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This paper proposes a numerically stable method for modelling a fluid-loaded mul-1

tilayered cylindrical shell excited by a plane wave, which solves the fd instability2

problem usually observed when using the well known transfer matrix method. In3

the considered modelling, each layer can be either a viscoelastic coating described4

by a general 3D elasticity model or an intermediate perfect fluid layer. The transfer5

matrix of each layer relating the state-vector at the layer’s two interfaces is estimated6

with an appropriate standard method. Instead to multiply together the layer transfer7

matrices in order to deduce the one of the multilayer cylinder, one writes the conti-8

nuity relations at each interface of the considered systems yielding to build a global9

matrix that can be solved to obtain the system response. As shown by numerical10

applications on typical naval test cases, the proposed global matrix assembly pro-11

cedure as opposed to the classical transfer matrix method provides both numerical12

stability over a wide range of axial wavenumbers and circumferential orders, but also13

the ability of considering intermediate fluid layers. Besides, this model is well-suited14

to describe elastic solid layers of any anisotropy as illustrated by an additional case15

considering a transverse isotropic layer.16

amaxime.dana1@gmail.com
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I. INTRODUCTION17

Underwater vehicles generally include by a cylindrical shell and internal ring stiffeners18

made of metal to resist to the hydrostatic pressure. The cylindrical shell may be coated19

with viscoelastic layers to improve the vehicle acoustic stealth. Additionnaly sonar systems20

may be mounted on the shell to provide for acoustic detection of other underwater and21

surface vehicles. These sonar systems typically include several elastic and viscoelastic layers22

to ensure sensor encapsulation, positionning, signal conditionning, and self noise rejection.23

Incoming signals from remote vehicles is usually modeled as an incident plane wave. At24

frequencies of interest of most sonar systems, the response of the embedded sensors to a25

plane wave excitation only involves the local characteristics of the shell. Therefore the vehicle26

may be modeled as an infinite cyclindrical multilayer system made of elastic, viscoelastic,27

and fluid layers, without loss of accuracy. In the present paper, the ring stiffeners are not28

considered but the presented model can be coupled to stiffener models subsequently.29

Numerous works have been carried out to model the acoustic scattering and radiation of30

multilayered plates or cylinders (see for instance (Hull and Welch, 2010; Schmidt and Jensen,31

1985) for planar geometries and (Baron, 2011; Ricks and Schmidt, 1994) for cylindrical32

geometries). For these ideal geometries, exact analytical methods have been developed33

to save computing times compared to general element-based methods like Finite Element34

Method and Boundary Element Method. The use of the 3-D equations of elastodynamics35

appears as the most relevant way of modeling the layers at high wavenumber-thickness36

product (kd), that is when layer thickness becomes large compared to structural wavelength.37
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However, specific problems and numerical instabilities can be encountered when considering38

the cylindrical geometry.39

Actually, the step of integrating the displacement solution field in each layer is far less40

complex in the plane case than in the cylindrical case, since the equations of motion leads41

to a 2nd order differential system with constant matrix coefficients for the displacement field42

solution. It is not the case for cylindrical geometries for which the matrix coefficients are43

dependent on the radius position. Two different types of approach have been proposed to44

overcome this difficulty:45

1. The use of Helmholtz decomposition allows to integrate the 2nd order differential sys-46

tem for the displacement field, but restrains the complexity of the considered layer to47

the elastic isotropic case (Ricks and Schmidt, 1994; Skelton and James, 1997). Even48

if the generality of this formalism can be extended to a particular case of transverse49

isotropy (Honarvar et al., 2007; Kim and Ih, 2003; Niklasson and Datta, 1998), the di-50

rection of the fibers’ material which can be represented is not of interest for the design51

of the acoustic coatings used in underwater vehicles. Moreover, the introduction of52

Bessel functions raises numerical problems which must be dealt with, due to the great53

dynamic range of these mathematical functions (Abramowitz and Stegun, 1965).54

2. The state space approach rearranges equations of motion, Cauchy relation and Hooke’s55

law into a 1st order differential system based on sextic Stroh’s formalism, whose hybrid56

solution contains both displacement and normal stress field (Baron, 2011; Chen et al.,57

2004; Dutrion, 2014; Hasheminejad and Rajabi, 2007; Jamali et al., 2011).58

This approach allows to adress also the problem of elastic anisotropy, either by expand-59
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ing the matricant solution into a Peano series’ decomposition (Baron, 2005, 2011), or60

by substructuring each layer into a certain number of sublayers fine enough to neglect61

the curvature inside each sublayer. The latter integration method is most prevalent62

and is chosen by many authors (Chen et al., 2004; Dutrion, 2014; Hasheminejad and63

Rajabi, 2007; Jamali et al., 2011).64

However, sextic Stroh’s formalism establishes transfer matrices in each layer for which the65

classical assembly procedure is to propagate the displacement-stress field by matrix product.66

This assembly procedure is generally called the ”transfer matrix method” (TMM) and has67

been used by many authors (see for instance(Chen et al., 2004; Hasheminejad and Rajabi,68

2007; Jamali et al., 2011)). However, this one suffers from great instability at high kd, well-69

known as the ”large fd problem” and first pointed by Dunkin (Dunkin, 1965). Even if many70

authors tried to solve these instabilities by improving the propagation scheme (Dunkin, 1965;71

Lévesque and Piché, 1992; Rokhlin and Wang, 2002; Tan, 2005), more stable results have72

been found when a global matrix assembly procedure is chosen (Ricks and Schmidt, 1994;73

Schmidt and Jensen, 1985). However, this is achieved at the expense of generality for the74

behavior of the solid layers, since it is assumed isotropic.75

Besides, the incompatibility between transfer matrices of solid and fluid layers makes it76

difficult to take into account intermediate fluid layers. One way of dealing with the prob-77

lem is to ensure the consistency of the matrix product, either by condensating the transfer78

matrices in solid layers (Cervenka and Challande, 1991) or by introducing an infinitesimal79

shear velocity in the fluid medium then considering it as a solid layer (Lowe, 1995; Pialucha,80

1992). An other approach is to uncouple shear stresses between the two layers of different81
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nature via an intermediate matrix (Nayfeh and Taylor, 1988; Pilarski, 1985).82

In this present paper, we propose to develop an alternative approach for modelling the multi-83

layered shell that circumvents the drawbacks described previously with the existing method84

(i.e. material restriction for the Helmholtz decomposition, ”large fd problem” and incom-85

patibility of the intermediate fluid layers’ transfer matrices for the sextic Stroh’s formalism86

when followed by the transfer matrix method). This approach is based on the integration87

of the displacement-stress field solution of sextic Stroh’s formalism to deduce the transfer88

matrix for each layer of the considered system. However, instead to propagate the state89

vectors by matrix product, a global matrix assembly procedure is proposed. This approach90

is similar to that used by authors considering Helmholtz decomposition within each layer,91

but here it is applied to the sextic Stroh’s formalism. This global matrix is built such that92

the continuity relations at the interfaces of the different layers are satisfied.93

