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The packing of elastic bodies has emerged as a paradigm for the study of macroscopic disordered
systems. However, progress is hampered by the lack of controlled experiments. Here we consider a
model experiment for the isotropic two-dimensional confinement of a rod by a central force. We seek
to measure how ordered is a folded configuration and we identify two key quantities. A geometrical
characterization is given by the number of superposed layers in the configuration. Using temporal
modulations of the confining force, we probe the mechanical properties of the configuration and
we define and measure its effective compressibility. These two quantities may be used to build a
statistical framework for packed elastic systems.

PACS numbers: 46.32.+x, 46.70.Hg, 61.43.-j

Packed elastic objects are ubiquitous in Nature and
technology. For instance, DNA is packed in the cell nu-
cleous or in viral capsids [1, 2], while growing tissues can
be confined by their environment [3, 4]. The optimiza-
tion of folding is crucial in the design of self-deployable
structures, such as tents or solar sails [5], or in waste
disposal. Like a granular pile, a confined plate can be
either in a crystalline state, the stacked facets obtained
by repeatedly folding a sheet into two, or in a disordered
state, exemplified by a crumpled ball [6]. When a sheet is
confined, the number of metastable configurations blows
up [7]. Meanwhile, self-avoidance leads to jamming be-
cause it prevents the system from exploring the space
of configurations. This raises the question of whether a
confined sheet can be viewed as a glassy system, in the
same class as a static granular medium [8]. Indeed, theo-
retical studies proposed thermodynamical approaches for
packed rods [2, 9, 10]. It has been argued that a system
which is confined isotropically experiences a configura-
tionnal phase transition from a disordered to an ordered
(nematic) state [2, 9]. The geometric characterization
of the nematic ordering has been developed in various
numerical and experimental works [6, 10, 11]. On the
experimental side, a difficulty in the study of crumpled
balls [11–16] arises from the hand-generation of configu-
rations. In this context, the confinement of a rod in a
plane was an important and useful simplification [7, 17–
20]. However, drawing general conclusions from these
experiments can be questioned because of issues such as
friction between the periphery of the configuration and
the container, the anisotropic injection of the rod in the
container, plasticity or the impossibility of unfolding a
configuration.

Here we reconsider the packing of a rod in a plane by
proposing an original model experiment. In addition to
a geometric description of the transition from a disor-
dered to ordered configuration, we developed a mechani-
cal characterization of the system allowing a global mea-
sure of the order without addressing the local geometrical

properties of the folded configurations. To this purpose,
we devised an experiment allowing us to reversibly con-
fine a rod by a central force, deriving from an isotropic
radial potential. As a consequence, there is no contact
between the container and the periphery of the config-
uration, while the intensity of the forcing is controlled
through the stiffness of the potential. We investigate the
emergence of geometrical order through the stacking of
layers. As this setup enables the temporal modulation of
the confinement, we also probe the mechanical properties
of configurations, and define an effective susceptibility of
a configuration, which we associate with geometrical or-
der. We thus obtain a coupled geometrical and mechan-
ical characterization of the system.

