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Abstract: 

Whereas the spatial coherence of wall pressure and vibratory fields induced by turbulent 

boundary layers (TBLs) on flat plates have been studied at extent, their equivalents for 

cylindrical structures still need further investigation. To that end, this work develops a semi-

analytical model which is valid for infinite cylindrical shells filled with a heavy fluid and 

excited by an internal TBL. The cylindrical shell can be also coupled to two ring stiffeners that 

account for the flanges generally used to connect a pipe to other portions of a circuit. The cross-

spectrum density (CSD) function of the shell radial accelerations is estimated from the system 

circumferential sensitivity functions and the CSD of the wall pressure field induced by the TBL. 

The spatial coherence of the pipe vibration field is therefore analysed for a pipe with and 

without flanges. This is of critical importance for applications such as non-intrusive techniques 

for detecting acoustic sources inside pipes, like beamforming using arrays of accelerometers. If 

the pipe conveys a flow, the beamforming efficiency can strongly deteriorate because of the 

background noise induced by the TBL, which pollutes the coherence signal between sensors. 

The effects that the spatial coherence could have on the beamforming results of a line of point 

sensors (accelerometers) and a ring of wire sensors (piezoelectric coiled wires) are also 

investigated in this paper. 

 

Keywords: turbulent boundary layer, stochastic excitation, spatial coherence, cylindrical shell, 

ring stiffener, pipe, beamforming 

1. Introduction 

The prediction of the vibratory field of flat plates under air turbulent boundary layer (TBL) 

excitation has received a lot of attention (see e.g., [1] and [2]) and has been explored with 

analytical models of infinite and finite plates [3-5], numerical models [6-8] and experimental 
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procedures [9, 10]. Theoretical formulations are either expressed in the space-frequency or in 

the wavenumber-frequency domains [1]. For the former, the wall pressure field (WPF) induced 

by the TBL may be described e.g., by the renowned Corcos model [11] or the Mellen one [12], 

while for the second the Chase model is typically used [13].  

Graham [14] reviewed existent TBL statistical models and investigated those suitable 

for transport aircraft. His study involved cylindrical structures like the ones we want to analyse 

in this work. One of the earliest works on TBL excitation of cylindrical shells was conducted 

by Norton and Bull [15]. The authors experimentally investigated the vibroacoustic response 

of a thin cylindrical pipe excited by a turbulent internal flow. In the plane wave propagation 

regime (low frequencies), the pipe wall peristaltic motion and resonant modes were shown to 

contribute to the structural response. At higher frequencies, acoustic coincidence effects led to 

strong excitation of supersonic pipe modes, which increase pipe wall vibrations and external 

noise radiation. A similar problem was addressed by Durant et al. [16], who resorted to a 

boundary integral formulation to perform numerical computations of the structural and acoustic 

responses of a thin cylindrical shell. The wall pressure excitation was described by the Corcos 

model with input parameters obtained from measurements of the cross spectral density (CSD) 

of the wall pressure fluctuations. Furthermore, a random vibration analysis of an axially 

compressed cylindrical shell in air excited by an external TBL was recently carried out by Li et 

al. [17]. The governing differential equations of the axially compressed cylindrical shell were 

derived and an eigenproblem was formulated using separation of variables. The CSD of the 

TBL was expanded as a Fourier series. Results for the shell responses were compared with 

those obtained from a modal decomposition method, showing good agreement.  

Very recently, an analytical model of a fluid loaded cylindrical shell excited by an 

external turbulent flow field was presented by some of the authors of this work and colleagues 

in [18]. A wavenumber-point reciprocity principle ([19, 20]) was implemented to analytically 

determine the circumferential sensitivity functions of the shell, taking into account the fluid 

loading. The technique was used to investigate the physical mechanisms governing noise 

radiation by a cylindrical shell excited by a TBL. This was done by examining the contributions 

of individual circumferential modes to the acoustic spectra. The approach in [18] was extended 

to analyse noise radiation from a periodically stiffened shell under TBL excitation in [21]. The 

circumferential admittances that characterize the dynamic behaviour of the stiffeners were 

computed with a finite element model. Some bumps in the spectrum of the radiated pressure in 

the far field were observed, which were attributed to Bloch-Floquet waves propagating in the 

periodically stiffened shell.  
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In the present paper, a similar theoretical approach to that in [18] and [21] is followed 

to analyse the spatial coherence of the vibrations of a fluid filled pipe, excited by an internal 

TBL. The pipe is modelled as an infinite cylindrical shell filled with water. Water is a heavy 

fluid (in comparison e.g., to air) and is therefore strongly coupled to the cylindrical shell 

vibrations. Such intense interaction is described in detail by the proposed theoretical 

vibroacoustic model. In addition, two configurations for the pipes are considered: a) a fluid 

filled infinite cylindrical shell and b) a fluid filled infinite cylindrical shell with two ring 

stiffeners.   

The current work has significant applications for vibroacoustic beamforming 

techniques. In fact, it was mainly motivated by unexpected results from beamforming 

measurements in [22], to detect sodium-water reactions in the steam generator unit (SGU) of a 

liquid sodium fast reactor (SFR). Sodium/water reactions can lead to severe damage if 

appropriate action is not taken quickly. The presence of an internal TBL in the SGU can strongly 

pollute the beamforming outputs and limit their efficiency. The main issue here is to determine 

whether a weakly spatially correlated pressure field exerted by the TBL on the pipe wall may 

induce, or not, a strongly spatially correlated vibration field altering the beamforming results. 

To the best of the authors’ knowledge, this question has not been dealt with before and has 

motivated the developments in this work.   

  Given the practical importance of the above problem in the complex framework of leak 

noise detection and propagation [23], it is worthwhile to explain it in some more detail. In recent 

years, a beamforming approach based on vibration measurements on the external hull of the 

SGU rather than on acoustic measurements [24-27] was studied in a collaboration between the 

French Alternative Energies and Atomic Energy Commission (CEA), and the Institut National 

des Sciences Appliquées (INSA) Lyon. The basis of the approach was developed in the 

framework of the PhD thesis of Moriot (2013). The numerical results by Moriot et al. [28] 

showed that vibroacoustic beamforming using a fixed linear array of accelerometers on the 

external surface of the cylindrical shell can be used to localize an acoustic monopole, as well 

as to increase the signal-to-noise ratio when the vibratory background noise is uncorrelated. To 

validate these results, an experiment on a laboratory mock-up was performed by Kassab et al. 

[22]. The experimental setup comprised a cylindrical pipe filled with a heavy fluid connected 

to a hydraulic circuit by two flanges (see Fig. 1). Water was used instead of sodium for practical 

reasons, which can be justified because water and sodium have similar densities and close bulk 

modulus values. A hydrophone in transmission mode inside the pipe generated the acoustic 

signal and the background noise was regulated changing the flow speed. Vibrations were 
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measured with a line array of accelerometers with a spacing of 0.04 m (see Fig. 1). Special 

attention was paid to uncouple the test section from external mechanical sources (the pipe was 

fixed with rubber seals on a suspended slab) and from external fluid sources (using acoustic 

decoupling balloons). Upstream of the test section, a 4 m long pipe and a perforated plate flow 

conditioner were used to stabilize the turbulent flow, while a 1.5 m long pipe was set for 

discharging before the acoustic balloon. Despite all precautions, the background noise 

measurements showed a strong coherence between accelerometers at the considered flow speed. 

This behaviour was observed in the frequency range [1kHz-3 kHz] for a flow rate of 140 l/s 

(4.5 m/s) as shown in Fig. 6 of [22]. Such a strong coherence significantly reduced the 

performance of the Bartlett beamforming approach, which relies on the assumption that the 

background noise is uncorrelated [29].    

The strong coherence between sensor signals was unforeseen because the wall pressure 

field (WPF) induced by the TBL is supposed to be uniformly distributed on the pipe wall and 

it is also known to be weakly spatially correlated [11]. For a flow speed of 4.5 m/s, the WPF 

Corcos model [11] estimates a coherence length in the flow direction of 4.5 cm at 100 Hz, 1.5 

cm at 300 Hz and 0.2 cm at 2 kHz. Therefore, for frequencies in the vicinity of 300 Hz the 

sensor spacing is clearly greater than Corcos’ coherence length. One would then presume very 

weak correlation between sensors beyond 300 Hz, but this is not what was observed in Fig. 6 

of Kassab et al. [22]. Yet there is an important difference between the experiments in [22] and 

previous works in literature. The latter mostly focus on the pressure induced by a TBL on a 

rigid wall, whereas the former focuses on the pipe shell vibrations induced by the TBL. As 

mentioned before, building a theoretical model to understand the spatial coherence of the pipe’s 

vibration field is at the core of this work.  

 The paper is organized as follows. The theoretical models for the two pipe 

configurations are presented in Section 2. The CSD function of the radial acceleration between 

two axial positions on the pipe is given as a function of the WPF of the TBL, in the frequency-

wavenumber domain. An analytical expression of the circumferential sensitivity functions is 

derived for the fluid filled pipe and the circumferential admittance approach (CAA) is employed 

to model the stiffened pipe [30-32]. In Section 3, the proposed approach is used to analyse the 

auto and cross spectral densities (ASD and CSD) of a virtual line array of accelerometers, 

mimicking that in the experiment of Fig. 1 [22]. Comparisons between theory and experiments 

are also reported and the influence of various system parameters on the spatial coherence of the 

pipe’s vibration field is analysed. In addition, the case of a virtual array of ring wire sensors is 

considered. The conclusions of the paper are finally drawn in Section 4, yet two appendices 
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follow. The first one contains some technical details on the TBL and shell models, while the 

second one includes an additional comparison between the proposed model and the 

experimental results in [33].   

