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Abstract

Materials that change their shape in response to external stimuli open up new prospects for efficient and versatile
design and shaping of three-dimensional objects. Here, we present a novel class of micro-structures exhibiting an
extension-bending coupling (EBC) effect, that can be harnessed as an elementary building block for shape-shifting
panels. They are built with a single material as a network of undulated ribbons. The deformations mechanisms of
both single and connected undulated ribbons are analysed using the finite element method to explain the main features
of the EBC mechanism. For a particular micro-structure of the proposed class, the elastic response is investigated
both under small strain assumption combining two-scale homogenization with Kirchhoff-Love plate theory, and at
finite strains relying on numerical analysis. The range of achievable EBC ratio is then assessed with respect to the
geometric parameters of the unit cell. Patterned specimens are manufactured using a commercial FFF Ultimaker 3D
printer and are mechanically tested at finite strain up to 20%. The displacement measured by point tracking match the
predictions from the finite element simulations and indicate that the structure maintain its properties at finite strain.
Moreover, a tensile test load with point-like boundary is proposed to highlight exceptional out of plane displacement.
The proposed ribbon based architectures can be combined with active materials for the actuation of shape shifting
structures, like soft robots, control systems and power devices.

Keywords: 3D printing, metamaterial, shape shifting, panels, undulated ribbons.

1. Introduction

The morphing of shell-based structures into programmable three-dimensional geometries is a ubiquitous mechanism
found in nature, which is attracting increasing interest for technological applications [1]. In engineering, flat panels
are traditionally enticing due to their high strength-to-weight ratio which makes them structurally efficient. Including
programmability into such structures expands the potential of available manufacturing techniques and increases the
fabrication throughput for three-dimensional objects of complex geometries [2–4]. In addition, it unleashes new
functionalities suitable for exploring harsh or inaccessible environments [5, 6] and delivering increasingly large and
complex payloads [7, 8]. Several concepts have already been reported for a broad range of length scales, from
minimally invasive surgery [9, 10], to automotive [11], aeronautics [12] and up to space sector [13–15].
Systems with shape-shifting capacities are obtained through “transformation mechanisms”, tailored by the micro-
architecture of the material. Recent advances in digital manufacturing technologies such as 3D printing [16–18] and
laser cutting [19–21] have opened the way to a wide range of novel micro-architectures that couple locally prescribed
in-plane kinematics to changes in curvature. These micro-architectures can be regrouped into model classes: origami
structures, which feature axially-rigid but potentially-flexible panels connected by foldable creases, may be turned into
nearly arbitrary shapes [22–24]. Yet, due to the independent folding motions of individual folds, they are challenging
to fold [25, 26] or actuate. Kirigami tessellations, i.e. cut-patterned panel, allow compact flat shapes to conform
approximately to any prescribed target shape in two or three dimensions [27–29]. Folding and cut patterns may be
combined to design shape-shifting concepts as demonstrated in [30]. Compliant mechanism-like structures, featuring
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Figure 1: Architectured panel Ω with a periodic arrangement of 5 × 5 unit cells. The unit cells are composed of structural shells parametrised by
b-spline surfaces. The thickness of the shell t is not depicted (only the mid-surface is shown). The displayed unit cell is obtained following the
procedure described in section 2. It has an aspect ratio h∗ = h/` = 0.3.

bendable trusses or hinges are suitable to shape three-dimensional objects with desired geometrical sizes and aspects
ratios [31, 32], but due to the thin connections at the hinges, they are mechanically weak. Ribbon- and membrane-like
flat structures can buckle out of plane and produce three-dimensional geometries when subject to mechanical actuation
[33–35]. Lastly, bilayers sheets can morph into three-dimensional surfaces with non-zero Gaussian curvature [36, 37],
but their fabrication is complex.
Most systems are paired with mechanical actuations through manual forming, boundary loading, or through the release
of a pre-stretched layers. By releasing pre-stretched shape memory layers, it is possible to control the deformation in
time, which is an essential feature to prevent collisions while undertaking complex morphing [38–40]. Other studies
make use of pneumatic power to mechanically load the shapes [5, 41]. Alternatively, combining shape-morphing
structures with multiphysics phenomena further opens up the space for various actuation mechanism. Self-actuation
enables autonomous structural adaptation to changing environmental stimuli. For example, self-shaping concepts
have been demonstrated in shells through hydrogel swelling [42–44], nematic-to-isotropic phase changes in liquid-
crystal elastomers [45, 46], and using piezo-electric actuation [36, 47]. Multiple materials in heterogeneous lattice
designs enabled unprecedented morphing capacities with complex and doubly curved shapes (e.g. a human face) [48].
Nevertheless, complex shapes remain difficult to achieve experimentally, as they often require advanced multi-material
3D printers with long and costly fabrication.
In this work, we propose a novel class of micro-structures consisting in a combination of undulated ribbons,
parametrised using b-spline surfaces. The undulations feature an asymmetry along the height that is leveraged to
obtain an extension-bending coupling (EBC) mechanism. The unit cell is tessellated periodically to generate panels
with programmable morphing capabilities when subject to mechanical actuation. While single undulated ribbons do
not exhibit specific coupling mechanics, we demonstrate that their interconnection starts the mechanism. We then
discuss the mechanical properties of a particular of a unit cell, computing the complete elastic stiffness tensor via
two-scale homogenization with thin plate theory. The range of achievable EBC ratio is then assessed with respect
to the geometric parameters of the unit cell. We demonstrate that the EBC ratio is not degraded under finite strain
up to 20%. Ribbon-based specimen are manufactured using a desktop fused filament fabrication 3D printer and are
mechanically tested for validations. Both experiments and numerical simulations are conducted to measure the out of
plane local mechanical fields. Our work distinguishes itself for the simplicity of fabrication and actuation, and for its
potential applicability in material and structural systems at vastly different scales; it therefore illustrates a potential
base to be harnessed in combination with responsive materials for the actuation of soft robots, compliant systems and
reconfigurable structures, as alternatives to external mechanical motors, control systems and power devices.
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2. Design of the unit cell

