hz(t, z, e)Ñ(dt, de). (3.17)

It follows, using the fact that z = −Ũy(t, Uz(t, z)), from Theorem 2.4, equation (2.8), that the
volatility vector and the jump coefficient of −Ũy are given respectively by Ũyy(t, y)γy(−Ũy(t, y)

and Ũy + Ψz(t, z, e) a.s. for any t and y.
Let’s now turn to the drift −β̃y of −Ũy. Still according to Theorem 2.4, (2.8) combined with the
identity Uzz(t,−Ũy(t, y)) = − 1

Ũyy(t,y)
gives, omitting for simplicity the dependance on (t, y)

−β̃y(t, y) = −Ũyy(t, y)
[
−
(
− (y +

Ũy

Ũyy
(t, y))rt +

∫
R

(y +Hz(t,−Ũy(t, y), e))ν(de)

− (∂xQ)(t,−Ũy(t, y), κ∗)
)

+

∫
R
Hz(t,−Ũy, e))ν(de)

]
+

1

2
∂y

(
− Ũyy‖γz(t,−Ũy)‖2

)
+ Ũy +

∫
R

Ψ(t, y, e)ν(de)

= −(yŨyy(t, y) + Ũy(t, y))rt + yŨyy(t, y) + Ũy(t, y)− Ũyy(t, y)(∂xQ)(t,−Ũy(t, y), κ∗)

− 1

2
∂y

(
Ũyy(t, y)‖γz(t,−Ũy(t, y))‖2

)
+

∫
R

Ψ(t, y, e)ν(de).

If we now denote by Φ(t, ., e) a primitive of −Ψ(t, ., e), it follows arranging the terms

−β̃y(t, y) = −∂y
[
yŨy(t, y)rt − yŨy(t, y)−Q(t,−Ũy(t, y), κ∗) +

1

2
Ũyy(t, y)‖γz(t,−Ũy(t, y))‖2

+

∫
R

Φ(t, y, e)ν(de)
]
.

This achieves the proof of (3.15). The dynamics (3.16) is obtained by a simple integration with
respect to y.

3.4.2 The dual optimisation problem

Now we establish the main result of this section. It shows that the dual utility is consistent with the
class Y of state price density processes. For any Y ∈ Y, the process Ũ(t, Yt) is a submartingale and
martingale for a certain Y ∗. The most important point is that this optimal process is characterized
by Y ∗t = Uz(t,X

∗
t ). Recall, from Lemma 2.6, that any Y ∈ Y satisfies the dynamics

dY ν,ht

Y ν,ht−

= −rtdt+
(
νt − ηt −

∫
R
hS(t, e)h(t, e)ν(de)

)
dWt +

∫
R
hY (t, e)Ñ(dt, de)), (3.18)

with ν ∈ R⊥, hY ∈ R.
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Theorem 3.6. Let Assumptions of Theorem 3.5 hold and let Dt(Y
ν,h
t , ν, h) denotes the drift coef-

ficient of the semimartingale Ũ(t, Y ν,ht ), (ν, h) ∈ R⊥ × R.
(i) The optimization program

inf
(ν,h)∈R⊥×R

Dt(y, ν, h),

is achieved at the following dual policies
yν∗t (y) = γ⊥z (t,−Ũy(t, y)), (3.19)

y + yh∗(t, y, e) = (Uz +Hz)
(
ξ(t, y) + Ũyy(t, y)

∫
R
yh∗(t, y, e)hS(t, e)ν(de)

))
, (3.20)

ξ(t, y) := −Ũy(t, y) + Ũyy(t, y)
(
yη + γRz (t,−Ũy(t, y))

)
. (3.21)

(ii) The pair (ν∗, h∗) is linked with the optimal strategy κ∗ (Theorem 3.1, (3.8)) as follows
y
(
ν∗t − ηt −

∫
R
hS(t, e)h∗(t, y, e)ν(de)

)
=
[
γz(t, z) + zκ∗t (z)

]
z=−Ũy(t,y)

,

y + yh∗(t, y, e) =
(
Uz +Hz)

(
z(1 + κ∗t (z)h

S(t, e)
)
z=−Ũy(t,y)

.

(iii) The dual process Y ∗t := Y ν
∗,h∗

t and Uz(t,X∗t ) satisfy the same dynamics as i.e. (3.14), since
h∗ = hU and ν∗ = νU . Moreover, Y ∗t (uz(x)) = Uz(t,X

∗
t (x)) if uniqueness of the solution holds.

(iv) Consistency with the dual class Y: For any Y ν,h ∈ Y, the process Ũ(t, Y ν,ht ) is a
submartingale and local martingale for Y ν,h = Y ∗. The martingale property of Ũy(t, Y ∗t ), holds
under integrability conditions.

Proof. Applying the generalized Itô-Ventzel’s formula (2.4) to the compound Ũ(t, Yt), the drift
term is given by

Dt(Y
ν,h
t , ν, h) = Y ν,ht Ũy(t, Y ν,ht )rt − Y ν,ht Ũy(t, Y ν,ht )−Q(t,−Ũy(t, Y ν,ht ), κ∗)

+
1

2
Ũyy(t, Y ν,ht )‖γz(t,−Ũy(t, Y ν,ht ))‖2 +

∫
R

Φ(t, Y ν,ht , e)ν(de)− Y ν,ht Ũy(t, Y ν,ht )rt

+
1

2
(Y ν,ht )2Ũyy(t, Y ν,ht )‖νt − ηt −

∫
R
hS(t, e)hY (t, e)ν(de)‖2

− Y ν,ht Ũyy(t, Y ν,ht )γz(t,−Ũy(t, Y ν,ht ).
(
νt − ηt −

∫
R
hS(t, e)h(t, e)ν(de)

)
+

∫
R

(
Ũ(t, Y ν,ht + Y ν,ht hY (t, e)− Ũ(t, Y ν,ht )− YtŨy(t, Y ν,ht )h(t, e)

)
ν(de)

+

∫
R

(
Φ(t, Y ν,ht + Y ν,ht hY (t, e), e) + Ũ(t, Y ν,ht )− Φ(t, Y ν,ht , e)

)
ν(de).