 

2. Theoretical formulation 

2.1 Vibrational response of a cylindrical shell excited by an internal turbulent flow 

Let us consider an infinite cylindrical shell fully filled by a turbulent flow in the cylindrical 

coordinate system (𝑥, 𝑟, 𝜃), see Fig. 2. As mentioned in the Introduction, two configurations 

will be hereafter considered: a shell without stiffeners and a shell coupled to two ring stiffeners 

at the axial positions 𝑥1 and 𝑥2. The Flügge equations are used for the thin cylindrical shell and 

the coupling forces between shell and stiffeners are assumed to only take place in the radial 

direction. Given that the mean flow convection speed 𝑈0 is small compared to the sound speed, 

the effects of convection on acoustic waves are neglected. This allows us to consider the 

Helmholtz equation for describing the acoustic pressure radiated inside the pipe. Moreover, the 

TBL exciting the inner wall of the shell is supposed to be spatially homogeneous, stationary 

and fully developed.  

The CSD of the WPF, 𝜙𝑝𝑝, is estimated from the TBL parameters and the Chase 1987 

model [13], which is expressed in the wavenumber-frequency domain. Attention must be paid 

on how to define the space Fourier Transform for the problem at hand. In what follows, we 

employ a space Fourier transform about the x-axis and a Fourier series decomposition about the 

circumferential one (due to periodicity along the circumference). The Fourier transform, 𝑓, of 

a generic function 𝑓  depending on x and 𝜃  is given by, 

( ) ( ) ( ) ( )
2

i

0

1
, , ,

2

xk x n

xf x f k n f x e d dx




  



− +

−

→ =   , 

 

(1) 

where xk is called the axial wavenumber and n is the circumferential order. Considering this 

definition of the Fourier transform, the CSD of the WPF in the ( ),xk n domain due to the TBL, 

tbl

pp , can be related to the CSD of the WPF of Chase’s model in [13], 
tbl

ppS , through 

( )
24

, , , ,tbl tbl

pp x pp x

n
k n S k

R R


  

 
=  

 
. 

 

 

(2) 

For completeness, the Chase model considered in this paper is introduced in appendix A.  
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From random vibrations theory, the CSD of the radial shell displacement between points 

of coordinates ( ),x   and ( ),x    on the shell, wwS , can be written as [18, 21], 

( ) ( ) ( ) ( )*, , , , 2 , , , , , , , , , ,tbl

ww w x pp x w x x

n

S x x H x k n k n H x k n dk         
++

=− −

   =   , 

 

(3) 

where the circumferential sensitivity functions, wH , can be expressed in the form  

( ) ( )
2

i i

0

, , , , , , , ,
2

xk x n

w x w

R
H x k n H x x e e dxd



     


+

− −

−

=   , (4) 

making use of the reciprocity principle in [18, 20, 21]. In Eq. (4), ( ), , , ,wH x x    corresponds 

to the radial displacement of the shell at point 𝑀̃ of coordinates ( ),x   when the shell is excited 

by a unit radial force at point 𝑀 of coordinates ( ),x  . Considering the definition of the Fourier 

transform in Eq. (1), the sensitivity functions wH  of  Eq. (4) correspond to the product of the 

shell radius and the Fourier transform of the radial displacements in the ( ),xk n  space, when the 

shell is excited by a unit radial point force at 𝑀. Equipped with this interpretation of the 

sensitivity functions, in next section we demonstrate how to estimate them for the fluid filled 

shell with and without ring stiffeners. The calculation process is based on the circumferential 

admittance approach (CAA) [30, 31]. 

Once 
tbl

pp  and wH are known, the numerical evaluation of Eq. (3) demands, in practice, 

truncating the wavenumber domain. For frequencies well above the hydrodynamic frequency, 

it is well known that the contribution of the convective peak is negligible to a good extent [34, 

35]. Therefore, one can define an axial cut-off wavenumber xk  from the shell and fluid 

characteristics,  

( )0max , ,x x fk k k=  (5) 

where fk  is the flexural wavenumber of a plate equivalent to the cylindrical shell (i.e. a flat 

plate having the same thickness and material properties as those of the shell), and 0k  is the 

acoustic wavenumber. The factor x  is a safety coefficient typically taken to be 2=x . 

Similarly, one can define a cut-off circumferential order, N , as follows  

( )0int max , 1N fN R k k = +
 

, 
 

(6) 
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where N  is also a safety coefficient that can be set to 5.1=N . Considering the threshold 

values in Eq. (5) and Eq. (6), one can well estimate the CSD function of the radial displacement 

in Eq. (3) as,  

( ) ( ) ( ) ( )*, , , , 2 , , , , , , , , , ,
x

x

kN
tbl

ww w x pp x w x x

n N k

S x x H x k n k n H x k n dk         
=− −

   =   , 

 

(7) 

and use a quadrature rule to compute the integral in the expression.   

 As illustrated in Fig. 3, the process for estimating the CSD of the radial displacement 

between points ( ),x   and ( ),x    consists of three main steps: 

• First, computation of the sensitivity functions of the two points, ( ), , , ,w xH x k n   and

( ), , , ,w xH x k n    with the CAA approach (see next section).  

• Second, evaluation of the Chase CSD of the WPF from Eq. (2) and Eq. (1A).  

• Third and last, calculation of the CSD of the shell radial displacement using Eq. (7).  

 

This process should be repeated for each angular frequency. Finally, let us mention that in this 

work results are presented for the CSD of the radial acceleration instead of displacement, which 

are related through ( ) ( )4, , , , , , , ,wwS x x S x x          = . Moreover, given that the original 

Chase model for the TBL is a two-sided angular frequency spectrum, the CSD of Eq. (7) needs 

to be multiplied by a factor 4  to convert it into a one-sided frequency spectrum. 

2.2 Estimation of the circumferential sensitivity functions 

In this section, we compute the radial displacement of the shell in the wavenumber domain 

( ),xk n , when excited by a unit harmonic radial point force of angular frequency   applied at 

point M ( ),x  . Considering spectral displacements,  
( )

( )
, ,

,
xF xW k n
 

, the sensitivity functions that 

appear in Eq. (7) can be obtained from ( )
( )

( )
, ,

, , , , ,
xw x F xH x k n RW k n
 

  = . In what follows, 

they will be derived for the fluid filled cylindrical shell with and without ring stiffeners.  

 

2.2.1  Circumferential admittance approach (CAA) 

 

Fig. 4a shows an infinite cylindrical shell filled with a heavy fluid (water) and coupled to two 

ring stiffeners. For the modelling, the global system is initially partitioned into two subsystems 
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namely, the shell and the ring stiffeners (see Fig. 4b). The CAA is then implemented to assemble 

them. The process succinctly consists in (see [30] for full details): 

• First, as the considered system is axisymmetric (except for the excitation), the different 

spatial fields (displacement, acoustic pressure, force) generically denoted as 𝑓 can be 

represented by a Fourier series decomposition about the circumference, 

( ) ( )
2

i

0

1
,   

2

nf n f e d n



 


−=     

( ) ( ) in

n

f f n e 


=−

=   

 

 

 

 

 

 

(8) 

 
 

 

 

 

 

 

 

(9) 

• Second, for each circumferential order n (n has been dropped from 

notation for simplicity), we define the circumferential admittances ijY 
of the fluid filled 

shell ( 1 = ) and of the ring stiffeners ( 2 = ), between the junctions  1,2i  and  

 1,2j  by, 

   ,  1, 2 ,  1,2
ij

ij

i

W
Y i j

F






=    (10) 

where, 

o ijW 
 is the circumferential radial displacement at the junction j due to the 

circumferential radial force applied at junction i;    

o iF
is the circumferential radial force applied at junction i on the shell by the 

stiffeners ( 1 = ) or the circumferential radial force applied on the stiffeners by 

the shell ( 2 = ).  

Moreover, for each subsystem α, we define the circumferential free displacement at 

junction i, iW 
, as the circumferential radial displacement induced by the external 

excitation at junction i, when all junctions are free. 

• Finally, using the superposition principle for passive linear systems and considering 

radial displacement continuity and force equilibrium at the junctions, we obtain the 

matrix system [30, 31],  

1 2 2 1 + = − 
c

Y Y F W W  

 

(11) 

where 
11 12

21 22

Y
Y Y

Y Y

 


 

 
=  
 

is the circumferential admittance matrix of subsystem α, 

1

2

F

F

 
=  
 

c
F  is the circumferential coupling force vector containing the circumferential 
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forces applied by the stiffeners on the shell when they are coupled together, and 

1

2

W

W







 
 =
  

W   is the circumferential free displacement vector of subsystem α. 

 

The solution of this system of equations provides the coupling forces that the stiffeners 

exert on the shell. Substituting them into the model for the infinite fluid filled shell we can 

estimate its vibratory field when coupled to the ring stiffeners. On the other hand, as no external 

excitation is applied to subsystem #2, we get 𝑊̃̅𝑖
2 = 0 in Eq. (11). 