Let us consider an architectured panel occupying a plane domain Ω, of characteristic in-plane dimension L, and of
height h, as sketched in Figure 1. It is a periodic or graded compound of quadrangular building blocks, referred to as
unit cells and denoted as Y , of characteristic in-plane dimension `. The unit cells consist in a network of undulated
ribbons of constant thickness t creating a composite similar to open cell foams described in [49, 50]. As unit cells
may be scaled to various sizes, we define a rescaled unit cell Y∗ characterised by two dimensionless parameters: the
unit cell aspect ratio, h∗ = h/` and the normalized thickness, t∗ = t/`. The material distribution inside the cell is
parametrised using multiple b-spline surfaces, i.e. a bivariate vector-valued piecewise rational function of degree p in
the u direction and degree q in the v direction respectively:

S(u, v) =

n∑
i=0

m∑
j=0

Ni,p(u) N j,q(v) Pi, j (2.1)

where Pi, j is a bidirectional net of control points (CP), while Ni,p(u) and N j,q(v) are the b-spline basis functions [51].
The choice of the control points Pi, j is made with the aim to engender the extension bending (EBC) effect in the panel.
It is realised manually, according to the following design procedure:

1. Select five filament based two-dimensional unit cells with an negative effective Poisson’s ratio equally dispersed
within [−0.8, 0.] (see Figure 2(a)).

2. Thanks to the multiple symmetries, the parametrisation is restricted to a bundle of elementary corrugated branches,
modelled as b-splines curves with five CP [51]. The global number of control points is reduced as all unit cells are
sharing the end points and therefore only three independent CP per curve suffice to control the effective Poisson’s
ratio of each unit cell (see Figure 2(b,d)).

3. CP for each b-spline curve (from Figure 2(b)) are uniformly distributed along the thickness according to the desired
height. Using the b-spline surface parametrization, ribbons are constructed as lofted surface, depicted in Figure 2(c)
and feature a two-fold undulation: (1) an in-plane corrugation stemming from the 2-d microstructures and (2) a
continuously varying profile along the height. Fixing the outermost CP for all curves ensure a resulting vertical
border and permits the construction of the unit cell and of the periodic pattern by symmetry.

This ribbon-based unit cell encompasses a continuous stacking of two-dimensional shapes with varying effective
Poisson’s ratio. Hence, we can recover any two-dimensional unit cells that attain any effective Poisson’s ratio between
−0.8 and 0 by taking a slice of the micro-architectured panel at the corresponding height. We recall that materials with
a negative Poisson’s ratio, also called auxetics, expand transversally under a uniaxial stretching. They often derive
this property from microstructural deformation mechanisms that typically involve rotations [53, 54], which can confer
enhanced mechanical properties. To date, several types of auxetic materials have been reported [55–57]. This class of
auxetic unit cells considered here was first reported in [52] and stems from a topology optimization with the objective
to exhibit a prescribed effective Poisson’s ratio over finite deformations of up to 20%. The choice to use these shapes
was motivated by the following reasons: (1) In comparison with other shapes in the literature designed using topology
optimization [58–60], they are featuring high geometrical simplicity (arrangement of curved beams with constant
thickness t), which is suitable for design flexibility, and manufacturability. In particular, they are adapted for specific
additive manufacturing technologies based for example on wire deposition, such as Fused Filament Fabrication for
polymers, or Wire Arc Additive Manufacturing for metals. (2) They share a common generic configuration, which
simplifies their tesselation and enables a global parametrization using design points and b-spline curves (as shown in
Figure 4 in [52]). (3) They were designed to maintain their auxetic effect at finite strains. This feature confers to the
panel constant EBC effect at finite strain, as it will be shown in the sequel.
Finally, let us remark that the proposed design procedure based on stacking of filament unit cells using b-splines and
lofted surfaces is not restricted to the present choice, neither as in-plane geometries nor in terms of symmetries, and
opens up a new direction to create shell like panels.
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Figure 2: B-spline parametrisation. (a) Class of architected materials, inspired by Clausen et al. [52]. The boxed branches on the bottom left are
the most basic pattern required to reconstruct the whole unit cell. (b) elementary pattern parametrised using b-spline and their control points (CP).
(c) B-spline surface built upon the uniform distribution of the CP in (b) along the thickness. (d) Coordinates of the CP defining each of the five
b-spline curves needed to build the surface. The value report regards a cell of characteristic length ` = 1.