Which becomes, after simplifications

Dt(Y
ν,h
t , ν, h) = −Y ν,ht Ũy(t, Y ν,ht )−Q(t,−Ũy(t, Y ν,ht ), κ∗) + Q̃(t, Y ν,ht , ν, h).

With the notation,

Q̃(t, y, ν, h) :=

∫
R

(
Φ(t, y + yh(t, e), e)− yŨy(t, y)h(t, e)

)
ν(de)

+
1

2
Ũyy(t, y)‖y

(
νt − ηt −

∫
R
hS(t, e)h(t, e)ν(de)

)
− γz(t,−Ũy(t, y))‖2. (3.22)
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Therefore,

inf
(ν,h)∈R⊥×R

Dt(y, ν, h) = −yŨy(t, y)−Q(t,−Ũy(t, y), κ∗) + inf
(ν,h)∈R⊥×R

Q̃(t, y, ν, h).

So, let us focus on inf(ν,h)∈R⊥×R Q̃(t, y, ν, h). To do, the key point is to remark that Φ(t, ., e),
defined as the primitive of −Ψ(t, ., e) (where Ψ(t, ., e) is the inverse of Uz(t, .) + Hz(t, ., e)), is the
Fenchel transform’s of the strictly concave (Assumption 3.1) random field U(t, .) + H(t, ., e). So
Φ(t, ., e) is strictly convex and consequently Q̃(t, Yt, ν, h) is strictly convex in (ν, h). In addition,
by Assumption 3.1, Q̃ goes to +∞ if ‖(ν, h)‖ → ∞. To summarize, there exist a unique pair
(ν∗, h∗) achieving the infimum of Q̃(t, y, ν, h) and satisfies ∇(ν,h)Q̃(t, y, ν∗, h∗) = 0. So, a basic
differentiation with respect to the pair (ν, h), implies the characterizations given by equations
(3.19) and (3.20).
(ii) Let now recall the optimal strategy κ∗ given by (3.8) in Theorem 3.1, as the unique solution
of

xκ∗(t, x) = −γ
R
z (t, x) + Uz(t, x)(η − α)

Uzz(t, x)
−

∫
R
(Uz +Hz)

(
t, x(1 + κ∗(t, x).hS(t, e)

)
.hS(t, e)ν(de)

Uzz(t, x)
,

with αt =
∫
R h

S(t, e)ν(de). Let us observe on the one hand that, using Uz(t,−Ũy(t, y)) = y and
Uzz(t,−Ũy(t, y)) = − 1

Ũyy(t,y)
, that −Ũy(t, y)κ∗(t,−Ũy(t, y)) is the unique solution of

−Ũy(t, y)κ∗(t,−Ũy(t, y)) = −Ũy(t, y)κ0(t,−Ũy(t, y))

+ Ũyy(t, y)

∫
R

(
Uz +Hz

)(
t,−Ũy(t, y)− Ũy(t, y)κ∗(t,−Ũy(t, y)), e

)
ν(de),

where we have used the notation,

−Ũy(t, y)κ0(t,−Ũy(t, y)) := Ũyy(t, y)
(
yη + γz(t,−Ũy(t, y))

)
.

On the other hand, observe that the volatility σ̃∗(t, y) := y
(
νt − ηt −

∫
R h

S(t, e)h∗(t, y, e)ν(de)
)
of

Y ∗ := Y ν
∗,h∗ ,

− Ũyy(t, y)
(
σ̃∗(t, y)− γz(t,−Ũy(t, y))

)
= −Ũy(t, y)κ0(t,−Ũy(t, y))

+ Ũyy(t, y)

∫
R

(
Uz +Hz

)(
t,−Ũy(t, y)− Ũyy(t, y)

(
σ̃∗(t, y)− γz(t,−Ũy(t, y))

)
, e
)
ν(de)

The processes −Ũy(t, y)κ∗(t,−Ũy(t, y)) and −Ũyy(t, y)
(
σ̃∗(t, y)− γz(t,−Ũy(t, y))

)
are therefore so-

lutions of the same equation which admits a unique solution. They are therefore equal.

−Ũy(t, y)κ∗(t,−Ũy(t, y)) = −Ũyy(t, y)
(
σ̃∗(t, y)− γz(t,−Ũy(t, y))

)
which implies

y
(
ν∗t − ηt −

∫
R
hS(t, e)h∗(t, y, e)ν(de)

)
=
[
γz(t, z) + zκ∗t (z)

]
z=−Ũy(t,y)

, (3.23)

y + yh∗(t, y, e) =
(
Uz +Hz

)([
z(1 + κ∗t (z).h

S(t, e)
]
z=−Ũy(t,y)

)
. (3.24)

This shows (ii).
To show (iii), it suffices to remark that (3.24) is equivalent to

yh∗(t, y, e) =
[(
Uz +Hz

)(
z(1 + κ∗t (z)h

S(t, e)
)
− Uz(t, z)

]
z=−Ũy(t,y)

.
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Compare this with the dynamics of Uz(t,X∗t ) of Corollary 3.4, we conclude that Y ∗ = Y ν
∗,h∗ and

Uz(t,X
∗
t ) satisfies the same dynamics.