This approach is specifically developed such that the broadband analysis can be carried out94

without suffering numerical singularities at high frequencies, large radiuses of the shell or95

high thicknesses of the layers. Unlike models that favor Helmholtz decomposition for in-96

tegrating the solution inside each elementary layer (Ricks and Schmidt, 1994; Skelton and97

James, 1997), the proposed one is well suited for describing the full anisotropy problem.98

To address the problem of interest for underwater applications, multilayered cylindrical99

shells will be loaded both by internal and external fluids and will be excited by an incoming100

acoustic plane wave excitation. The steel cylindrical shell and the acoustic coating will be101

modelled with three-dimensional fully elastic solids, whereas internal, external and interme-102
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diate fluid layers are modelled as three-dimensional fluid domains.103

The paper is organized as follow:104

- In Sec. 2, we remind some theoretical contents related to the considered problem:105

first, the sextic Stroh’s formalism consisting in rearranging the equations of motion,106

Cauchy relation and Hooke’s law, is presented; Second, the 1st order differential system107

resulting of the sextic Stroh’s formalism is integrated after partitioning each layer108

into several sublayers fine enough to neglect the curvature of the layer. Last, the109

classical assembly procedure (generally named ”transfer matrix method”) is presented110

to estimate the transfer matrix of either a given layer from that of its constitutive111

sublayers either or the whole multilayered cylindrical shell from the ones of the different112

layers;113

- In Sec. 3, we highlight both kinds of singularities related to the classical assembly114

procedure (i.e. ”large fd problem” and the management of intermediate fluid layers)115

on various underwater configurations. To end, the response of the immerged multilay-116

ered shell excited by a plane wave is computed. It is compared to that obtained from117

a numerically robust model limited to isotropic solid layers, and similar to the Direct118

Global Method (DGM) presented by Ricks (Ricks and Schmidt, 1994) in 1994;119

- In Sec. 4, we describe the proposed assembly procedure that allows to overcome the120

numerical issues presenting previously. The performances of the improved algorithm121

are studied on the configurations considered in Sec. 3;122
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- Before concluding, we highlight in Sec. 5 the ability of the developed approach to123

take into account non-isotropic layers. The case of a shell covered by an transversely124

isotropic layer composed by Glass Reinforced Plastic is considered.125

II. SEXTIC STROH’S FORMALISM AND CLASSICAL MATRIX PRODUCT AS-126

SEMBLY127

A. Description of the model128

An infinite thick multilayered cylindrical structure (MCS) of N layers is centred on its z129

axis as shown in Fig. 1a). The radial, circumferential and axial coordinates are respectively130

denoted by r, φ and z whereas its associated unit vectors are respectively mentioned by er,131

eφ and ez. Each layer is composed either by an homogeneous elastic material or by a perfect132

fluid. As described in Fig. 1b), the jth layer j ∈ [1, N ] is delimited by its extremal radiuses133

rj−1 and rj (with rj−1 < rj). It results that r0 and rN denote respectively the internal and134

external radiuses of the MCS. The inner cavity of the MCS is supposed to be filled by air135

whereas the MCS is assumed to be immersed in water. By convention, the 0th and N + 1th
136

layers respectively denote the internal air cavity and the external water domain.137

An incoming acoustic plane wave in the external medium is considered as the only excita-138

tion exerted on the MCS, apart from the fluid couplings. The harmonic time dependence is139

chosen as e−jωt and will be suppressed throughout this paper as an algebraic convention.140

141
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We will develop a model for predicting the vibroacoustic response of the MCS excited by142

the plane wave. The latter will be characterised by the response at a given receiving point143

that can be placed either in the external fluid or embedded within an arbitrary layer of the144

MCS. The reponse for the point located in a fluid medium (i.e. external fluid or intermediate145

fluid layer) will be the acoustic pressure whereas for the point located in a solid layer, it146

will be the radial stress. The point of interest will be located at the position coordinates147

(rA, φA, zA).148
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FIG. 1. Presentation of the multilayered shell impacted by an acoustic plane wave

B. 3D anisotropic elasticity and state equation149

In 2004, Chen & al. (Chen et al., 2004) derived a sixth-order state equation for a general150

anisotropic medium in cylindrical coordinates from the 3-dimensional fundamental equations151

of anisotropic elasticity. Here, one considers a particular case of their developments when152

no body forces nor thermal effect are taken into account.153

This formalism rests on the assumption of infinitesimal strain theory in any jth layer, and154
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the rearrangement of equations of motion, Cauchy relation and Hooke’s law. Let us consider155

the state vector defined by:156

V =

[
uz uφ ur σrr σrφ σrz

]T
(1)

where u and σ represent the displacement and the stress, respectively.157

After algebraic manipulations of the previously named equations (see (Chen et al., 2004)),158

one can obtain the so-called state equation for any anisotropic solid layer j (index j is159

omitted on purpose):160

∂V

∂r
(r, φ, z) = [Q]V (r, φ, z) (2)

where [Q] is the Stroh’s operator being dependent on the elastic constants of the considered161

layer (Chen et al., 2004).162

For the sake of brevity and clarity, in the following one only considers the orthotropic elastic163

materials although the presented numerical process could be also applied to any anisotropic164

material. In the specific orthotropic case, the stiffness tensor shows only 9 independent165

elastic constants and Hooke’s law takes the expression (47) given in Appendix.166

Thus, for this case, the [Q] Stroh’s operator reduces to (48) given once again in Appendix.167

C. Fourier transforms and Stroh’s differential system168

Operator [Q] in equation (2) includes partial derivatives along the circumferential and169

axial directions which make the integration of the solution not immediately tractable. Thus,170

the field quantities are represented by Fourier integral transforms in the axial direction and171

Fourier series transforms in the circumferential direction. Actually, any F (r, φ, z) physical172
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field in the cylindrical coordinate system can be expressed as173

F (r, φ, z) =
1

2π

+∞∑
n=−∞

einφ
∫ +∞

−∞
F̃ (r, n, α)eiαzdα (3)

where the associated spectral quantity F̃ (r, n, α) is given by the Fourier transform:174

F̃ (r, n, α) =
1

2π

∫ 2π

0

e−inφ
∫ +∞

−∞
F (r, φ, z)e−iαzdzdφ (4)

Solving equation (2) in the spectral domain by using Fourier transforms allows us to reduce175

the linear partial differential equations in the variables (r, φ, z) into ordinary differential176

equations in the radial variable r. Hence, equation (2) and the Stroh’s matrix [Q] for the177

orthotropic case become in the spectral domain:178

dṼ

dr
(r, n, α) = [Q(r)] Ṽ (r, n, α) (5)

The latter equation is a 1st order differential system for the radial variable r, in which the179

matrix [Q(r)] is given by (50) in Appendix and is also dependent of the radial coordinate.180

This is the main reason why the derived system differs from the one obtained in cartesian181

coordinates for plane layers, and why the solution is not directly integrable in the same way.182