 

The above summarizes the basics of the CAA. In the next subsections, it is discussed 

how to estimate the circumferential admittances and the free displacements of the fluid filled 

shell, as well as those of the ring stiffeners. Furthermore, the shell radial displacements in the 

( ),xk n  wavenumber space will be calculated as a response to the coupling forces and the 

external excitation.  

2.2.2 Spectral approach for estimating the shell circumferential admittances and free 

displacements 

The Flügge equations of motion of the cylindrical shell filled with water are given by ([36]) 

( )

( )

( ) ( ) ( )

, 0 0

( , ) , 0 0

, , ,exc a

U x

x V x

W x F x p x



  

  

      
      

= +      
      −      

, (12) 

where U, V, and W are respectively the longitudinal, tangential and radial displacements of the 

shell. denotes the Flügge operator, ap is the pressure applied by the internal fluid on the shell 

and ( )2 21 R Eh = − . Here, h, E,   are the shell thickness, the shell Young modulus and the 

shell Poison ratio, respectively. ( ),excF x   is the harmonic radial force distribution exerted with 

angular frequency  . Damping is introduced in the shell model through a complex Young 

modulus, ( )* 1 iE E = + , where   is the structural damping loss factor. Applying the Fourier 

transform defined in Eq. (1) yields the shell equations of motion in the ( ),xk n wavenumber 

domain, 
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( )

( )

( )

( ) ( ) ( )

, 0

, , 0

,,

0

,

0

x

x x

a x
x exc x

U k n

k n V k n

p k nW k n F k n



              = +                
−

. (13) 

The spectral Flügge matrix ( ),xk n  in Eq. (13) is provided in Appendix A. 

On the other hand, the acoustic pressure satisfies the homogeneous Helmholtz equation 

[37], 

( ) ( )
2

0

, , , , 0a ap x r p x r
c


 

 
 + = 

 
, 

 

(14) 

and the kinematic condition at the cylindrical interface between the shell and the fluid medium, 

( ) ( )2

0, , ,ap
x R W x

r
   


=


. 

 

 

(15) 

Here   stands for the Laplacian operator in the cylindrical coordinate system and 0 , 0c  

respectively denote the fluid density and the sound speed. We introduce damping into the fluid 

through a complex celerity, ( )*

0 0 01 ic c = + , where 0  is the fluid damping loss factor. 

Applying the Fourier transform to Eqs. (14) and (15), the spectral radiated pressure ap  can be 

related to the spectral radial displacement of the shell, W , through the spectral fluid impedance, 

fZ , as [37-39], 

( , ) ( , ) ( , )a x f x xp k n Z k n W k n= ,  (16) 

( )

( )

2

0( , )
n r

f x

r n r

J k R
Z k n

k J k R

 
=


, (17) 

where nJ  is the Bessel function of order n and the prime denotes derivative with respect to the 

argument. The wavenumber rk  is defined by  

2 2

0 0

2 2

0

  if ,

i  otherwise.

x x

r

x

k k k k
k

k k

 − 
= 

− −

 (18) 

Substituting Eqs. (16) and (17) into Eq. (11), and inverting the matrix system, results in the 

shell spectral radial displacement, 
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( )
( ) ( ) ( ) ( )( )

( )

2

, , , ,

,
,

exc x UU x VV x UV x

x

x

F k n Z k n Z k n Z k n

W k n
k n


 

− 
 

=


, (19) 

where 

( ) ( )

( )( )2               ,

UW UV VW UW VV VW UW UV VW UU

WW f UU VV UV

Z Z Z Z Z Z Z Z Z Z

Z Z Z Z Z

 = − + −

+ − −

 

 

(20) 

and , , , ,mnZ m n U V W = are the elements of the spectral Flügge matrix ( ),xk n  in Appendix 

A.  

Let us next contemplate two situations. In order to estimate the circumferential 

admittances of the fluid filled cylindrical shell, in the first one we consider the shell excited by 

a radial circumferential unit force F at x=0, for each circumferential order n. The spectral radial 

force related to this excitation is ( ), 1exc xF k n = . The spectral radial displacement 𝑊̃̃ can be 

calculated analytically using Eq. (19). The circumferential displacement 𝑊̃ is then obtained 

from an inverse Fourier transform about x, 

( ) ( ) i1
, ,

2
xk x

x xW x n W k n e dk




−

=  . 

 

(21) 

The integral is computed numerically after reducing the infinite integration limits to ,x xk k − 

,  where xk  is the cut-off wavenumber defined in Eq. (5). As the considered system is translation 

invariant in the axial direction, the circumferential admittance of the shell between junctions i 

and j can be finally deduced from 

( ) ( )1 ,ij i jY n W x x n= − . (22) 

In the second situation, we use the same approach to compute the free circumferential 

radial displacements  1,   1,2iW i , but now consider a unit point excitation, instead of a 

circumferential one, applied at point M ( ),x   and with spectrum,   

( )
( )i

,
2

xk x n

exc x

e
F k n





− +

= . 

 

(23) 

Substituting Eq. (23) into Eq. (19) and inverse Fourier transforming through Eq. (21), the radial 

circumferential displacement of the shell can be obtained. The free displacement at the junction 

i is then given by ( ) ( )  1 , ,   1,2i iW n W x n i=  . 
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2.2.3 Circumferential admittances of the ring stiffener 

 

In what follows we suppose that the two ring stiffeners and the shell are made of the same 

material. A model of a circular rod and of rectangular cross-section [40] simulates the stiffeners’ 

dynamic behaviour. We define rl  and rh  as the width and height of the cross section, 

respectively. Neglecting inertia and rotary effect, the radial circumferential admittance, rY  can 

be estimated as [40], 

( )
( )

( ) ( )( ) ( )

2 2 2 2

2
2 2 4 2 2 2 2 2 2

1

1 1 1

r r

r

r r r r r r r

R n
Y n

El h n n n n



  

  − +
 =

 − +  − + + +
  

 

 

(24) 

where 
2

212

r
r

h

R
 =  and r R

E


 = . 

Given that the two stiffeners are not physically coupled to each other, 
2 2

12 21 0Y Y= = , and because 

they are identical we get 
2 2

11 22 rY Y Y= = .  

 

2.2.4 Displacements of the shell coupled to the ring stiffener 

Once the shell and stiffener admittances have been obtained, as well as the free displacements 

induced by the external excitation, it becomes possible to compute the coupling forces with Eq. 

(11). The forces applied on the fluid loaded cylindrical shell are the external unit radial point 

force applied at point M of coordinates ( ),x   and the radial circumferential forces applied by 

the ring stiffeners. These forces should be reinjected in the spectral model of the fluid filled 

shell described in Section 2.2.2 to determine the radial displacement of the fluid loaded shell, 

when coupled to the two ring stiffeners. The spectral radial forces are given by,  

( )
( )

1 2

i

i i

1 2,
2

x

x x

k x n

k x k x

exc x

e
F k n F e F e





− +

− −
= + + . 

 

(25) 

but Eq. (25) is then substituted into Eq. (19) to obtain the spectral radial displacement of the 

fluid filled shell coupled to the stiffeners, 
( )

( )
, ,

,
xF xW k n
 

. The sensitivity functions of the 

considered system that appear in Eq. (7) are finally computed taking into account that 

( )
( )

( )
, ,

, , , , ,
xw x F xH x k n RW k n
 

  = . 
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3. Analysis of the numerical results 

This section focuses on using the proposed semi-analytical model for the analysis of the shell 

vibratory field induced by the internal TBL. Special emphasis is paid to spatial coherence. The 

investigations are carried out on a configuration that mimics the test pipe of the experimental 

set-up in Fig. 1, also considered in the experimental study [22]. For characterizing the shell 

vibration field, we emulate two types of virtual array sensors: 

1. A virtual linear array of standard “point” accelerometers representing the situation 

depicted in Fig. 1 

2. A virtual ring array simulating piezoelectric wires wound around the shell an integral 

number of times ([41]). Only the component n=0 of the radial acceleration needs to be 

evaluated in this case. 

 

Section 3 is organized as follows. The test cases to be analysed are described in 

Subsection 3.1, while the dynamic characteristics of the shell and ring stiffeners are presented 

in Subsection 3.2. Results for the ASD of the radial accelerations induced by the TBL are 

discussed in Subsection 3.3 and those of the normalized CSD in Subsection 3.4. A comparison 

with the experimental results in [22] is presented in Subsection 3.5, followed by an analysis of 

the system parameter influence on the spatial coherence of the vibration field in Subsection 3.6. 

Finally, Subsection 3.7 concentrates on the ASD and normalized CSD for the component n=0 

of the radial acceleration.  

3.1 Description of the test case and modelling approach 

The laboratory experiment in [22] that will be mimicked hereafter consisted of a test section 

pipe of length 3.1 m, 0.219 m in diameter and a thickness of 0.008 m. Upstream of the test 

section, a 4 m long pipe was used to stabilize the turbulent flow, while a 1.5 m long pipe was 

attached afterwards for discharge. These two pipes had the same dimensions as the test pipe 

and were connected to it by means of two flanges. Both the pipe and the flanges were made of 

stainless steel, whose material properties are taken as 
37800 kg/m = , 185 GPaE = , 0.33 =

, 0.001 = . The water flow rate was 140 l/s which corresponds to a flow speed of 4.5 m/s. The 

density, speed of sound and the loss factor for water are 
3

0 1000 kg/m = , 0 1500 m/sc =  and 

0 0.001 = . 