(iv) Let now show the martingale property of Ũ(t, Y ∗t ). To do, we focus on the drift coefficient
Dt(Y

∗
t , ν

∗, h∗), which is from the previous calculations

Dt(Y
∗
t , ν

∗, h∗) = −Y ∗t Ũy(t, Y ∗t )−Q(t,−Ũy(t, Y ∗t ), κ∗) + Q̃(t, Y ∗t , ν
∗, h∗),

which rewrites, from equations (3.2) and (3.22),

Dt(y, ν
∗, h∗) = −yŨy(t, y)−

∫
R

(
U +H

)(
t, z(1 + κ∗t (z).h

S(t, e))|z=−Ũy(t,y)

)
ν(de)

− 1

2

(
Uzz(t, x)‖zκ∗t (z)‖2

)
z=−Ũy(t,y)

−
(
zκ∗t .(γz + Uz(t, z)(ηt − αt))

)
z=−Ũy(t,y)

+

∫
R

(
Φ(t, y + yh∗(t, y, e), e)− yŨy(t, y)h∗(t, y, e)

)
ν(de)

+
1

2
Ũyy(t, y)‖y

(
ν∗t − ηt −

∫
R
hS(t, e)h∗(t, e)ν(de)

)
− γz(t,−Ũy(t, y))‖2.

Thanks to equations (3.8), (3.23) and (3.24), we have

−zκ∗t (z).(γz + Uz(t, z)(ηt − αt)) = Uzz(t, z)‖zκ∗t (z)‖2

+ zκ∗t (z)
( ∫

R

(
Uz +Hz

)(
t, z(1 + κ∗t (z).h

S(t, e)))hS(t, e)ν(de),

and∫
R
yŨy(t, y)h∗(t, y, e)ν(de) = Ũy(t, y)

(
− y +

∫
R

(Uz +Hz)
(
t, z(1 + κ∗t (z).h

S(t, e)|z=−Ũy(t,y))
)
ν(de)

))
.

That is

Dt(y, ν
∗, h∗) = −yŨy(t, y)−

∫
R

(
U +H

)(
t, z(1 + κ∗t (z).h

S(t, e))|z=−Ũy(t,y)

)
ν(de)

− 1

2

(
Uzz(t, x)‖zκ∗t (z)‖2

)
z=−Ũy(t,y)

+
(
Uzz(t, x)‖zκ∗t (z)‖2

)
z=−Ũy(t,y)

+
[
zκ∗t (z)

( ∫
R

(
Uz +Hz

)(
t, z(1 + κ∗t (z).h

S(t, e)))hS(t, e)ν(de)
]
z=−Ũy(t,y)

+

∫
R

(
Φ(t, z(1 + κ∗t (z).h

S(t, e))|z=−Ũy(t,y), e)
)
ν(de)− yŨy(t, y)

− Ũy(t, y)

∫
R

(Uz +Hz)
(
t, z(1 + κ∗t (z).h

S(t, e)|z=−Ũy(t,y))
)
ν(de)

− 1

2

(
Uzz(t, x)‖zκ∗t (z)‖2

)
z=−Ũy(t,y)

,

which after simplifications, reduces to

Dt(y, ν
∗, h∗) = −

∫
R

(
U +H

)(
t, z(1 + κ∗t (z).h

S(t, e))|z=−Ũy(t,y)

)
ν(de)

+
[
zκ∗t (z)

( ∫
R

(
Uz +Hz

)(
t, z(1 + κ∗t (z).h

S(t, e)))hS(t, e)ν(de)
]
z=−Ũy(t,y)

+

∫
R

(
Φ(t, z(1 + κ∗t (z).h

S(t, e))|z=−Ũy(t,y), e)
)
ν(de)

− Ũy(t, y)

∫
R

(Uz +Hz)
(
t, z(1 + κ∗t (z).h

S(t, e)|z=−Ũy(t,y))
)
ν(de),
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or equivalently,
Dt(y, ν

∗, h∗) =

∫
R

(
Φ(t, ζt(y), e)− (U +H)(t, ζt(y), e) + ζt(y)(Uz +Hz)(t, ζt(y), e)

)
ν(de)

ζt(y) := z(1 + κ∗t (z).h
S(t, e))|z=−Ũy(t,y).

The key point to conclude is to note, as outlined above, that Φ is the Fenchel-Transform of the
concave function U +H, so we have necessarily the master equation

Φ(t, y, e) = (U +H)(t, y, e)− y(Uz +Hz)(t, y, e), ∀t, y, e.

Replace y by ζt(y) in the last identity, we conclude that

Dt(y, ν
∗, h∗) ≡ 0, ∀y a.s. for any t.

So, under integrability condition, if the solution Y ∗ := Y ν
∗,h∗ exists, the process Ũ(t, Y ∗t ) is

a martingale. Moreover for any Y ν,h ∈ Y, Ũ(t, Y ν,h) is a submartingale since from the above
Dt(y, ν, h) ≥ Dt(y, ν

∗, h∗) = 0.

3.5 Utility characterization

Until then, we have carried out a necessary study. Given a consistent regular utility U , we have
characterized the optimal processes of both problems, dual and primal one in terms of U , its deriva-
tives and its characteristics (β, γ,H). Conversely, the following Corollary gives a characterization
of these characteristics (β, γ,H), in terms of the optimal dual and primal policies. Based on this
result, we give in the following theorem a complete characterization of the X-consistent utilities in
terms of optimal processes. This result is the culmination of all the preceding results. It also shows
us how such utilities can be constructed (learned) if we observe the behavior of an agent. This
inverse problem will be the subject of the last section.