However, the decomposition of the layer in thin sublayers will allow us to neglect locally the183

effect of the curvature of the cylindrical sublayer and to approximate the matrix [Q(r)] as184

a constant in the equation system (5) for each thin sublayer. This approach is described in185

the following subsection.186
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D. Transfer matrices187

1. Case of an elastic solid layer188

Let us consider a solid layer partitioned into P different sublayers of equal thickness as189

represented in Fig. 2.190

(a) Mean radius of jth layer (b) Substructuring criteria of jth layer

FIG. 2. Substructuring approach for the integration of the Stroh’s system

Its extremal radiuses and mean radius are noted respectively rj−1, rj and rmoy
j =191

rj + rj−1

2
. Each sublayer has a constant thickness δr =

rj − rj−1

P
which is assumed much192

lower than the mean radius (i.e. typically
δr

rmoy
j

≤ 0.1) in order to neglect the curvature193

locally inside each sublayer. The sublayer p of the jth layer is then delimited between194

its extremal radiuses rinf
j,p and rsup

j,p , and its mean radius is noted rmoy
j,p . These geometrical195

parameters verify for p ∈ [1, P ]:196

rinf
j,p = rj−1 + (p− 1) δr, rmoy

j,p = rinf
j,p +

δr

2
, rsup

j,p = rinf
j,p + δr (6)

Inside each sublayer p of the jth layer, the state vector V p
j is the solution of a Stroh’s system197

only valid along the thickness δr. As this latter parameter is assumed small compared to198
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the mean radius, one can approximate the Stroh’s matrix by its value at mean radius rmoy
j,p :199

dṼ p
j

dr
(r, n, α) =

[
Qp
j(r

moy
j,p )

]
Ṽ p
j (r, n, α), ∀r ∈ [rinf

j,p, r
sup
j,p ]

Ṽ p
j (rinf

j,p, n, α) = Ṽ p
j,0

(7)

According to Picard-Lindelöf’s theorem, uniqueness of previous system (7) is ensured by the200

initial data of the state vector at the inferior interface of the sublayer which is noted Ṽ p
j,0.201

Besides, operator
[
Qp
j(r

moy
j,p )

]
in Eq. (7) is assumed constant across the entire thickness δr202

of the sublayer, and is evaluated at its mean radius rmoy
j,p . The solution is expressed with a203

matrix exponential as:204

V p
j (r, n, α) = e(r−r

inf
j,p)[Q

p
j (rmoy

j,p )]V p
j,0

(8)

The transfer matrix of the sublayer p is defined as the matrix that relates the state vector205

at the inferior radius to the one at the superior radius of the sublayer p. Eq. (8) evaluated206

for r = rsup
j,p enables to establish this transfer matrix noted [Tj]

p:207

Ṽ p
j (rsup

j,p , n, α) = [Tj]
p Ṽ p

j (rinf
j,p, n, α)

with [Tj]
p = e(r

sup
j,p −r

inf
j,p)[Q

p
j (rmoy

j,p )]

(9)

2. Case of an acoustic fluid layer208

Let us consider an acoustic fluid layer j. Only the acoustic pressure pa and the radial209

displacement ua are the components of the state vector Vj =

[
ua pa

]T
. Considering the210

Fourier transforms of the acoustic wave equation, one can deduce its solutions in terms of211

Bessel functions. It can then be shown (Ricks and Schmidt, 1994) that the 2 × 1 spectral212

state vectors at both extremal interfaces of the fluid layer j can be related by a 2×2 transfer213
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matrix as:214

Ṽj(rj, n, α) = [T ]j Ṽj(rj−1, n, α)

with [T ]j = [F (rj, n, α)] [F (rj−1, n, α)]−1

(10)

where [F (r, n, α)] is called the elementary fluid matrix, and has the following coefficients:215

[F (r, n, α)] =


γLJ

′
n(γLr) γLH

(1)′
n (γLr)

−ρω2Jn(γLr) −ρω2H
(1)
n (γLr)

 (11)

where Jn and H
(1)
n are respectively Bessel and Hankel functions of the first kind. These216

functions are evaluated at γLr, where γL =
√
k2
L − α2 is the projected wavenumber along217

the radial coordinate, kL =
ω

cL
is the acoustic wavenumber in the considered fluid, and cL218

and ρ are respectively the sound velocity and the mass density in this same medium.219

E. Classical matrix product assembly: the Transfer Matrix Method (TMM)220

This section presents the classical assembly procedure of the different layers of the struc-221

ture which leads to numerical singularities as we will see in Sec. 3. It is based on the writing222

of a matrix product which expresses implicitly the continuity relations at each interface be-223

tween state vectors of two consecutive layers. This approach can be applied indifferently to224

the transfer matrices of the sublayers of a given layer to obtain its transfer matrix or to the225

transfer matrices of the different layers of the MCS to obtain the global transfer matrix of226

the MCS.227

It has to be noted than when the structure has intermediate fluid layers, a condensation of228

the state vector is required as the state vectors of the structure layers have 6 components229
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whereas there are only 2 for the fluid layers. The following sections presents first the case230

with no condensation and then the case with condensation.231

1. Without intermediate fluid layers232

When no fluid layers are considered in the structure, consistency in the matrix product233

is obtained naturally between all elastic solid layers.234

a. Case 1: Assembly of sublayers to calculate the transfer matrix of the considered layer.235

In Sec. 2.4.1., the elastic solid layer j has been partitioned in P fictive sublayers and the236

transfer matrix of each sublayer has been determined by Eq. (9). At the interface between237

each sublayer, the displacement continuity and the force equilibrium should be fulfilled.238

Actually, for any given sublayers p− 1 and p, p ∈ J2;P K, one has at the shared interface of239

equation r = rinf
j,p = rsup

j,p−1:240

∀p ∈ J2;P K,V p
j (rinf

j,p, n, α) = V p−1
j (rsup

j,p−1, n, α) (12)

Hence, the transfer matrix for the jth layer is built as the product of the different sublayer241

transfer matrices, given that the state vector may be propagated across the entire thickness242

of the layer:243

V P
j (rsup

j,P , n, α) =
P∏
p=1

[Tj]
P+1−p V 1

1 (rinf
j,1, n, α) (13)

By identifying that rinf
j,1 = rj−1 and rsup

j,P = rj, the transfer matrix for the jth layer is easily244

recognizable:245

Vj(rj, n, α) = [T ]j Vj(rj−1, n, α), with [T ]j =
P∏
p=1

[Tj]
P+1−p

(14)

15
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b. Case 2: Assembly of layers to calculate the transfer matrix of the multilayered cylin-246

drical shell.247

For interfaces separating two consecutive elastic solid layers, the same principle can be248

applied, assuming a rigid junction between the two layers. Thus, by considering the j + 1th
249

interface separating the layers j and j + 1 connected at r = rj, we have:250

Vj(rj, n, α) = Vj+1(rj, n, α) (15)

Propagating the displacement and stress fields across the physical layers is then achieved the251

same way as across the different sublayers of a given material, and a global transfer matrix252