To model the above set-up, the stabilizing and discharge pipes are represented as infinite 

cylindrical shells. The flanges are simulated by ring stiffeners of rectangular cross-section 
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0.04m (width)   0.06 m (height) and are placed at the axial positions 
1 0 mx =  and 

2 3.1 m.x =

Concerning the TBL excitation, the wall pressure field is represented by the Chase model [13]. 

The TBL thickness is assumed equal to the shell radius, whereas the convective and friction 

velocity are respectively taken as 
00.7cU U= , and 00.032U U = . The frequency band of 

interest has been fixed to [100 Hz – 2000 Hz] with a frequency resolution of 4 Hz. 

3.2 Shell and ring stiffener characteristics 

Before analysing the vibratory field of the shell in response to the TBL excitation, it is worth 

investigating the dynamics of the shell and stiffeners.  

We start with the circumferential admittances needed for evaluating the coupling force 

between the shell and the ring stiffeners, in Eq. (11). The magnitudes of the circumferential 

admittances of the ring stiffeners for a large frequency range (i.e. [1 Hz – 10 kHz]) and for the 

circumferential orders n from 0 to 3, are plotted in Fig. 5a. These values have been calculated 

with Eq. (24). The peaks observed in the figure can be attributed to the modes of the stiffener 

and take place at resonance frequencies 7352 Hz, 0 Hz, 3158 Hz and 8800 Hz for n=0, 1, 2, 3, 

respectively. The beam mode associated to the circumferential order n=1 corresponds to a rigid 

body mode that explains the “peak” at 0 Hz. The ring mode associated to the circumferential 

order n=0 exhibits a resonance frequency higher than that for n=2 due to the effect of curvature 

of the ring stiffener.  Withal, note in Fig. 5b that in the frequency band of interest [100 Hz-2000 

Hz] the stiffeners do not show any resonance. If one compares these curves with those in Fig. 

5c for the admittances of the fluid filled shell, the following is observed.  First, and for the same 

reasons as for the stiffeners, the shell exhibits “resonances” outside the frequency band of 

interest for circumferential orders n=0 and n=1 (6623 Hz and 0 Hz, respectively). Yet and 

opposed to the stiffeners, one can observe peaks belonging to the range [100 Hz-2000 Hz] for 

circumferential orders n=2 and n=3, at 360 Hz and 1072 Hz respectively. Strictly speaking, 

one cannot associate these frequency peaks to modes of the fluid filled shell because the shells 

are unbounded. These frequencies are usually referred in the literature as the cut-on frequency 

of each circumferential order, or each circumferential mode, see [38, 39]. Below this specific 

frequency, the waves propagating in the axial direction are evanescent while they become 

propagative above it. 

Comparing the values of the admittances of the ring stiffeners in Fig. 5b with those of 

the shell in Fig. 5c reveals which of the two subsystems is the stiffest one. In particular, one 

notices that for the circumferential orders n=2 and n=3, the shell admittances are more than one 

order of magnitude greater than those of the stiffener, regardless of frequency. For these 
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circumferential orders, the stiffener is therefore much more rigid than the shell. Consequently, 

when the two subsystems are coupled, the stiffeners will have the tendency to confine the shell 

vibrations. In contrast, for the circumferential order n=1 the shell admittances are smaller than 

those of the stiffener at low frequencies. For the latter, the influence of the ring stiffeners on the 

shell vibrations is therefore expected to be rather limited.  

The coupling forces between shell and stiffeners are calculated inserting the admittances 

in Eq. (11).  Plugging their values into the spectral force expression Eq. (25), we can estimate 

the spectrum of the shell radial displacements from Eq. (19). To analyse them, as well as the 

waves propagating in the fluid in the axial direction, it suffices computing the spectral 

displacements for unit spectral forces (i.e. taking ( ), 1xF k n =  in Eq. (19)). This is equivalent to 

consider the shell is excited by a point force at ( )0,0 , with an amplitude of 2 . Fig. 6 shows 

the displacements depending on frequency and the axial wavelength 2x xk = , for the first 

four circumferential orders. One can observe some trajectories that can be associated to 

operational dispersion curves, which identify propagative waves. These curves differ from 

classical dispersion curves (obtained by searching the roots of the denominator   of Eq. (19)), 

by the fact that they depend on the excitation. The levels of the trajectories give us an indication 

of the shell sensitivity to the input excitation. In the present case of a radial excitation, one can 

observe in Fig. 6 that the shell response for the circumferential order n=0 is very small in 

comparison with the other orders. On the contrary, significant displacement is produced for the 

circumferential order n=1 in the entire frequency range. The shell also strongly reacts for 

circumferential orders n=2 and n=3, above their respective cut-on frequencies.  

As the turbulent flow excites the shell radially, one would expect the above characteristics 

of the circumferential orders to play a significant role in determining the vibratory field of the 

shell when excited by a TBL.  Moreover, the trajectories in Fig. 6 are an indication of the 

wavelength of the propagative waves in the fluid filled shell. For the circumferential order n=0, 

in Fig. 6a we have superposed the acoustic wavelength as well as the longitudinal and flexural 

wavelengths of an equivalent plate with the same thickness and material properties as those of 

the shell. From the proximity of the superimposed trajectories with the maximum spectral 

displacement curves, one could associate the first trajectory from the left to dominant acoustic 

behaviour of the fluid, while the second can be identified with compressional-extensional 

motions of the shell (which lead to radial displacement through the Poisson effect). For higher 
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circumferential orders, the trajectories are the results of the strong interactions between the shell 

and fluid motions and the figures are more difficult to interpret.  

 

3.3 Auto-spectrum density for the virtual line array of accelerometers 

To analyse the vibration field of the pipe test section, we next consider the first virtual array 

configuration introduced at the beginning of Section 3. The array is composed of 25 virtual 

accelerometers fixed on the cylindrical generator at 0 =  (similar to the experiment in Fig. 1). 

The spacing between the sensors is 𝛥𝑥 = 0.04 m and the first accelerometer is positioned at 

0.1 m from the upstream flange of the flow. The coordinates of the m-th accelerometer are 

therefore ( ) ( ), 0.06 0.04 ,0m mx m = +  for  1,...,25 .m  As said at the end of Section 2.1, the 

acceleration ASD or CSD, S , is used hereafter, which is related to displacement ASD or CSD, 

wwS , obtained from Eq. (7), by 
4

wwS S = .  

Fig. 7 presents the mean value of the ASD of the radial accelerations measured by the 25 

virtual accelerometers. The ASD has been computed with the flow conditions presented in 

Subsection 3.1. Results are given for the fluid filled shell without and with two ring stiffeners. 

For the former (Fig. 7a), one can notice two significant peaks, at 360 Hz and 1072 Hz, which 

correspond to the cut-on frequencies of the shell admittance introduced in the previous 

subsection for n=2 and n=3. The individual contributions of each circumferential order are also 

plotted in the figure confirming the prominence of n=2 and n=3 for most of the ASD, except 

for frequencies below 360 Hz, where the circumferential order n=1 becomes dominant. It 

should be noted that the contribution of n=0 is negligible, with values lower than -140 dB, so it 

is not plotted in the figure.  

Concerning the case of the shell coupled with the two ring stiffeners in Fig. 7b numerous 

additional peaks appear as compared to Fig. 7a, which can be attributed to circumferential 

orders n=2 and n=3, none of them being associated to n=1. This can be explained by the fact 

that for n=2 and n=3, the stiffeners are more rigid than the shell. Therefore, propagative waves 

in the fluid filled shell experience significant reflection at the stiffeners. The interferences 

between the outward propagating waves and the reflected ones lead to resonances at some 

frequencies. In the following, let us term the resulting waves as “pseudo axial modes”, as they 

consist in axial standing waves built from partial wave reflexion at the stiffeners. Pseudo axial 

waves do not occur for n=1 because the shell is more rigid than the stiffener for this 

circumferential order. Consequently, propagative waves barely perceive the stiffeners and 
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almost no reflection occurs. The frequency related to the pseudo axial modes can be 

approximated from the knowledge of the propagative axial wavelength given in Fig. 6 for each 

circumferential wavenumber. Indeed, it is well-known that resonances happen when the 

interference between the outward propagating waves and the reflected ones are constructive, 

which leads to standing waves exhibiting nodes of vibration separated by half a wavelength. 

For instance, for a basic system as a simply supported beam, resonances occur when the beam 

length is exactly a multiple of half-wavelength. In order to verify that the pseudo axial modes 

follow a similar law for each circumferential order, one can identify the frequencies, 
approx

mf  for 

which the distance between the two stiffeners correspond to a multiple m of half the axial 

propagative wavelength, x , given in Fig. 6: 

( )approx

approx  /  
2

x m

m x

f
f L m


+ = , 

 

(26) 

where 2 1xL x x= −  corresponds to the length of the test section. 