The principle of the experiment is as follows. A cir-
cular Hele-Shaw cell is filled with a liquid and entrained
by a motor. A rod is inserted into the cell. The cell is
slightly thicker than the rod, so that the rod cannot cross
itself, constraining a two-dimensional folding. The liquid
is denser than the rod. As a consequence, when the cell
is rotated, the rod is submitted to a centripetal force and
thus confined in a radial, parabolic potential of pressure,
P (r) = P0 + 1/2ρω2r2 where r is a radial coordinate, ρ
the fluid density and P0 the pressure at the center of the
cell. The influence of gravity is negligible in this setup.
The cell was fixed in a vertical position on the axis of
a 2kW motor, through a double ball bearing to avoid
vibration transmission from the motor to the cell. The
rotation velocity was controlled using an electronic fre-
quency variator.We used a PDMS rod of circular section,
h = 2± 0.2 mm in diameter and L = 3±0.01 m in length,
density d = 1 and Young Modulus E = 1.0 ± 0.1 MPa,
measured through the elongation of the rod under a force.
The liquid was salt-saturated degassed water of density
ρl = 1.16 at ambient temperature. The cell was initially
made of two disks of 50 cm in diameter: a stiff one in
10 mm–thick Duralumin (i), and a transparent one in
15 mm–thick Polycarbonate (ii), allowing us to observe
the confined rod (Fig. 1a,b). Chamber 1 was filled with
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FIG. 1: The experiment. (a) A rod of density 1 is confined
in a circular Hele-Shaw cell, filled with saturated salted water
of density 1.16. On the picture, the rod is in its initial con-
figuration, before the cell has been set in rotation. (b) The
cell is made of a superposition of three disks; the intermedi-
ate one (ii) is pierced with two holes to enable equilibration
of pressure into the liquid. Rod is placed in the chamber 1
of controlled thickness, chamber 2 is a sacrificial room. The
chambers are made watertight with flat and toric joints shown
in dark. (c) Example of a equilibrium configuration obtained
when a centripetal force is generated by the rotation of the
cell around its axis. (d) Corresponding skeletonized image in
which the number of layers per branch is defined.

the liquid and the rod; the gap thickness was fixed at
2.5 mm by a ring of Plexiglas inserted between the two
disks. The pressure gradient induced in the liquid by
the rotation imposed a buckling of the disk ii, induc-
ing a thinning of the gap. To have a permanent control
of the gap thickness, a third disk in 15 mm–thick Poly-
carbonate (iii) is added to obtain a second chamber of
thickness 1.5 cm; this chamber is filled with the same liq-
uid and a communication between both chambers was
created piercing two holes of 1 mm in diameter in disk ii,
enabling the equilibration of pressure in the two cham-
bers. Chamber 2 serves as a sacrificial chamber: when
the cell is rotated, disk (iii) bends inwards (instead of
disk (ii)) but the gap is thick enough so that it does
not close at our maximal rotation velocity of 20 Hz. The
chambers were filled through holes pierced in the edge
of disks (i) and (iii) and the rod was gently inserted us-
ing a hole in the back of disk (i). The whole setup was

placed in a dark room and lit with three stroboscopic
lamps with diffusing screens. Movies were taken with a
CCD camera. The duration of a flash was short enough
(1 ms) to get sharp images of the rod, even at the higher
velocities. Using a computer interface, the camera and
stroboscopes were triggered with the same square peri-
odic signal, while the variator was controlled using a DC
voltage. To enhance contrast, we used a white rod on a
dark back: an adhesive sheet of black plastic was laid on
the Duralumin disk (i). Binary images of the rod were
obtained by thresholding.

The initial configuration of the rod (Fig. 1a) is pre-
pared using 8 magnetic beads of diameter 1.8 mm in-
serted into the first chamber and moved from outside
with a magnet. The cell is then set in rotation; the
time to reach the desired frequency is approximately 3 s.
The control parameter is the frequency f of rotation (See
EPAPS Document No. [number will be inserted by pub-
lisher] for a movie of a typical experiment.)

FIG. 2: Panel of folded configurations resulting from exper-
iments with same parameters. The rod is prepared in the
initial configuration (Fig. ??a) then the rotation frequency is
increased from 0 to 12 Hz in approximately 3 s. The large va-
riety of geometry shows that the folding is a non-deterministic
process.

For a given rotation frequency, a large number of folded
configurations is accessible from the same initial config-
uration (Fig. ??). Indeed, the folding process is non-
deterministic and the folded configuration is selected by
the experimental noise at the very beginning of the ex-
periment. We include in noise the influence of fluids flows
in the cell and the friction between the rod and disks of
the cell. A first flow is the transient flow to entertain
fluid in a solid rotation. A second flow to consider is the
ejection of fluid when to parts of the rod stack one on the
other. We can convince that the timescales of these flows
are much smaller than the timescales observed in our ex-
periment necessary to the rod to reach a configuration of
equilibrium, as explain below.