Corollary 3.7. Assume U to be a X-consistent dynamic utility of class K2,δ, δ ∈]0, 1[ and let
(β, γ,H) denote its local characteristics. Suppose Assumption 3.1 holds, then
(i) The drift characteristic β is given by the following HJB-condition

β(t, z) = −zUz(t, z)rt +

∫
R

(U(t, z) +H(t, z, e))ν(de)−Q(t, z, κ∗). (3.25)

(ii) Assume the z 7→ z+zκ∗t (z).κ
∗
t (z)h

S(t, e) to be homeomorhic and denote by ψ(t, z, e) its inverse
map. The diffusion and the jump characteristics γz and Hz are explained by the optimal policies
of the primal and dual problems

Hz(t, z, e) = Uz(t, ψ(t, z, e))
(
1 + h∗(t, Uz(t, ψ(t, z, e)), e)

)
− Uz(t, z),

γz(t, z) = −Uzz(t, z)zκ∗t (z) + Uz(t, z)
(
− ηt + αt + ν∗(t, Uz(t, z)) (3.26)

+

∫
R
h∗(t, Uz(t, z), e)h

S(t, e)ν(de)
)
.

The following theorem gives a trajectory characterization, under some regularity conditions, of
the dynamics consistent utilities in terms of their optimal processes.

Theorem 3.8 (Main Result). Assume that (ν∗, h∗) ∈ K0,1

b × K̂
0,1
b,ν , s.t. ∀t, e, y 7→ y + h∗(t, y, e) is

homeomorphic a.s.
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(i) Then the conjugate SDE(ν∗, h∗),

dYt(y)

Yt−(y)
= −rtdt+

(
ν∗(t, Yt(y))− ηt −

∫
R
h∗(t, Yt(y), e)hS(t, e)ν(de)

)
dWt

+

∫
R
h∗(t, Yt−(y), e)Ñ(dt, de)), Y ∗0 (y) = y. (3.27)

is uniformly Lipschitz and has a unique strong solution Y ∗(y), which is strictly positive, and strictly
monotonic, with range [0,∞).
(ii) The optimal wealth process is the unique solution of the SDE(κ∗) (3.9),

dX∗t (x) = X∗t−(x)
[
rtdt+ κ∗(t,X∗t (x)).(dWt + ηtdt+

∫
R
hS(t, e)Ñ(dt, de))

]
, X∗0 (x) = x. (3.28)

Moreover x 7→ X∗t (x) is also strictly increasing.
(iii) Denote X (x) the inverse flow of X∗, the dynamic utility U is the unique solution of the SPIDE
(3.10) and is characterized as follows

Uz(t, z) = Y ∗t (uz(Xt(z))), uz(.) = Uz(0, .),

U(t, z) =

∫ z

z0

Y ∗t (uz(Xt(x)))dx, U(t, 0) = 0.

Comments: Note that this result allows us to characterize these utilities if the optimal SDE
(3.27) admits a monotonic solution. In [EKM13], frame without jumps, we just have to assume,
a.s., that ‖γ⊥z (t, z)‖ ≤ KtUz(t, z) and ‖γ⊥zz(t, z)‖ ≤ Kt|Uzz(t, z)| for some process K ∈ L2(dt),
because this implies that ν∗ ∈ K0,1

b . This can always be taken as a hypothesis, but the problem
in this framework is to find an explicit condition on h∗ which is not obvious because it is defined
from an integro-differential equation.
Note that this result also characterizes a class of solutions of the SPIDE (3.10), making a connection
with those of two SDEs (3.28) and (3.27). From a numerical point of view we can then propose a
simple scheme to solve the SPIDE, by combining two Euler schemes to solve the optimal SDEs, as
established in the paper [GM18].
Assumptions of this result give us the existence of a monotonic strictly positive strong solution
Y ∗ of SDE(ν∗, h∗), and by local regularity, the existence of a monotonic solution X∗ of SDE(κ∗).
Obviously, we can interchange the roles of Y ∗ and X∗. Indeed, in line with Theorem 3.3, Corollary
3.4 and (iii) of Theorem 3.6, given the existence of a solution of the SPIDE (3.10), the existence
of a solution X∗(x) starting from x to the SDE(κ∗) implies that Uz(t,X∗t (x)) is solution of the
SDE(ν∗, h∗) and so is a state price density process Y ∗t (uz(x)), starting from uz(x). That means in
our context that the existence of a solution to SDE(κ∗) is equivalent to the existence of a solution
to SDE(ν∗, h∗).
Otherwise, if we give ourselves X∗ monotonic solution of SDE(κ∗) with a semimartingale inverse
X and Y ∗ a K2-regular solution to SDE(ν∗, h∗) then the compound process Y ∗t (uzX (t, x) is an
obvious solution of the SPIDE (3.10), see Theorem 4.1 below.

Proof. (i) is a classical result in the SDE’s theory, see Kunita’s book [Kun19].
(ii) From Theorem 3.6, the process Uz(t,X∗t (x)) is also solution of the SDE(ν∗, h∗). By uniqueness
of the solution we have necessarily Uz(t,X

∗
t (x)) = Y ∗t (uz(x)). Assume that there is a second

solution to the SDE(κ∗) than X∗ which we denote by X̄. Applying the generalized Itô-Ventzel’s
formula, one can shows that Uz(t, X̄t(x)) is also solution of the SDE(ν∗, h∗), which have a unique
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solution, then by monotonicity of Uz we have that X̄t(x) = X∗(x) a.s. for any t. Now as Y ∗(uz(x) =

Uz(t,X
∗
t (x)) is a not explosive, then obviously X∗ is a strong solution (non-explosive).