[T ]struc for the whole multilayered structure can be defined:253

VN(rN, n, α) = [T ]struc V1(r0, n, α), [T ]struc =
N∏
j=1

[T ]N+1−j (16)

2. With at least one intermediate fluid layer254

In the case where the MCS presents at least one intermediate fluid layer, one notes nf255

the number of intermediate fluid layers. This implies that the number of groups of solid256

layers is nf + 1, a group being a stack of elastic solid layers framed by two fluid layers.257

Let us consider now a specific group g of elastic solid layers separated by two fluid layers at258

its lower and upper interfaces, noted respectively rlower
g and rupper

g . Then state vectors at both259

sides of fluid-solid interfaces are no longer consistent, and we define for the group of elastic260

solid layers a reduced state vector V r
g =

[
ugr σ

g
rr

]T
which contains the radial (i.e. normal261

to the interface) displacement and the radial stress evaluated at any radial coordinate of the262

16



JASA/Modelling the response of a fluid-loaded multilayered cylindrical shell

multilayered system, giving for the full state vector the following form:263

V =

[
ugz u

g
φ V

r
g σgrφ σgrz

]T
(17)

Hence, the continuity relation is only about normal displacement and normal stress, and264

entails nullity of shear stresses. For the upper interface of the solid group, this leads to:265

V r
g (rupper

g , n, α) = V r
g+1(rupper

g , n, α)[
σrφ σrz

]T
(rupper
g , n, α) = 02

(18)

and the same goes for the lower interface.266

A usual way for dealing with the latter continuity relations consists in condensing the trans-267

fer matrix of the group of solid layers.268

The gth solid group’s transfer matrix [T ]g, obtained by matrix product of the transfer ma-269

trices of each layer of the group, can be partitioned in 2× 2 blocks as follows:270




ugz

ugφ


V r
g
0

0





(rupper
g , n, α) =



[T11]g [T12]g [T13]g

[T21]g [T22]g [T23]g

[T31]g [T32]g [T33]g






ugz

ugφ


V r
g
0

0





(rlower
g , n, α) (19)
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The last four equations of system (19) give the following 2× 1 equations:271 

V r
g (rupper

g , n, α) = [T21]g


ugz

ugφ


∣∣∣∣∣∣∣∣∣∣
(rlower

g ,n,α)

+ [T22]g V
r
g (rlower

g , n, α)


0

0

 = [T31]g


ugz

ugφ


∣∣∣∣∣∣∣∣∣∣
(rlower

g ,n,α)

+ [T32]g V
r(rlower

g , n, α)

(20)

By rearranging the set of equations (20) and eliminating the axial and circumferential dis-272

placements, one can establish a reduced transfer matrix which propagates the reduced state273

vector from the lower to the upper interface of gth group:274

V r
g (rupper

g , n, α) = [T ]rg V
r
g (rlower

g , n, α)

with [T ]rg =
[
[T22]g − [T21]g [T31]−1

g [T32]g

] (21)

Once every group of solid layers has been condensated, one can propagate the reduced275

state vector across the MCS via the following equation:276

V r
N(rN , n, α) = [T ]rstruc V

r
1 (r0, n, α), [T ]rstruc =

nf+1∏
k=1

[T ]rnf+2−k [T ]fnf+2−k (22)

where [T ]fk is the transfer matrix of the intermediate fluid layer framed by the k − 1th and277

kth groups of solid elastic layers.278

F. Global calculation and evaluation of the spectral pressure at the receiving point279

In the previous section, one has determined the global transfer matrix of the MCS. In280

order to calculate the global response of the fluid loaded MCS, it is necessary to write281

the boundary conditions at the internal and external radius of the MCS. In the case of an282
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incident plane wave in the external medium exciting the MCS, the spectral pressure at the283

external radius rN can be split into the blocked pressure pb and the scattered pressure pe284

(Maxit, 2014):285

p(rN, n, α) = pb(rN, n, α) + pe(rN, n, α). (23)

The scattered pressure pe can be expressed via the external fluid impedance Zfe and the286

normal displacement at r = rN of the Nth layer of the MCS (after writing the continuity of287

the normal displacements at the interface between the Nth layer and the external fluid):288

pe(rN, n, α) = ZfeuN(rN, n, α) · er (24)

where Zfe(n, α) =
ρeω

2H
(1)
n (γerN)

γeH
(1)′
n (γerN)

, with γe =
√
k2
e − α2, ke =

ω

ce
being the acoustic289

wavenumber in the external fluid, and ce and ρe being the sound velocity and the mass290

density in this same medium.291

Supposing that the acoustic wavevector characterizing the incident wave is in the plane292

φ = 0 and that it makes an angle ψi with the axial axis, the blocked pressure induced by293

the acoustic plane wave can be expressed by (Skelton and James, 1997):294

pb(rN, n, α) =
2 (−i)n+1

πγerNH
(1)
n (γerN)

2πδ
(
α− αi

)
(25)

where αi = cos(ψi)ke is the projection of the acoustic wavevector onto the axial axis.295

On another hand, the pressure exerted by the internal air cavity can be related to the normal296

displacement of the first layer at r = r0:297

p1e(r0, n, α) = Zfiu1(r0, n, α) · er (26)

where

Zfli(r, n, α) =
ρiω

2Jn(γi(α)r)

γi(α)J ′n(γi(α)r0)
,
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with γi =
√
k2
i − α2, ki =

ω

ci
being the acoustic wavenumber in the external fluid, and ci

and ρi being the sound velocity and the mass density in this same medium.

Using a vector-matrix form to be compliant with the transfer matrix, the stress fields applied

at the external and internal radiuses on the MCS can be written:

σN(rN, n, α) = −Pb(rN, n, α)− [Tfe]uN(rN, n, α) (27)

σ1(r0, n, α) = [Tfi]u1(r0, n, α) (28)

with298

Pb(rN, n, α) = pb(rN, n, α)er

[Tfi] =



0 0 0

0 0 0

0 0 Zfi


, [Tfe] =



0 0 0

0 0 0

0 0 Zfe


(29)

G. Resolution of the mathematical problem299

Considering the transfer matrix of the MCS given by Eq. (16) and the boundary condi-300

tions defined by Eq. (27)-(28), one can deduce the displacement and the stress fields of the301

MCS at the external and internal radiuses.302

First, the global transfer matrix is partitioned into 3× 3 blocks as follows, in the case where303

the MCS does not exhibit intermediate fluid layers:304

VN(rN, n, α) =


[T ]uNu1

[T ]uNσ1

[T ]σNu1
[T ]σNσ1

 (n, α)V1(r0, n, α), (30)
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where

VN =

[
uN σN

]T
and V1 =

[
u1 σ1

]T
.