3. Extension bending coupling (EBC) mechanism

The extension-bending coupling (EBC) mechanism is investigated first by analysing the behaviour of a single undu-
lated ribbon under tension in order to exhibit the particular features at the origin of the EBC effect. Then, the effective
behaviour of the panel is numerically identified at small and finite strain. A parameter analysis permits to evaluate the
variation of mechanical properties characterising the EBC effect against the geometrical parameters of the unit cell.
Finally, the influence of a graded stiffness in the ribbon on the EBC effect is briefly discussed.
The analysis is based on finite element computations and is conducted using the solver Cast3M 2018
(www-cast3m.cea.fr). The parametric b-spline surfaces are triangulated by discrete Kirchhoff triangular (DKT)
shell elements [61, 62] to generate a discrete shell model. The ribbon material is considered to be elastic, isotropic
and quasi-incompressible, with parameters E0 = 0.7599 MPa and ν0 = 0.49. They yield a normalized in-plane elastic
stiffness in tension, i.e. A0

1111 = A0
2222 = 1.0 MPa (under plane stress assumption) which simplifies the analysis for

applications under an assumption of a linear elastic behaviour.
Displacement and rotation are vector valued functions in the cartesian system of coordinates (e1, e2, e3). For conve-
nience, in-plane displacements will denote the components along e1 or e2, while displacements along e3 are referred
to as out of plane displacement. Meanwhile, rotations of cross sections around e3 are denoted as in-plane rotations,
while rotations around e1 or e2 are referred to as out of plane rotations and characterise the bending deformation of
the panel.

3.1. Deformation mechanisms of undulated ribbons

In order to understand the EBC effect, we propose to compare the kinematic deformations patterns of single undulated
ribbon oriented along e1 under a uniaxial tensile load, with the deformation of the same ribbon connected with a
transverse ribbon respecting the architecture of the panel. For all cases the effective strain reaches 10% and is applied
assuming periodic boundary conditions and planes of symmetry as depicted for different cases in Figure 3, which
resumes the computations.
For the single ribbon, computed components of rotations and displacement fields along e3 are displayed in Fig-
ure 3(a,d). As the ribbon elongates, the initial in-plane corrugations unfold through a bending mechanism about the
e3 axes and align with the loading direction e1. The bending is localized in the regions with a vertical cross-section
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Figure 3: Numerical results on ribbon blocks subjected to periodic boundary conditions, loaded in tension up to 10% effective strain. The aspect
ratio is h∗ = h/` = 0.3 and the normalized thickness is t∗ = t/` = 0.05. In all figures, the deformed along the direction e3 is amplified ten times.
(a-c) In-plane rotation field r3 (about e3) plotted as a color map on the deformed ribbon. The color bar on the left applies to the three cases. (d-f)
Out of plane displacement field u3 (normalized by `) plotted as a color map on the deformed ribbon. The color bar on the left applies to the three
cases. (a,d) Uniaxial response of a single undulated ribbon. (b,e) Are the same as (a,d), but we attach a transverse undulated ribbon. The free
transverse ribbon undergoes a in plane rotation about the e3 axis, but no significant out of the plane displacement is reported. (c,f) The transverse
ribbon is submitted to a symmetry condition (u2 = 0, r3 = 0), which reveals an out of plane displacement u3.

oriented along e3 which exhibit an in plane rotation. These regions are denoted as “faces” that bend about e3 in Fig-
ure 3(a)). In the zone of ribbon crossing, the displacement of the ribbon stays in-plane, with u3 ≈ 0, as illustrated
in Figure 3(d)). Furthermore the out of plane rotations are vanishing and the in plane rotation is constant, character-
ising the in-plane deformation of the ribbon and the absence of bending. Next, Figure 3(b,e) exhibits the results of
the tension of the same ribbon connected with a free transverse ribbon and show that the system will equally remain
in-plane and will not bend out of plane. As expected, the transverse ribbon will simply rotate in plane as imposed by
the crossing line of the longitudinal ribbon, as discussed before. See Figure 3(b) for details.
For connected ribbons, with an imposed symmetry boundary conditions at the extremities of the transverse ribbon, an
out-of-plane bending is revealed, as shown in Figure 3(c,f). Now, upon pulling on the longitudinal ribbon, the trans-
verse ribbons is also submitted to a bending load along e3. As the longitudinal ribbon elongates, both in plane and out
of plane bending of the transverse ribbon is observed about the e3 and e1 axes respectively. In other words, the lon-
gitudinal ribbon is tilted at the connection line, yielding out of plane deflection in the transverse ribbon (Figure 3(f)).
We conclude that the shifting mechanism is driven by the coupled in-plane and out of plane bending occurring inside
the ribbons.