 Table 1 compares the resonant frequencies for the circumferential order n=2 obtained 

using the relation (26) and from the experiment [22], with those predicted from the frequency 

values of the peaks observed in Fig. 7. A good agreement is observed among results. One can 

check that the progression of the resonant frequencies is well represented by the approximate 

law. The frequencies of the additional peaks in Fig. 7b as compared to those in Fig. 7a can be 

well associated with constructive interferences between the outward propagating waves and the 

reflected ones (i.e., the pseudo axial modes). It should be noted that we refuse to use the term 

axial modes because normal modes are only defined for bounded systems. In the present case, 

both the shell and the cylindrical fluid cavity remain unbounded.   

 

Table 1. Comparison of the resonant frequencies related to the circumferential order n=2 in 

function of the axial modal order, m: 
approx

mf , approximate frequency verifying the relation  (26); 

frame

mf , frequency of the mth resonant peak observed in Fig. 7 for the shell coupled to the two 

ring stiffeners; 
exp

mf , frequency of the mth resonant peak observed above 360 Hz in the 

experiment acceleration spectra for a hammer excitation [22]. 

m 1 2 3 4 5 6 7 8 9 10 
approx

mf (Hz) 360 369 392 442 522 632 767 920 1068 1265 

frame

mf  (Hz) 360 372 400 456 544 660 800 956 1124 1304 

exp

mf (Hz) 362 374 400 450 540 656 780 934 - - 

 



18 

 

The formation of pseudo axial modes is confirmed in Fig. 8, where we plot the 

distributions of the ASD of the acceleration as a function of the accelerometer position and 

frequency. The pattern in the figure at resonance frequencies exhibits some bumps and nodes. 

The distances between two nodes can be related to half the wavelength of the propagative waves 

detected in Fig. 6. For instance, one can observe from Fig. 8 that this distance is close to 0.48 

m at 660 Hz and 0.36 m at 956 Hz, and we found respective wavelengths of 0.98 m and 0.74 m 

for these two frequencies and n=2 in Fig. 6c. Similarly, at higher frequencies, one finds that the 

distance between two nodes is 0.4 m at 1258 Hz and 0.24 m at 1828 Hz, which corresponds 

well to half the wavelength for n=3 in Fig. 6d. This confirms that the pseudo axial modes are 

built from constructive interferences between the propagating waves and the reflected ones at 

the ring stiffeners. 

The ASD of the radial vibration of the shell excited by the TBL has been evaluated using 

Eq. (7). It depends on the product of the circumferential sensitivity functions of the shell and 

the CSD of the WPF. The latter characterises the TBL excitation that can be associated with a 

set of uncorrelated wall plane waves [8, 34, 42], whereas the former are space transfer functions 

characterising the vibro-acoustic response of the fluid filled shell (with or without stiffeners) to 

unit wall plane wave (WPW) excitation. In the present study, the frequency band of interest is 

well above the hydrodynamic coincidence frequency. Given that the CSD of the WPF is 

relatively flat in the sub-convective domain [1], the uncorrelated WPWs representing the TBL 

excitation have similar amplitudes. The response of the shell to the TBL is then mainly 

controlled by the response of the shell to WPW excitation.  The analysis of the sensitivity 

functions can help us to better understand how the TBL excites the shell. These are plotted in 

Fig. 9 as a function of the positive axial wavenumber for n=2 and at 660 Hz, which corresponds 

to the frequency of the pseudo axial mode (m,n)=(6,2).  The results are given at the position of 

sensors #6 and #13 for the shell with two ring stiffeners: the first position corresponds to an 

antinode of the pseudo axial mode whereas the second one corresponds to a node. For 

comparison, the result for the shell without stiffeners is also given (independently of the sensor 

position). One can observe a peak indicating that the shell (with or without stiffeners) reacts 

mainly to the WPW that has a wavenumber close to 6.4 rad/m, i.e., to a wavenumber similar to 

that of the propagative wave for n=2 (as x =0.98 m at 660 Hz, see Fig. 6c). The amplitude of 

the peak is more important for position #6 than for position #13, the difference being of ~12 

dB. This explains why the ASD of the radial acceleration of the shell excited by the TBL for 

sensor #6 is also about 12 dB higher than that for sensor #13 at 660 Hz. Fig. 10 shows the 
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amplitude of the sensitivity function for all sensors, confirming our previous analysis on two 

sensors. It is observed that regardless of the sensor position, two peaks occur at wavenumbers 

 6.4 rad/m. Moreover, the amplitude of these peaks for the shell without stiffeners is 10 dB 

lower than that of the shell with ring stiffeners for almost all sensors. This explains again the 

10 dB difference in the acceleration ASD between the two shell models at 660 Hz, which was 

observed in Fig. 7.  The phases shown in Figs. 10c-d will be discussed in the following section. 

3.4 Normalized cross-spectrum density for the virtual line array of accelerometers 

Having studied the ASD of the shell radial accelerations, let us next focus on the spatial 

coherence of the vibratory field, which was the main motivation of the present work. As 

mentioned in the Introduction, the coherence length of the TBL in the axial direction for the 

considered flow speed is smaller than the sensor spacing (0.04 m), at frequencies equal or 

greater than 300 Hz. Hence, the wall pressures induced by the TBL and measured by 

hydrophones next to the accelerometers should be weakly correlated. To illustrate this point, 

the normalized CSD of the wall pressure measured by a virtual array of 7 hydrophones is 

presented in Fig. 11. The hydrophones are positioned at coordinates

( ) ( )  , 0.06 0.04 ,0 ,  1,...,7m mx m m = +   .  The normalized CSD of the wall pressure between 

the i-th and j-th hydrophones can be calculated as, 

( )
( )

( )

, ,

0,0,

pp i j i jp

ij

pp

S x x

S

  




− −
 = , 

 

(27) 

where ppS  is the space-frequency spectrum of the wall pressure field evaluated from the 

numerical inverse Fourier transform of the wavenumber-frequency spectrum of the Chase 

model [13] (see appendix A). One can clearly observe in Fig. 11 that the normalized CSD of 

the wall pressure is very low in general. For two adjacent hydrophones, the normalized CSD is 

less than 0.1 for frequencies above 350 Hz. When the spacing between two hydrophones is 

equal or greater than 12 cm, the normalized CSD is less than 0.1 for all frequencies in Fig. 11.  

The question that we want to next address is how correlated the vibratory field is when 

the shell is excited by a uniformly distributed and weakly spatially correlated WPF? To answer 

this query, we introduce the normalized CSD of the radial acceleration between the i-th and j-

th accelerometers of our virtual array as, 

( )
( )

( ) ( )

, , , ,

, , , , , , , ,

i i j j

ij

i i i i j j j j

S x x

S x x S x x



 

  


     
 = , 

 

(28) 
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where S  is the CSD of the radial acceleration obtained from Eq. (7) and
4

wwS S = . The 

normalized CSD is calculated for all hydrophone pairs in the array and plotted in Fig. 12, for 

the cases of the fluid filled shell with and without stiffeners. The figure presents results for three 

different frequencies, namely 1072 Hz that corresponds to the cut-on frequency of n=3, 1200 

Hz that matches with a pseudo axial mode related to n=3 (for the stiffened shell) and 1228 Hz 

that falls in the “non-resonant” domain of the stiffened shell.  

Clearly, one can notice that for the two shell configurations, the normalized CSD is 

close to one for all hydrophone pairs at the cut-on frequency of n=3 (see Figs. 12a and 12d). At 

this frequency, the shell vibration field has a strong spatial correlation despite the excitation 

does not. For the frequency corresponding to a pseudo axial mode (Figs. 12b and 12e), the CSD 

patterns associated to the non-stiffened and stiffened shells are very different yet values close 

to one are reached in both cases. For the stiffened shell in Fig. 12e, only the two accelerometers 

#10 and #21 exhibit very low correlation with other sensors. The reason for this behaviour is 

that these accelerometers are axially positionned at 10x =  0.46 m and 21x = 0.9 m, which coincide 

with the  nodes of the pseudo axial mode, as observed in Fig. 8. As regards the patterns for the 

third frequency in Figs. 12c and 12f for the non-stiffened and stiffened shells, they are very 

similar because in this case the frequency does not coincide with any resonance of the stiffened 

shell. It can be observed in the figure that several couples of accelerometers present significant 

values of normalized CSD.   

To strengthen the spatial coherence analysis, in Fig. 13 we depict the normalized CSD 

of the radial acceleration between accelerometer #1 and all other accelerometers, as a function 

of frequency. The figure clearly reveals that the vibratory field of the shell displays significant 

spatial correlation for the whole frequency range, although the excitation is almost spatially 

uncorrelated (as shown in Fig. 11). However, not all signals are strongly correlated. The white 

patterns in Fig. 13 stand for strong coherence regions which can be related to the vibroacoustic 

characteristics of the shell. For the fluid filled shell without the stiffeners, the cut-on frequencies 

at 360 Hz and 1072 Hz lead to unit spatial coherence of accelerometer #1 with all other sensors, 

but the situation is very different for the remaining frequencies. The distance between the curves 

of two low correlated accelerometers (corresponding to the black zone in Fig. 11) can be related 

to the wavelength of the propagative vibro-acoustic waves shown in Fig. 6. For instance, at the 

two frequencies 660 Hz and 956 Hz analysed in Subsection 3.3, this distance is respectively 

0.48 m and 0.36 m, which corresponds to half wavelength of the propagative waves for n=2 in 
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Fig. 6c. Comparing Fig. 8 and Fig. 13b for the stiffened shell, it becomes possible to relate the 

patterns of strong coherence to pseudo axial modes.  