Still using the first-order optimality relation Y ∗(uz(x)) = Uz(t,X
∗
t (x)), the monotonicity of Y ∗

combined with that of Uz and uz, implies that also X∗ is strictly increasing. The rest of the proof
is now obvious.

3.6 Example

Now we give an example of these consistent dynamic utilities in the well known case where they are
of power type. We give a necessary and sufficient condition to guarantee the consistency property.
This is a very special case, but it shows the restriction imposed by this last property.

Proposition 3.9. Consider the dynamic utility of power-type, defined by
Uθ(t, z) = Zt

z1−θ

1− θ
, θ ∈]0, 1[, (3.29)

dZt = Zt−
(
µZt dt+ γZt dWt +

∫
R
hZ(t, e)ν(de)

)
. (3.30)

(i) Its local characteristics (βθ, γθ, Hθ) are, by Itô’s formula

βθ(t, z) = Uθ(t, z)µZt , γ
θ(t, z) = Uθ(t, z)γZt , H

θ(t, z, e) = Uθ(t, z)hZt (e). (3.31)

(ii) Uθ is X-consistent if and only if the SDE’s coefficient of Z depend on the risk aversion θ and
are linked as follows

µZt = −(1− θ)rt +

∫
R

(1 + hZ(t, e))
[
1−

(
1 + κ∗,θt .hS(t, e)

)1−θ]
ν(de) (3.32)

− < κ∗,θt ,
θ(1− θ)

2
κ∗,θt + γZt + (ηt − αt) > . (3.33)

(ii) The optimal policies are given by zκ∗,θt =
z

θ

(
γZ,Rt + ηt − αt

)
+
z

θ

∫
R
(1 + hZ(t, e))(1 + κ∗,θt .hS(t, e))−θhS(t, e)ν(de) (3.34)

yν∗,θt (y) = yγZ,⊥t , (3.35)

in particular κ∗,θ and ν∗,θ are independent on z and thus the optimal processes X∗θ(x) and Y ∗,θ(y)

are strictly increasing since they are linear with respect to their initial conditions.

Proof. Statement (i) being obvious, we focus on the second one. From the previous results, equation
(3.25), U is consistent if and only if its drift characteristics βθ(t, z) = Uθ(t, z)µZt satisfies

βθ(t, z) = Uθ(t, z)µZt = −zUz(t, z)rt +

∫
R
(U(t, z) +H(t, z, e))ν(de)−Q(t, z, κ∗,θ). (3.36)

Where, from (3.2),

Q(t, z, κ∗,θ) :=

∫
R

(
Uθ +Hθ

)(
t, z(1 + κ∗,θt .hS(t, e))

)
ν(de) +

1

2
Uθzz(t, z)‖zκ

∗,θ
t ‖2

+ zκ∗,θt .(γθz (t, z) + Uθz (t, z)(ηt − αt)). (3.37)
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Observe at first, that by definition we have U+H = U(1+hZ), Uz+Hz = Uz(1+hZ) = z−θ(1+hZ).
Thus, if we focus on the optimal policy κ∗,θ associated with Uθ (assumed to be consistent), then
by (3.8) and identities zUz = (1− θ)U(t, z), zUzz = −θUz, it is necessarily given by

zκ∗,θt =
z

θ

(
γZ,Rt + ηt − αt

)
+
z

θ

∫
R

(1 + hZ(t, e))(1 + κ∗,θt .hS(t, e))−θhS(t, e)ν(de). (3.38)

This enables us to calculate the quantity Q(t, z, κ∗,θ),

Q(t, z, κ∗,θ) = Uθ(t, z)

∫
R
(1 + hZ(t, e))

(
1 + κ∗,θt .hS(t, e)

)1−θ
ν(de) +

θ(1− θ)
2

U(t, z)‖κ∗,θt ‖2

+ Uθ(t, z)κ∗,θt .(γZt + ηt − αt) (3.39)

= Uθ(t, z)
[ ∫

R
(1 + hZ(t, e))

(
1 + κ∗,θt .hS(t, e)

)1−θ
ν(de) +

θ(1− θ)
2

‖κ∗,θt ‖2

+ κ∗,θt .(γZt + ηt − αt)
]
. (3.40)

Finally, the consistency equation (3.36), becomes

Uθ(t, z)µZt = −zUθz (t, z)rt + Uθ(t, z)

∫
R

(1 + hZ(t, e))ν(de)−Q(t, z, κ∗,θ)

= −(1− θ)Uθ(t, z)rt + Uθ(t, z)

∫
R

(1 + hZ(t, e))ν(de)

− Uθ(t, z)
[ ∫

R
(1 + hZ(t, e))

(
1 + κ∗,θ.hS(t, e)

)1−θ
ν(de) +

θ(1− θ)
2

‖κ∗,θt ‖2

+ κ∗,θt .(γZt + ηt − αt)
]

= Uθ(t, z)
[
− (1− θ)rt +

∫
R
(1 + hZ(t, e))

[
1−

(
1 + κ∗,θ.hS(t, e)

)1−θ]
ν(de)

− < κ∗,θ,
θ(1− θ)

2
κ∗,θt + γZt + ηt − αt >

]
.

Thus simplifying by Uθ, the necessary condition of consistency is

µZt = −(1− θ)rt +

∫
R

(1 + hZ(t, e))
[
1−

(
1 + κ∗,θ.hS(t, e)

)1−θ]
ν(de)

− < κ∗,θt ,
θ(1− θ)

2
κ∗,θt + γZt + ηt − αt > .