3.2. From undulated ribbons to architectured unit cells

The quantitative estimation of the EBC effect can be obtained analysing the effective material behaviour, i.e. obtained
as the ratio of the averaged stiffness and strain over the unit cells. The precise technique is defined by the two-scale
homogenization method applied to periodic plates. Due to the great number of unit cells in Ω, the dimension of the
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periodic cells ` is assumed to be much smaller than L (i.e. `/ε = O(L), where ε tends to 0), but is assumed to be
comparable to h (i.e. ` = O(h)). Furthermore, the thickness t is assumed to be much smaller than ` and h (so that we
verify the shell assumption). In practice, we assume:

0.1 ≤ h∗ ≤ 10, t∗ ≤ 5h∗. (3.1)

To interpret the observed bending in terms of effective material parameters, we need to map the behaviour within the
classical Kirchhoff-Love plate theory (see Appendix A for a short recall). The constitutive behaviour of a general
thin plate reads: [

N
M

]
=

[
A B
B D

] [
µ
χ

]
(3.2)

where N and M are the membrane stress and bending moments per unit width. Units are: [N] = N.m−1 and [M] = N.
The plate kinematic is described by the in-plane (membrane) strains µ and the out-of-plane curvatures χ. Units are:
[µ] = m.m−1 and [χ] = m−1. The tensor A describes the in-plane behaviour, the tensor D describes the bending
behaviour, and their coupling is expressed through the tensor B. Units are: [A] = N.m−1, [B] = N and [D] = N.m.
Note that in most engineering applications, where panels feature symmetric geometry and material distribution along
the thickness, normal and shear behaviour get uncoupled for the membrane part, yielding B = 0.
Homogenisation of plates with periodic microstructure was first studied in [63] and [64]. A short recall on the
derivation of the linearized effective equations for infinitesimal deformation of panel with periodic microstructure
is provided in the Appendix B, while interested readers may refer to [65, 66] for more extended explanations. As-
suming a composite panel made of two isotropic phases (material and void in this case), the constitutive behaviour
for Kirchhoff-Love thin plate exhibits an orthotropic behaviour in the most general case [65], hence it reads in its
component form:

[
AH BH

BH DH

]
(h∗, t∗)

=



AH
1111 AH

1122 0 BH
1111 BH

1122 0
AH

1122 AH
2222 0 BH

1122 BH
2222 0

0 0 AH
1212 0 0 BH

1212

BH
1111 BH

1122 0 DH
1111 DH

1122 0
BH

1122 BH
2222 0 DH

1122 DH
2222 0

0 0 BH
1212 0 0 DH

1212


(3.3)

Superscripts H denote an effective or homogenized quantity, defined at the macroscopic scale of the panel. For in-
stance, the effective Young’s modulus, Poisson’s ratio and shear modulus are denoted as EH , νH , and GH respectively,
hereinafter. In equation (3.3), the in-plane elastic moduli depend on h mainly according to 1/h, the flexural moduli
depend on h mainly according to 1/h3.

Example of effective plate elastic stiffness tensor. In a rescaled unit cell with h∗ = 0.3 and t∗ = 0.05, the material
volume fraction is of 26.7% and its constitutive tensor reads:

[
AH BH

BH DH

]
(0.3,0.05)

= 10−3



4.18 −1.89 0. 0.01 0.45 0.
−1.89 4.18 0. 0.45 0.01 0.

0. 0. 0.74 0. 0. 0.44
0.01 0.45 0. 1.05 −0.14 0.
0.45 0.01 0. −0.14 1.05 0.
0. 0. 0.44 0. 0. 1.02


(3.4)

The matrices AH , BH and DH are symmetric and exhibits an quadratic symmetry, i.e. the plate has the same tensile
(respectively bending) stiffness along e1 and e2. AH

1122 < 0 indicates an effective auxetic behaviour of the unit cell. An
underlying effect accounted by DH

1122 < 0 is to undergo synclastic curvatures [67], i.e. shifting from flat to a dome
shape under bending. The main non-vanishing coupling stiffness is BH

1122. It links the in-plane stress along e1 (re-
spectively e2) to the transverse curvature about e1 (respectively e2). This suggests that the EBC effect exists primarily
between the longitudinal in plane displacements and the out of plane bending curvature, which is in agreement with
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the concept of overlaying profiles with varying Poisson’s ratios. We also note the presence of a coupling between the
shears BH

1212.
The elastic moduli, AH

αβγδ, BH
αβγδ and DH

αβγδ can be expressed in terms of materials parameters EH and νH . We further
introduce the effective longitudinal extension - transverse bending coupling ratio, referred in the sequel as to EBC
ratio and denoted by βH .

EH =
1
h∗

AH
1111

1 − AH
1122

AH
1111

2 ; νH =
AH

1122

AH
1111

; βH =
1
h

BH
1122

AH
1111

(3.5)

Note. the division by h is here to obtain a dimensionless quantify.