The analysis of the sensitivity functions shown in Fig. 10 at 660 Hz can enlighten the 

underlying phenomenon involved in these strong coherences. Indeed, we have already observed 

in section 3.3 that efficient WPW characterized by wavenumbers close to the propagative 

wavenumbers (i.e. 6.4 rad/m for the case of Fig. 10) and its opposite are the main contributors 

to the vibratory response of the shell when it is excited by the TBL. This corresponds to the 

peaks observed in the sensitivity functions in Figs. 10 a-b. On the other hand, Figs. 10c-d show 

the phase differences of the sensitivity functions between sensor #1 and all the other phases of 

the shell response to the WPW, as a function of sensor position. For the shell without stiffeners, 

it is seen in Fig. 10c that the phase difference varies significantly with position, which is the 

result of wave propagation. Focusing on the phase difference related to the two peaks, it is 

noticed that this one depends on the sensor position.  For instance, if we consider sensor #6, the 

phase difference with sensor #1 is 1.2 rad for the peak at 6.4 rad/m and -1.2 rad for the one at  

-6.4 rad/m, whereas for sensor #13 the phase differences are respectively 3.1 rad and -3.1 rad. 

The phase differences between the two peaks for sensors #6 and #13 are respectively 2.4 rad 

and 6.2 rad. Hence, the contributions of the two peaks partially vanish for sensor #6 whereas 

they add up for sensor #13 (as 6.2 ≈ 2𝜋). Therefore, the coherence between sensors #1 and #6 

is weak at this frequency as it can be seen from Fig. 13a, while it is close to one between sensors 

#1 and #13. 

A similar analysis can be carried out for the shell with two ring stiffeners. In this case, 

one can notice in Fig. 10d that the phase shift with sensor #1 does not vary significantly with 

the sensor position as much as with wavenumber, with the exception of sensor locations close 

to the node of the pseudo axial mode (m,n)=(6,2) (i.e. close to 0.6 m). The phase shift between 

the two peaks is then almost 0 (2 𝜋). Their contributions are constructive which results in a 

strong coherence between sensor #1 and all other ones (with the cited exception of those close 

to node (m,n)=(6,2)). 

To conclude this section, we can assert that, for the considered cases, it is certainly 

feasible that a weakly spatially correlated TBL gives place to a strongly spatially correlated 

vibration field on a fluid filled shell.  
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3.5 Comparison with experimental results 

This section presents a comparison between the numerical results obtained using the proposed 

model and the experimental results obtained from the laboratory mock-up in [22]. The 

experimental conditions have been briefly presented in the Introduction and for a full 

description the reader is referred to [22]. As detailed in section 3.1, the physical and geometrical 

parameters used in the numerical simulations are the same ones used in the experiments of [22].  

Fig. 14a shows the radial displacement response measured with a 2 Hz frequency 

resolution when the system is excited by a unit radial point force with a hammer at x=0.105 m. 

This forced response under a controlled excitation contain the pseudo-axial modes. The patterns 

observed in Fig. 14a can be attributed to the spatial shape of the pseudo-axial modes, which 

present significant similarities to the ones already revealed in Fig. 8. Moreover, some peaks can 

be detected in the experimental spectra between 200 Hz and 1000 Hz. According to the 

simulations, these peaks are associated with the pseudo-axial modes corresponding to the 

circumferential order n=2. These experimentally obtained frequencies, 
exp

mf , are compared to 

the ones identified in the numerical spectra, 
frame

mf , in Table 1. A good agreement for the first 

6 modes as well as for the distribution of higher modes is achieved. The discrepancies in the 

higher modes may have different origin and could be due to the fact that (a) frequency-

independent standard values for the mechanical properties of the shell and ring stiffener 

material have been considered in the simulation; (b) the coupling between the shell and the ring 

stiffeners is modelled only in the radial direction; (c) the pipe in the experiment is finite whereas 

it is infinite in the simulation with some supports used to fix it on the suspended slab. Despite 

of such issues, however, we believe the comparison demonstrates that the developed model 

well represents the main vibratory behaviour of the experimental mock-up.   

On the other hand, Fig. 14b shows the measured normalized acceleration CSD between 

sensor #1 and all the other sensors. Strong spatial coherences of the vibratory field at many 

frequencies can be observed. In general, the frequencies related to these strong coherences 

correspond to the pseudo-axial modes. One can notice some similarities between the patterns 

shown in Fig. 14a and Fig. 14b. Above 1.5 kHz, the measured coherence between sensors is 

less important than that estimated by the model as shown in Fig. 13. This could be attributed to 

the differences in the TBL excitation in the numerical simulation and experiment. A flow rate 

of 140 l/s was set in the experiment to ensure that the flow was turbulent in the pipe. Moreover, 

in the upstream of the test section, a 4 m long pipe and a perforated plate flow conditioner were 

used to stabilize the turbulent flow. A 1.5 m long pipe was also used for the discharge before 
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the acoustic balloon. However, the wall pressure spectrum induced by the turbulent flow was 

not measured. Therefore, it cannot confidently be stated that the Chase TBL model considered 

in the numerical modelling is well adapted for describing the wall pressure field in the full 

frequency range. 

To summarize and in spite of reasonable differences, it seems apparent that the proposed 

model is able to represent the main trends of the vibratory behaviour of a fluid filled pipe 

coupled with two flanges. In particular, the model can justify the strong spatial coherences of 

the vibratory field observed in the experimental measurements, which have been proved to be 

associated to frequencies related to the pseudo-axial modes. Further experimental validation 

against experimental data from the Pennsylvania State University [33] is provided in Appendix 

B, showing also good matching. Moreover, a previous satisfactory validation was reported in 

[43], for the case of radial mechanical point force excitation with an impedance hammer, in the 

laboratory mock-up of Fig. 1.  

 

3.6 Influence of the system parameters on the spatial coherence of the vibratory field 

3.6.1 Influence of the shell thickness 

 Next, the influence of some system parameters on the spatial coherence of the vibratory field 

are investigated starting with the shell thickness. Only the shell without the stiffeners is 

considered in this section. Note that the shell thickness h appears in the elements of the spectral 

Flügge operator ( ),xk n  presented in Appendix A. As introduced in Eq. (13), the factor 𝛾 also 

involves h but it could be easily incorporated in the Flügge matrix as a 𝛾−1 factor. The elements 

in ( ),xk n  are involved in Eq. (19) which provide the shell spectral radial displacement 
( ), ,xFW

 

when submitted to the force in Eq. (25) for 1 2 0F F= = . Given that the sensitivity functions 

are computed as 
( ), ,xw FH RW

 
= , it is clear that they will become affected by the shell thickness 

and so does the vibration field of the shell induced by the TBL which is finally computed with 

Eq. (3), as that equation contains wH . 

In Fig. 15 we present the normalized CSD of the acceleration between sensor #1 and all 

other sensors for the cylindrical shell without the ring stiffeners and for two different shell 

thicknesses of 4 mm and 16 mm. These thicknesses respectively correspond to half and twice 

the thickness of the shell studied in the previous sections (i.e. 8 mm). For the 4 mm-thick shell, 

the cut-on frequencies in the frequency band of [100 Hz- 2 kHz] can be found at 150 Hz, 453 
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Hz, 918 Hz and 1546 Hz, corresponding to the circumferential order n ranging from 2 to 5. For 

the 16 mm-thick shell, there is only one cut-on frequency in the frequency band of interest, 

namely 784 Hz for n=2. Fig. 15 shows that these cut-on frequencies play a significant role in 

the formation of the patterns observed in the spatial coherence. As already stated in the previous 

section, the coherence between sensors is close to one for these frequencies but decreases 

between some sensors for the remaining frequencies. The distances between weak-coherence 

sensors (i.e. black areas on the figure) are related to the wavelength of the propagative waves 

for the corresponding circumferential order at the considered frequency.  

 

3.6.2 Influence of the stiffness of the flanges 

In what follows, let us consider the shell coupled to the stiffeners and study the influence of the 

stiffness of the ring flanges on the spatial coherence of the vibratory field. From a modelling 

point of view, the stiffness of the flanges for a given material is controlled by the moment of 

inertia of the ring cross-section of width rl  and height rh . The latter appear in the expression 

for the circumferential admittance for the ring stiffener 𝑌̃𝑟(𝑛) in Eq. (24). A change in the ring 

cross-section will thus affect 𝑌̃𝑟(𝑛), which in turn will influence the contact forces in Eq. (11). 

That will automatically impact the computation of the shell circumferential sensitivity functions 

according to the reasoning in section 2.2.4 and finally the vibration field of the shell when 

excited by the TBL through Eq. (3). 

 To test the impact of the flange stiffness two new configurations are considered:  

- First configuration: the fluid filled cylindrical shell is coupled to two totally rigid 

stiffeners having null circumferential admittance (i.e. ( ) 0rY n = ) . 

- Second configuration: the fluid filled cylindrical shell is coupled to two ring stiffeners 

having a rectangular cross-section of 10 × 30 mm2 (instead of the previous one of 40 × 

60 mm2).  