Then the displacement field at the internal radius of the MCS can be written:305

u1(r0, n, α) = − [R]u1FN
Pb(rN, n, α) (31)

where306

[R]u1FN
=
[
[Tfe] [T ]uNu1

+ [T ]σNu1
+
[
[T ]σNσ1

+ [Tfe] [T ]uNσ1

]
[Tfi]

]−1 (32)

An explicit expression for the state vector V1 =

[
u1 σ1

]T
at the internal radius of the MCS307

can then be established. This state vector can be propagated to the radius of the receiving308

point using a transfer matrix between the internal radius and the radius of the receiving309

point. This latter can be estimated by the same way that the global transfer matrix of the310

MCS has been obtained in Sec. 2.5. From the state vector at the radius of the receiving point311

expressed in the wavenumber domain (n, α), one can deduce the response at the receiving312

point by the inverse Fourier transforms (3).313

The same way is considered in the case where the structure has at least one intermediate314

fluid layer. However, as it has been described in Sec. II E 2, only the normal displacement315

and the normal stress are considered in the reduced matrix transfer. Thus, the latter is316

partitioned into blocks of four scalar T ruNu1 , T
r
σNu1

, T rσNσ1 and T ruNσ1 , as follows:317

V r
N(rN, n, α) =


T ruNu1 T ruNσ1

T rσNu1 T rσNσ1

 (n, α)V r
1 (r0, n, α), (33)

where

V r
N =

[
uN σN

]T
and V r

1 =

[
u1 σ1

]T
.
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Finally, the normal displacement at the internal radius can be written:318

u1(r0, n, α) · er = −Ru1FN
pb(rN, n, α) (34)

with319

Ru1FN
=

1

ZfeT ruNu1 + T rσNu1 +
[
T rσNσ1 + ZfeT ruNσ1

]
Zfi

. (35)

III. NUMERICAL CONVERGENCE OF THE TMM APPROACH320

A. Validation test cases321

In this section, we are going to highlight some numerical instabilities of the classical322

assembly procedure described previously. Numerical singularities compared to a reference323

are going to be shown on test cases related to underwater applications. In the section 4, we324

will propose an alternative assembly procedure avoiding these instabilities. Let us consider325

the four different multilayered cylindrical structures shown on Fig. 3.326
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and RMTD0)

FIG. 3. Schematic representation of the multilayered cross-section of the different test cases

- the RATF0 configuration corresponds to a cylindrical steel shell of thickness es and327

of internal radius r0 covered by an acoustic coating composed by a layer of anechoic328

material and a layer of polyurethane (PU);329

- the RMTF0 configuration is similar to the RATF0 at the difference that the anechoic330

material is replaced by a masking material;331

- the RATD0 and RMTD0 configurations correspond to RATF0 and RMTF0, re-332

spectively, with a supplementary layer of glass reinforced polymer material (GRP) at333

a given distance of the outer surface of the PU layer. It results in an intermediate334

layer of water between the PU and GRP layer. For an application point of view, this335

supplementary GRP layer may represent the acoustic window used in a Sonar flank336

array to keep the sensors away from the turbulent flow. In this section, the GRP ma-337
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terial is assumed isotropic to allow us to obtain a reference result with the Helmholtz338

decomposition (Ricks and Schmidt, 1994).339

For these 4 configurations, the MCS is immersed in water and the internal cavity is filled340

with air. The MCS is excited by an acoustic plane wave of magnitude A0. The mechanical341

properties of the different materials and the ratios of the layer thicknesses to the steel shell342

thickness e/es are shown in Table I.343

TABLE I. Material properties. Every solid material is assumed isotropic.

Steel PU ANECHOIC MASKING Water
GRP

(assumed isotropic)

cL (m.s−1) 6020 1600 900 300 1500 3000

ηL 0, 01 0, 02 0, 25 0, 25 0 0, 05

cT (m.s−1) 3220 150 150 100 0 2000

ηT 0, 01 0, 1 0, 35 0, 45 0 0, 1

ρ (kg.m−3) 7800 1100 1400 1100 1000 2000

e/es 1 5
3

5
3

5
3

5
3

1
3

The calculations will be carried out for a receiving point located at a radius rA = r0+ 10
3
es.344

This receiving point is inside the PU layer mimicking an hydrophone sensor embedded in345

the PU of a Sonar. The response at this point will be evaluated in term of the radial stress346

σrr.347
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The TMM calculations have been performed as described in the section 2. The material348

properties are used to evaluate the Stroh’s matrix (Eq. (5)) reminding that the stiffness349

constants are related to the longitudinal and transverse velocities by: c11 = c22 = c33 =350

ρc2
L, c44 = c55 = c66 = ρc2

T and c12 = c13 = c23 = ρ(c2
L − 2c2

T ). As detailed in the section351

II D 1, the layer can be decomposed in several sublayers in order to suppose that the Stroh’s352

matrix is independent on the radius in the sublayer. Calculations considering different353

numbers of sublayers for each layer were carried out and they showed very close results even354

when considering one single sublayer. One concludes that for the considered configurations355

and the considered frequency range of interest, it is not necessary to decompose the layers356

in different sublayers. This is due to the fact that the criterion
δr

rmoy
j

≤ 0.1 is sufficiently357

respected for the considered cases. In the following subsections, the obtained TMM results358

are going to be compared to the reference results obtained with the so called Dynamic359

Global Method based on Helmholtz Decomposition (DGM-HD). This latter is based on the360

DGM method introduced by Ricks in 1994 (Ricks and Schmidt, 1994), namely a Helmholtz361

decomposition performed in each elementary layer, followed by a global matrix assembly362

procedure. The DGM-HD calculations have been previously validated by comparison with363

other models, in particular finite element models. We can underline that the TMM and364

DGM-HD approaches differ, both in the elementary layer description (Stroh’s formalism for365

TMM, Helmholtz decomposition for DGM-HD) and in the assembly procedure (propagation366

of the state vector for TMM, global assembly matrix for DGM-HD).367
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B. Large fd problem368

In Fig. 4, one presents the radial stress response at the receiving point as a function of369

the normalized frequency ker0 for the RATF0 and RMTF0 configurations. These con-370

figurations do not include any intermediate fluid layer (see Fig. 3(a)). A good agreement371

between the TMM and DGM-HD calculations is only observed for normalized frequencies372

below around 100. Above this frequency limit, large singularities between the two calcula-373

tions can be observed and increase roughly with frequency. This numerical instability can374

be attributed to the so-called ”large fd problem” (Dunkin, 1965; Lévesque and Piché, 1992).375

It results from the TMM indiscrimination of all exponential partial waves within the layer376

in the case of a large thickness-frequency combination (Lowe, 1995). For underwater appli-377

cations considering layers of acoustic materials of several centimeters and a large frequency378

band of interest, the TMM approach is then not clearly appropriate as highlighted by the379

results of Figure 4.380
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FIG. 4. Highlighting instability known as the large fd problem: Radial stress at the receiving point

for a incident plane wave.