3.3. Influence of h∗ and t∗
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Figure 4: Parameter analysis with respect to h∗ and t∗. Material property charts (a) Normalized effective Young’s modulus EH/E0 versus material
volume fraction f . Performances of these architectured materials can be mapped in already existing material property charts, like in [68], for further
comparisons with other materials. (b) EBC ratio βH from equation (3.5) versus material volume fraction. The color bar on the right applies for both
plots. The unit cells associated to specific heights are also depicted.

Next, we investigate the variations of the effective stiffness of the unit cell, as a function of the aspect ratio of the panel
h∗, or the normalized thickness of the ribbons t∗. The analysis is numerically performed by varying: (i) h∗ from 0.1 to
1 with a step of 0.02 and; (ii) t∗ from 0.002 to 0.05 with a step of 0.002, provided both h∗ and t∗ satisfy the inequalities
(3.1). The results are reported against the material volume fraction f of the cell, which facilitates comparisons with
standard materials property charts [68]. Estimations from the three-dimensional numerical models indicate that f is
depending linearly to t∗, while it is almost unaltered by h∗.

Investigation under small strain assumption. The distribution of effective Young’s modulus EH , normalised by the
base material modulus E0, is mapped against the volume fraction f for different values of h∗ in Figure 4(a). It is
proportional to the cube of the volume fraction. Conversely, its dependence on the aspect ratio h∗ is much less pro-
nounced, i.e. a unit cell of aspect ratio h∗ is about as stiff as a pile of n unit cells of aspect ratio h∗/n. Macroscopically,
this ribbon based unit cell is highly compliant, the Young’s modulus EH being from two to six orders of magnitude
lower than its bulk equivalent (see base elastic coefficients in section 3 above). Next, the distribution of the EBC ratio
βH (Figure 4(b)) indicates the effect is stronger for smaller aspect ratios h∗. Moreover, we report that for h∗ > 0.25,
the EBC ratio βH is almost independent from the normalized thickness t∗, while for h∗ < 0.2, the EBC ratio is affected
by t∗. All things considered, EH and βH can be tailored relatively independently. On a side note, the effective Pois-
son’s ratio νH does not depend particularly depend on h∗ and t∗. Its average value ≈ −0.4 matches the expectations
considering the overlaying of initial two-dimensional profiles with an effective Poisson’s ratio in range between −0.8
and 0.
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Figure 5: (a) Deformed configuration under tension along e1 up to 20% effective strain, with imposed periodic BC at front and rear faces. The
deflection angle θ∗ per unit cell induced in the direction perpendicular to the loading is illustrated. For different loading values, nodes at the two
lateral boundary of the central cell (normal vectors to the faces are −e1 and e1) form two planes (depicted in pink). A least square fit permits
to calculate the cartesian equation of these two planes, which in turn yields the deflection angle θ∗. (b) Evolution of θ∗ against the longitudinal
effective engineering strain. t∗ is set at 0.05, h∗ is varying. (c) Same as (b), but now h∗ is set at 0.5, t∗ is varying.

Uniaxial extension at finite strain. To characterize the out of plane capacities of the unit cell at finite strain up to
20% under uniaxial tension, a strip of 5 unit cells was loaded using periodic boundary conditions along the transverse
direction of the strip, while longitudinal direction was traction free. Several characteristics of the transverse deflection
angle per unit cell θ∗ are displayed in Figure 5. In particular, Figure 5(a), represents the deformed strip of unit cells
and the definition of the transverse deflection angle θ∗. The EBC effect as function of h∗, illustrated through the
evolution of the transverse deflection angle as a function of engineering strain is exhibited in Figure 5(b,c). However,
for a fixed value of h∗ = 0.5 > 0.25, θ∗ is almost unaffected by t∗ as shown in Figure 5(c). Similar to [52], one can
equally remark that the evolution of the deflection angle with respect to the engineering strain follows a linear trend,
which indicates that the EBC ratio remains constant for deformations up to 20%.

3.4. Influence of a varying stiffness along the height

(a) (b) (c)
e1

e2
e3

Figure 6: Deformed panel loaded in uniaxial tension up to 10% effective strain. The aspect ratio here is h∗ = h/` = 0.3 and the normalized thickness
is t∗ = t/` = 0.05. (a) Uniform Young’s modulus. (b) Increasing Young’s modulus along the panel height. (c) Decreasing Young’s modulus along
the panel’s height.
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A literature survey, see [69] and the references within, show that EBC effects in panels can be triggered in porous
panels, provided the porosity density varies through thickness. Varying the materials properties along the thickness
implies varying the elasticity properties or equivalently the thickness of the ribbons. As expected, a variation of the
normalised Young’s modulus EH/E0 along the panel’s height h∗ by a factor ranging from 1 to 10 engenders visible
EBC effects. Figure 6 presents a comparison of the deflection pattern of three panel comprising 5 × 5 unit cell of
subject to an uniaxial tensile loading of 10% with (a) homogeneous, (b) increasing, (c) decreasing Young’s modulus
with height, respectively. The expected dome-shape out of plane defection of the panel with a uniform EH over the
ribbons, is amplified for a decreasing Young’s modulus with height. However, an increasing Young’s modulus with
height will trigger a a novel saddle-shape deformation of the panel. This example reveals that a variation of the
material properties of the ribbons add a novel shape shifting dimension to the family of ribbon based unit cells.