Except for the above changes, all other parameters in the two new configurations (e.g., 

characteristics of the cylindrical shell and fluid, distance between the stiffeners, etc.) remain 

the same as for the previous simulations.  

Beginning with the second configuration, Fig. 16 compares the amplitudes of the 

stiffeners’ admittances with those of the fluid filled shell. These amplitudes are higher than 

those of the nominal configuration shown in Fig. 5. This is because the new stiffeners are softer 

than those of the nominal configuration in the entire frequency range. On the other hand, one 

can observe that for n=2 the shell admittance is greater than the stiffener admittance for 
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frequencies below 460 Hz and that the opposite occurs for frequencies above 460 Hz. This 

indicates that for the circumferential order n=2, the shell is more rigid than the stiffeners above 

460 Hz, while for the nominal configuration, the shell was softer than the stiffeners regardless 

of frequency. For n=3, the shell is softer than the stiffeners except for frequencies above 1864 

Hz.  

 Fig. 17 depicts the mean ASD of the accelerations measured by the virtual line array of 

25 sensors for the two new configurations. For the shell with totally rigid stiffeners, one can 

realize that additional peaks appear compared to the nominal case shown in Fig. 7b. For 

instance, the two extra peaks at 208 Hz and 892 Hz can be attributed to n=1. These peaks do 

not exist for the nominal configuration because the ring stiffeners were softer than the shell. 

This was highlighted in Fig. 5. On the contrary, for the second configuration, the peaks between 

460 Hz and 1000 Hz have disappeared compared to the initial configuration. As it has been 

previously mentioned, for the second configuration and n=2 the shell is more rigid than the 

stiffeners beyond 460 Hz, which explains the vanishing of the peaks. Above 1072 Hz, the 

vibratory behaviour is mainly controlled by the circumferential order n=3.  As the shell is softer 

than the stiffener for this order for frequencies below 1864 Hz, the peaks induced by the pseudo 

axial modes manifest with amplitudes which are, however, lower than those of the initial 

configuration (in particular for the higher part of the frequency range).  

The spatial coherence of the vibratory field can be examined by plotting the normalized 

CSD of acceleration, as shown in Fig. 18. For the first configuration, one notices strong 

coherences for the frequencies corresponding to the supplementary peaks observed in Fig. 17, 

in particular at 208 Hz and 892 Hz. For the second configuration, the results for frequencies 

between 460 Hz and 1072 Hz are similar to those of the shell without stiffeners as shown in 

Fig. 13a, whereas above 1072 Hz they are similar to those for the nominal case, as shown in 

Fig. 13b. 

 

3.7 Auto and normalized cross-spectrum density for the virtual ring wire sensor 

Before concluding this study, let us next change the type of virtual sensors’ array and consider 

a piezoelectric wire wound around the pipe an integral number of times (see [41] and also the 

works in [44, 45]). This type of sensor is only sensitive to axisymmetric waves [46], which 

means it can only detect the component of the radial vibratory field corresponding to the 

circumferential order n=0. Here we consider the case of 25 wire rings whose axial positions 
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coincide with those of the accelerometers in the line array of the previous section, i.e., 

 0.06 0.04 ,  1,...,25mx m m= +   .  

The normalized CSD of the radial acceleration between the i-th and j-th wires of the 

new virtual array can be obtained from, 

( ) ( )
( )

( ) ( )

0

0

0 0

, ,

, , , ,

n

i jn

ij
n n

i i j j

S x x

S x x S x x



 




 

=

=

= =
 = , 

 

(29) 

where 
0nS

=
 is the CSD of the radial acceleration considering only the contribution of the 

circumferential order n=0 in Eq. (7) and we remember again that 
4

wwS S = . 

In Fig. 19, we compare the ASD mean value of the radial acceleration “measured” by 

the virtual wire sensor array, once more for the shell with and without stiffeners. The ASD 

levels are much lower than those registered by the classical accelerometer line array in Fig. 7. 

This is consistent with the analysis of the operational dispersion curves of Section 3.2, which 

are reflected in Fig. 6. On the other hand, Fig. 19 also reveals that stiffeners have negligible 

effect on the order n=0 contribution to the vibratory field. This may be surprising since in Figs. 

5b-c the stiffener admittances for n=0 are one order of magnitude lower than the shell 

admittances (i.e. nearly 2.6x10-11 m/N for the stiffeners against 1.6x10-10 m/N for the shell). 

One would therefore expect that the flanges could block the vibrations of the shell to some 

extent. As discussed in Section 3.1, however, for this circumferential order the behaviour of the 

fluid filled shell is mainly controlled by the fluid rather than by the shell (see also [40, 44]). 

Consequently, neither the latter nor the stiffeners have any influence on the filled fluid shell 

dynamics for n=0, as observed in Fig. 19. 

The normalized CSD function of the radial acceleration measured by the virtual wire 

sensor array is depicted in Fig. 20. Only small differences are observed between the shell with 

and without flanges. The signals measured by the ring wire array are clearly less coherent than 

those obtained with the classical accelerometer line array. This difference can be explained by 

the fact that the strong coherences observed with the line array were mostly related to the 

vibroacoustic characteristics of the shell (cut-on frequency of the propagative wave, pseudo 

axial modes, etc.), whereas as said before and illustrated in Fig. 6a, for n=0 the vibroacoustics 

of the system is dominated by the fluid.  Below 600 Hz, the coherences in Fig. 20 between the 

ring wire sensors are too small to make them suitable for classical beamforming strategies for 

noise source detection. Above 600 Hz, the coherences become more significant. The coherence 

plot presents a pattern of curves, which for a fixed frequency, exhibit maxima and minima. The 

distance between a pair of maxima (or minima) corresponds to half wavelength of the dominant 
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propagative wave (roughly half of the acoustic wavelength in water). For instance, the 

wavelength is 0.75 m at 2 kHz, and the distance between maxima at that frequency in Fig. 20 

is 0.36 m.  

 

4. Conclusions 

In this paper we have proposed a semi-analytical model for a fluid filled cylindrical shell 

coupled to two ring stiffeners and excited by an internal, homogeneous, turbulent boundary 

layer (TBL). The model has served to determine the spatial coherence of the shell vibratory 

field along a line of virtual point accelerometers. It has been shown that, quite unexpectedly, a 

weakly spatially correlated TBL in the interior of a pipe can give place to a strongly spatially 

correlated vibratory field on the pipe surface. The spatial coherence obviously varies from one 

frequency to another and depends on the vibroacoustic behaviour of the fluid-filled shell. The 

frequencies with stronger coherence are those corresponding to the cut-on frequencies of the 

circumferential orders, as well as to the resonant frequencies of the pseudo axial modes (in the 

case of stiffened shells).  

The herein developed model is based on the computation of circumferential admittances 

of the fluid-filled shell using a spectral approach. Only two ring flanges have been considered 

in the formulation, though extension to further configurations with more stiffeners is quite 

straightforward. The circumferential admittance approach (CAA) has allowed us to analyse the 

mechanical characteristics of the shell and the stiffeners. Their coupling has been assumed to 

only take place in the radial direction, which suffices for the purpose of this study, as shown by 

the validation with experimental results reported in subsection 3.5 and Appendix B. Also, the 

influence of some system parameters like the shell thickness and the stiffness of the flanges on 

the spatial coherence has been investigated.  

The current work may have significant applications for vibration beamforming 

techniques. In fact, it has provided an explanation to the unforeseen experimental results in 

[22], where a beamforming linear array was used to explore ways of detecting sodium-water 

reactions in the steam generator unit of a liquid sodium fast reactor.  Moreover, it has also been 

shown that if one alternatively resorts to ring wire piezoelectric sensors, which can only detect 

the component n=0 of the vibratory field, the coherence between sensors become much weaker 

than when using standard accelerometer line arrays. This is explained by the fact that, for the 

zero-th order, the pipe vibratory field is driven by the axial propagation of waves within the 

fluid rather than by the shell and stiffener properties. Given that classical beamforming requires 
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uncorrelated background noise, the use of an array of these piezoelectric wires instead of 

classical accelerometers may lead to better performance for noise source detection. However, 

further investigations should be carried out to verify that ring wires could be as good as 

accelerometer line arrays to locate acoustic sources in the case of no background noise. 

Conversely, as the signals measured by a line array of accelerometers exhibit strong coherence 

in the presence of the TBL background noise, the use of advanced beamforming treatments 

based on it’s a priori knowledge, like the MaxSNR [22], could be a good option.  

 

Appendix A: TBL and shell models  

The cross spectral density of the Chase TBL model is given by (see e.g., [13]), 
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2 2 2
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0.1553MC  , 0.0047TC   and 3h =  (see e.g., [13] ).  

On the other hand, the spectral Flügge matrix ( ),xk n  implemented in this work reads,  
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12

h

R
 =  (remember h is the shell thickness) and 

2(1 )
lk

E

 


−
=  is the 

wavenumber for compressional waves and the asterisk denotes the complex conjugate.  