C. Cases with intermediate fluid layers381

Now, let us focus on the RATD0 and RMTD0 configurations which exhibit an interme-382

diate fluid layer between the PU and GRP layer. As stated previously, the incompatibility383

of the state vectors between a solid layer and a fluid layer requires a specific treatment in384

the TMM approach. Two approaches are studied numerically in this subsection, namely the385

condensation of the solid matrices as presented in the section II E 2 and the introduction of386

a transverse velocity for mimicking a viscous fluid.387
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1. Condensation of the solid matrices388

The results of the TMM approach using the condensation of the transfer matrices of the389

solid layers (see section II E 2) are compared in Fig.5 with the DGM-HD results for the two390

configurations presenting an intermediate fluid layer.391
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FIG. 5. Highlighting the numerical instability in the low frequency domain when using the con-

densation of the solid transfer matrices: Radial stress at the receiving point for a normal incident

plane wave.

These comparisons are performed at low normalized frequencies (i.e. ker0 < 75) for which392

the TMM approach gave satisfactory results for configurations without intermediate fluid393

layer as shown in Fig. 4. One can observe significant singularities at the lower part of the394

considered frequency band. This results from the poor conditioning of the matrix inverted395

in the condensation procedure and the propagation of numerical errors with the classical396

assembly procedure of the TMM approach.397
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2. Fluid layers with transverse velocities398

Instead of using the condensation procedure, the fluid layer is represented by an isotropic399

solid layer for which the longitudinal velocity CL corresponds to the acoustic velocity and400

the transverse velocity CT is ”small” but not null. This allows to prevent the inconsistency401

of the matrix product between a solid layer and a fluid layer. This approach is easy to402

implement but its difficulty lies in the choice of the transverse velocity. The results of the403

TMM approach with two different values of the transverse velocity are compared in Fig. 6404

with the DGM-HD results used as reference. One can observe that the TMM results depend405

highly on the values of the transverse velocity loss factor. For CT = 1 m.s−1 with a loss406

factor ηT = 0.05, the TMM results diverge for normalised frequencies above around 25. On407

the contrary, a good agreement is observed when CT = 1 m.s−1 without damping. However,408

this last encouraging result obtained for a normal incident plane wave is not general. For409

instance, for an incident angle of 45◦, one can notice in Fig. 6 that the TMM results oscillate410

around the reference results and the singularities become significant in the higher part of411

the frequency range. Clearly, this approach for taking the intermediate fluid layer into412

account is not optimal. It appears difficult to establish a reliable criterion for choosing these413

parameters, since the two different sets of parameters considered here show very different414

results, and no good correlation is guaranteed for a wide frequency range and various incident415

angles.416
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FIG. 6. Highlighting of the responses obtained with the TMM approach when the intermediate

fluid layer is represented by an isotropic layer with a small transverse velocity: Radial stress at the

receiving point for a normal incident plane wave.
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FIG. 7. As the previous figure but for an incident angle of 45◦.
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IV. SOLVING THE NUMERICAL INSTABILITIES WITH THE PROPOSED AS-417

SEMBLY PROCEDURE418

To solve the numerical instabilities related to the ”large fd problem” and to overcome the419

difficulty for the TMM approach to take into account intermediate fluid layers, we propose420

an alternative approach for assembling the transfer matrix. This procedure is based on421

building a global matrix similar to the one built in the Dynamic Global Method (DGM)422

which uses the Helmholtz decomposition in elementary layers (Ricks and Schmidt, 1994).423

As the transfer matrices of the different layers will be extracted from the Stroh’s formalism424

(as presented in Sec. 2) and the assembly approach will mimic the DGM, we will refer to it425

as the DGM-SF method in the following whereas DGM-HD will always denote the classical426

Dynamic Global Method(DGM) using the Helmholtz decomposition in each layer.427

The proposed assembly approach is based on the writing in the spectral domain of a global428

matrix [G]DGM-SF (n, α) which relates the second member vector E(n, α) characterizing the429

excitation and a global vector {V }GLOB(n, α) containing all the state vectors evaluated at430

every lower interface of each layer of the structure:431

[G]DGM-SF (n, α){V }GLOB(n, α) = E(n, α) (36)

In the following, we are going to describe how the global matrix [G]DGM-SF should be built432

so that the continuity relations on the displacement and stress fields are fulfilled for every433

interface of the MCS. This assembly procedure depends on the type of interface, and is434

detailed in the different subsections.435

The principle consists in rewriting the continuity relations such that they relate the state436
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vectors at the lower radius of the two layers sharing the considered interface. It permits437

to deduce the blocks of the global matrix [G]DGM-SF related to the concatenated subvector438

composed of state vectors at the lower radius of the layers that share the considered interface.439

A. Continuity relations at internal interfaces440

1. Interface between two solid layers441

Let consider the j + 1th interface (j ∈ J2; N − 1K) of the structure, separating jth and442

j+1th elastic solid layers and having for equation r = rj. The displacement and stress fields443

are continuous across this interface as it can be described by Eq. (15). Using this equation444

with Eq. (14), one can relate both state vectors at the bottom of jth and j + 1th layers via445

the transfer matrix of jth layer:446

Vj+1(rj, n, α) = [T ]j Vj(rj−1, n, α) (37)

For convenience, this equation can be rewritten on the form:447

(
[T ]j − [I6×6]

)
Vj(rj−1, n, α)

Vj+1(rj, n, α)

 =


06×1

06×1

 (38)

This equation that expresses the continuity conditions at the interface between the two448

solid layers is used in practice for filling the global matrix during the assembly procedure as449

represented in Fig. 8:450
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FIG. 8. Global matrix assembly procedure for solid-solid interfaces

2. Interface between a solid and a fluid layer451

Let consider now an intermediate fluid layer j between two elastic solid layers j − 1 and452

j + 1, then only the normal displacement and the normal stress are continuous across both453

extremal interfaces of jth layer shared with layers j − 1 and j + 1. Since Vj−1 and Vj+1 are454

6 × 1 vectors both larger than the 2 × 1 state vector Vj in the jth layer, one is brought to455

refer to specific rows of Vj−1, Vj+1, and of the transfer matrices of layers j − 1 and j + 1 in456

order to write the continuity relations. The exponents [3; 4] make reference to the normal457

displacement and normal stress (i.e. ur, σrr) whereas the exponents [5; 6] make reference to458

the tangential stresses (i.e. σrφ, σrz).459

The continuity relations can then be written:460
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- for the j − 1th interface:461


Vj(rj−1, n, α) =

[
T [3;4]

]
j−1
Vj−1(rj−2, n, α)

V
[5;6]
j−1 (rj−1, n, α) =

[
T [5;6]

]
j−1
Vj−1(rj−2, n, α) = 02×1

(39)

- for the jth interface:462


V

[3;4]
j+1 (rj, n, α) = Vj(rj, n, α) = [T ]j Vj(rj−1, n, α)

V
[5;6]
j+1 (rj, n, α) = 02×1

(40)

where exponents [3; 4] and [5; 6] remind the corresponding rows in state vectors of the con-463

sidered solid layers.464

This set of 8 equations can rewritten on the following form:465


[
T [3;4]

]
j−1
− [I2×2]

[
T [5;6]

]
j−1

[02×2]



Vj−1(rj−2, n, α)

Vj(rj−1, n, α)

 =


02×1

02×1

 (41)