The proof is now achieved.

4 Reverse Engineering

In view of the results of the previous section (Theorem 3.3 and Corollary 3.4), given an initial
utility function u, the marginal dynamic utility along the optimal portfolio Uz(t,X∗t (x)) is a state
price process Y ∗ starting from the initial condition uz(x), i.e. Uz(t,X∗t (x)) = Y ∗t (uz(x)).
If now, we assume that the optimal portfolio X∗t (x) is a monotonic random map with respect to
the initial wealth x, then necessarily y 7→ Y ∗t (y) must be also monotonic given the monotonicity of
Uz and that of X∗. More interesting, denoting X (x) the inverse of X(x), one can characterizes le
marginale utility by the identity Uz(t, x) = Y ∗t (uz(X

∗
t (x)).

In this section, we consider the reverse problem, i.e. we give ourselves two monotonic processes X
and Y in their initial conditions and we seek to build a dynamic utility consistent with our market
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model. X will play the role of the optimal portfolio X∗ and Y will play the role of the state price
density process Y ∗. In other words, we propose an explicit way to recover all consistent utilities U
generating this wealth as optimal process. In the classical expected utility framework, this reverse
engineering problem has been considered by He and Huang (1992) [HH94] in a complete market and
then in the framework of dynamic utilities in [EKM13] in an incomplete financial market without
jumps.
In what follows, we propose to study this problem within the framework of this paper. We are
concerned with two processes X and Y solutions of two regular stochastic differential equations.

dXt(x)

Xt−(x)
= rtdt+ κ̄t(Xt(x)).(dWt + ηtdt+

∫
R
hS(t, e)Ñ(dt, de)), (4.1)

dYt(y)

Yt−(y)
= −rtdt+

(
ν̄(t,Yt(y))− ηt −

∫
R
h̄(t,Yt(y), e)hS(t, e)ν(de)

)
dWt

+

∫
R
h̄(t,Yt−(y), e)Ñ(dt, de)). (4.2)

for some random vectors ν̄ ∈ R⊥ and κ̄ ∈ R.
The advantage of starting from these equations is the abundance of results in the SDE theory (see
precisely [Kun19]). We can therefore use the existing results to put sufficient regularity assumptions
on the SDE’s coefficients which ensure the existence, regularity, uniqueness, monotonicity of a
strong solutions and particularly to ensure the semimartingale property of X the inverse flow of
the solution X of the SDE(κ̄) .
The following result shows that the compound maps Φ(t, z) := Yt(vz(X (t, z)) (X for the inverse
flow of X) is the marginal of a dynamic utility (with initial data v) and satisfies the same dynamics
as the derivative of a consistent utility.

Theorem 4.1. Let δ ∈]0, 1[ and assume the pair of processes (X,Y) belongs to K3,δ
loc × K

2,δ
loc s.t.

x 7→ x + xκ̄t(x).hS(t, e) and y 7→ y + yh̄(t, y, e) are homeomorphic. For a given initial utility
function v ∈ C2,δ, let V be the strictly concave random field satisfying Vz(t, z) := Yt(vz(X (t, z)).
Then V is a K3,δ

loc-semimartingale and its marginal Vz is solution of the second order SPIDE

dVz(t, z) = −∂z
(
zVz(t, z))rt +QV (t, z, κ̄)−

∫
R

(
V (t, z) +HV (t, z, e)

)
ν(de)

)
dt

+γz(t, z)dWt +

∫
R
HV
z (t, z, e)Ñ(dt, de), (4.3)

HV
z (t, z, e) = Vz

(
t−, ψ(t, z, e)

)
+ Vz

(
t−, ψ(t, z, e)

)
h̄
(
t, Vz

(
t−, ψ(t, z, e)

)
), e
)
− Vz(t−, z),

γVz (t, z) = σ̄Y (t, Vz(t, z))− Vzz(t, z)zκ̄t(z), (4.4)

σ̄Y (t, y) := y
(
ν̄(t, y)− ηt −

∫
R
hS(t, e)h̄(t, y, e)ν(de)

)
. (4.5)

where we recall, according to Theorem 2.4 that ψ(t, z, e) is the inverse map of z → z
(
1+κ̄t(z)h

S(t, e)
)

and QV the quadratic form

QV (t, z, κ̄) :=

∫
R

(
V +HV

)(
t, z(1 + κ̄t(z)h

S(t, e))
)
ν(de)

+
1

2
Vzz(t, z)‖zκ̄t(z)‖2 + zκ̄t(z).(γ

V
z (t, z) + Vz(t, z)(ηt − αt)). (4.6)

Proof. To simplify the notations we use σ̄ := zκ̄. Since Y(.) and Y(uz(.)) obey the same dynamics,
one can apply the result of Corollary 2.5, and gets the dynamics of the compound map Vz(t, z) :=
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Y(t, uz(X (t, z))),

dVz(t, z) =
(
− Vz(t, z)rt − Vzz(t, z)

[
zrt + σ̄t(z).ηt + σ̄Yy (t, Vz(t, z)).σ̄t(z)

]
+ 1

2∂z

(
Vzz(t, z)‖σ̄t(z)‖2

))
dt

+

∫
R

(
HV
z (t, z, e)− h̄(t, Vz(t, z), e) + Vzz(t, z)σ̄t(z).h

S(t, e)
)
ν(de)dt

+γVz (t, z).dWt +

∫
R
HV
z (t, z, e)Ñ(dt, de),

where, also by Corollary 2.5, the jumps and volatility characteristics (denoted resp. Hz and γz)
are given by the following identities{

HV
z (t, z, e) = Vz

(
t−, φ(t, z, e)

)
+ Vz

(
t−, φ(t, z, e)

)
h̄
(
t, Vz

(
t−, φ(t, z, e)

)
), e
)
− Vz(t−, z),

γVz (t, z) := σ̄Yt (Vz(t, z))− Vzz(t, z)σ̄(t, z).