First, configurations can be characterized using the ra-
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dius of gyration,

Rg =

√
1

L

∫ L

0

r2(s) ds ,

where s is the curvilinear coordinate of the rod and r(s)
the distance to the cell axis. This quantity is directly cal-
culated using the binary image of the confined rod. The
radius of gyration decreases with time, rapidly when the
rotation is started (Fig. 3a) and then more slowly, reach-
ing a plateau value in a time lapse of the order of 103 s.
This final value is not unique and differs according to re-
alizations at a given frequency. As we only investigated
equilibrium configurations, we had to wait 1800 s for each
value of the frequency before taking measurements, to
ensure that equilibrium is reached. When averaging over
realizations, the mean radius of gyration R̄ is found to be
a decreasing function of confinement strength (Fig. 3b).
It appears that, when the same experiment is repeated,
a large diversity of sizes and geometries is observed. The
aim of the present study is to quantify geometrical order
in equilibrium states. To do so, we extract the skeleton of
a folded configuration from binary images, for which void
area into the pattern smaller than a arbitrary treshold are
filled. This process did not influence results. Vertices are
detected as self-contact points, ie points of the skeleton
having three neighbors (Fig. 1c, d). We define branches
as portions delimited by two vertices. A given branch
may contain several layers of the rod: the thickness of the
branch on the binary image directly yields the number
of layers. The automatization of this analysis procedure
allows to treat a large number of data.

Inspired by observations (Fig. 4a), we first consider a
geometrical definition of order using the number of su-
perposed layers. Indeed, the configuration of absolute
minimum of energy is a spiral [7], which can be qualified
as very ordered and in which all layers are superposed and
contained in a unique branch. Experimentally, this num-
ber of superposed layers is defined as the average number
of layers per branch in a given configuration. We jointly
measured the average number of layers per branch N̄l/b

and the radius of gyration of a configuration, as shown
in Fig. 4b. The data roughly collapse on a single curve,
independently of the confinement strength. Therefore,
either the radius of gyration or the number of layers ap-
pear as better characterizations of the configuration. A
disordered configuration, ie with small N̄l/b, has a larger
radius than a spiral ordered configuration. As in some
previous experiments [11, 19, 20], stacking appears as a
distinctive feature of the confinement of rods, and our
setup allows us to show that stacking decreases with the
radius of the configuration. In the following we inves-
tigate the possibility of characterizing geometrical order
without a detailed knowledge of the geometry of configu-
ration. In other words, we seek an independent measure
of order.

(a)

(b)

FIG. 3: The radius of gyration. (a) The radius of gyration Rg

as a function of time for three realizations in which the cell was
launched from 0 to 14Hz in 3 s. Radii reach a plateau value in
about 103 s. The final radius differs according to realizations.
(b) On average, the radius of gyration R̄ decreases with the
strength of confinement (quantified by the rotation velocity,
f of the disk). Bars represent the width of radii distribution
for a given rotation frequency.

We realized annealing experiments in which the con-
finement strength was repeatedly increased then de-
creased by varying the rotation velocity appropriately.
At each step in rotation frequency, we waited 1800 s in
order to reach equilibrium (Fig. 3a), so that an anneal-
ing experiment typically took 12 hours. After a few fre-
quency steps, the radius of gyration followed approxi-
mately the same line (Fig. 5a). The first steps are irre-
versible, while the line is reversible. In other words, the
system follows an irreversible branch in the (f,Rg) phase
space before falling on a reversible branch. This behavior
is reminiscent of the evolution of the density of a tapped
granular pile according to the tapping acceleration, as
reported in [21]. In our case, each annealing experiment
can be characterized with the intercept, R0, and with
the slope, χ, of the reversible branch. Furthermore, we
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FIG. 4: Stacking. (a) Order and disorder. Two extreme ex-
amples of equilibrium configurations obtained at two different
frequencies, with a large and a small number of superposed
layers, respectively. (b) Average number of layers per branch,
Nl/b, as a function of the radius of gyration Rg. Each point
corresponds to one realization of the experiment. The colors
of the symbols correspond to the imposed rotation velocity of
the disk. An ordered configuration (large Nl/b) has a small
radius of gyration.