4. Analysis of fabricated polymer panels

4.1. Additive manufacturing

Specimens of architectured panels with ribbon-based unit cells have been additively manufactured with fused filament
fabrication technology (FFF) using a commercial Ultimaker 3D printer and a thermoplastic polyurethane filament TPU
95A with a diameter 0.4mm1. The choice of TPU 95A was motivated by its compliant nature and capacity to undergo
large deformations, i.e. > 20% strain without breaking.
The 3D volume model of the unit cell was obtained by computing the normal vector field of the b-spline surface and by
shifting it along the normal to create the upper and lower surfaces. The upper and lower surfaces are then completed
with the bottom and top boundary a closed envelope. The complete envelope is triangulated exported as a watertight
STL mesh. The specimen is a periodic array of 5× 5 unit cells with h∗ = 0.3 and t∗ = 0.05. The dimension of the unit
cell is ` = 16 mm and conducts thus to a panel with L = 80 mm of dimensions 80 mm×80 mm×4.8 mm. The generated
pattern was completed by a series of rings to ensure the fixing within the testing machine. The non-conventional ring
fixture and the underlying boundary conditions is discussed in the next section.

4.2. Mechanical testing

The experiments are performed on an Instron 10 kN universal testing machine, under displacement control at a quasi-
static strain rate ε̇ = 0.125 min−1 up to 20% effective engineering strain. Each mechanical test is recorded using a
high-resolution digital camera (JAI Spark SP-20000-USB camera with a resolution of 5120 × 3840 pixels equipped
with a Tokina AT-X Pro 100 mm F2.8 macro lens), mounted on a perpendicular axis with respect to the plane of the
specimen. Using a inclined mirror, we capture the front and lateral view of the specimen in each picture, as shown
in Figure 7. Using an in-built computer program, 8-bit gray scale sub-images were stored every second during the
loading. The out of plane displacement u3 at the tip of the ribbon identified in the lateral mirror view is measured 2-d
point tracking method (Tracker software: https://physlets.org/tracker/) from the image sequence. A white
grid is added to the sample to facilitate the optical measurements.
Early stage tests performed on specimens fixed by standard hard clamp montages (not shown here) gave unsatis-
factory results. More precisely, the resulting out of plane displacement field was below the expected results of the
computations with periodic boundary conditions displayed in Figure 5, indicating that the 5 × 5 array specimen, with
clamped boundaries does not approximate the results of an infinite periodic domain. Standard hard clamp montage are
a dead load and induce induce over-constrained boundary conditions, preventing the out of the plane deformation of
the specimen. A way to relax the the encastred boundary conditions of the clamps was to add an intermediate fixing
comprising a rod and a series of rings which add additional degrees of freedom at the boundary of the specimen.
Similar specimen fixing were attempted in previous works in the literature [30, 32, 70].

1Characteristics of TPU 95A filaments are provided here: https://support.ultimaker.com/hc/en-us/sections/360003556679
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Figure 7: Comparison of experimental and computed results. Extension test: (a) experimental setup, (b) observed specimen at maximal extension
εH = 20% (c) computed relative out of plane displacement u3/`. Extension by concentrated load, i.e; pinching test: (d) experimental setup, (e)
observed specimen at maximal extension εH = 16% (f) computed relative out of plane displacement u3/`. (g) Comparison of the evolution of the
out of plane displacement at the measurement point (indicated by ? in the images). (h) Comparison between the numerical deformed cross-sections
at mid specimen.
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Extension with customized fixture. The specimen is hung between the clamps at both extremities by metallic rings
to steel rods in a curtain-like fashion, as shown in Figure 7. Prior to the montage, the steel rods were covered in
oil to reduce the frictions with the rings. Although this fixture accommodates lateral expansions and rotations of the
specimens undergoing tensile loads, it is worth noting that it introduces uncertainties, due to the unknown friction
between the rings and the rods. This limitation is addressed by analysing two distinct types of boundary conditions
in the numerical simulations associated to this tensile test: (i) free traction in the corresponding directions, neglecting
friction and are compatible with periodic boundary conditions or (ii) adding stiff pinned rods at the extremity of
the specimen, which permit an out-of-plane tilt without a transversal slide and are appropriate for the extension test
discussed next.
The results of the extension experiment are depicted in Figure 7. The different sub-figures represent: (a) the exper-
imental setup, (b) the observed specimen during the experiment at maximal extension, i.e. 20% effective strain and
(c) the computed relative out of plane displacement field u3/` plotted on the deformed mesh assuming the boundary
conditions (ii). The results present en excellent match between computations under experimental boundary conditions
and experimental measurements as a deformation pattern and quantitatively when the displacements are compared at
a given point, see red curves in subfigure (g). Moreover, a saturation saturation of the out-of-plane displacement at
about 15% engineering strain is observed on both experiments and computations. If the comparison between experi-
ments and computation is satisfactory, they both exhibit an important discrepancy with the behaviour of the structure
under perfect periodic boundary condition, both in the deformation pattern and quantitatively as the out-of-plane
displacement is increased by a factor of six when compared with the tensile experiment.