466 
[T ]j [ [02×2] − [I2×2] [02×2] ]

[02×2] [ [02×2] [02×2] [I2×2] ]



Vj(rj−1, n, α)

Vj+1(rj, n, α)

 =


02×1

02×1

 (42)

Once again, these equations are used to fill the global matrix by blocks as represented in467

Fig. 9.468
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FIG. 9. Global matrix assembly procedure for solid-fluid interfaces

3. Continuity relations at extremal interfaces469

The continuity relations at both internal and extremal radiuses provide 6 equations in470

total, which take the following form in the case of the plane wave excitation:471

V
[4;6]

1 (r0, n, α) =

[
[Tfi] [03×3]

]
V1(r0, n, α)

V
[4;6]

N (rN, n, α) = −Pb(rN, n, α)−

[
[Tfe] [03×3]

]
VN(rN, n, α)

(43)

where the Pb vector and the [Tfi], [Tfe] matrices have been defined in section II F. These472

equations can be rewritten on the form:473

[
− [Tfi] [I3×3]

]
V1(r0, n, α) = 03 (44)
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474 [
[Tfe] [I3×3]

]
VN(rN, n, α) = −Pb(rN, n, α) (45)

However, the state vector at the top of the last layer VN(rN, n, α) is not stored in the global475

vector {V }GLOB. Hence, Eq. (45) is rewritten in function of state vector at the bottom of476

the last layer VN(rN-1, n, α) by using the transfer matrix of the last layer [TN]:477 [
[Tfe] [I3×3]

]
[TN]VN(rN−1, n, α) = −Pb(rN, n, α) (46)

The equations 44 and 46 are used to fill by blocks the global matrix as represented in Fig.478

10.479

!"#$ %&×& !(

−!"#* %&×&

+((-(./)

+/(-1)

!/ −%2×2

3&×/

−45

+6(-/)

089 interface

1;8 interface

N + 189 interface

32×/

> ?@A.BC + @DEF G

FIG. 10. Global matrix assembly procedure for extremal interfaces.

4. Summarize480

The DGM-SF procedure can be decomposed in three steps:481

36



JASA/Modelling the response of a fluid-loaded multilayered cylindrical shell

- the transfer matrix of each layer (or each sublayer) is estimated accordingly to the482

developments of the section 2.4;483

- the global matrix {V }GLOB(n, α) and the second member vector E(n, α) are filled by484

blocks depending on the type of layer (or sublayer) interface as summarized by Figures485

7, 8 and 9;486

- the global matrix system (36) is solved. The state vector at the bottom of the layer487

containing the receiving point, is then propagated to the radius of the receiving point488

using the transfer matrix between the internal radius and the radius of the receiving489

point. The response at the receiving point is then deduced from the inverse Fourier490

transforms (3) of the state vector in the wavenumber domain (n, α).491

B. Numerical stability enhancement provided by the DGM-SF492

In this section, we highlight the numerical stability improvements provided by the pro-493

posed assembly procedure, both on the ”large fd problem” and the ability to take into494

account intermediate fluid layers.495

1. About the ”large fd problem”496

Figure 11 represents the modulus of the spectral radial displacement at the inner radius497

of the steel shell in the normalized frequency-circumferential order (ker0, n) space for the498

RMTF0 configuration. The results obtained by the two assembly procedures are com-499

pared. One notices a good agreement between the two calculations only for both the low500
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circumferential orders and the low frequency of the considered frequency range. Outside501

this domain, the conventional TMM assembly procedure exhibits results that are noisy and502

largely different from those of the proposed DGM-SF assembly procedure. For validation,503

the latter compared with the DGM-HD reference results on Figure 12 for both RATF0504

and RMTF0 configurations. One recalls that the TMM approach gave poor results on505

Figure 4 for the same configurations. A very good agreement can be observed on Figure 12506

between the DGM-HD et DGM-SF calculations, even for the highest part of the frequency507

range of interest. Other comparisons (not presented here) for different incident angles of the508

acoustic waves show also a good agreement between DGM-HD et DGM-SF. This shows that509

the DGM-SF procedure allows to overcome the numerical instability of the TMM assembly510

procedure related to the ”large fd problem”.511

20× log10|ur(r0, n, α)| (TMM) 20× log10|ur(r0, n, α)| (DGM-SF)

373 435 498
0
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300

400

-380

-360

-340

-320

(a) TMM approach

373 435 498
0

100

200

300

400

-380

-360

-340

-320

(b) DGM-SF approach

FIG. 11. Comparison of the spectral displacements at the inner radius calculated by the TMM

and DGM-SF approaches for the RMTF0 configuration.
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FIG. 12. Validation of DGM-SF assembly procedure for the cases without intermediate fluid layers.

Radial stress at the receiving point for a normal incident plane wave.

2. About the difficulty of taking into account intermediate fluid layers512

In this section, one highlights the ability of the DGM-SF assembly procedure to take513

into account intermediate fluid layers. As seen earlier on Fig. 5 and Fig. 6, classical514

TMM assembly procedure is not well suited to describe intermediate fluid layers, and very515

poor correlation can be noted at low frequency regime with the DGM-HD reference model,516

either when condensating transfer matrices of solid layers or when introducing low transverse517

velocities into intermediate fluid layers.518

The comparison of DGM-HD and DGM-SF results is proposed in Fig. 13 for RATD0 and519

RMTD0 configurations which both exhibit an intermediate fluid layer. Again, one can520

notice a good agreement between the two approaches.521
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FIG. 13. Validation of DGM-SF assembly procedure for the cases with an intermediate fluid layer.

Radial stress at the receiving point for a normal incident plane wave.

V. ABILITY OF THE PROPOSED DGM-SF PROCEDURE TO MODEL THE522

ANISOTROPY OF SOLID LAYERS523

Before concluding, we illustrate on an application case the interest of the DGM-SF ap-524

proach compared to the DGM-HD one. Unlike the DGM-HD method that performs a525

Helmholtz decomposition in each elementary solid layer assuming particular material sym-526

metries (as isotropic), the proposed DGM-SF procedure integrates the Stroh’s first-order527

differential system without making any assumptions on the material symmetries (see sec-528

tion 2).529

For underwater applications, the GRP layer that may represent an acoustic dome of a Sonar530

flank array and that has been considered in the RATD0 and RMTD0 configurations is531
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typically an anisotropic layer. As the GRP material can be manufactured by adding layers532

of woven roving and resin, the mechanical properties are different in the fiber plane from533

transversely to the plane. For the considered cylindrical GRP layer, one can suppose that534

the woven rovings are rolled around a cylinder with different directions of the fibers for each535

roving. It results that the fibers are randomly oriented in the plane (eφ, ez). The GRP is536

thus well represented by a transversely isotropic model, and Young moduli in the directions537

of the fibers (i.e. (eφ, ez)) are higher than the transverse Young modulus (i.e. in the radial538

direction er).539

To illustrate the effect of this anisotropy, one has started from the characteristics of the540

supposed isotropic GRP layer defined in Table I and one has modified the Young modulus541

in the er direction to define one transverse isotropic configuration as presented in Table II. A542

distinction of the material properties has been made between the radial direction numbered543

1 and those of the fiber ”plane” numbered 2 and 3. The Young’s modulus in the radial544

direction has been softened by imposing the value of E2

E1
ratio, where GRP 3/1 stands for545

E2

E1
= 3. These characteristics are used to calculate the stiffness constants of the Hooke law546

(defined with Eq. (47)) and then the Stroh’s matrix with Eq. (5). The integration of the547

Stroh’s differential system can be achieved as described in the section II D 1 in order to de-548

duce the transfer matrix of the transverse isotropic GRP layer. The radial stress responses549550

at the receiving point have been compared for the RATD0 and RMTD0 configurations551

considering both isotropic and transverse isotropic GRP cases defined in Table II. Fig. 14552

shows the radial stress responses at the receiving point rA for both RATD0 and RMTD0553
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TABLE II.