Let us focus on the drift term, which is, using the notation αt =
∫
R h

S(t, e)ν(de), rewrites

D(t, z) := − ∂z(zVz(t, z))rt − Vzz(t, z)σ̄(t, z)
[
ηt − αt + σ̄Yy (t, Vz(t, z))

]
+

1

2
∂z

(
Vzz(t, z)‖σ̄t(z)‖2

)
+

∫
R

(
HV
z (t, z, e)− h̄(t, Vz(t, z), e)

)
ν(de). (4.7)

Differentiating with respect to z the identity;

γVz (t, z) = σ̄Yt (Vz(t, z))− Vzz(t, z)σ̄t(z),

it follows,
Vzz(t, z)σ̄

Y
y (t, Vz(t, z)) = γVzz(t, z) + Vzzz(t, z)σ̄t(z) + Vzz(t, z)σ̄z(t, z).

Injecting this identity in (4.7), one gets, on the one hand

D(t, z) = − ∂z(zVz(t, z))rt − σ̄t(z)
[
Vzz(t, z)(ηt − αt) + γVzz(t, z) + Vzzz(t, z)σ̄t(z) + Vzz(t, z)σ̄z(t, z)

]
+

1

2
Vzzz(t, z)‖σ̄t(z)‖2 + Vzz(t, z)σ̄t(z).σ̄z(t, z) +

∫
R

(
HV
z (t, z, e)− h̄(t, Vz, e)

)
ν(de)

= −∂z(zVz)rt − σ̄t(z).
[
Vzz(t, z)(ηt − αt) + γVzz(t, z)

]
− 1

2
∂z

(
Vzz(t, z)‖σ̄t(z)‖2

)
+ Vzz(t, z)σ̄z(t, z)σ̄t(z) +

∫
R

(
HV
z (t, z, e)− h̄(t, Vz(t, z), e)

)
ν(de)

On the other hand, as
γVz (t, z) = σ̄Yt (Vz(t, z))− Vzz(t, z)σ̄t(z),

σ̄Yt (Vz(t, z) = Vz(t, z)ν̄t(Vz(t, z))− Vz(t, z)ηt − Vz(t, z)
∫
R
h̄(t, Vz(t, z), e)h

S(t, e)ν(de),

with ν̄t(Vz(t, z)).σ̄t(z) = 0, dt⊗ P,

one can observes that

Vzz(t, z)σ̄z(t, z).σ̄t(z) = −σ̄z(t, z)
[
Vz(t, z)(ηt − αt) + γVz (t, z)

]
− Vz(t, z)σ̄z(t, z).

∫
R
hS(t, e)

(
1 + h̄(t, Vz(t, z), e)

)
ν(de).

Consequently, it becomes obvious that

D(t, z) = −∂z
(
zVz(t, z)rt + σ̄t(z).

[
γVz (t, z) + Vz(t, z)(ηt − αt)

]
+

1

2
Vzz(t, z)‖σ̄t(z)‖2

)
+

∫
R

(
HV
z (t, z, e)− h̄(t, Vz(t, z), e)− Vz(t, z)σ̄z(t, z).hS(t, e)

(
1 + h̄(t, Vz(t, z), e)

))
ν(de)
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The idea from now, is to bring up the derivative of a quadratic formQΦ equivalent to that appearing
in the optimization program of Section 3.2, equation (3.2), that is

∂zQV (t, z, κ̄) :=

∫
R

(
Vz +HV

z

)(
t, (z + σ̄t(z).h

S(t, e))
)
(1 + σ̄z(t, z).h

S(t, e))ν(de)

+ ∂z

(1

2
Vzz(t, z)‖σ̄t(z)‖2 + σ̄t(z).(γ

V
z (t, z) + Vz(t, z)(ηt − αt))

)
. (4.8)

or equivalently, since σ̄ = zκ̄

QV (t, z, κ̄) :=

∫
R

(
V +HV

)(
t, (z + σ̄t(z).h

S(t, e))
)
ν(de)

+
1

2
Vzz(t, z)‖σ̄t(z)‖2 + σ̄t(z).(γ

V
z (t, z) + Vz(t, z)(ηt − αt)). (4.9)

Adding and subtracting the quantity
∫
R

(
Vz+HV

z

)(
t, (z+σ̄t(z).h

S(t, e))
)
(1+σ̄z(t, z).h

S(t, e))ν(de),

leads to

D(t, z) = −∂z(zVz(t, z))rt − ∂zQV (t, z, κ̄)

+

∫
R

(
HV
z (t, z, e)− h̄(t, Vz(t, z), e)− Vz(t, z)σ̄z(t, z).(hS(t, e)

(
1 + h̄(t, Vz(t, z), e))

)
+

(
Vz +HV

z

)(
t, (z + σ̄t(z).h

S(t, e))
)
(1 + σ̄z(t, z).h

S(t, e))
)
ν(de). (4.10)

To simplify, observe, from the definition of the process ψ(t, z, e) as the inverse map of z → X(t, z)+

σ̄(t, z)hS(t, , e), that
ψ(t, x, z + σ̄t(z)) = X (t, z), (4.11)

which implies, by definition of HΦ, that

Vz(t, z + σ̄t(z)) +HV
z (t, x, z + σ̄t(z)) = Vz(t, z) + h̄(t, Vz(t, z), e). (4.12)

Injecting this identity in (4.10), we get after simplifications

D(t, z) = −∂z(zVz(t, z))rt − ∂zQV (t, z, κ̄) +

∫
R

(
Vz(t, z) +HV

z (t, z, e)
)
ν(de),

which achieves the proof.