observed that no topological changes occurred along the
reversible branch, as illustrated in Fig. 6: the relative
positions of loops remain constant, and the configuration
only seems to breath. As a consequence a given annealing
experiment leads to a well-defined configuration, which
can be characterized with R0 and χ. R0 corresponds to
its effective radius, while χ defines an effective suscepti-
bility of the configuration as it measures its its suscep-
tibility to response to the variation of the confinement
strength. The effective susceptibility was here defined as
the response of the system to an external field which is
the confinement potential and is not the same suscepti-
bility usually defined in glassy system theory. When plot-
ting these two quantities, the characteristic radius R0 is
found to be an increasing, roughly linear function of the
susceptibility χ (Fig. 5b). The results are independent
of the confinement (frequency) since, whatever annealing
path, points seem to collapse on the same master curve.
As we found above that an ordered configuration has a
small radius of gyration (Fig. 4b), this second set of re-
sults indicates that an ordered configuration has a small
susceptibility, and, conversely, a disordered configuration
is highly compressible. A possible interpretation is that
self-avoidance imposes a stringent constraint on ordered

(b)

χ

Δf

ΔR

R0

(a)

FIG. 5: Susceptibility. (a) Evolution of the radius of gyration
Rg during an annealing experiment. After a first irreversible
brach, the radius follows a reversible branch (parallel to the
dashed line). A configuration is characterized by the slope of
the line, χ, and its intercept, R0, with the axis f = 0. (b)
The characteristic radius R0 as a function of susceptibility
χ. Each point corresponds to one realization of an annealing
experiment. The error bars correspond to the uncertainties
estimates of the linear fits as described in (a).

configurations for which more stacking means less free-
dom in exploring phase space; as a consequence an or-
dered configuration would be less compressible. In terms
of mechanics, the solid-solid friction is more important in
an ordered configuration than in a disordered one, while
the area of part of rod in contact is higher. When the
confinement pressure is decreased, friction opooses to the
unfolding motion.

To summarize, we built an experiment allowing the
two-dimensional confinement of a rod in a parabolic po-
tential. This experiment allowed us to quantify order and
disorder in a configuration, using a geometrical measure
of stacking and a mechanical measure of effective suscep-
tibility, this quantity being defined as the response of a
system to an external field. We found that these two
quantities are strongly correlated with the characteristic
radius of the configuration. Although this effective sus-
ceptibility is strictly a susceptibility response to changes
in rotation velocity, it can be readily generalized to other
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FIG. 6: Example of the evolution of a configuration during
an annealing experiment. Rotation frequency was varied from
12 Hz (left) to 6 Hz (right), by steps of 2 Hz of 1800 s duration.
Each colored area corresponds to a loop. The relative position
of loops is invariant. The configuration only breathes under
the perturbation.

3D systems such as crumpled balls. Indeed the definition
and the measure of a nematic order in packed systems
are issues still unsolved. In that context, a salient fea-
ture of susceptibility is that its measurement does not
require a full knowledge of the geometry of the config-
uration. In other words, order could be inferred from
the effective stiffness of the crumpled ball. Future work
should address whether these quantities could be used
in a thermodynamic approach to packing, or how these
quantities could emerge in such an approach. Thus ge-
ometrical and mechanical properties appear as strongly
entangled in the packing of sheets and rods.

We are grateful to J. Da Silva Quintas for his help in
building the experimental apparatus.
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