 

Appendix B: Numerical – experimental comparison 

In this appendix, we compare the results of the model developed in Section 2 with the 

experimental results in Fig. 7 of reference [33]. The experiment in that work was conducted in 

the Garfield Thomas Water Tunnel, at the Applied Research Lab in Penn State University. The 
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test pipe section comprised a cylindrical shell of 0.0032 m thickness, a length of 0.61 m and a 

radius of 0.156 m. The pipe was made of aluminum and two large blocks (also made of 

aluminum) were used at both ends of the test section for attaching the pipe to the floor. To 

simulate simply supported conditions, circumferential V-shaped grooves were machined 

around the pipe, at the ends of the test-section. A ring of 12 accelerometers was used to measure 

the pipe vibrations. Three runs were measured with the same flow conditions, moving a ring 

array to 3 different axial locations (x/L=1/2, 1/3, 1/6, where L is the length of the test section 

and x=0 corresponds to its upstream end). More details on this experiment can be found in [33].  

The measured acceleration spectra in response to the turbulent flow for the three different 

positions of the ring array were averaged. The results for a flow speed of 6.1 m/s were reported 

in Fig. 7 of [33] and have been included in Fig. B.1.a. The dashed lines in the figure correspond 

to directly measured values, while the solid ones stand for values once applied a noise removing 

technique. Moreover, the contributions of the first 5 circumferential modes were extracted from 

the measured data and plotted in the figure. The modal orders associated to each mode have 

been indicated; the first number designates the circumferential order and the second one the 

axial order. 

For validation, we have reproduced the above experimental set-up with the proposed 

semi-analytical model. The ring stiffeners have been positioned at x=0 m and x=0.61 m to 

represent the effects of the aluminum blocks. The geometry of the blocks does not exactly match 

the one considered for the ring stiffeners in this paper. However, considering their 

characteristics (see [33]), one can suppose that they are much stiffer in the radial direction than 

the cylindrical shell. Ring stiffeners of rectangular cross section (0.05 m x 0.01 m) allow us 

mimicking this property. For the simulations, we have considered the following material data 

for aluminum, 
32700 kg/m = , 59 GPaE = , 0.33 = , 0.001 = , whereas for water we have 

taken 
3

0 1000 kg/m = , 0 1500 m/sc =  and 0 0.001 = . Concerning the TBL excitation, the wall 

pressure field is represented by the Chase model [13] (see Appendix A). The flow speed, 0U , 

has been set to 6.1 m/s, the TBL thickness has been chosen equal to the shell radius and the 

convective and friction velocities are respectively given by 00.7cU U  and 00.032U U  .  

The results of the simulations are plotted in Fig. B.1.b. The comparison with the 

experimental results in Fig. B.1.a is quite satisfactory. There is a good agreement between the 

measured and predicted vibratory levels. In addition, the positions of the frequency peaks are 

well predicted by the model. The dominant contributions of each circumferential mode are also 

well captured in the simulation and they are consistent with the experimental data. Some 
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discrepancies in vibratory levels are appreciated, which can be attributed to uncertainties in the 

description of the wall pressure field by the Chase model (as highlighted in [33]). The most 

important difference appears for the peak level close to 280 Hz, associated to mode (2,1). One 

possible explanation is that this mode occurs at low frequencies and may had been more affected 

by the external conditions of the test rig than the higher order modes. For instance, in the 

experiment, the external portions of the pipe are significantly thicker than the region of the test 

section (0.0064 m against 0.0032 m), whereas in the simulation a 0.0032 m cylindrical shell 

was considered. Overall, however, we believe the comparison between simulated and measured 

data is very satisfactory and validates the modelling approach proposed in this paper. 
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Figure 1. Experimental set-up for assessing the performance of the vibroacoustic 

beamforming [22]. 
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Figure 2.  Schematic representation of the second pipe configuration: An infinite cylindrical 

shell coupled to two ring stiffeners and filled with a water turbulent flow.  
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Figure 3. Schematic diagram describing how to evaluate the CSD of the accelerations 

between two sensors. 
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(a) 

 

 

 

 
 (b) 

   

Figure 4. (a) Global problem: fluid filled cylindrical shell coupled two ring stiffeners.  

(b) Partitioning of the vibroacoustic problem into subsystem #1 (fluid filled cylindrical shell) 

and subsystem #2 (ring stiffeners). Red arrows represent radial point forces. 
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(a) 

 
         (b)                                                                     (c) 

 

Figure 5. Amplitude of the circumferential admittances versus frequency for different 

circumferential orders in the cases of, (a) ring stiffener in the large frequency range [1 10,000] 

Hz, (b) zoom of subfigure (a) in the frequency range of interest [100 2000] Hz, c) fluid filled 

cylindrical shell in the frequency range of interest [100 2000] Hz. 
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(a) 

 

 
(b) 

 
(c) 

 
(d) 

 

Figure 6. Level (dB, ref. 1 m3) of the spectral displacement of the fluid filled shell under a 

radial point force excitation as a function of frequency and axial wavelength 2x xk =   for: 

(a) n=0. The dash, dash-dotted and continuous lines respectively denote the acoustic 

wavelength, the flexural wavelength (of an equivalent plate) and the longitudinal wavelength; 

(b) n=1 (c) n=2 (d) n=3. 
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(a) 

 

 
(b) 

Figure 7. Mean ASD in dB (ref. 1 
2 1/2ms Hz− −

 )  of the accelerations measured by the virtual 

line array of 25 sensors. (a) shell without ring stiffeners, (b) shell with ring stiffeners. 
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Figure 8. ASD of the accelerations in dB (ref. 1 
2 1/2ms Hz− −

 ) as a function of the sensor 

position and frequency, for the shell with ring stiffeners. 
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Figure 9.  Magnitude of circumferential sensitivity functions, wH  as a function of the 

positive axial wavenumber, xk . Comparison for two response points on the shell coupled to 

the two ring stiffeners and for a point on the shell alone. Results at 660 Hz for n=2.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10.  Comparison of circumferential sensitivity functions, wH  as a function of the 

sensor position for the shell alone (a-c) and for the shell with the two ring stiffeners (b-d): (a-

b), magnitude (dB ref. 1 Nm3); (c-d), phase difference between sensor #1 and all the other 

ones (rad). Results at 660 Hz for n=2.  
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Figure 11.  Normalized pressure CSD (i.e. coherence) between hydrophone #1 and  

hydrophones #2 to #7, in a virtual hydrophone array with sensor spacing 0.04 m. Numerical 

results obtained with Chase’s 1987 model [13]. 
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(e) 

 

 

 

 

(c) 

 

 
 

 

 

 

 

(f) 

 

Figure 12.  Normalized acceleration CSD between the 25 sensors. Two configurations: (a-c) 

shell without ring stiffeners and (d-f) shell with ring stiffeners. Three frequencies: (a,d) 1072 

Hz (corresponding to the cut-on frequency n=3) (b,e) 1200 Hz  (c,f) 1228 Hz. 
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(a) (b) 

Figure 13. Normalized acceleration CSD between sensor #1 and all the other ones as a 

function of sensor position and frequency. (a) shell without ring stiffeners (b) shell with two 

ring stiffeners. 
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(a)                                                                       (b) 

 

Figure 14. Experimental results on the laboratory mock-up [22]: (a) radial displacement 

response for a unit radial mechanical point force at x=0.105 m (hammer excitation); (b) 

Normalized acceleration CSD between sensor #1 and all the other sensors as a function of 

sensor position and frequency for a flow rate of 140 l/s. 
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(a)                                                                      (b) 

 

Figure 15. Normalized acceleration CSD between sensor #1 and all the other sensors as a 

function of sensor position and frequency for the shell without ring stiffeners. Two different 

shell thicknesses: (a) 4 mm and (b) 16 mm. 
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Figure 16. Amplitude of the circumferential admittances versus frequency for different 

circumferential orders. Comparison between the values for an 8 mm thick fluid filled 

cylindrical shell (named ‘Shell’ on the graph) and the values for a ring stiffener of 10 × 30 

mm2 rectangular cross-section (named ‘Stiff.’ on the graph). 
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(a) 

 

(b) 

Figure 17. Mean ASD in dB (ref. 1 
2 1/2ms Hz− −

 ) of the accelerations measured by the virtual 

line array of 25 sensors. (a) shell with rigid ring stiffeners, (b) shell with ring stiffeners of 10 

× 30 mm2 rectangular cross-section. 
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(a)                                                                     (b) 

 

Figure 18. Normalized acceleration CSD between sensor #1 and all the other sensors as a 

function of sensor position and frequency for the shell with two ring stiffeners; (a) totally 

rigid stiffeners, (b) stiffeners with a 10 × 30 mm2 rectangular cross-section. 
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Figure 19. Mean value of the ASD of the accelerations in dB (ref. 1 
2 1/2ms Hz− −

 )  measured 

by the wire sensors. Measurements only include the contribution of the circumferential order 

n=0. The dashed line corresponds to the shell without stiffeners and the solid line to the shell 

with ring stiffeners. 
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(a)                                                                (b) 

Figure 20. Normalized acceleration CSD between sensor #1 and all other sensors as a function 

of sensor position and frequency using wire sensors. Contributions of the circumferential 

order n=0. (a) without stiffeners, (b) with stiffeners. 
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(a) 

 
(b) 

Figure B.1. Mean value of the ASD of the accelerations in dB (ref. 1 
2 1/2ms Hz− −

 ) measured 

by 3 rings of sensors. (a) experimental results of the Pennsylvania State University [33] (b) 

numerical results obtained with the proposed model. 
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