Mechanical properties, isotropic (GRP ISO) versus transverse isotropic case (GRP 3/1).

GRP ISO GRP 3/1

E1 (GPa) 17, 7 6, 00

E2 = E3 (GPa) 17, 7 17, 7

G12 = G13 (GPa) 7, 92 3, 00

G23 (GPa) 7, 92 7, 92

ν12 = ν13 0, 2 0, 2

ν23 0, 1 0, 1

ρ (kg.m−3) 2000 2000

configurations. On top are represented the responses for normal incidence, and below those554

for an oblique incidence of (45◦) of the acoustic wave.555
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FIG. 14. Influence of the transverse isotropic model for the GRP layer: Radial stress at the

receiving point for normal and oblique (45◦) incident plane wave.

Differences are observed on each excitation case between both GRP models at high fre-556

quencies. Larger differences are observed for RATD0 configuration at both incidences.557

For the higher frequencies of the considered frequency range, one can notice that the re-558
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sponses obtained with the transverse anisotropic GRP model have greater levels than with559

the isotropic GRP model. This is explained by the fact that the Young modulus has been560

softened in the transverse anisotropic model, increasing the transmission coefficient of the561

GRP, and increasing the level at the sensor radius.562

This result allows us illustrating the interest of the DGM-SF approach. It should however563

not be considered as a general statement. A detailed study should be carried out in the fu-564

ture to understand the effect of transverse isotropic layer on the response of a multilayered565

cylindrical shell impacted by a plane wave. It is however outside the scope of the present566

paper.567

VI. CONCLUSION568

A semi-analytical model of a multilayered cylindrical shell immersed in water and excited569

by an acoustic plane wave has been developed for underwater applications. One has shown570

that the classical transfer matrix method (TMM) allowing to assembly the transfer matrix of571

each layer lead to numerical instabilities. These have been highlighted on typical underwater572

configurations. The first instability is related to the well-known ”large fd problem” whereas573

the second one is induced by the matrix condensation used to take into account intermediate574

fluid layers. An alternative assembly procedure based on the building of a global matrix575

has been proposed to overcome these instabilities. It leads to the DGM-SF approach that576

allows us to describe each solid layer with the Stroh’s formalism and to assemble them by a577

global matrix. It results in an efficient and numerical stable process that has been validated578
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on different underwater configurations. Moreover, the process is well suited to take into579

account anisotropic layers such as composite acoustic windows.580
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APPENDIX: STROH’S OPERATOR FOR AN ORTHOTROPIC LAYER585

For an orthotropic layer, the Hooke’s law can be written as:586



σrr

σφφ

σzz

σφz

σrz

σrφ



=



c11 c12 c13 0 0 0

c12 c22 c23 0 0 0

c13 c23 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66





εrr

εφφ

εzz

γφz

γrz

γrφ



(47)
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where cij are the elastic constants.587

The Stroh’s operator can then be written:588

[Q] =



0 0 − ∂

∂z
0 0

1

c55

0
1

r
−1

r

∂

∂θ
0

1

c66
0

−c13

c11

∂

∂z
− c12

c11r

∂

∂θ
− c12

c11r

1

c11
0 0

e23

r

∂

∂z

e22

r2

∂

∂θ

e22

r2
− ρω2 1

r

(
c12

c11
− 1

)
−1

r

∂

∂θ
− ∂

∂z

−1

r
(c44 + e23)

∂2

∂θ∂z
−
[
ρω2 +

e22

r2

∂2

∂θ2
+ c44

∂2

∂z2

]
−e22

r2

∂

∂θ
− c12

c11r

∂

∂θ
−2

r
0

−
[
ρω2 +

c44

r2

∂2

∂θ2
+ e33

∂2

∂z2

]
−1

r
(c44 + e23)

∂2

∂θ∂z
−e23

r

∂

∂z
−c13

c11

∂

∂z
0 −1

r


(48)

where ρ is the mass density of the considered layer and eij are derived from the elastic589

constants cij:590

e22 =

(
c22 −

c2
12

c11

)
, e23 =

(
c23 −

c12c13

c11

)
, e33 =

(
c33 −

c2
13

c11

)
(49)
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Applying the Fourier transform defined by Eq. (4) to the Stroh’operator gives the Stroh591

matrix:592

[Q(r)] =



0 0 −iα 0 0
1

c55

0
1

r
−in
r

0
1

c66

0

−iαc13

c11

−in
r

c12

c11

− c12

c11r

1

c11

0 0

iα
e23

r

in

r2
e22

e22

r2
− ρω2 1

r

(
c12

c11

− 1

)
−in
r
−iα

α
n

r
(c44 + e23)

n2

r2
e22 + α2c44 − ρω2 −in

r2
e22 −in

r

c12

c11

−2

r
0

n2

r2
c44 + α2e33 − ρω2 αn

r
(c44 + e23) −iα

r
e23 −iαc13

c11

0 −1

r


(50)
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Baron, C. (2005). “Le développement en série de peano du matricant pour l’étude de la597
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thesis, Université Sciences et Technologies-Bordeaux I.599

Baron, C. (2011). “Propagation of elastic waves in an anisotropic functionally graded hollow600

cylinder in vacuum,” Ultrasonics 51(2), 123–130.601

47



JASA/Modelling the response of a fluid-loaded multilayered cylindrical shell

Cervenka, P., and Challande, P. (1991). “A new efficient algorithm to compute the exact602

reflection and transmission factors for plane waves in layered absorbing media (liquids and603

solids),” The Journal of the Acoustical Society of America 89(4), 1579–1589.604

Chen, W., Bian, Z., and Ding, H. (2004). “Three-dimensional vibration analysis of fluid-605

filled orthotropic fgm cylindrical shells,” International Journal of Mechanical Sciences606

46(1), 159–171.607

Dunkin, J. (1965). “Computation of modal solutions in layered, elastic media at high fre-608

quencies,” Bulletin of the Seismological Society of America 55(2), 335–358.609
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tique.,” Ph.D. thesis, Institut Supérieur de l’Aéronautique et de l’Espace-ISAE.611
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