Extension by concentrated force, referred to as pinching test. The results of the pinching experiment, where the
extension is applied only on the central ring are represented in Figure 7. The different sub-figures represent as before:
(d) the experimental setup, (e) the observed specimen during the experiment at maximal extension, i.e. 16% effective
strain and (c) the computed relative out of plane displacement field u3/` plotted on the deformed mesh. As before
one can remark an excellent match between experiments and computations, both in terms of deformation pattern and
quantitatively when the displacements are compared at a given point, see blue curves in subfigure (g). The results
exhibit on the one hand side a three-fold increase of the out-of-plane displacement when compared with the previous
extension experiment and on the other hand side present a linear increase of the out of plane displacement with applied
strain without the saturation plateau of the previous extension experiment.
Finally, Figure 7(h) presents the computed out-plane displacements of a nodal line at the center of the specimen,
transverse to the extension direction. The comparison of the shapes shows that the extension experiment does not
reach an important curvature at the center and that the out-of-displacement is concentrated at the boundaries, which is
in contrast with the extension by a concentrate force where a significative curvature at the center is obtained. Moreover
the pinching experiment and the periodic boundary condition reach similar curvatures at the center of the specimen
and that the quantitative difference of the measured out of plane experiment is due only in the deformation patterns of
the last cell at the boundary of the specimens where the boundary conditions differ.

5. Conclusion and perspectives

In this paper, we designed a new class of micro-structures composed of undulated ribbon lattice. These micro-
structures can be arranged periodically to obtain panels exhibiting a bending deflection when submitted to in-plane
tension, hence producing the EBC effect. For a prescribed shape of the of the unit cell, i.e. shape of the ribbons and
intersections, the aspect ratio of the ribbons and their thickness, tailor the various elastic coefficients, like stiffness or
EBC ratio.
Our work expands the spectrum of shape-morphing structures manufactured with a single material, and it indicates
an approach that could be used to produce morphing and deployable structures for a wide range of scales. While the
shapes we have obtained are relatively simple, similar principles could be extended to different families of materials,
and could be coupled to parametric optimization (using b-spline) and inverse-design strategies to obtain more extreme
shapes. This type of analysis would also permit to shed light on the set of realizable moduli using undulated ribbon-
based structures (refer for analogy to the study of [71] regarding laminates).

11



The geometric parameters of proposed ribbon based architectures can be tuned to create panels with controlled EBC
effect and combined with active materials like swelling gels, piezo-electrics, nematic elastomers, LCE’s, in the differ-
ent layers of the unit cell to trigger the shape shifting effect by external stimuli.
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Appendix A. Recall on Kirchhoff-Love plate theory

In a space endowed with an orthonormal reference (O, e1, e2, e3), let us consider a plane plate of thickness h normal to
the axis (O, e3). For convenience, its mid-plane in the reference configuration is assumed to lie in the (O, e1, e2) plane.

Thin plate kinematics. The following kinematic assumptions are made: (1) all straight lines normal to the mid-surface
remain straight and normal after deformation; (2) the thickness of the plate does not change during a deformation.
This is the plate equivalent of the Euler-Bernoulli beam hypothesis. The displacement field u(x1, x2, x3) of a thin
planar plate is therefore defined as follows:

u(x1, x2, x3) = v(x1, x2) − x3 ∇v3(x1, x2)

⇔


u1(x1, x2, x3) = v1(x1, x2) − x3 v3,x1 (x1, x2) = v1(x1, x2) − x3 r3(x1, x2)
u2(x1, x2, x3) = v2(x1, x2) − x3 v3,x2 (x1, x2) = v2(x1, x2) − x3 r3(x1, x2)
u3(x1, x2, x3) = v3(x1, x2)

(A.1)

where v(x1, x2) is the displacement field of the mid-plane of the plate, and r(x1, x2) = ∇v3(x1, x2) are the rotations.
Assuming the previous displacement field, the strain field ε reads:

ε =

[
ε11 ε12
ε12 ε22

]
=


∂v1

∂x1

1
2

(
∂v1

∂x2
+
∂v2

∂x1

)
1
2

(
∂v1

∂x2
+
∂v2

∂x1

)
∂v2

∂x2

 − x3


∂2v3

∂x2
1

∂2v3

∂x1∂x2

∂2v3

∂x1∂y1

∂2v3

∂x2
2

 = µ + zχ (A.2)

where µ represents the in-plane strains and χ the out-of-plane curvatures. Units are: [µ] = m.m−1 and [χ] = m−1.
Note that the out-of-plane strains εi3 are all zero due to the chosen kinematic hypothesis. In particular, the normal
out-of-plane strain ε33 is zero, which is generally not the case for thin structures, for which the plane stress behaviour
is assumed.