Remark . Note that, according to the notations of this theorem we have by projecting on the space
of constraints R,

zκ̄t(z) = −γ
V,R
z (t, z) + Vz(t, z)(ηt − αt)

Vzz(t, z)
−

∫
R
Vz(t, z)

(
1 + h̄(t, Vz(t, z), e)

)
hS(t, e)ν(de)

Vzz(t, z)

Let us then observe that, the identity

HV
z (t, z, e) = Vz

(
t−, ψ(t, z, e)

)
− Vz(t−, z) + Vz

(
t−, ψ(t, z, e)

)
h̄
(
t, Vz

(
t−, ψ(t, z, e)

)
), e
)

is equivalent since, φ(t, x, e) is the inverse map of z → z
(
1 + κ̄t(z).h

S(t, e)
)
, to

HV
z (t, z

(
1 + κ̄t(z)h

S(t, e)
)
, e) + Vz

(
t−, z(1 + κ̄t(z).h

S(t, e))
)

= Vz
(
t−, z

)(
1 + h̄

(
t, Vz(t

−, z), e
))

So that,

zκ̄t(z) = −γ
V,R
z (t, z) + Vz(t, z)(ηt − αt)

Vzz(t, z)
−

∫
R

(
Vz +HV

z

)
(t, z

(
1 + κ̄t(z).h

S(t, e)
)
, e)hS(t, e)ν(de)

Vzz(t, z)
.

(4.13)
This identity is the key point in to prove the next result.
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To conclude, the following theorem shows that V (constructed in the previous result) is indeed
a X-consistent utility.

Theorem 4.2. Under Assumptions of Theorem 4.1, the random field V (t, z) defined by its marginal,
Vz(t, z) := Yt(uz(X (t, z)) is a X-consistent dynamic utility.

(i) Utility-SPIDE: Using notations of Theorem 4.1, V satisfies

dV (t, z) = −
(
zVz(t, z))rt +QV (t, z, κ̄)−

∫
R

(
V (t, z) +HV (t, z, e)

)
ν(de)

)
dt

+ γV (t, z)dWt +

∫
R
HV (t, z, e)Ñ(dt, de).

(ii) Consistency: For any admissible wealth process X ∈ X, V (t,Xt) is a supermartingale and
martingale for X = X.

Proof. (i) is immediate from Theorem 4.1. Let focus on the second statement (ii), for this we
are concerned with the drift characteristics of the process V (t,Xκ

t ), which, by the generalized
Itô-Ventzel’s formula, is given by

βV (t,Xκ
t ) +Xκ

t Vz(t,X
κ
t )rt −

∫
R

(
V (t,Xκ

t ) +HV (t,Xκ
t , e)

)
ν(de) +Q(t,Xκ

t , κt)

= −QV (t,Xκ
t , κ̄t) +

∫
R

(
V +HV

)(
t, z(1 + κt.h

S(t, e))
)
ν(de) +

1

2
Vzz(t, z)‖zκt‖2

+ zκt.(γ
V
z + Vz(t, z)(ηt − αt))

(4.6)
=

∫
R

[(
V +HV

)(
t, z(1 + κt.h

S(t, e))
)
−
(
V +HV

)(
t, z(1 + κ̄t(z).h

S(t, e))
)]
ν(de)

+
1

2
Vzz(t, z)‖zκt‖2 −

1

2
Vzz(t, z)‖zκ̄t(z)‖2 + (zκt − zκ̄t(z)).(γVz + Vz(t, z)(ηt − αt)).

Now from the identity (4.13), the quantity γVz (t, z) + Vz(t, z)(ηt − αt) in the last term is,

γV,Rz (t, z)+Vz(t, z)(ηt−αt) = −Vzz(t, z)zκ̄t(z)−
∫
R

(
Vz+H

V
z

)
(t, z

(
1+κ̄t(z).h

S(t, e)
)
, e)hS(t, e)ν(de)

Injecting this in the last identity implies that the drift term in the dynamics of V (t,Xκ
t ) is given,

after arranging the terms, by∫
R

[(
V +HV

)(
t, z(1 + κt.h

S(t, e))
)
−
(
V +HV

)(
t, z(1 + κ̄t(z).h

S(t, e))
)]
ν(de)

− (zκt − zκ̄t(z)).
∫
R

(
Vz +HV

z

)(
t, z
(
1 + κ̄t(z).h

S(t, e)
)
, e
)
hS(t, e)ν(de) +

1

2
Vzz(t, z)‖zκt − zκ̄t(z)‖2

For reasons of clarity, if we denote at := z(1 + κt.h
S(t, e)) and bt := z(1 + κ̄t(z).h

S(t, e)) this
quantity is rewritten∫
R

{(
V +HV

)(
t, at, e

)
−
[(
V +HV

)
+ (at − bt)

(
Vz +HV

z

)]
(t, bt, e)

}
ν(de) +

1

2
Vzz(t, z)‖at − bt‖2

By concavity of V + HV the integral is negative and by concavity of V the last term is also
negative. Thus the drift term in the dynamics of V (t,Xκ

t ) is negative and is equal to zero if and
only if zκt = zκ̄t(z). This is equivalent to: For any admissible wealth process X ∈ X, V (t,Xt) is a
supermartingale and martingale for X = X. The proof is then complete.
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