Constitutive behaviour. The constitutive law of a thin plate has the following form:[
N
M

]
=

[
A B
B D

] [
µ
χ

]
(A.3)

where the tensor A describes the in-plane behaviour, the tensor D describes the bending behaviour, and their coupling
is expressed through the tensor B. The generalized stresses are the membrane stress N and bending moments M,
defined as follows: 

N =

∫ h∗/2

−h∗/2
σdx3

M =

∫ h∗/2

−h∗/2
x3σdx3

(A.4)

where σ denotes the stress field.
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Appendix B. Two-scale analysis and effective coefficients

Since the panel thickness h is comparable to the unit cell size `, we only need two-dimensional macroscopic coordi-
nates x = (x1, x2) for in-plane variations:

x1 = εy1, x2 = εy2 (B.1)

We assume that the material properties can be inhomogeneous but periodic on the microscale. Let the following
two-scale asymptotic expansion for the displacement be introduced:

uε(x) =

+∞∑
α=0

εα uα (x, y), y =
x
ε
. (B.2)

This leads to a series of problems for different orders of ε: at order ε−2, we obtain that u0(x, y) = u0(x). At order ε−1 we
obtain the displacement field solutions of the unit cell problems. At order ε0 we obtain the linear elastic constitutive
equation averaged over the unit cell, yielding the following explicit energy formulation of the homogenised elastic
plate tensor AH , BH and DH expressed in terms of their cartesian components as:

AH
αβγδ =

1
|Y |

∫
Y

C(y)
(
Eαβ + ε(wαβ)

)
:
(
Eγδ + ε(wγδ)

)
dy,

BH
αβγδ =

1
|Y |

∫
Y

C(y)
(
Eαβ + ε(wαβ)

)
:
(
y3Xγδ + ε(τγδ)

)
dy,

DH
αβγδ =

1
|Y |

∫
Y

C(y)
(
y3Xαβ + ε(ταβ)

)
:
(
y3Xγδ + ε(τγδ)

)
dy,

(B.3)

where:

• C is the stiffness distribution at the scale of the unit cell.

• Eαβ designates a constant in-plane strain over the unit cell, resulting from the zero order displacement u0. There
are three independent unit strain fields, namely the horizontal unit strain E11 = (1, 0, 0)T , the vertical strain E22 =

(0, 1, 0)T and the in-plane shear unit strain E12 = (0, 0, 1)T .

• Xαβ designates a constant flexural curvature over the unit cell, resulting from the zero order displacement u0. There
are three independent unit strain fields, namely the horizontal unit flexure X11 = (1, 0, 0)T , the vertical unit flexure
X22 = (0, 1, 0)T and the shear unit flexure X12 = (0, 0, 1)T .

• wαβ represents the displacement fields, solution of the following cell problem, expressed in its variational formula-
tion here: 

Find admissible displacement wαβ such that∫
Y

C(y)(Eαβ + ε(wαβ)) : ε(φ) dy = 0

wαβ is (x1, x2)-periodic.

(B.4)

where φ are admissible displacement vectors, i.e. with zero mean value and adequate smoothness. The generalized
strain components Eαβ are illustrated in Figure B.8(a-c).

• ταβ represents the displacement fields, solution of to another cell problem governed by the following equations:
Find admissible displacement ταβ such that∫

Y
C(y)(y3Xαβ + ε(ταβ)) : ε(ψ) dy = 0

ταβ is (x1, x2)-periodic.

(B.5)

where ψ are admissible displacement vectors, i.e. with zero mean value and adequate smoothness. The generalized
strain components y3Xαβ are illustrated in Figure B.8(d-f).

16



(a) (b) (c)

(d) (e) (f)

Figure B.8: Deformation modes of the six solutions of the cells problem (B.4) and (B.5), namely (a-b) two tractions, (c) in-plane shear, (d-e) two
flexures, (f) shear flexure. The colors indicate the “normalized” value of the vertical displacement u3 plotted on the deformed mesh. The deformed
correspond to a tension up to 20% effective strain

In our study, the unit cell is described with shell elements. The numerical computation of the coefficients in (B.3) is
solved numerically as follows:

AH
αβγδ =

1
|Y |

∫
ω

C(y)
(
Eαβ +

(
µ(wαβ) + y3χ(wαβ)

))
:
(
Eγδ +

(
µ(wγδ) + y3χ(wαβ)

))
dy,

BH
αβγδ =

1
|Y |

∫
ω

C(y)
(
Eαβ +

(
µ(wαβ) + y3χ(wαβ)

))
:
(
y3Xγδ +

(
µ(τγδ) + y3χ(ταβ)

))
dy,

DH
αβγδ =

1
|Y |

∫
ω

C(y)
(
y3Xγδ +

(
µ(τγδ) + y3χ(ταβ)

))
:
(
y3Xγδ +

(
µ(τγδ) + y3χ(ταβ)

))
dy,

(B.6)
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